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Recommendation systems have been widely embedded into many Internet services. For example, Meta’s deep
learning recommendation model (DLRM) shows high prefictive accuracy of click-through rate in processing
large-scale embedding tables. The SparseLengthSum (SLS) kernel of the DLRM dominates the inference time
of the DLRM due to intensive irregular memory accesses to the embedding vectors. Some prior works directly
adopt near data processing (NDP) solutions to obtain higher memory bandwidth to accelerate SLS. However,
their inferior memory hierarchy induces low performance-cost ratio and fails to fully exploit the data locality.
Although some software-managed cache policies were proposed to improve the cache hit rate, the incurred
cache miss penalty is unacceptable considering the high overheads of executing the corresponding programs
and the communication between the host and the accelerator. To address the issues aforementioned, we
propose EMS-1, an efficient memory system design that integrates Solide State Drive (SSD) into the memory
hierarchy using Compute Express Link (CXL) for recommendation system inference. We specialize the
caching mechanism according to the characteristics of various DLRM workloads and propose a novel
prefetching mechanism to further improve the performance. In addition, we delicately design the inference
kernel and develop a customized mapping scheme for SLS operation, considering the multi-level parallelism
in SLS and the data locality within a batch of queries. Compared to the state-of-the-art NDP solutions, EMS-1
achieves up to 10.9x speedup over RecSSD and the performance comparable to RecNMP with 72% energy
savings. EMS-1 also saves up to 8.7X and 6.6 X memory cost w.r.t. RecSSD and RecNMP, respectively.
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1 INTRODUCTION

Recommendation systems have been widely used in many daily life applications such as adver-
tising [1], social networks [35], and video clip recommendation [40]. Various recommendation
models have been also proposed, among which deep learning recommendation model (DLRM) [26]
demonstrates high efficiency in processing large-scale user and item data. Hundreds of embed-
ding tables may be included in the DLRM and each embedding table could consist of millions
of embedding vectors. Hence, the DLRM could consume hundreds to thousands of GBs memory.
The operation kernels in the DLRM include multi-layer perceptron (MLP), SparseLengthSum
(SLS) and self-defined feature interaction. SLS dominates the inference time of the DLRM because
it requires irregular and sparse accesses to the embedding vectors among all the large embedding
tables [15]. The unique data access pattern induces low utilization of memory bandwidth and
poor data locality in the cache.

Some prior works [15, 33, 37] accelerate the inference of DLRM by directly using near data
processing (NDP) solutions to increase the memory bandwidth. Other works [2] try to improve
the data locality by using customized software-managed cache techniques, e.g., retaining the fre-
quently accessed embedding vectors in the cache. However, all these works have some prominent
weaknesses: In NDP solutions, for example, significant changes in the internal architecture of
DRAM or SSD leads to high research and development (R&D) cost and may potentially increase
the manufacturing cost. Besides, using only DRAM to store hundreds/thousands of GBs of
embedding vectors induces high memory cost as DRAM chips are much more expensive than
SSDs. Although SSD-based NDP platforms have low memory cost, the limited I/O bandwidth and
low computing power lead to high inference latency. Moreover, the memory hierarchy of current
NDP accelerators only has a small one-level cache residing above the DRAM or NAND flash chips.
The inferior memory hierarchy fails to fully exploit the data locality of the DLRM workloads. In
the solutions of software-managed caches, a host CPU is usually needed to run the corresponding
algorithms to maintain a self-defined cache policy when a cache miss happens. Hence, besides
the latency of DRAM or SSD access, the cache miss penalty also includes the execution time
of the algorithm (~10 ms) and the communication latency between the host CPU and the
accelerator (~100ns). The total latency of the cache miss may be overlapped during the training
the DLRM through increasing the batch size to a large value, e.g., 2048 or more to only improve
the throughput [5, 20, 25]. However, the approach adopted in the training is unacceptable for the
inference of DLRM where the batch size could not be very large [15, 37] (usually no greater than
64) because both the inference latency and the inference throughput should be taken into account.

To address the issues in the prior works, we propose EMS-1, an efficient memory system
design with a specialized caching mechanism and a inference kernel for recommendation system
inference. The memory system of EMS-1 is based on the combination of the memory components
on FPGA (URAM/BRAM/HBM) and an SSD, which achieves a sweet point between the memory
cost and the performance of DLRM inference. The variety of memory resources provides the
opportunity of building a hierarchical memory system with multi-level caches to be customized
for the DLRM workloads. However, in the conventional memory system, storage devices like SSD
are not included. To integrate the SSD into our memory system, we adopt Compute Express Link
(CXL) [7] to expand the memory space and build a unified memmory space consisting of the host
memory, SSD and the HBM on the FPGA. In EMS-1, we develop L1 cache on the URAM, regard
the HBM as L2 cache (which is mapped to the unified memory space as aforementioned) and use
the internal DRAM cache in the SSD as L3 cache. Through implementing the back-invalidation
coherence policy in CXL, the FPGA can directly communicates with the SSD via the CXL switch
without the coordination of the host. We customize the caching mechanism to incorporate the
software-managed cache technique into the hardware design of the cache controller to eliminate
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Fig. 1. General architecture of deep learning recommendation model and element-wise summation in
SparseLengthSum.

the extra cache miss penalty. In addition, through a characteristic study, we found that the cache
hit rate of the DLRM workload is sensitive to the cache replacement granularity in a naive case of
two-level caches. Inspired by the observation, we support the flexible adjustment of the replace-
ment granularity in EMS-1. We also propose a novel prefetching mechanism to fetch the highly
correlated embedding vectors together to improve the overall cache hit rate in the three-level
caches of EMS-1. We develop an inference kernel to process the SLS and Multi-layer perceptrons
(MLPs) in the DLRM on the HBM-enabled FPGA to avoid the internal hardware changes in the
memory devices. Specially, we develop a hierarchical SLS array and propose a customized map-
ping scheme for the L1 cache in the inference kernel to support the multi-level parallelism existing
in the SLS operation and explore the data locality within a batch of input queries. As far as we
know, we are the first to accelerate the inference of recommendation system from the view of memory
system design.
We summarize our contributions as follows.

e We conduct a comprehensive characteristic study for the DLRM workloads in the perspective
of memory system and get meaningful insights to guide the design of EMS-1.

e We propose EMS-1, an efficient memory system design for recommendation system based
on two CXL devices, an HBM-enabled FPGA and an SSD.

e We specialize the caching mechanism, including the delicate hardware cache controller to
reduce the evictions of popular embedding vectors and the flexible adjustment of the cache
replacement granularity.

e We develop a novel prefetching mechanism according to the correlation of the embedding
vectors.

e We develop an efficient inference kernel and a customized mapping scheme to process the
DLRM inference considering the multi-level parallelism in the SLS operation.

Experimental results show that EMS-1 achieves up to 10.9x speedup over the state-of-the-art
SSD-based NDP solution — RecSSD. EMS-1 also achieves a comparable performance to the DRAM-
only accelerator — RecNMP with 72% energy savings. In terms of memory cost, EMS-1 is up to 8.7X
and 6.6X cost-effective over RecSSD and RecNMP, respectively.

2 PRELIMINARY
2.1 Recommendation Model - DLRM

The general architecture of DLRM is illustrated in Figure 1. The input of one query consists of
dense features and sparse features, showing the characteristics of the user and the item. The dense
feature is fed into a bottom MLP. Meanwhile, each sparse feature, which is actually a one-hot or
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Fig. 2. CXL system architecture including type-1, type-2, and type-3 devices. The host physical address (HPA)
is shown on the top where type-2 and type-3 device memory is host-managed device memory (HDM).

multi-hot vector, is translated into the embedding indices of each embedding table. SLS consists
of two steps, embedding lookup and element-wise summation. According to the embedding
indices of each embedding table, SLS first looks up the corresponding embedding vectors and
then performs the element-wise summation on the embedding vectors as shown in the top left
of Figure 1. The number of the embedding vectors that are looked up is referred to as pooling
factor. For example, in Figure 1, the pooling factors of embedding Table 1 and embedding table
n are 3 and 2, respectively. The results of the bottom MLP and SLS are processed by the feature
interaction module, where the self-defined functions can be implemented such as concatenation
and inner-product. Finally, the results of the feature interaction are inferred by a top MLP to get
the click-through rate (CTR), which shows the possibility that the item is clicked by the user.

Meta develops a series of DLRMs such as RMC1, RMC2 and RMC3 [26]. The differences among
the three specific models are mainly the size of MLP and embedding tables, and the number of
embedding tables. According to [26], in general, RMC1 has small MLP, and small and few embed-
ding tables. RMC2 has more embedding tables with small size than RMC1. The size of MLP and
embedding tables are the largest in RMC3. In fact, the number and size of the embedding tables
depends on the specific datasets, which also determines the specific architecture of the recommen-
dation model. Hence, to some extent, it is unnecessary to differentiate RMC1, RMC2 and RMC3
when applying DLRMs to the real world as long as the model follows the workflow in Figure 1. In
this paper, the models that we use are based on RMC series and the number of embedding tables
is adjusted when running the model on different datasets.

2.2 Coherence Interconnect - CXL

CXL is a dynamic multi-protocol technology designed to support the low-latency and high-
bandwidth communication among different CXL devices [7], which enables multiple heteroge-
neous devices to share the memory space with cache coherency. A typical CXL system consisting
of a host, a CXL switch and multiple CXL devices, is illustrated in Figure 2. Based on the physical
layer of PCle, CXL provides a set of protocols including I/O semantics similar to PCle (CXL.io),
caching protocol semantics (CXL.cache), and memory access semantics (CXL.mem). According
to the combination of the protocols, three types of devices are defined in CXL. With CXL.io and
CXL.cache, type-1 devices are usually used as NICs. With all three protocols, type-2 devices are
usually developed as accelerators that have both computing and memory resources. Using CXL.io
and CXL.mem, type-3 devices can be recognized as the memory expansion of the system. Thanks
to CXL.io protocol that enables the CXL device to expose device registers to host physical ad-
dress (HPA), all the CXL hardware modules share a unified memory space, which includes the
host memory, type-2 and type-3 device memory. Type-2 and type-3 device memory is referred to
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Fig. 3. (a) Comparison of latency (batch size = 64) and performance/$ among NAND-only, NAND+DRAM
and DRAM-only platforms; (b) The influences of cache capacity and associativity on hit rate on the
NAND+DRAM platform.

as host-managed device memory (HDM) when it is exposed to the host and can be accessed by
the host via CXL.mem. Type-2 devices can buffer data residing in the HPA into its internal cache
via CXL.cache. The internal coherent cache in type-2 is maintained by device coherency engine
(DCOH) to guarantee the cache coherency across the host and other CXL devices.

HDM comes in three types according to the approach to maintaining the coherence: host-
managed coherence (HDM-H), device managed coherence (HDM-D) and device managed
coherence with back-invalidation (HDM-DB). EMS-1 is mainly based on the coherency model of
HDM-D with device bias mode and HDM-DB to reduce the overhead of the interruption from
the host. The coherency model of HDM-D with device bias mode enables the device to access
its device memory, which is mapped as HDM, directly without communicating with the host.
The coherency model of HDM-DB allows direct snooping on each device. This coherency model
enables P2P communication among CXL devices if using a CXL 3.0 switch where a P2P unordered
I/O (UIO) is implemented. The corresponding logic of coherence protocol is implemented in
the device’s DCOH. Detailed specification is described in [7] and our work benefits from the
application of the functionality of CXL.

3 CHARACTERISTIC STUDY

We conduct a characteristic study to get meaningful insights to guide the design of an efficient
memory system for DLRM workloads. In this study, we assume that only CPU is available for com-
puting. The simulation environment is based on gem5 [22] with the integration of SimpleSSD [13]
and ramulator [18].

3.1 NAND-only v.s. DRAM-only v.s. NAND+DRAM

Firstly, we study the impact of the choices of memory devices on the latency of a batch (batch size
is set to 64) of queries and the corresponding performance-memory cost ratio, i.e., performance/$,
which is defined as 1/(latency X memory cost). We assume that DRAM is 4.6$/GB and NAND flash
is 0.42$/GB referring to [8, 32]. We use the synthetic workload generated by DeepRecSys [10]
framework. For the NAND+DRAM platform, we adopt DRAM as the cache of NAND with LRU
replacement policy. The x-axis in Figure 3(a) is the ratio of the number of the cached embedding
vectors to the number of all the embedding vectors, which suggests DRAM with different sizes.
As shown in Figure 3(a), the NAND-only (#cached/total % = 0) platform gets the highest latency
due to the limited I/O bandwidth and high-latency data accesses to the NAND flash chips. In ad-
dition, the performance/$ of the NAND-only platform is also the lowest though NAND flash is
relatively cheap. In contrast, the DRAM-only platform achieves the lowest latency, but its perfor-
mance/$ is still not optimal. From the figure, we can observe that increasing DRAM capacity helps
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Table 1. The Overall Cache Hit Rate with Vector and Block
Replacement Granularity for the Lower Level Cache

Syn1 | Syn2 | Criteoday3 | fb_dlrm
Vector | 83.6% | 89.2% 96.1% 77.1%
Block 81.2% | 90.6% 97.2% 75.4%

the NAND+DRAM get lower latency and higher performance/$. When the ratio, #cached/total
(c/t), increases to 0.008, the NAND+DRAM platform gets the highest performance/$ and achieves
comparable performance as the DRAM-only platform. Hence, we believe that the platform with
the combination of NAND and DRAM is the optimal choice to achieve the sweet point between the
performance and the memory cost.

3.2 Impact of Cache Capacity and Associativity

Figure 3(b) illustrates that on the NAND+DRAM platform, how the cache size (c/t) and associativity
influences the DRAM cache hit rate. We can observe that the cache hit rate increases significantly
as the size of the DRAM cache increases. In comparison, the associativity marginally improves
the DRAM hit rate if the LRU cache replacement policy is implemented like most common caches.
Specifically, after the associativity increases to 8, the hit rate saturates. We can conclude that high
associativity fails to improve the cache hit rate on DLRM workloads.

3.3 Considerations in the Hierarchical Cache System

Motivated by the observations in Sections 3.1 and 3.2, we further explore the potential of building
the hierachical caches in a more realistic system with a device-attached memory (DRAM) and
an SSD. We regard the device-attached memory as the upper level cache and the internal DRAM
cache in the SSD as the lower level cache. Developing the appropriate cache replacement policies
is crucial to the cache hit rate for the two-level caches. Prior works mainly focus on improving the
temporal data locality in the device-attached memory through LRU or software-managed cache
replacement policies. However, those works neglect the opportunity of exploiting the existing
spatial locality in the dataset, i.e., embedding vectors that are stored together may be accessed
together. Intuitively, we think that the replacement granularity of the cache that is closest to where
the original embedding vectors are stored may have an influence on the cache hit rate. Hence, we
develop the internal DRAM cache in the SSD with two choices for the replacement granularity,
the size of the embedding vector (Vector) or the size of the page buffer (Block) in the NAND flash.
We conduct a toy experiment on four datasets as shown in Table 1. By configuring the parameters
of generating synthetic workloads in DeepRecSys, we can get the workloads with lower spatial
locality (Syn 1) and higher spatial locality (Syn 2). We assume that the internal DRAM in the
SSD caches 2 million embedding vectors while the accelerator-attached memory caches 10 million
embedding vectors (although the lower level cache is smaller than the upper level cache here, the
assumption makes sense because in a realistic system, the device-attached memory is usually larger
than the size of the internal DRAM cache (only 4 GBs) in the SSD). From the results in Table 1, we
observe that the size of replacement granularity of the SSD internal DRAM cache indeed affects
the overall cache hit rate. Thus, we get the insight that the choice of the replacement granularity of
the internal DRAM cache in the SSD should be “workload-aware”.

4 DESIGN OF EMS-I

According to our insights above, we build EMS-1, consisting of an SSD, an accelerator based on
FPGA and a CPU host. Using CXL protocols, the SSD and the accelerator are developed as CXL
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Fig. 4. (a) Memory system hierarchy and cache mapping of EMS-1; (b) Data path and coherency models of
EMS-1.

type-3 and type-2 devices, respectively. The SSD and the accelerator are connected via a CXL
switch. We integrate the two CXL devices into the CXL system considering the requirements of
both storage and computation. The CXL-SSD is mainly used to store the huge amount of embed-
ding vectors while the CXL-FPGA is developed to customize the inference kernels for the parallel
SLS operations with its high-bandwidth memory and on-chip URAM. Note that EMS-1 is designed
for the inference rather than the training of the recommendation models. In the scenario of train-
ing, GPU, which has the efficient recommendation model training framework such as torchrec [34],
can be developed as type-2 device and integrated into the CXL system following the similar mem-
ory system design of EMS-1 with larger batch size. We leave it to the future works.

4.1 Memory System Design

We choose the HBM-enabled FPGA Xilinx VU57P as the platform for the accelerator due to the
high bandwidth requirement of SLS. Besides the HBM, the accelerator-attached memory resources
also include the on-chip URAM and BRAM. Inspired by our characteristic study, we develop all the
accelerator-attached memory resources as the upper level caches and the internal DRAM cache in
the SSD as the lower level cache. However, we further divide the levels of the memory on the FPGA.
We develop the URAM as the L1 cache (also the internal cache of the accelerator) to support the
multi-level parallelism of the SLS operation in the DLRM inference and the HBM as the L2 cache
to improve the temporal data locality on the FPGA to secure a high cache hit rate, as illustrated in
Figure 4(a). In addition, the internal DRAM inside the SSD is developed as the L3 cache to explore
the potential spatial data locality in the dataset to further improve the overall cache hit rate and
support the prefetching mechanism. The replacement granularities of the L1 and L2 cache are both
“Vector” while the replacement granularity of the L3 cache can be adjusted to “Vector” or “Block”
according to different datasets.

We develop the SSD as the type-3 device and the accelerator as the type-2 device in the CXL
system. The memory space of the SSD and the HBM on the accelerator is mapped as the HDM.
Figure 4(b) shows the data path and the corresponding coherence models of our design. When the
accelerator receives the request from the host, the coherency model of HDM-D with device bias
mode is firstly triggered to make the accelerator directly access the L2 cache (the HBM, mapped
to HPA) and buffer the data into the L1 cache via CXL.cache without the interruption from the
host CPU. If the cache miss happens in the L2 cache on the accelerator, then the accelerator com-
municates with the SSD using the coherency model of HDM-DB. The missed data in the L2 cache
and the corresponding highly correlated data is fetched or prefetched from the L3 cache through
the UIO, which enables P2P communication between the SSD and the accelerator without the
data passing the host CPU. Note that the data transfer from the L3 cache to the L2 cache uses the
CXL.io protocol and the L3 cache only buffers data from the NAND chips within the SSD rather
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than from other CXL devices because for the workloads of DLRM inference, there are no writes to
the SSD.

4.2 Hardware Architecture

Figure 5 illustrates the overall hardware architecture of EMS-1. Both the SSD and the accelerator
have their own CXL interfaces (CXL-interf) and the accelerator has the DCOH to maintain the co-
herence protocols. All the hardware modules within the accelerator are connected via a specialized
NoC. The inference kernel for DLRM workloads consists of an L1 cache controller, an L1 cache
that buffers the embedding vectors to be inferred, an SLS array and an MLP logic. The specialized
inference kernel considers multi-level parallelism during the inference of DLRM and is illustrated
in detail in Section 4.6. The L2 cache mechanism is based on the LRU policy but also modified for
reducing the evictions of popular embedding vectors from the L2 cache, which will be described
in Section 4.3 in detail. The architecture of CXL 3.0 switch is based on the UIO. The SSD and the
accelerator are directly connected to the two separate downstream ports. Because we only have
two CXL devices, the data path between the two devices is fixed. Hence, the host CPU just needs to
configure the switch only once. The SSD controller is modified to support the flexible replacement
granularity, i.e., Vector or Block, for the L3 cache.

4.3 Cache Specialization

To avoid the high latency of running software-managed cache strategies as described in Section 1,
we customize the cache mechanism of the accelerator from the hardware side.

4.3.1 Resource Allocation and Tag Compression. The memory resources of Xilinx VU57P in-
clude 8.8625 MB BRAM, 33.75 MB URAM, and 16 GB HBM. When allocating the memory resources
for the L1 and L2 cache, besides the cache size, the peripheral information such as tag, LRU bits,
and other self-defined bits should also be taken into account, especially the memory consumption
of the cache tags. As we know, one cache address consists of a tag, a set index, and an offset. As-
suming that the memory space is M, the cache associativity is A, the size of a cache block is B, and
the cache size is C, then we can get the memory consumption of the tags of the cache as shown in
the following equation,

MCp(t)C(lMlClB)
emConsp(tags) = = |logaM — log,— — logs
B AB

MA)

_E(lo MA
“ B\ ¢
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We aim to store the tags in the URAM instead of HBM or the host’s DRAM to avoid the extra
cache miss penalty induced by the high latency of looking up tags. Hence, the L2 cache consists
of a tag cache based on the URAM and a data cache based on the HBM as shown in Figure 5. The
tag cache also buffers other peripheral information for the L2 cache as described in Section 4.3.2.
Note that the each entry in the tag cache is aligned with each entry in the data cache as illustrated
in Figure 6(b). We assume that the size of L1 cache is 16 MB and all the 16 GB HBM is used as the
L2 cache. Meanwhile, the memory space is set as 1TB, which is enough for most of the datasets.
Then, for the L2 cache, we get the constraint,

16GByte ! 1TByte X A
o
B * 16GByte

) < (33.75 — 16)MByte. (2)

We can observe that by reducing the associativity and enlarging the block size, the memory
consumption of the tags can be reduced. Remember that in Section 3.2, we get the conclusion that
high associativity just marginally improves the cache hit rate. Hence, setting associativity to 8 is
a perfect choice here. Finally, we set the block size to 4096 bytes to satisfy the constraint. Note
that the cache access granularity is the size of the cache block. In such a memory allocation, the
memory consumption of the tags is 8 MB for the L2 cache, with the remaining memory resources
allocated to other peripheral information in the cache structure, which will be shown in the next.
We specialize the L1 cache organization with the inference kernel design in Section 4.6.

4.3.2 Customized Cache Replacement Policy. Our L2 cache replacement policy is based on
the LRU policy. Hence, the cache structure includes the corresponding LRU bits. Meanwhile,
we modify the policy to reduce the evictions of popular embedding vectors. Firstly, we attach
a popularity bit “1” to each popular embedding vector in the preprocessing of the dataset. We
sample 30% of the input queries and do the statistics on the access frequency of each embedding
vector. If the access frequency of an embedding vector is higher than some pre-defined threshold,
then the embedding vector is recognized as a popular embedding vector. Correspondingly, pop-
ularity bits (P) are also added in the cache structure to show the number of popular embedding
vectors in the block, as shown in Figure 6(b). When a cache block is selected to be replaced by
the LRU policy, the popularity counter will check the popularity bits of the block and compare
the popularity value with a pre-defined threshold as illustrated in Figure 6(a). If the popularity
value is larger than the threshold, then the block will not be replaced, and a new address will be
generated to select a new cache block. Otherwise, the block will be selected to be replaced, and
the corresponding valid bits (V), LRU bits and tag will be updated.

So far, it is not difficult to find that the access granularity (the size of the cache block) is
larger than the replacement granularity (“Vector”) of the L2 cache, which could induce the
underutilization of the L2 cache. Note that EMS-1 processes a batch of queries simultaneously so
the missed embedding tables are also fetched in a batch. When a cache miss happens in the L2
cache, a batch of the missed embedding vectors, which are indicated by the current batch of quries,
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are firstly loaded into the replacement buffer from the L3 cache as shown in Figure 6(a). Then,
the missed embedding vectors are grouped according to their tags. The data in a replaced cache
block is updated by a group of the embedding vectors with the same tag. Hence, a large group
size helps load more embedding vectors into a replaced cache block, which finally improves the
L2 cache utilization. Through increasing the batch size of the input queries, the group size of the
missed embedding vectors can be implicitly increased. In addition, our prefetching mechanism
(see Section 4.5) can further increase the group size by fetching the correlated embedding vectors
along with the missed embedding vectors.

4.4 Support for Flexible Replacement Granularity

The address of NAND flash consists of row address and column address. The row address is used to
address the logic units, blocks and pages. The column address is used to access the data in the page
buffer. Hence, although the access granularity of transferring data from the NAND flash array to
the page buffer is usually the page size, e.g., 4KB, the SSD controller can access more fine-grained
data, e.g., the size of an embedding vector, from the page buffer using specific column address. We
modify the flash transaction layer (FTL) on the SSD controller to adjust the address of the data
to be accessed according to the choice of the replacement granularity. RM-SSD [33] supports the
fine-grained data access in the storage with a similar way:.

4.5 Correlation-based Prefetching Mechanism

There exist mainly two challenges in the design of the prefetching mechanism for the DLRM in-
ference. Firstly, the access pattern of embedding vectors can vary significantly from one dataset
to anther one. Even within the same dataset, we observe different access patterns across different
embedding tables. Secondly, the memory and consumption requirement of the prefetching mech-
anism should be reasonable and within the budget of hardware resources to improve the overall
performance. To address the first challenge, we need to find a general solution that can be adapted
to different access patterns. For the second challenge, we need to tune the hyperparameters of the
prefetching mechanism to achieve the sweet point between the hardware resource consumption
and the performance.

The prefetching of EMS-1 happens when fetching the embedding vectors missed in the L2
cache, the correlated embedding vectors of the missed embedding vectors are prefetched from
the SSD. Our prefetching mechanism is based on the correlation between the embedding vectors
because our insight is that no matter what the specific access pattern is, highly related embedding
vectors are much more likely to be accessed together. Hence, the prefetching mechanism requires
two steps. Firstly, we generate the correlation information of the embedding vectors. Secondly,
the correlation-based prefetching is performed during the runtime of DLRM inference using the
generated correlation information. The two steps mentioned above are referred to as Pre f;,4in and
Prefinfer, respectively.

4.5.1 Preftrain. The goal of Pre fi,qin is to get the correlation information, the score matrix and
the correlation dictionary, as shown in Figure 7. Each element Si, j) in the score matrix showing
how many times vector; and vector; are accessed together by one query. We sample 30% of the
input queries of the whole targeted dataset to do the statistics. Meanwhile, the indices of the top
K popular embedding vectors are also obtained along with the score matrix. Then, a correlation
dictionary is abstracted from the score matrix for the top K popular embedding vectors. The key of
the dictionary is the index of the K embedding vectors, and each value list consists of each popular
embedding vector’s correlated embedding vectors with top E scores as illustrated in Figure 7. Note
that we constrain the distance between the index of the popular embedding vector and the index
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Fig. 7. The score matrix and correlation dictionary in the prefetch mechanism of EMS-I.

Table 2. Parameters of the Prefetching Mechanism

Parameter Description
W window size of correlated embedding vectors
Sai.j) freq. of vector; and vector; are fetched together
K length of the abstracted correlation dictionary
E length of the value list of each key
L number of the prefetched vectors from each list

ALGORITHM 1: The Training of the Correlation-based Prefetching Mechanism
Input: Dataset D; Sample rate R; W; K; E; L
1: Sample R of D to get the input traces for training, Trace;,qin

2: N = max(index in Trace;,4in); create a score matrix M, with size N X N and each element in
Ms is S(i,j)

3: for each input trace t in Trace;rqin do
4:  for eachindexiint do

5: St =1

6: for each index jin t \ {i} do

7 S(i, j+=1

8:

keys = indices of top K( S; ;) for i inrange(0, N) ); create a correlation dictionary Dict.,, with
keys
9: for each key popy. in keys do
10 Fetch top E elements {S,qp,. c}from Syop, 1 t0 Spop,,n and the corresponding indices
(D (popy. o)
11:  Create a list for popy with each element as (ID(popy, ¢)> S(popy.e))
12: return Dict.o,

of the correlated embedding vector within W, which can ensure that the missed embedding vector
and its correlated embedding vectors have the same cache tag so that they can be loaded into the
replacement buffer together. Some key parameters of Pref;,qi, are summarized in Table 2 and
Algorithm 1 illustrates the corresponding pseudo code. Note that the final output of Pref;,qin is
the correlation dictionary. The score matrix is intermediate.

4.5.2  Prefinfer. During the runtime of the inference of DLRM workloads, when the index of
a missed embedding vector in the L2 cache hits the key of the correlation dictionary, top L cor-
related embedding vectors associated with the key will be fetched together with it from the SSD.
The prefetching mechanism is maintained by the modified SSD controller. The pseudo code is
illustrated in Algorithm 2.

Because we only store the correlation dictionary, our prefetching mechanism does not con-
sume much memory resources. For example, a typical setting of the hyperparameters is that
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ALGORITHM 2: The Inference of the Correlation-based Prefetching Mechanism

Input: Correlation dictionary Dict,o,; Index of the missed embedding vector in the L2 cache

idmiss
1: for each popy in keys do
2 if idmiss == popi then
3 Prefecana = Dict{“popi”}
4: break
5: Sort Pref.qna with the value of S(popy, e) in the descending order
6: Prefindices = the first L ID(y0p, ) in the sorted Prefeana
7. return Prefingices

W =100, L = 10, K = 30000 and E = 100 for the different embedding tables in the Criteo
dataset. Assuming that a tuple of (ID(yop,.e)> S(popy,e)) 1S 8 byte in total, the corresponding mem-
ory consumption of the correlation matrix is only 23 MBs. In EMS-1, we still have two con-
straints for tth hyperparameters. Firstly, considering the architecture of the L2 cache, we constrain
W < obit len(set index)+bit _len(offset) hecause we want to ensure that the prefetched embedding
vectors share the same tag with the missed embedding vector so that they can be loaded into the
same cache block to improve the L2 cache utilization. Secondly, L should not be large to avoid the
situation that one cache block cannot buffer all the prefetched embedding vectors.

4.6 Inference Kernel Design

From Figure 1, we observe three-level parallelisms of SLS in the inference DLRM workloads, which
are (i) inter-table parallelism: SLS operations on different embedding tables can be performed in
parallel, (ii) intra-table parallelism: element-wise summation of multiple embedding vectors within
an embedding table can be performed in parallel, (iii) intra-vector parallelism: multiple elements
of an embedding vector can be fetched and computed in parallel. Correspondingly, from the the
perspective of hardware, the inference kernel is hierarchically designed for the three-level paral-
lelisms of SLS and the L1 cache is disaggregated for the SLS units. From the perspective of software,
we specialize a mapping scheme to allocate the disaggregated cache resources to buffer the em-
bedding vectors.

4.6.1 Hardware Specialization. Figure 8(a) shows the overall architecture of the inference ker-
nel, which consists of an L1 cache controller, an SLS array and an MLP logic. In the L1 cache
controller, the embedding vector address queue buffers the addresses of the embedding vectors to
be performed SLS from the host. Note that the addresses are translated by the host according to
the logical indices of the embedding vectors. Using the addresses, the L1 cache controller fetches
the missed embedding vectors from the L2 cache and load the data into its read buffer. Considering
the refreshing of the SSD FTL, the addresses of the embedding vectors may dynamically change.
Hence, the memory space of one embedding table can be broken into several discrete pieces. The
embedding table address registers record the address ranges (start and end addresses of the dis-
crete pieces) of the memory space of each embedding table so that the L1 mapper can recognize
which embedding table that each fetched embedding vector belongs to and then sends the embed-
ding vectors to the corresponding SLS Unit’s URAM block via the AXI bus, following the mapping
scheme described in Section 4.6.2.

On the right of Figure 8(a), the SLS array and the MLP logic are illustrated. The SLS array in-
cludes 14 SLS Units and each SLS unit has its own URAM blocks. The L1 cache in the inference
kernel consists of 488 URAM blocks, which is within the budget of 16 MBs as aforementioned in
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Fig. 8. (a) The overall architecture of the inference kernel of EMS-1; (b) The architecture of the SLS Unit 1;
(c) The allocation of the URAM block within the SLS Unit 1 in (b).

Section 4.3.1. To maximize the bandwidth of the URAM blocks and the three-level parallelisms
of SLS operation, the cascade size of the URAM is set to 1 and the 488 URAM blocks are evenly
assigned to the 14 SLS Units. As for the MLP logic which is not the focus of our work, we adopt a
similar design to SmartRec [30] using a GEMM array to perform the matrix-vector multiplication
in the MLP layers. The concatenation logic is used to concatenate the results of each SLS operations
as the input of the top MLP. The BRAM is used to store the parameters of the MLP layers.

The internal architecture of the SLS Unite is shown in Figure 8(b). There are 32 URAM blocks in
each SLS Unit and every 8 URAM blocks are allocated to a vector register to buffer one embedding
vector. Two embedding vectors are fed into one group of adders to perform the element-wise
summation, the result of which is stored in the psum buffer. The bitwidth of the vector register
equals the total bitwidth of the URAM blocks that are allocated to it. The results from two psum
buffers can be further performed the element-wise summation on if the pooling vector is larger
than 2 and the final result of the SLS is stored in the SLS buffer. Obviously, there exists a three-stage
pipeline in the SLS Unit as shown in Figure 8(b). The SLS operation of one embedding table is only
processed in one SLS Unit, the reason of which will be introduced in Section 4.6.2. Hence, we get
that in our design, the inter-table parallelism is 14, the intra-table parallelism is 4. In general, we
summarize that the inter-table parallelism depends on the number of SLS Units and the intra-table
parallelism depends on the number of vector registers or groups of adders in each SLS Unit. We further
discuss the design space in Section 5.3.8.

4.6.2 Mapping Scheme. Figure 8(c) shows the mapping of the embedding vectors in a URAM
block in SLS Unit 1, suggesting the support of the three-level parallelisms of SLS operation and ex-
ploiting the data locality within a batch of embedding vectors in one embedding table. To support
the inter-table parallelism, the embedding vectors from one embedding table are mapped to the 32
URAM blocks in one SLS Unit so that the SLS array can process SLS operations of 14 embedding
tables simultaneously. When the number embedding table of the DLRM is larger than 14 (which is
the common case), the embedding vectors from different embedding tables are allocated to one SLS
Unit, as shown in the yellow rectangles in Figure 8(c). To avoid redundant accesses to the embed-
ding vectors from the L2 cache within an inference batch, the L1 cache controller fetches a batch
of embedding vectors together and maps a batch of embedding vectors from the same embedding
table in one SLS Unit. In Figure 8(c), the b rectangles represent the embedding vectors indicated by
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Fig. 9. Simulation framework.

b input queries in a batch. To support the intra-table parallelism, different embedding vectors that
are performed by one SLS operation are mapped to different URAM blocks in one SLS Unit. We
map one embedding vector to 8 URAM blocks, with each URAM block storing 1/8 of the embed-
ding vector. So there are at most 4 embedding vectors can be fetched and performed element-wise
summation in parallel. If the pooling factor is larger than 4, more than one embedding vectors that
are indicated by one query are allocated to one URAM block as shown in the red rectangles in
Figure 8(c). Meanwhile, the intra-vector parallelism is also supported because the elements from
different dimensions can be loaded from different URAM blocks. Using the notations in Figure 8(c),
the elements from L;—f] dimensions of one embedding vector can be loaded from one URAM block
once because the bitwidth of the URAM block is 72 bit. Hence, the elements from L;—fj X 8 di-
mensions of one embedding vector can be loaded from 8 URAM blocks once and are performed

the element-wise summation with another embedding vector in parallel. We can conclude that the
intra-vector parallelism is determined by I_;—ZJ X the number of URAM blocks that are allocated to one

vector register. If the dimension of one embedding vector is larger than L;—ZJ X 8, then more than

L;—f] elements of one embedding vector are allocated to one URAM block as shown in the squares
in Figure 8. Considering the resource budget of URAM, we can get the constraint of the mapping
scheme using the notations in Figure 8,

d t

=% Fi] X bx < [—] < 4000. 3)
8 4 14

Normally, we decrease the batch size b if the constraint is not satisfied.

5 EVALUATION
5.1 Experimental Methods

5.1.1 Simulation Framework. Figure 9 shows the simulation framework of EMS-1. We first
perform the preprocessing on the DLRM workload to analyze the data locality in the dataset to
determine the L3 cache replacement granularity, determine the threshold of access frequency
to select the popular embedding vectors, and set the parameters of the prefetching mechanism.
Due to the lack of an available open-source CXL system simulator, we modify the MESI protocol
provided by the Ruby memory system in gem5 to implement the behavioral logic of CXL protocols.
We use Ramulator in cpu-driven mode to simulate the memory system on FPGA and integrate
the hardware behavior models of the inference kernel, which are abstracted from the synthesized
Xilinx HLS with the frequency set to 300 MHz. In addition, we also integrate the SimpleSSD
into gem5 and modify the host interface layer (HIL) and internal cache layer to support the CXL
coherence models, L3 cache replacement policy, and our prefetching mechanism. We refer to [21]
to get the reasonable CXL latency parameters. The allocation of memory resources follows the
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Fig. 10. Speed up normalized to RecSSD and Performance/$ normalized to RecNMP. The batch size is
set to 64.

description in Section 4. The settings of the emulated SSD and HBM are referred to [28] and [39],
respectively. The simulator is memory trace based which means that we do not need to get the
actual embedding vectors (train the DLRM models). The memory traces, which are translated
from the indices of the embedding vectors in the datasets, drive the simulator to emulate the
behavior of the storage and memory devices in EMS-1.

5.2 Baselines and Benchmarks

We compare EMS-1 with RecSSD [37] (SSD-only), RecNMP [15] (DRAM-only), RM-SSD [33], and
SmartRec [30] for DLRM workloads. RM-SSD implements an internal FPGA within the SSD while
SmartRec directly adopts SmartSSD which connects an SSD to an FPGA via the PCle switch. We
build the baselines according to their design philosophy in our simulation framework. As for the
datasets, we use the synthetic workloads generated by DeepRecSys (Syn 1 and Syn 2; 40 embedding
tables for each; different spatial data locality through adjusting the specific parameters), Criteo [6]
(26 embedding tables) and fb_dlrm [9] (first 128 embedding tables). As for the recommendation
model, we use the basic settings of MLP and dimension of embedding vectors of RMC2 [26] but
align the number of embedding tables of the model with the number of the embedding tables with
the specific dataset that the model runs on. Hence, in our experiments, the models that run on the
4 datasets share the same bottom MLP structure but have different top MLP structures, which are
256-128-64 and (number of the embedding tables X dimension of the embedding vector) - 128-64-1,
respectively. The MLP is not deep or complex in our recommendation models because this work
mainly focuses on addressing the issue of data access to and SLS operations on the embedding
tables rather than accelerating the MLP. We do not consider the quantization of the embedding
vector in this work so the default precision of each element of the embedding vector is 32-bit. The
default dimension of the embedding vector is set to 64 unless otherwise specified.

5.3 Evaluation Results

5.3.1 Speedup. Figure 10 illustrates the normalized speedups of different designs over RecSSD.
To evaluate the influence of the replacement granularity of the L3 cache on the performance, we
implement EMS-1 with “Vector” replacement granularity (EMS-1-V) and “Block” replacement gran-
ularity (EMS-1-B). In addition, based on the better replacement granularity, we further implement
EMS-1 with the prefetching mechanism (EMS-1-VP/BP). The performance of RecSSD and SmartRec
is not as good as the others’. RecSSD only has a 4GB internal DRAM as the cache, which is shared
by the operations of the FTL layer of SSD and the workloads of DLRM. Moreover, all the computing
tasks in RecSSD are completed by the embedded cores, which cannot satisfy the requirement of
the computation of SLS and MLP. Although SmartRec adopts the FPGA to compute, the attached
memory is just a single channel 4GB DRAM. The memory bandwidth is only 19 GB/s. By imple-
menting a low-end FPGA inside the SSD, RM-SSD outperforms RecSSD and SmartRec benefiting
from the stronger computing power and higher SSD internal bandwidth. However, none of the
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Fig. 11. Energy savings normalized to RecNMP.

aforementioned designs develops a multi-level cache, let alone a customized caching mechanism.
Hence, most embedding vectors should be accessed from the NAND flash chips. Benefiting from
the customized three-level cache mechanism, over 83% accessed embedding vectors can be found
in our caches. Overall, when the batch size is set to 64, EMS-1 can achieve up to 10.9%, 6.1%, and
8.2x over RecSSD, RM-SSD, and SmartRec, respectively. EMS-1 does not outperform RecNMP but
achieves comparable performance. This is mainly because the access latency of DRAM could be
10x lower than that of SSD. We can also observe that EMS-1-B outperforms EMS-1-V on Syn 2 and
Criteo. This is because Syn 2 and Criteo illustrate good spatial data locality, i.e., the embedding
vectors in a replaced block are highly possible to be accessed in the future. On the datasets of Syn1
and fb_dlrm, which do not show much spatial data locality, “Vector” replacement granularity is
more suitable. With our correlation-based prefetching mechanism, the performance of EMS-1 is
further improved.

5.3.2  Performance/$. Figure 10 also shows the performance/$ in terms of memory cost. Al-
though our design adopts HBM-enabled FPGA, HBM is naturally based on 3D-stacked DRAM,
and its price is a little higher than DRAM, but it still applies to our insight in Section 3. We es-
timate the price of HBM referring to [8, 11]. We can observe that EMS-1 achieves the highest
performance/$. Because through the dedicated design of the memory system, EMS-1 achieves the
sweet point between performance and memory cost. The performance/$ of EMS-1 is up to 6.6X
over that of RecNMP because all the embedding vectors should be stored in the DRAM in RecNMP.
The price of DRAM is over 11X higher than that of SSD. Although RecSSD only uses SSD, it still
achieves the lowest performance/$ on three datasets due to its poor performance.

5.3.3 Energy. We also evaluate the energy savings, which are normalized to RecNMP, of dif-
ferent designs as shown in Figure 11. The energy savings of EMS-1 compared to RecNMP mainly
comes from the power consumption of DRAM. The power consumption of 1TB DRAM is ~380W.
Overall, EMS-1 can achieve up to 72% energy savings compared to RecNMP. Due to the low power
consumption of the SSD, the power consumption of RecSSD and RM-SSD is lower than EMS-1.
However, EMS-1 executes much faster than RecSSD and RM-SSD as shown above. Hence, EMS-1
can still outperform RecSSD and and RM-SSD in terms of energy savings.

5.3.4 Cache Hit Rate. Figure 12(a) shows the total cache hit rate of the three-level cache in
EMS-1 and Figure 12(b) shows the specific setting of the prefetching mechanism for each DLRM
workload. EMS-1 finally achieves over 83% cache hit rate over all the datasets thanks to the large
L2 cache and the customized cache replacement policies. With our prefetching mechanism, the
cache hit rate increases because the utilization of the L2 cache is improved. Remember that due
to the requirement of compression of tags, we enlarge the block size of the L2 cache and add
a replacement buffer. Although when processing a batch of queries’ cache misses we can load
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Fig. 12. (a) Overall cache hit rate of EMS-1 w/ and w/o the prefetching mechanism; (b) The settings of the
prefetching mechanism for different DLRM workloads.

3000 ; 2997|859 4646|BHs5

ORecSSD 2500 Criteo

ORM-SSD 2000

@ SmartRec 1500 -

BEMS- 1000 4

B RecNMP 500 + I‘I_IZI

o f-rmm TN
1 2 4 8 16 32 64

Throughput (QPS)

batch size
2000 353
O RecSSD o fbo_dIrm
9 _
o 1500 -
O RM-SSD =
@ SmartRec _§- 1000 -
oo
e 5 o r—Ej
BRecNMP £ '
0 femmm —m Wl .—D.-
1 2 4 8 16 32 64
batch size

Fig. 13. The throughput of various designs on Criteo and fb_dlrm, with batch size from 1 to 64.

several embedding vectors with the same tag at a time into the replacement buffer, only 57% of
the replacement buffer is written on average. However, with the prefetching, more correlated
embedding vectors are written into the replacement buffer. The average utilization of replacement
buffer is improved to 86.4%. Hence, the cache hit rate is improved.

5.3.5 Analysis of Batch Size v.s. Throughput. We explore the impact of batch size on the through-
put of various designs as shown in Figure 13. We select Criteo [6] and fb_dlrm [9] in this ex-
periment because they are officially released by Kaggle [14] and Meta [24], whose data could be
more realistic. In general, we can observe that the throughput improvement of the design that has
more DRAM or HBM is more sensitive to the increase of the batch size. This is mainly because
the bandwidth of SSD I/O of SmartRec and the internal SSD bandwidth of RecSSD and RM-SSD
(~tens of GB/s) are lower and saturate faster than the memory bandwidth of DRAM/HBM on
RecNMP/EMS-1 (~hundreds of GB/s) when the batch size of the input queries increases. In addi-
tion, the SSD access latency (~30us) is much higher than DRAM and HBM access latency (~70ps
and ~110us), which naturally makes the throughput gap between the in/near-SSD designs and
the in/near-DRAM/HBM designs larger when processing a larger batch of embedding vectors. Al-
though there are some optimizations for the MLP inference in RM-SSD, the throughput of RM-SSD
does not obviously improve as the batch size increases because for the embedding-dominated rec-
ommendation models (see the settings in Section 5.2), the throughput is constrained by the SLS
operations. The execution time of MLP inference only accounts for ~6% of the total execution
time on our RM-SSD baseline. It is also not difficult to find that the throughputs of all the designs
on fb_dlrm are not as high as on Criteo because fb_dlrm has many more embedding tables than
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Fig. 14. (a) Ablation study of EMS-i; (b) Execution time breakdown of EMS-1.

Criteo, i.e., the model running on fb_dlrm is more embedding-dominated. Benefiting from the
specialized SLS kernel and multi-level cache mechanism, the throughput of EMS-1 can compete
with RecNMP though there exists a gap due to much fewer DRAM resources. It is not difficult to
observe that the batch size just increases to 64, which is a typical value of the batch size of the
inference of recommendation models [15, 37]. The batch size of the inference cannot be very large
because there is a trade-off between the latency of the inference of one query and the throughput
of a batch of queries. Although increasing the batch size can improve the throughput, it also in-
duces higher latency, which may violate the requirement of the maximal response time (tens or
a few hundreds of milliseconds) of some online recommendation services like e-commerce web-
site. In fact, when the batch size exceeds 128, the overall latency will increase exponentially [15].
In the scenario of training recommendation models, where latency is not a significant issue, the
batch size can be set to large values like 1024, 2048 and even larger [5] to just improve the overall
throughput. In addition, the number of the total accessed embedding vectors in a batch is equal
to batch size X average pooling factor per table X #embedding tables, which is large enough to
exploit our memory system design when the batch size is set to 64, especially when the number
of embedding tables is also large.

5.3.6 Ablation Study. We perform an ablation study to show the benefits of the multiple tech-
niques that are proposed. In fact, the effects of flexible replacement granularity and prefetching
mechanism have been shown in Figure 10. We further evaluate the influences of the popularity
bit mechanism in the L2 cache (w/ pop) and the specialized SLS kernel (w/ SLSkernel) on the over-
all speedup. Note that the flexible replacement granularity, prefetching mechanism, popularity bit
and specialized SLS kernel hardly influence each other. The baselines for the four workloads are
the naive EMS-1 only with suitable replacement granularity and the correlation-based prefetching
mechanism (naive EMS-1-V/BP). As illustrated in Figure 14(a), with popularity bit, up to 1.27x
speedup can be achieved because the popular embedding vectors, which are frequently accessed,
tend to stay in the L2 cache instead of being easily evicted. Hence, the accesses to the SSD are
correspondingly reduced. The specialized SLS kernel design can help improve the performance by
up to 1.31X because we set the URAM cascade size to 1 to support the three-level parallelism so
that we can maximally exploit the bandwidth of the on-chip URAMs. Combining the popularity
bit mechanism and the specialized SLS kernel, EMS-1 achieves the best performance by up to 1.68x
over the baseline.

5.3.7 Overhead Analysis. Figure 14(b) shows the execution time breakdown of EMS-1 on the
four workloads. Overall, the SSD access including the prefetching execution, and HBM access
account for around 60% of the total execution time. Running fb_dlrm takes the largest portion
(74%) of the total execution time to access SSD because fb_dlrm shows the most irregular and
sparse memory access pattern. The SLS kernel and MLP logic averagely takes around 21% and
8.5% of the total execution time, respectively. The execution time of L2 cache management and
other parts like the coordination CXL account for less than 11%.
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Fig. 15. The speedup of SLS array normalized to the performance of array that is configured to 1 URAM
block per vector register and 64 vector registers per SLS Unit with different dimensions of the embedding
vector on Criteo and fb_dlrm.

5.3.8 Design Space Discussion. From Section 4.6, we know that the three-level parallelism of
SLS operation is affected by the mapping scheme for L1 cache according to the specific hardware
setting of the SLS array and the characteristics of the embedding vector. In Figure 15, we show
the performance of the SLS array with different hardware configurations and different dimensions
of the embedding vector. The total hardware budget of the design space is 448 URAM blocks,
448 adders that can be grouped flexibly, 3.5 KB vector registers and the corresponding required
psum/SLS buffer. To be specific, the design space of the SLS array consists of the number of vector
registers in each SLS Unit (#vec reg per SLS Unit), the number of URAM blocks that are allocated to
one vector register (#U per vec reg) and the dimension of the embedding vector. We define the point
that makes the SLS array achieve the optimal performance on the (#vec reg per SLS Unit, #U per vec
reg) space as the “optimal point”. From the Figure 15, we can firstly observe that the “optimal point”
is on the left of the (#vec reg per SLS Unit, #U per vec reg) space with different batch sizes on both
of the workloads. This is because the most of the pooling factors in the two workloads are smaller
than 16 so that the workloads do not need a high intra-table parallelism. Hence, when #vec reg per
SLS Unit is larger than 16, around half of the URAM blocks and groups of the adders in one SLS Unit
are idle during the runtime. Specifically, the value of #vec reg per SLS Unit of the “optimal point”
is 2 on Criteo but is 4 or 8 on fb_dIrm beacuse the average pooling factor in fb_dlrm is larger than
that in Criteo. We also observe that the “optimal point” shifts to the top left of the (#vec reg per SLS
Unit, #U per vec reg) space as the dimension of the embedding vector increases. This is because as
the dimension increases, the workload requires higher intra-vector parallelism, i.e., higher #U per
vec reg. To be specific, if #U per vec reg is set to 1, then it takes 64 rows in a URAM block to store
a 128-dimensional embedding vector so that moving the whole embedding vector from the URAM
block to the vector register requires 64 reads. In this scenario, allocating more URAM blocks to a
vector register with larger bitwidth to support the parallel data loading is more beneficial to the
performance of the SLS array. This is because increasing #U per vec reg secures a high resource
utilization with a fixed hardware budget considering the dynamic pooling factors and workload
imbalance among the embedding tables. Hence, we can give the insight that when the dimension of
the embedding vector is large, the priority of designing the SLS array should be given to increase the
intra-vector parallelism. Taking all the six “optimal points” in Figure 15 into account, the specific
configuration of the SLS array is 8 URAM blocks per vector register and 4 vector registers per SLS
Unit as described in Section 4.6. Thanks to the reconfigurability of FPGA, the configuration can be
flexibly adjusted in the design space if the SLS array is applied to other different DLRM workloads.
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Fig. 16. Normalized speedup and throughput of EMS-1 on 5 ANNS workloads.

5.3.9 Evaluation on Another Application - Approximate Nearest Neighbor Search. Besides rec-
ommendation system, EMS-1 can also be applied to other applications which also have dynamic
and irregular memory access pattern. For example, keeping the same memory system and basic
hardware platform, we modify the EMS-1 to adapt to the application of approximate nearest
neighbor search (ANNS) [3], which aims to dynamically find the approximate nearest neighbors
for a given query. ANNS has been a key retrieval technique for vector database and many data
center applications, such as person re-identification. We select a popular graph-traversal-based
ANNS algorithm, HNSW [23], and evaluate the performance of EMS-1 by running the algo-
rithm on 5 typical ANNS datasets - sift-1b [29], glove-100 [27], f-mnist [38], deep-1b [4] and
spacev-1b [31]. We compare EMS-1 with CPU, GPU and SmartSSD [17]. As shown in Figure 16,
EMS-1 can achieve up to 12.01%, 4.33X and 2.24X speedup over CPU, GPU and SmartSSD,
respectively.

6 RELATED WORKS

To reduce the query latency and improve the throughput of DLRM, there have been many
customized DLRM accelerators [12, 15, 16, 19, 36, 37]. Most of the prior works adopt the NDP
approach. TensorDIMM [19] firstly employs a DIMM-based NDP unit in a disaggregated GPU
memory system to overcome the memory bandwidth bottlenecks of the embedding operation.
Unlike TensorDIMM which assumes a GPU-centric system for inference, Centaur [12] focuses on
CPU-centric systems and proposes a chiplet based CPU+FPGA solution. RecNMP [15] proposes
a lightweight DDR4-compatible near-memory architecture with customized NDP instructions to
accelerate the memory-bound SLS operations. And then it is implemented in a versatile FPGA-
enabled NDP platform called AxDIMM [16]. To reduce the high infrastructure costs of the large
and fast DRAM based memories, RecSSD [37] utilize Flash based SSDs with larger capacity for
industry-scale recommendation. RecSSD is implemented in FTL firmware and compatible with ex-
isting NVMe protocols, requiring no hardware changes. These accelerators focus on the inference
task and utilize the knowledge like the distribution of the embedding table entries to address the
bottleneck.

7 CONCLUSION

In this work, we obtain the significant insights into designing the efficient memory system and
caching mechanism for various recommendation system workloads by performing the compre-
hensive characteristic studies. We found that the platform with the combination of SSD and
DRAM/HBM achieves the sweet point between the memory cost and the performance when pro-
cessing the DLRM workloads. In this scenario, we also observed that the cache hit rate is sensitive
to the cache capacity and the replacement granularity but insensitive to the associativity. Guided
by these insights, we propose EMS-1, an efficient memory system including the various memory
resources and multi-level caches. EMS-1 is customized for the DLRM inference with the delicately
designed inference kernel and specialized caching and prefetching mechanisms. Overall, EMS-1
outperforms the SOTA NDP solutions in execution latency, energy savings, and memory cost.
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