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Silver bismuth-iodides (AgBiyly3y) are a promising class of materials with potential for use as absorber layers in
optoelectronic devices, but theoretical investigations into their properties are hindered by their large degree of
site-disorder and unique layered structures. Here, we demonstrate a cluster-based description of the total energy
that, paired with a simulated annealing minimizer, can create low-energy atomic models of Ag,Biyly,3y from a
pool of over 10'% possible choices. We employ first principles density functional theory to calculate band gaps,

densities of states, effective masses, and absorption spectra of the ground state structures. Lattice constants, band
gaps, and optical spectra of the structures compare favorably with available experimental results. This work
additionally provides new insights into the physical and electronic structure of the more complicated Ag-Bi-I
stoichiometries. The models generated can be used to gain insight on the role of various defects on the
growth and properties of these materials.

1. Introduction

Silver bismuth-iodides (compounds with a generic formula
AgyBiyly3y) are being developed for use in optoelectronics because of
their efficient absorption across the optical and UV spectra [1-5].
Importantly, these materials can be easily grown over flexible substrates
[6-10] and are more environmentally friendly than lead-based perov-
skites [10,11].

Ag-Bi-I systems often crystalize with stoichiometries AgBil4, AgBisls,
Ag3Bilg, and AgBi,l7, having either cubic or trigonal symmetry [12-16].
Turkevych et al. [12] noted that the trigonal structures followed the
NaVOs structure but with site-disordered layers of Ag, Bi, and vacancies
(Va). Occupancy fractions are layer dependent. Despite this general
understanding, construction of atomic models with no sites partially
occupied has been an outstanding challenge. Atomic model construction
of the four aforementioned stoichiometries necessitates the use of cells
that have between 24 (AgBil4) and 294 (AgBisI;) Ag/Bi/Va sites at
minimum due to charge neutrality and stoichiometry restrictions.
Choosing the explicit arrangements of silver, bismuth and vacancies to
occupy these sites is a combinatorically difficult problem, e.g. the 294
atom case of AgBisl; has over 10! possible solutions.

Several methods and programmatic implementations have been used
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to examine site-disordered materials [17-29]. Many are not suited to the
current problem - the virtual crystal approximation is inapplicable to
substitutional systems with significantly differing electronic configura-
tions [20] and the special quasi-random structure (SQS) [26] technique
predicts AgBil4 to be metallic [30,31], in contrast to experiment. The
SQS likely fails for silver bismuth-iodides because only low-energy
models yield electronic properties that compare well to experimental
data. The simplest example of this is Fig. S1, where we show the rela-
tionship between band gaps of 9200 AgBil4; models and their energies.

To search for the ground state atomic arrangements for silver
bismuth-iodides, we attempted machine-learning based approaches
(sometimes called ‘chemical fingerprints’) [35-39], which failed to
capture the physics of these materials when vacancies were introduced.
Further, implementations of these and similar techniques, such as the
cluster expansion [17,19,23-25,29], are unable to easily handle the
layer-dependent partial occupancy rules. We therefore employ a
spherical cluster model description of the energy paired with a simu-
lated annealing minimization approach to successfully find ground
states for four layered Ag-Bi-I stoichiometries out of (up to) ~ 10
possible solutions. We compute the properties of these models and find
band gaps, optical absorption spectra, and lattice constants in agreement
with experiment.
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2. Models & methods
2.1. Models

As described in Turkevych et al. [12], trigonal Ag-Bi-I materials are
described by stacked layers whose site occupancies satisfy a set of linear
equations. Our atomic models are repeats of the unit cell shown in Fig. 1.
We consider the smallest models that (1) allow the solution of the system
of equations to represent integer site occupancies and (2) allow the a and
b axes to be equal in length, listed in Table 1.

Every entry in Table 1 represents many possible cell configurations.
The Supplementary information details the method for calculating the
total number of cell configurations. For each entry, the method
described in Section 2.2 and Section 2.3 is used to predict the ten
lowest energy structures. We then perform accurate DFT calculations on
each to determine the ground state structure. The first row of Table 1
indicates the lowest energy structure found. Table 1 also indicates, with
the exception of AgBisl7, the number of unit cell repeats contained in the
models discussed in Section 3. AgBisl;'s 7 x 7 x 1 model is too large for
accurate optoelectronic DFT calculations, so we instead use a 4 x 4 x 1
cell with stoichiometry Agj ¢Bij olg.9. This reduced the maximum num-
ber of combinations in the remaining models to 100,

2.2. Simulated annealing

Simulated annealing is a technique well-suited for optimizing
discrete functions with multiple minima [32-34]. The goal of simulated
annealing is to find the global optimum of a function by slowly reducing
the ability of a candidate solution to get stuck in a higher energy state.
To begin, we set an initial state as a configuration of atoms S, with
energy E(So), a starting thermal energy 7o (defined below), and a
number of steps N. For each step j from 1 to N, a ‘neighbor’ state S of the
last configuration S;_; is generated (here, S; is created by swapping a

O O© (-
@——D Layer 1
Ag/Bi/Va @ [ O
o Layer 2
Layer 1
Layer 2
Layer 1
Layer 2
e © (-
o]
L e 0 o

FIG. 1. The NaVO,-type unit cell of the Ag-Bi-I materials considered in this
work. Each cell contains six iodine sites (black dots) and six sites whose oc-
cupancies vary between Ag, Bi, and Va (red/blue/white dots). The partially
occupied sites are split into interchanging layers along the ¢ direction with
occupancy fractions per layer given in Table 1. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version
of this article.)
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pair of atoms from S;_1). S; may or may not be accepted to replace Sj_;
with probability P given by

p— {exp[l— (E(S;) —E(S;1) ) /7] ingil;lr)wfseE(Sj)'

The sole parameter controlling the convergence to an optimal solu-
tion is the thermal energy 7. Large values of 7 cause the algorithm to
resemble a random search (since most swaps are accepted) and the
system stays in a high energy state. Small values of 7 cause the algorithm
to emulate a steepest-descent minimization and only the closest local
minimum is found. If the decrease in 7 is gradual enough, the algorithm
settles to the global minimum. We calculate 7 with a geometrical
cooling-schedule [35]:

T = |:TU<1 —%)4 E(SOP‘) :|

E(Si1)
where E (Sopl) is the lowest energy found up to j. The second term in
brackets increases 7; at non-optimal solutions, improving convergence
near the end of the routine [36].

In this study, we fixed 7o = 5 meV/site and N = 2.2 x 10°. N was
chosen based on Fig. 2, where we show that for alarge 7 x 7 x 1 AgBisly
cell with no layering restrictions (10!'° combinations), the minimum
energy structure is identified in less than 10'° steps. Since the present
models have orders of magnitude fewer combinations, we are confident
that the global minimum structure is identified within 2.2 x 10° steps.
In Fig. 3, the convergence of the same cell’s predicted energy is plotted
vs. the annealing progress. The minimum energy found during the first
portion of the algorithm is over 100 meV/atom higher than the pre-
dicted ground state energy, indicating that a simple random search
would be unlikely to identify low-energy structures.

2.3. Spherical cluster method

To predict the energy of a set of atoms, each site in a crystal system is
described by its local ‘cluster’ o, defined as a central site and all other
sites within a cutoff radius of the central site. In contrast, the standard
cluster expansion method [17,37-40], defines clusters based on the
number of sites. Each spherical cluster has an energy associated with it;
thus, each lattice site’s energy is found through its defining cluster.
Cluster energies are fit to DFT calculations through a linear model. The
total energy of the crystal is then calculated as the sum of all lattice site
energies. Importantly, in addition to Ag, Bi and I, vacant lattice sites also
have an energy associated with them. Any given lattice site may be
involved in multiple clusters.

The present method is advantageous in that energy predictions with
spherical clusters converge faster than with arbitrarily shaped clusters
such as singlets, doublets, etc. [28]). The improved convergence can be
explained by considering each lattice site’s energy as an ‘embedding
energy’ similar to those used in force field models [41-43] (note,
however, that the SCM is unable to calculate atomic forces). An atom’s
embedding energy is most strongly dependent on its first nearest
neighbors, so a spherical cluster including all n first nearest neighbors
will be a better description of its embedding energy than any other
cluster of n sites.

The number of fitting parameters, and thus the number of DFT cal-
culations needed to complete the fit, is greatly reduced by identifying
clusters that are physically equivalent. Two clusters ¢; and oy are
considered the same if: (1) the species counts between ¢; and oy are
identical and (2) the 4D distances between all sites in ¢; are identical to
those in ox. The 4D distance is calculated through the three cartesian
dimensions and an index unique to each species. Under these rules, all
clusters are invariant under translations, rotations, and inversions,
which is physically sound (a cluster should not change its energy if it is
rotated, for example).
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Table 1
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Fractional occupancies for different layers of trigonal Ag-Bi-I cells that satisfy the system of equations given in Turkevych et al. [12]. The notation ‘(0, 1, 3):
(2,1,1)/4’, or example, means that any given site in layer 1 is occupied by 0% Ag, 25% Bi, and 75% Va, and any given site in layer 2 is occupied by 50% Ag,
25% Bi, and 25% Va. Also listed are the smallest cell sizes that satisfy a = b and allow for integer site occupancies. Row 1 are the layer rules resulting in the

lowest energy structures.

AgBil4(2 x2x 1) Ag,Bil5(5 x5 x 1)

Layer 1:Layer 2 Layer 1:Layer 2

AgsBilg(3 x 3 x 1) AgBisZl,(7 x7 x 1)

Layer 1:Layer 2 Layer 1:Layer 2

(1,1,2):(1,1,2)/4
(0,1,3):(2,1,1)/4"
(0,2,2):(2,0,2)/4 (1,2,2):(3,0,2)/5
(1,0,3):(1,2,1)/4 (1,0,4):(3,2,0)/5"
- (2,1,2):(2,1,2)/5
- (1,1,3):(3,1,1)/5
- (0,2,3):(4,0,1)/5

(2,0,3):(2,2,1)/5
(0,1,4):(4,1,0)/5

(1,0,2):(2,1,0)/3"
(0, 1, 2):(3,0,0)/3 1,2,4):(1,2,4)/7
(1,1,1):(2,0,1)/3 (0,3,9):(2,1,4)/7
- (0,1,6):(2,3,2)/7
- (1,0,6):(1,4,2)/7°
- 1,1,5):(1,3,3)/7
- (0,4,3):(2,0,5)/7

(0,2,5):(2,2,3)/7

& Occupancy rule given in Turkevych et al. [12].
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FIG. 2. Simulated annealing solutions vs. the number of annealing steps for a
7 x7 x 1 cell (294 exchangeable sites) of AgBi,l;. Table 1's rules were not
applied, maximizing the complexity. Black dots and blue bars represent the
average and extrema of 10 independent runs. (inset) The minimum extrema
energies of the last four data sets are all equal, indicating convergence. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Even with the above considerations, materials with many species or
neighbors may result in an unwieldy number of clusters to fit. Shapeev
[28,44] previously used a low-rank tensor approximation to solve a
similar issue for high entropy alloys. An analogous method to the pre-
sent SCM would be to approximate the fitting matrix with its low-rank
representation found through, say, the singular value decomposition
[45].

Using a search radius cutoff of 3.1 A (1st nearest-neighbors) resulted
in 92 7-site clusters for Ag-Bi-I compounds. We use 5 training cells per
cluster for proper sampling, resulting in a total of 460 DFT calculations
for fitting the model. The aforementioned low rank approximation is
unnecessary for the current situation.

2.4. Density functional theory calculations

We use the Vienna ab initio Simulation Package (VASP version 6.1.0
[46-48]) for all DFT [49,50] calculations. We treat
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FIG. 3. Evolution of the accepted SCM energy and thermal energy r during
simulated annealing of AgBisl;. Accepted energies (black dots) are recorded
every 2'° steps, while the optimal energy (blue line) is updated at every step,
which is why the lowest energy appears lower than the accepted energies for
steps below 10°. The multiplicative noise parameter is removed from 7 for
clarity. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

exchange-correlation effects with  the semi-local Per-
dew-Burke-Ernzerhof (PBE) functional [51]. Standard PAW potentials
are used to represent the core electrons [52,53]; 4d'° 5 sl), 6 s2 6p3)
and (5 s° 5p5) valence electrons were included for silver, bismuth, and
iodine, respectively. We have tested approximations other than GGA-
PBE, but found no clear reason to use them. A summary of these tests
is given in the supplemental information.

For SCM fitting / testing, the I' point is used for Brillouin Zone in-
tegrations and the plane wave basis is cut off at 250 eV. All other cal-
culations employ plane waves with energy up to 330 eV and regular
k-point meshes with spacings of approximately 40 and 60 (1/A)"! for
geometry and optoelectronic calculations, respectively.

We fix the iodine sites at their crystallographic positions during the
structural relaxations. Molecular dynamics simulations indicate that the
iodine crystallographic positions are dynamically stable at room tem-
perature (see Fig. S2), which also agrees with experimental XRD results
(see Fig. S3).
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For Ag-Bi-I materials, previous work [14,54-56] has shown that
band gap values computed within the generalized gradient approxima-
tion (GGA) are comparable to those calculated with the more expensive
approach including the HSE06 (Heyd-Scuseria-Ernzerhof [57]) func-
tional and spin-orbit coupling (SOC) also accounted for. We confirm this
to be true for a few AgBil4 structures, see Section 3.4. The overall
structure and compositions of all Ag-Bi-I materials studied here are
similar to AgBily, so we expect the present GGA optoelectronic calcu-
lations to be accurate.

Effective masses are calculated as described by Hauiter et al. [58], as
an average over the thermally active band-edge states:

&Pk 1 PE(K)
(2x)° 17 " Okiok o (K)

> (k)

b=bands

b=bands

where E,(k) is the energy of band b at point k and ngpp =
(exp| £ (Eo(k) — p)/(kT)] +1)' is the Fermi-Dirac distribution at
chemical potential y (chosen to be just below/above the band edges) and
temperature T (treated as a variable). This results in an effective mass
tensor, (M), whose eigenvalues are averaged to yield the effective
masses reported here. The dielectric response functions are calculated
through VASP’s implementation of the formalism described by Gajdos
et al. [59], and corrected with the method of Nishiwaki and Fujiwara
[60].

3. Results
3.1. Spherical cluster method

In Fig. 4, we show the quality of the SCM (Fig. 4.e) compared to some
other chemical fingerprint methods (Fig. 4.a-d). Similar to our
reasoning for training on 460 simulation cells (92 total environments, 5
cells per environment), our verification set is 9200 unique representa-
tions of AgBil4 (92 environments, 100 cells per environment) to ensure
that each chemical environment is tested. Other than the guarantee that
each testing cell has at least one specific environment, they are
completely randomized. For Fig. 4.a-d, an 80-20 train-test split is
applied to these structures, as is common practice in the machine
learning community. The SCM in Fig. 4.e is fit with a 5-95 split. We
apply linear regression (LR), kernel ridge regression (KRR), and decision
tree regression (DTR), to a descriptor used in our previous work on cubic
AgBily [54] (nearest-neighbor metal pair counts, NNMPC, Fig. 4.a) as
well as three other common descriptors: orbital field matrix (OFM) [61],
coulomb matrix (CM, Fig. 4.c) [62], and a cell-periodic extension to CM
(CM+, Fig. 4.d) [63]. Fig. 4.b, shows a variant of the OFM that treats
local contributions individually since the original version does not
distinguish between site-disordered structures. We only show the best
performing methods in Fig. 4.a-d - see Fig. S4 and S5 for all methods
applied to trigonal and cubic AgBil,.

For trigonal AgBil4 (Fig. 4, black dots), the SCM is the only descriptor
tested capable of a mean absolute error (mae) <15 meV/atom. The mae
values of Fig. 4.a-d range from 30 to 55 meV/atom for the trigonal
structures. The SCM’s mae is 11 meV/atom, achieved with 6% of the
training data of the other descriptors. For cubic AgBily (Fig. 4, red
crosses), all methods perform much better (maes of 5-2 and 2 meV/atom
for Fig. 4.a-d and the SCM, respectively). Where other fingerprints show
great improvement in relative fitting error from trigonal to cubic AgBil4,
the SCM’s error is 2-3% of the total energy span in both cases.

The speed of the SCM’s energy evaluations is another benefit, espe-
cially in difficult optimization problems such as the 294-site problem
shown in Fig. 2 and Fig. 3. The fact that the OFM, CM, and CM+ fin-
gerprints require the solutions to eigenvalue problems means that they
scale much worse than the SCM as the system size grows: with n the total
number of sites and m the number of sites per cluster, the time
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FIG. 4. Performance of energy descriptors for AgBil,4. In a-d), an 80-20 train-
test split is applied to 9200 and 12870 AgBil4 models for the trigonal and
cubic cases, respectively. In e), a 5-95 and 0.2-99.8 train-test split is applied to
the corresponding models for trigonal and cubic symmetry, respectively.
Training points are not shown. The blue line is an ideal fit. Each subplot rep-
resents the best (lowest mean absolute error) performance of a chemical
descriptor given three fitting methods: linear regression (LR), kernel ridge
regression (KRR), and decision tree regression (DTR). The chemical descriptors
are: a) nearest-neighbor metal pair counts (NNMPC) [54], b) Orbital Field
Matrix* (OFM) [61], ¢) Coulomb Matrix (CM) [62], d) Extended Coulomb
Matrix (CM+ ) [63], e) spherical cluster method (SCM). *: We use an altered
version of the OFM. See Section 3.1. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
this article.)

complexity of our SCM is @ (nm?), while eigenvalue algorithms have
@ (n®) complexity [45]. Treating consecutive simulated annealing steps
as perturbations reduces the SCM’s complexity to ¢(m?), but the au-
thors are unaware of any analogous methods for eigenvalues.

3.2. Comparison with cubic AgBily

We now discuss the differences in fit quality between trigonal and
cubic AgBily. Cubic AgBil4's general structure has been described in
references [13,14,56]. The models employed here are identical to those
used in our previous work [54]. Both structures are comprised of
tetrahedra featuring central Ag/Bi/Va sites surrounded by six iodine
atoms. Positions of Va in cubic AgBil4 can be determined through XRD
patterns [56], so our models only involved site disorder with Ag and Bi.
An example model is shown in Fig. S6.

For testing descriptors on the cubic models, we train new predictive
models for the NNMPC, OFM, CM, CM+, and SCM exclusively on cubic
cells. SCM analysis of the cubic models reveals that there are only 6
unique chemical environments. To stay consistent with the method
applied to the trigonal structures, we fit the SCM with 30 = (6 unique
environments) x (5 cells per environment) training points. The other
chemical descriptors are trained on 80% of the 12870 cubic structures,
as was done in Section 3.1.

All of the descriptors shown in Fig. 4. provide acceptable fits to cubic
AgBily’s energies. When the same descriptors are applied to trigonal
AgBily, however, only the SCM gives results accurate enough for quan-
titative determination of the ground state structures. We propose the
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following rationale behind this discrepancy: The CM, CM+, and OFM
fingerprints are “global” descriptors in the sense that they build matrices
as functions of atomic positions and types over the entire cell. The
descriptor is then vectorized as the eigenvalues of those matrices. The
inclusion of vacancies causes too large a range of possible energies for
such a treatment - compare the 57 meV/atom energy range for cubic
AgBil, to the 477 meV/atom range for trigonal AgBil4. Attempting to
describe such an energy range with global descriptors is a difficult task
even for nonlinear fitting techniques such as KRR or DTR. The NNMPC,
although not a “global” descriptor, cannot account for the high variance
of local environments that depend on more than just pairwise
interactions.

The SCM bypasses the aforementioned issues because it is a strictly
local descriptor that accounts for each possible environment individu-
ally — every site is explicitly described as a function of its neighbors and
the contributions are added. This method is well-suited for describing
the total energy since it is an additive quantity. Any deviations in the
bond ordering of an atom are contained in a unique cluster instead of
being lost in the global description. By this logic, we would expect the
SCM to be most appropriate for any site-disordered material with a wide
range of local interaction energies including the present silver bismuth-
iodides, their alloys [10,55,64], CuBil4 [5] and similar systems.

We examined the individual cluster energies vs. the vacancy con-
centration, shown in Fig. S7. One may expect the spread of energies to
grow as the number of vacancies in each cluster grew, but this is not the
case for our fit. This is likely because the number of Ag and Bi atoms are
not held constant — these two atoms have significantly different elec-
tronic structures, and thus have a wide range of interaction energies,
especially when also “coordinated” by vacancies. Such an effect was
noted in Shapeev’s work [28] as well, where the RMSE of his cluster
expansions grew with the number of elements from different groups.

3.3. Structural, mechanical properties

For ground state structures, we calculated lattice constants through
the minima of energy-strain curves, obtaining (a,c) = (4.46, 21.36),
(4.45, 21.28), (4.43, 21.21), and (4.46, 21.36) A for AgBils, AgBils,
AgsBilg, and AgBisly, respectively. These values are about 3% larger
than experimental results for AgBils, AgBisls, AgsBils, and AgBisl;
[8,13,16,56,64], as expected for DFT using the PBE functional. The
identical results between AgBil; and AgBisl; may be explained by Xiao
et al.’s [14] recent report that the structure of AgBisl7 is very similar to
AgBil, with a slight silver deficiency.

Through the energy-strain curves used for the lattice constant
determination, we also calculate the bulk moduli. For AgsBilg, the bulk
modulus is 24 GPa whereas for the other three stoichiometries the bulk
moduli are 25 GPa. Interestingly, the variance in vacancy concentration
(between 20% and 30% of all sites depending on stoichiometry) does not
seem to have a major effect on the mechanical properties of Ag-Bi-I
materials.

3.4. Band gaps, density of states

The indirect band gaps of the Ag-Bi-I structures found here are 1.8 eV
for AgsBilg and 1.7 eV for AgBil4, AgBisls, and AgBisl7, all of which fall
within the experimental indirect band gap range (1.7-1.9 eV)
[6-9,11,15]. References [12,56] also measured direct gaps ranging from
1.6 to 1.8 eV.

Previous studies on Ag-Bi-I materials [14,54-56], as well as this
work, have shown that band gaps calculated with the GGA and without
including spin—orbit coupling (SOC) provide band gap results similar to
those found using hybrid functionals with the inclusion of SOC. This has
been attributed to a cancelation of errors involved in ignoring many-
body effects (underestimating the band gap) and ignoring relativistic
effects (overestimating the band gap) [65]. The inclusion of SOC is most
important for materials involving heavy elements such as lead, or in the
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present case, bismuth. For verification, we applied the HSE06 functional
and included SOC on the two lowest energy cells of AgBil4. The differ-
ences in band gaps were less than 0.1 eV from the PBE result with no
systematic trend. In cubic AgBily, for the three lowest energy cells, we
found that the gap difference was + 0.1 eV on average. We conclude that
our GGA band gaps agree with HSE06 + SOC gaps to within 0.1 eV, and
thus the average band gaps of our Ag-Bi-I cells are 1.7 + 0.1 eV, again
within the range of existing experimental results.

The difference in direct and indirect gaps for each stoichiometry
varies significantly. The greatest difference is for our AgBisl; model,
which has a 250 meV difference between its direct and indirect band
gaps. AgBiyl;'s experimental differences range from 110 to 210 meV
[8,9,55]. For our AgBil4 model, we find a 120 meV difference in gap
types while the experimental difference ranges from 80 to 750 meV
[7,8,56]. The differences between direct / indirect gaps in our models of
AgsBilg and AgBials are less than 20 meV (below our numerical uncer-
tainty). Experimental work indicates gap differences higher at 60 meV
for AgsBilg [6], and between 80 and 500 meV [7,8] for Ag,Bils. While
the variation of experimental results for each stoichiometry prevents a
quantitative comparison between theory and experiment, our results do
follow the experimental trend that the direct / indirect gap differences in
AgBily / AgBisl; are generally larger than those in AgsBilg / AgBiols.

The DOS in Fig. 5 reveals that the valence band edges for all stoi-
chiometries are comprised mostly of silver and iodine states with little
contribution from Bi. Most of silver’s states are from the d orbitals, and
most of iodine’s states are from its p orbitals (individual angular
momenta contributions are omitted from Fig. 5 for readability). Near the
conduction band minimum, bismuth’s and iodine’s p orbitals make up
most of the DOS. This is in agreement with previous work on AgBil,
[54,56]. Comparing the onset of the DOS near the Fermi level to the
conduction band minimum also shows that the valence bands of all
stoichiometries are relatively flat, especially compared to the conduc-
tion bands, in accordance with previous findings [14,54,56].

3.5. Effective masses

Because of the large cells employed in the present study, there are
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FIG. 5. Electronic PDOS for selected Ag-Bi-I structures from the first row of
Table 1. a), b), ¢), and d) represent AgBily, AgBi»sls, AgsBils, and AgBisly,
respectively.
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many bands near the band extrema, especially for the relatively flat
valence bands of the present Ag-Bi-I materials. Thus, single band
effective masses do not properly account for the actual effective mass in
these materials. We instead calculate the effective mass tensor as an
integrated average over all thermally active bands near the band edges
[58]. Fig. 6 shows the ‘conductivity masses’, which are the harmonic
mean of each tensor’s eigen-masses. For simplicity, the chemical po-
tentials involved in the thermal averages are fixed at 30 meV from the
band edges.

For all stoichiometries considered, both electron and hole masses
display a nearly linear increase with temperature. The rate of mass in-
crease for electrons is modest at ~ 0.004m" /my per K. The increase for
holes is higher at about ~ 0.02m" /mo per K. As band states further from
the band edges tend to have less curvature than those near the band
edges, the increase in mass with temperature is mainly due to more far
edge states being thermally activated. This effect is more pronounced for
the valance bands, where the near band edge DOS is much higher than
the DOS near the conduction band edges. At room temperature (300 K),
the hole masses found range from =~ 6.7my (AgBizls) to = 8.1my
(AgBigl;) whereas the electron band masses range from ~ 1.1mg
(AgsBilg) to ~ 1.6mg (AgBisls).

3.6. Absorption spectra

In Fig. 7, we report the calculated absorption coefficient between 0.5
and 5.0 eV for all four Ag-Bi-I stoichiometries considered. The PHS
method [60] is applied to all components of the complex dielectric
functions, shown in Fig. S8, using AE, = +0.1 eV as our gap uncertainty
input.

Compared to the experimental absorption coefficients, we find that
our calculated absorption spectra tend to be larger in magnitude but
show similar absorption onsets. The maxima of our absorption co-
efficients in the Visible / low UV range are between 6 x 10° and 7 x 10°
em ™! depending on stoichiometry. Sansom and Crovetto’s groups [6,56]
measured the absorption coefficients in Ag-Bi-I thin films to be between
2 x 10° and 5.5 x 10° cm™}, though one of the films may have had an
absorption coefficient as high as 10® em ™. Other experimental work

—e— AgBils -4~ Ag3Bilg
—m- AgyBils - AgBisly

200 300 400 500 600
Temperature (K)

FIG. 6. Average conductivity effective masses of a) electrons and b) holes in
selected minimum energy Ag-Bi-I cells from the first row of Table 1 at different
temperatures. In each case, the chemical potential is fixed at 2% below (above)
the conduction band minimum (valance band maximum) for electrons (holes).
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FIG. 7. PHS-corrected (PBE + HSE06 + Sum) [60] absorption spectra of Ag-Bi-I
cells from the first row of Table 1. Filled regions represent deviations in the
spectrum calculated with the PHS method for bandgap corrections of AE, = +
0.1 eV. The solid lines are averages over the filled regions.

[4,6-12,15,55,56,64] report absorption onsets at about 1.8 eV and
relative absorption values, and we find that our results agree with both.
While our calculations are for bulk models, the experiments are for thin
films which may explain the higher peak values we find [66,67].

4. Conclusion

We construct and apply a new Spherical Cluster Method (SCM),
which allows us to find ground state energy cells within the massive
search space of Ag-Bi-I rudorffites. By comparing energy predictions of
the SCM with some common chemical fingerprint methods, we deter-
mined that the SCM outperforms popular machine learning-based
methods when describing the present Ag-Bi-I materials. The SCM
method should also be efficient for examining other crystals with high
degrees of site-disorder. It is especially well-suited for situations where
the disordered sites may be occupied by species whose electronic
structures are significantly different from one another (Ag / Bi / Va).
Combining the SCM with a simulated annealing routine can effectively
determine minimum energy cells for problems that have over 10'%°
possible configurations.

Focusing on one minimum-energy cell for each stoichiometry of Ag-
Bi-I, we show that the method produces cells whose lattice constants (a
=4.4-45A, c=21.2-21.4 A), band gaps (1.7 - 1.8 eV), and ab-
sorption spectra agree well with experimental data. With the same cells,
we also calculate the bulk moduli (24-25 GPa), electronic density of
states, and conductivity effective masses. Effective mass calculations
estimate that electrons are significantly lighter than holes in Ag-Bi-I
materials, with electrons near room temperature having masses
similar to free electrons, and holes being about seven times as massive.
This knowledge is important when considering Ag-Bi-I materials for
applications — devices should employ electrons, not holes, for
conductivity.

The present results show a large improvement over current methods
of finding low energy structures in site-disordered materials. Not only
does the SCM seem to be more accurate, but it also scales better with
system size than machine-learning-based approaches. This is especially
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important for materials that have to be described by large simulation
cells.

In terms of photovoltaics, stoichiometries with lower concentrations
of Bi should be the most performant [9,12,31]. By this measure, AgsBilg
and Ag,Bils would be the preferred stoichiometries for use in PV cells,
yet the fact that AgBil4 and Ag»Bil; can more easily be made to grow as
single phases [12,13,16] has made them popular choices for use in
proof-of-concept PV cells, despite their higher Bi concentrations. The
method described here can produce accurate atomic models that could
be employed to explore this efficiency-stability tradeoff — perhaps
doping can be employed to increase PV performance or reduce phase
segregation. Additionally, the models discovered could be used for
large-scale cells appropriate for studying defects in these materials.

CRediT authorship contribution statement

Victor T. Barone: Conceptualization, Methodology, Software,
Validation, Investigation. Blair R. Tuttle: Conceptualization, Valida-
tion, Supervision. Sanjay V. Khare: Conceptualization, Resources, Su-
pervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgements

This material is based on research sponsored by the Air Force
Research Laboratory under agreements No. FA9453-19-C-1002 and
FA9453-21-C-0056; and the National Science Foundation Division of
Civil, Mechanical, and Manufacturing Innovation under Grant No.
1629239. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views expressed are those of the authors
and do not reflect the official guidance or position of the United States
Government, the Department of Defense or of the United States Air
Force. The appearance of external hyperlinks does not constitute
endorsement by the United States Department of Defense (DoD) of the
linked websites, or the information, products, or services contained
therein. The DoD does not exercise any editorial, security, or other
control over the information you may find at these locations. Approved
for public release; distribution is unlimited. Public Affairs release
approval #AFRL-2023-1270. B.R.T. would like to acknowledge support
from the National Science Foundation under Grant No. DMR-2127473.

Computations for this research were performed on the Ohio Super-
computer Center’s Owens supercomputing cluster [68] and the Penn-
sylvania State University’s Institute for Computational and Data
Sciences’ Roar supercomputer.

Appendix A. Supplementary material

See the supplementary material for the equation used for the calcu-
lation of the number of possible structures and data regarding how
methods other than GGA-PBE affect structural and electronic properties.
The band gap-energy relationship of the testing set (Fig. S1), statistics
and simulated x-ray diffraction patterns from molecular dynamics sim-
ulations of AgBil4 (Fig. S2 and S3), extra information relating to Fig. 4
(Fig. S4, S5, and S6), a graph of fit ‘cluster’ energies (Fig. S7), and PHS-
corrected dielectric functions used to produce Fig. 7 (Fig. S8) are also
included in the supplementary material.
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