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Abstract

Background Sedentary behavior (SB) is a recognized risk factor for many chronic diseases. ActiGraph and activPAL
are two commonly used wearable accelerometers in SB research. The former measures body movement and the lat-
ter measures body posture. The goal of the current study is to quantify the pattern and variation of movement (by
ActiGraph activity counts) during activPAL-identified sitting events, and examine associations between patterns

and health-related outcomes, such as systolic and diastolic blood pressure (SBP and DBP).

Methods The current study included 314 overweight postmenopausal women, who were instructed to wear

an activPAL (at thigh) and ActiGraph (at waist) simultaneously for 24 hours a day for a week under free-living condi-
tions. ActiGraph and activPAL data were processed to obtain minute-level time-series outputs. Multilevel functional
principal component analysis (MFPCA) was applied to minute-level ActiGraph activity counts within activPAL-identi-
fied sitting bouts to investigate variation in movement while sitting across subjects and days. The multilevel approach
accounted for the nesting of days within subjects.

Results At least 90% of the overall variation of activity counts was explained by two subject-level principal compo-
nents (PC) and six day-level PCs, hence dramatically reducing the dimensions from the original minute-level scale. The
first subject-level PC captured patterns of fluctuation in movement during sitting, whereas the second subject-level
PC delineated variation in movement during different lengths of sitting bouts: shorter (< 30 minutes), medium (30 -39
minutes) or longer (> 39 minute). The first subject-level PC scores showed positive association with DBP (standard-
ized ﬁ: 2.041, standard error: 0.607, adjusted p = 0.007), which implied that lower activity counts (during sitting) were
associated with higher DBP.

Conclusion In this work we implemented MFPCA to identify variation in movement patterns during sitting bouts,
and showed that these patterns were associated with cardiovascular health. Unlike existing methods, MFPCA does
not require pre-specified cut-points to define activity intensity, and thus offers a novel powerful statistical tool to elu-
cidate variation in SB patterns and health.
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Background

Studies across the spectrum of public health and bio-
medical research have linked sedentary behavior
(SB) to poor health [1-3]. Interventions and strate-
gies have been developed to reduce SB in an effort to
improve health benefits within the population [1, 4, 5].
To measure SB reliably, accurately and cost-effectively,
it is well established that sensor based accelerometers
are the method of choice [6—8]. However, there are a
plethora of such devices that are each used individu-
ally to measure SB. SB is defined as energy expendi-
ture < 1.5 metabolic equivalents (low movement) and
a seated, reclined, or lying position (posture) during
waking hours [9, 10]. Devices used to measure SB differ
in the information that they capture (e.g., posture ver-
sus energy expenditure), and hence are not always con-
cordant. Combining SB measures across devices could
lead to more accurate SB assessment and also provide
additional insights into SB patterns. The latter is the
focus of this work.

We briefly review two popular devices for SB meas-
urement in health behavior studies. ActiGraph GT3X+
(ActiGraph LCC, Pensacola, FL, USA) is a commonly
used hip- or wrist-worn research-grade wearable
accelerometer to measure movement based on accel-
eration across vertical, horizontal, and perpendicular
axes [6, 11]. These accelerations are usually sampled at
fine granularity (e.g., 10Hz, or 30Hz) which provides
a rich and objective data resource to assess move-
ment patterns . Both vertical axis and triaxial counts
from activity accelerometers can provide biologically
meaningful data for assessing movement intensity, and
hence energy expenditure [12, 13]. Calibration methods
based on energy expenditure at different acceleration
counts are then used to classify the movement as physi-
cally active versus sedentary. However, the ActiGraph
does not provide information on body posture. On the
other hand, the thigh-worn activPAL (PAL Technolo-
gies, Glasgow, UK) is a frequently used accelerometer
to measure body posture [14, 15], classifying behavior
as sitting (i.e. all non-upright postures), standing and
stepping. Thus, measurements from either of these
devices alone, often, do not provide consistent informa-
tion about SB, and could result in a loss of information
regarding SB patterns.

Exploiting the variety of data available in SB sensors,
the goal of our current study is to implement Functional
Principal Components Analysis (FPCA) to quantify
the pattern and variation of movement (by ActiGraph

accelerations) during activPAL-identified sitting events.
Our unique approach uses the time-matched Actigraph
and activPAL continuous datastreams, to extract sit-
ting posture events and then applies FPCA to minute-
level triaxial activity counts within sitting time. As a
comparison, we also calculated the Posture and Physi-
cal Activity Index (POPAI) [6], which was proposed to
classify each minute of activPAL sitting or standing as
inactive or active by using a cut-point of vertical axis
(VA) activity counts from ActiGraph. A salient advan-
tage of FPCA, as we will demonstrate in this work,
is that it utilizes the entire time series data, does not
require pre-defined cut-points, captures the principal
directions of variation, and achieves dimension reduc-
tion [16, 17]. While FPCA methods have been used
successfully in physical activity research [17-19], to our
knowledge they have not been extensively applied in SB
research, especially in the context of jointly examining
movement and posture.

As a proof of concept of the potential applications of
FPCA to reveal novel insights between SB and health, we
examine associations between FPCA-derived patterns
and health-related outcomes, such as blood pressure.
Studies have shown a positive relationship between pro-
longed sitting and blood pressure [20-23]; however, less
is known about patterns of movement during sitting, and
if/how these might impact health. As a complementary
analysis, we also applied POPAI and compared health-
related associations between methods.

Method

Study sample

Rise for Health (ClinicalTrials.gov: NCT03473145) [24]
was one of the projects within the National Institute
of Aging Program Grant “Sedentary Time and Aging
Research (STAR)” at University of California San Diego
aiming to provide more rigorous and comprehensive evi-
dence on how to interrupt sitting time to improve health
among overweight postmenopausal women. Overweight
older women, spend the majority of their waking hours
sitting, which increases their risk of chronic diseases.
Engaging in moderate-to-vigorous physical activity can
be challenging for this group. Therefore, the Rise for
Health study was designed to understand the health ben-
efits of decreasing sedentary behavior in this group. The
primary aim of this 3-arm randomized controlled trial
was to investigate how 3-month changes in sitting time
or changes in brief sit-to-stand transitions would impact
biomarkers of healthy aging, and physical, emotional, and
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cognitive functioning compared to an attention control
condition.

For the current analyses, we used baseline (pre-rand-
omization) data from 327 (recruited during 2018-2021)
Rise for Health participants. Details on eligibility and
study protocols have been previously published [24]. Per-
tinent to the current analysis, Rise for Health participants
were instructed to wear an activPAL (at thigh) and Acti-
Graph GT3X+ (at waist) simultaneously for 24 hours a
day for 7 days under free-living conditions and to track
their daily sleeping time on a paper log.

Device data processing
Event files from the activPAL were extracted using the
VANE classification algorithm (PALanalysis, v8), which
uses the thigh location of the device to identify sitting,
standing, and stepping events. Daily waking wear time
was identified as the complement of the sleeping time
from the paper log. Waking wear sitting bouts (i.e., inter-
vals with uninterrupted sitting) were determined by
matching the timestamp of sitting activity from activPAL
event file with the participant’s daily waking wear time.
The 1-second count file of ActiGraph GT3X+ with
low-frequency-extension (LFE) filtering was generated
with ActiLife software [25]. LFE option increases sensi-
tivity to very low amplitude activities, such as slow walk-
ing, which might occur in elderly populations and our
study sample [6, 26]. Non-wear time from the 1-second
count file could be identified by the Choi algorithm [27]
based on consecutive zero counts. Although most of the
non-wear time detected by the Choi algorithm would
overlap with participants’ sleeping time, the Choi algo-
rithm could capture additional non-wear time during a
participant’s waking wear time. Hence, the concurrent
waking wear sitting bouts started with time-matching
event file (activPAL) and count file (ActiGraph) and
excluded not only the sleeping-time based on the sleep-
ing log, but also any additional non-wear time detected
by the Choi algorithm. The 1-second-level activity counts
from vertical, horizontal, and perpendicular axes (VA,
HA and PPA) were then summed up over each minute,
respectively; the minute-level triaxial vector magnitude
(VM) was computed as \/VA2 + HA? + PPA? [25, 28].
For bout lengths that were not a multiple of a minute, the
following rule was applied: if the final fraction of the bout
was less than 30 seconds, that final fraction was removed;
otherwise, say 40 seconds was the last fraction, activity
counts were calculated at 40-second level and then mul-
tiplied by 60/40 to approximate the last minute counts of
the sitting bout. Thirteen out of 327 participants had no
concurrent waking wear data. To simplify the descrip-
tion, the term “concurrent waking wear sitting bouts” and
“concurrent waking wear sitting time” were abbreviated
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as “sitting bouts” and “sitting time’, respectively, through-
out the rest of the paper, unless otherwise specified.

Previous population-based studies have suggested
that daily waking sitting time in adults typically ranged
between 5 and 8 hours with self-reported measures and
were higher with device measures, 7.7 to 11.5 hours [29].
Among those age > 80 years, the daily sitting time could
be more than 13 - 14 hours [30, 31]. Hence, valid days
were defined as concurrent waking wearing days of both
devices, and days with total daily sitting time between
5 to 15 hours; about 5% of the participant-days were
excluded. The minimum required number of valid day(s)
per participant in the analyses was one. Furthermore,
only sitting bouts < 1 hour within valid days, defined as
valid sitting bouts, were utilized for analyses; 5% of the
sitting bouts were then eliminated. The first reason that 1
hour was chosen as the upper limit was because the 95th
percentile of the sitting bouts was 61 minutes. The sec-
ond reason was for model fit feasibility which is described
in more detail in the statistical analysis “Multilevel func-
tional principal component analysis (MFPCA)” section.
The final sample size was 314 and final valid participant-
days was 1776. On these valid participant-days, the daily
standing and stepping time were obtained based on the
activPAL event status as well as participants’ daily wak-
ing wear time. The average daily non-sitting time was the
mean of the total daily standing and stepping time over
the valid wearing days per participant.

Posture and Physical Activity Index (POPAI)

The POPAI-based inactive and active sitting time were
calculated per sitting bout first, i.e., for each minute
within a sitting bout if VA counts < 75 cpm (counts per
minute), the minute was classified as inactive sitting, and
as active sitting otherwise [6]. Average daily inactive and
active sitting time were calculated as each participant’s
sum of inactive sitting time or active sitting time, respec-
tively, across all valid sitting bouts, divided by their total
number of valid wear days.

Health outcome and baseline characteristics

Blood pressure (BP), including systolic and diastolic
(SBP and DBP), were the health outcomes of interest in
the current study. They were measured at least 3 times at
the participant’s pre-randomization clinic visit by trained
study staff using a digital BP monitor (such as Dinamap
or Accutor 7 or Dinamap V100). Participants were seated
and at rest for at least 5 minutes prior to testing. Partic-
ipants had their feet planted on the floor and arm on a
table with their palm up during each of the blood pres-
sure tests. The readings were taken at intervals of at least
1 minute apart. A fourth measurement was taken if two
of three readings were more than 5 mmHg apart for each
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SBP and DBP. The mean value of all available measures
was taken for SBP and DBP, respectively. Other base-
line characteristics included in the analyses were age,
race (white versus non-white), education (college and
above versus below), employment status (work versus
not working), body mass index (BMI) and hypertension
status (yes/no). These characteristics were self-reported,
except for BMI (weight and height were measured by
study staff).

Statistical analysis

Multilevel functional principal component analysis (MFPCA)
Our accelerometer-based activity data was not only
high dimensional and irregularly-spaced, but also meas-
ured on multiple days per participant at baseline, which
demanded a multilevel model to differentiate variations
due to the hierarchical structure: participant-specific
variation (level 1, between-subject) and day-specific vari-
ation (level 2, within-subject).

The time of day when a sitting bout of a particular
length occurs will vary across participants, making
it difficult to compare patterns if bouts are based on
clock-time. Hence, we first ordered sitting bouts per
participant per day by unique length from 1 minute to
60 minutes with an increment of 1 minute. We then
implemented MFPCA to VM counts/minute within
(ordered) sitting bouts; if a participant had multiple
bouts with the same length in a day, the VM counts/
minute were averaged, and if a participant did not
have a certain bout length in a day, the empty bout was
retained with each minute of VM counts marked as
“missing”. This configuration placed all participants and
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all days under the same scale in terms of sitting bouts
and their VM counts, and thus allowed us to compare
counts within bouts of identical length across days and
participants.

Figure 1 illustrated an example of one partici-
pant’s profile for one day of VM counts/minute within
ordered sitting bouts. Vertical grey lines indicated sit-
ting bouts from length 1 minute to 60 minutes labeled
by the top horizontal axis. As the bout length increases,
so does the gap between the lines. This axis was impor-
tant as it corresponds to ordered sitting bout lengths,
and thus could be meaningfully interpreted. The corre-
sponding horizontal axis at the bottom was the cumula-
tive sum of the top bout lengths, and was necessary for
the mathematical formulation of the FPCA model. Each
unit of the bottom axis was aligned with a value of VM
counts/minute or a missing value, which served as con-
tinuous variable ¢ in the MFPCA formulation (see Eq. 1
for details). Black dots represent VM counts/minute
within sitting bouts. Empty bouts, bouts without VM
counts, for this participant on this day could be non-
empty and have VM counts for other participants and/
or on other days. This was another reason that maxi-
mum sitting bout length was set at 60 minutes, namely,
to prevent excessive numbers of empty sitting bouts at
the right tail.

To account for the hierarchical nature of these data
(multiple days per participant), we adopted the MFPCA
approach [16], which was designed to decompose the
total variation into between- and within-subject levels
and extract major modes of variation at both levels. The
full model of MFPCA [16] was formulated as
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Fig. 1 Example of one participant’s profile for one day of VM counts/minute within ordered sitting bouts. Vertical grey lines indicated all

possible sitting bout lengths from 1 minute to 60 minutes. The corresponding horizontal axis at bottom was the cumulative sum of the top bout
lengths and the maximum value of the bottom axis was ZEO:W b = 1830 minutes, which implied t € [1, 1830] with increment of 1 minute. t =

1 at the bottom was mapping to 1-minute sitting bout at the top; t = 2 and 3 at bottom were mapping to the first minute and second minute

of the 2-minute sitting bout at the top; t = 4 to 6 at the bottom would be the 3-minute bout at the top, etc. If the top bout length was 8 minutes,
the corresponding bottom values would span from Zzﬂ b=28to Zﬁﬂ b = 36; if the top bout length was 60 minutes, the bottom values would

9

span from 72, b = 1770 to 1830. Each minute of the bottor axis held a VM count value or a missing value. Black dots represent VM counts/

minute within sitting bouts
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where X;;(£) was the VM counts function measured over ¢
(the bottom indexes in Fig. 1) for day j within participant
i(i=12,..,nj=1,2,..,d; where n was the total num-
ber of participants, d; indicated number of valid days for
participant i); u(£) was the overall mean count function;
nj(t) was a day-specific shift from overall mean, and €;;(¢)
was an error term assumed to have a normal distribu-
tion N(0,02). qbl((l) (¢) and ¢l(2) (t) were the eigenfunctions
at level 1 (k" component) and level 2 (I component); &
and ¢;;; were principal component (PC) scores at level 1
and 2, assumed to have normal distributions

i ~ N, "), ¢y ~ N (0,27

where )7((1) and /152) were the eigenvalues at level 1 (k%
component) and 2 ([ component). Intuitively, each
eigenfunction could be conceptualized as identifying
a specific pattern of activity counts (over sitting bouts),
while each subject’s corresponding PC score indicates to
what extent that subject subscribes to this pattern with
the eigenvalue quantifying the variance of the PC score.
The PC scores were essential quantities in our analyses
because they captured the signals of sitting patterns. N
and N> were the number of components retained at level
1 and level 2. The choice of Nj and N3 is usually based on
a balanced selection between ensuring that enough vari-
ation in the data is explained, while also avoiding noise.
This is a trade-off between under-fitting and over-fitting:
retaining sufficient amount of the information from the
data while reducing the chance of identifying spurious
patterns. In our application, we required that the total
variation explained by the number of components was
90% as in [16]. MFPCA was implemented using R pack-
age refund (version 0.1-26) [32].

Multiple linear regression (MLR)

We fit multiple linear regression models to investigate
associations between movement patterns during sitting
(i.e., the PC scores from the MFPCA) and blood pres-
sure. Since blood pressure was not measured on multiple
days during baseline, only the participant-level (level 1)
PC scores were applied to the regression modeling focus-
ing on subject-level effects on the outcome [17, 33]. The
association between PC scores and blood pressure were
examined in MLR controlling for participants’ base-
line characteristics, as well as, two additional covariates:
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number of days with valid concurrent device wear and
average daily non-sitting time.

Similarly, the association between POPAI-based sitting
time (classified as active: vs inactive) with blood pressure
were also assessed in MLR replacing PC scores with aver-
age daily inactive sitting time and average daily active sit-
ting time in the model.

To better understand and compare the magnitude of
the associations, PC scores and POPAI-based variables
were standardized, and the MLRs were refit, respectively.
Although the re-estimated coefficients would be dif-
ferent for these standardized variables, p values will be
unaffected.

The overall « level of multiple comparisons at 0.05 was
controlled by Benjamini and Hochberg false discovery
rate (BH FDR) [34]. Both original p values and BH FDR
adjusted p values (p-FDR) were presented. Implement-
ing such correction improved the rigor of the approach.
Model fit of MLRs were evaluated via residual and lever-
age plots.

Assessing goodness of fit

To provide an empirical evaluation of the MFPCA model,
we superimposed and graphed observed data and fit-
ted curves. The observed VM counts/minute within sit-
ting bouts were plotted on a participant-day, then we
added one element at a time for fitted curves based on
model Eq. 1 as follows: 1. the overall mean, w(¢); 2. mean
day shift, £(£) + 1j(¢); 3. the participant level fitted curve,
w(t) +nj(t) + 22[;1 “;‘ikqb,((l)(t); 4. the participant-day level
fitted curve, 11 () + 1 (8) + Yty Gy (6 + 0% Ly (©)

Assessing impact of missing data in MFPCA

We used a (pseudo-) simulation approach to evaluate the
robustness of our approach to missing data, i.e., absence of a
sitting bout of a particular length, which was relatively com-
mon in our dataset, especially for longer bouts. To describe
the extent of missingness, we introduce some notation. Let
b=1,2,...,60 denote the index (and the length) of the sit-
ting bouts and 1, the number of participant-days that did
not register a b-minute bout. For instance, #1; = 14 and meq
= 1655 in our data implied unregistered rate (with denomi-
nator 1776) were 0.8% and 93%, respectively; the average
unregistered rate across all 60 indexes was 71%. The over-
all missing rate of VM counts/minute from the 1776 x 1830
data matrix was % = 83%, i.e. there were a consid-
erable number of missing data across participant-days.
Although MFPCA can accommodate data missing at ran-
dom, simulations were carried out to evaluate the impact of
large amount of missingness in constructing PCs, especially
PC1 at level 1 since this component accounted for a major-
ity of the variability at subject level. Details were described
in the Supplementary materials (A.2).
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All analyses were performed in the R statistical pro-
gramming language (4.2.3) [35].

Results

Sample characteristics

The total number of participants included in the analy-
ses was 314; the number of days with valid concurrent
wear of both devices for each subject varied from 1 day
to 9 days with average 5.7 days (median: 6 days); num-
ber of weekdays per participant ranged from 1 to 7 with
average 3.8 (median: 4); number of weekend days ranged
from 1 to 4 with average 1.9 (median: 2). The total num-
ber of participant-days was 1776, 579 were from week-
ends and 1197 were from weekdays, giving a 2.4:5 ratio
of weekend:weekdays. Figure 2 showed the histogram
of sitting bouts from 1 minute to 60 minutes among all
participant-days. For example, as mentioned in “Assess-
ing impact of missing data in MFPCA” section, among
1776 participant-days, 1762 had 1-minute sitting bout
(the remaining 14 participant-days did not register 1
minute bouts), and 121 had 60-minute sitting bout
(the remaining 1655 participant-days did not). The 2.5
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percentile and 97.5 percentile of the sitting VM/minute
were 0 and 1021, with median 20 and mean 141 among
all participant-days.

The descriptive statistics of blood pressure, daily activ-
ity time and other baseline characteristics are presented
in Table 1. The average age of the participants was 68
years and their average BMI was 32.3. The mean SBP and
DBP were 127.2 mmHg and 75.6 mmHg, respectively.
The vast majority of participants were white (92.2%) and
slightly over half of the participants (52.3%) reported
having a hypertension diagnosis at baseline. Average
daily inactive sitting and active sitting time based on
POPAI were 307.7 minutes and 94.6 minutes, respec-
tively; hence, 23.4% of the sitting time was active sitting
in this sample. Average daily non-sitting time (including
standing and stepping time) was 262.6 minutes.

Multilevel functional principal components

Two components at participant-level (level 1, N1=2) and
six components at day-level (level 2, No=6) explained at
least 90% of the total variance, in which 29% was attrib-
uted to level 1 and 71% was to level 2.

1500 -

1000

count

500

0 20

Unique sitting bout length (minutes)
Fig. 2 Histogram of sitting bouts from 1 minute to 60 minutes among all participant-days (1776)
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Table 1 Descriptive statistics of sample characteristics
Mean (SD?) Count (%)
SBP (mmHg) 127.2 (16.0) Race (vvhite)b 284 (92.2)
DBP (mmHg) 75.6(10.5) Education (college and above) 222(72.1)
Age (years) 68.2 (7.3) Employment (working) (39 9)
BMI 32.3(4.9) Hypertension (yes) 9(52.3)
Average daily time (minute)
inactive sitting 307.7 (78.7)
active sitting 94.6 (40.6)
non-sitting 262.6 (91.0)
standing 193.7 (73.8)
stepping 68.9 (27.1)

2 Standard deviation (SD)

b Binary variables: Race (white versus non-white), Education (college and above versus below), Employment status (work versus not working), Hypertension status

(yes/no)

€ Among 314 participants, % was based on the non-missing corresponding variables at baseline, hypertension status had 10 missing values while all others had 6

Participant-level (level 1) principal components

Figure 3a and b showed the 2 PC eigenfunctions at the
participant-level, qb ) and ¢>2 D as well as the proportions
of the var1ab111ty accounted by the 2 PCs at this level (75%
and 25%). q)l was negative across the entire x-axis. This
indicated that participants with larger PC scores tended
to have lower VM counts/minute than the overall mean,
hence, less acceleration or movement. ¢£l) showed both
positive and negative values: positive when bout length
was short (less than 30 minutes) and became negative at
medium bout length (around 30 - 39 minutes), then posi-
tive at longer bouts (> 39 minutes - 60 mmutes) Inter-
estingly, the most negative valley of q)(l) and ¢>2 curves
appeared at the same area, around sitting bout length 34
minutes, suggesting the sitting bout at that length could
be important for capturing between-subject variability.
Figure 3c and d illustrated the overall mean function,
w(t) (red), with addition (blue) or subtraction (green)
of square root of eigenvalues mu ym§ correspond-
ing eige Cthl‘lS, e.g., u(t) £ Al q) () (left) and
w(t) £ /1(1 ¢ (t) (right), which could be interpreted as
the weighted deviation away from the overall mean cap-
tured by the 2 PCs. The predicted mean function curve
of VM counts decreased rapidly during short bouts and
then stayed relatively stable afterwards. Aligned with
Fig. 3a and b both components showed the largest vari-
ance of VM counts at a sitting bout length of 34 minutes.

Day-level (level 2) principal components

The 6 day-level (level 2) PCs represented random day-
level functional shift from the participant level curve. The
eigenfunctions exhibited oscillatory pattern and captured
day to day variation in movement during sitting bouts. A
detailed description and figures are shown in the Supple-
mentary materials (A.1).

Model fit of MFPCA

Figure 4 showed illustrative examples of two participant-
days: (a) was the same participant-day from Fig. 1 where
a majority of activity counts were below 1000 cpm with a
large number of counts around 0; (b) was a different par-
ticipant on a different day where a large number of activ-
ity counts were above 1000 cpm and fewer were around
0. The figures showed the contributions of principal
components from both levels in terms of capturing the
activity patterns, and demonstrated that the fitted curve
incorporating both participant and day-level components
tracks the observed data well.

As for impact of missing data in MFPCA, comparison
from simulated complete data and incomplete data sug-
gested that level 1 PC1 from incomplete data still cap-
tured sufficient variability at subject level despite the
large amount of missingness. More details were shown in
the Supplementary materials (A.2) and Table Al.

Regression association

Two sets of MLR were conducted; while the focus was
on the first set assessing the associations between level
1 principal component scores (PC1, PC2) and blood
pressure, the second set examined the associations of
POPAI based metrics — average daily inactive sitting
time and active sitting time — with blood pressures
(Pearson correlation between average daily inactive sit-
ting time and active sitting time was 0.01). Both sets
of models were adjusting for covariates: age, race (ref:
non-white), education (ref: below college), employment
status (ref: not working), BMI, reported hyperten-
sion status (ref: no), as well as number of concurrent
wear days of devices and average daily non-sitting time
(Table 2). Diagnostic plots displayed neither nota-
ble violations of modeling assumptions nor influential



Zablocki et al. Int J Behav Nutr Phys Act (2024) 21:48

Bout length
1812 161820222426 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Page 8 of 13

Bout length

1812 1618202224 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

075

(a) Level 1 PC1 (75%)

1812 1618202224 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

2
é200
£ T
2 AT AN
\\/// \
NN .
VN LT N ] ] L
\ I \\\ \\\\\ \\
100- A i o e N
i N N T \\\
NLLA \ VT
I TN |
N Y N Eans T \\\
N | N A .y
N N \

(c) u(t) = /Al 1)

outliers (plots not shown), indicating that the fit of the
MLR models was adequate.

In general, DPB displayed more compelling evidence
of associations with both sets (MFPCA based and
POPAI based) of sitting pattern variables than SBP did.
The strongest association was shown between DBP and
level 1 PC1, the higher the PC1 values, the higher the
DBP (p = 0.0009, p-FDR = 0.007), indicating a positive
relationship. Recall that the level 1 PC1 eigenfunction
was negative across the entire domain, which implied
that participants with higher PC1 scores tended to have
lower VM counts (and thus are more inactive). Hence,
our regression results suggest that lower VM counts were
associated with worse DBP values. Standardizing both
PC scores and refitting the MLR revealed the re-esti-
mated f (s.e) of PC1 score was 2.041 (0.607) suggesting

\/

(b) Level 1 PC2 (25%)

1812 1618202224 26 26 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

200

VM/minute

(d) () £ /256

Fig. 3 Participant-level eigenfunctions (top) and mean function () (red) with addition (blue) or subtraction (green) ofsquare root of two
eigenvalues multiplying corresponding eigenfunctions (bottom)

1 unit increase in level 1 PC1 was associated with 2.04
mmHg increase in DBP. No signficiant associations were
detected between PC scores and SBP.

Similar positive association was also observed between
DBP and POPAI average daily inactive sitting time (p =
0.008, p-FDR = 0.03). Each minute increase in daily inac-
tive sitting time was associated with 0.02 mmHg increase
in DBP (in other words, each hour increase in daily
inactive sitting time was associated with a 1.20 mmHg
increase in DBP). Standardizing both inactive and active
sitting time, the re-estimated B (s.e) of inactive sitting
time was 1.636 (0.614) indicating 1 unit increase in daily
inactive sitting time was associated with a 1.64 mmHg
increase in DBP. In addition, there was a trend between
SBP and POPALI average daily inactive sitting time, where
each hour increase in daily inactive sitting time was
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Fig. 4 Example fitting profiles in different participants on different days of MFPCA curves tracing the observed VM counts/minute (black
dots) within sitting bouts by adding one element at a time based on model Eq. T: 1. £ (0); 2. e (0) + 1;(t); 3., (6) + m;(0) + Zﬁﬂ f;‘,-kd)f)(t); 4,
() + ni(t) + Zi:1 s,-mﬁ”(r) + 2,6:1 ;,-j/cb,(z)(t). a was the same participant-day from Fig. T where a majority of VM counts were below 1000 cpm
with notable size of those close to 0; b was a different participant on a different day where a large number of VM counts were still above 1000 cpm
and fewer VM counts were close to O

Table 2 Association of blood pressure with MFPCA/POPAI variables from MLR

Outcome Estimate MFPCA POPAI
Level 1 PC1 Level 1 PC2 Average daily inactive Average daily
sitting time active sitting
time
SBP B(se)! 0.014(0.017) -0.026 (0.027) 0.025(0.011) -0.018 (0.021)
p2 042 0.34 0.03 0.40
p-FDR3 042 042 0.08 042
DBP B (se) 0.040 (0.012)* 0.034(0.019) 0.021(0.008)° -0.030 (0.015)
p 0.0009 0.07 0.008 0.05
p-FDR 0.007 0.11 0.03 0.10

' Parameter estimates and their standard errors (s.e) from the MLR between independent variables (MFPCA or POPAI variables) and outcomes (SBP or DBP) controlling
for other baseline characteristics, including age, race (ref: non-white), education (ref: below college), employment status (ref: not working), BMI, hypertension status
(ref: no), as well as concurrent wearing days of devices and average daily non-sitting time

2p: p values from MLRs

3 p-FDR: adjusted p values based on Benjamini and Hochberg false discovery rate (BH FDR) [34] accounted for 8 pairwise comparisons
4 Standardized f} (s.e) = 2.041 (0.607) between DBP and level 1 PC1

5 Standardized ﬁ (s.e) = 1.636 (0.614) between DBP and inactive sitting time
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associated with 1.50 mmHg increase in SBP (p = 0.03,
p-FDR = 0.08).

Discussion

The current study brought the unique design and applica-
tion of FPCA into the field of accelerometer data in SB
research. While most research has implemented FPCA
on physical activity accelerometer (ActiGraph) data
to explore temporal or intensity activity patterns, we
time-matched both posture accelerometer and physi-
cal activity accelerometer data to scrutinize movement
within the core event of SB, sitting. The novel construc-
tion of activity counts within posture-based sitting bouts
placed all subjects and all wearing days under the same
scale, hence, PC scores of each component are able to
capture variation in movement within sitting bouts and
thus are more interpretable. To demonstrate potential
applications of this FPCA approach in public health, the
current study assessed the person level PC scores and
revealed the evidence that sitting with less movement
was associated with higher DBP. While the POPAI based
analyses also showed positive association between inac-
tive sitting time and higher DBP, it requires selection of
a specific cut-point threshold (75 cpm in this case) to
delineate active vs inactive sitting. Although use of cut-
points are very common in SB research, there is lack of
agreement and consensus on the “best” cpm cut-points
[36-38]. For instance, while a widely applied cut-point
for adults wearing ActiGraph GT3X is VA < 100 cpm as
SB [38], Aguilar-Farfas et al. [39] suggested VA < 25 cpm
and Kozey-Keadle et al. [14] suggested VA < 150 cpm as
SB. The difference can be substantial. Another limita-
tion of cut-point methods is that dichotomization does
not make full use of the data in the accelerometer sig-
nal beyond or below the cut-point. These drawbacks can
potentially attenuate or exaggerate the relationships of
SB with health outcomes [40]. On the other hand, FPCA
transforms the original functional data to a set of asymp-
totically equivalent independent PC scores and yields a
parsimonious representation of the original data [41, 42].
The stronger signal in Table 2 for the level 1 PC1 could be
an indication that FPCA grasped more information than
the method based on the cut-point. Besides dimension
reduction, FPCA attempts to characterize the dominant
modes of variation of random trajectories around their
overall mean [42] (demonstrated in Fig. 3¢, d and Supple-
mentary Fig. A1b). Hence, it provides a robust alternative
to study SB.

Given the increasing use of machine learning (ML)
techniques in health behavior research, it is important to
clarify the unique contributions of FPCA in this context.
To our knowledge, current applications of ML (including
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our own work) [43-45] focus largely on posture or
activity detection (e.g., siting, standing, walking etc),
and hence involve binary or categorical classification of
behaviors. FPCA on the other hand, uses the continuous
data stream from the device to identify the main sources
of variation in (movement) patterns, and is agnostic to
categories of behavior. As such, MFPCA and ML provide
complementary advantages: ML can identify the behav-
ior, and FPCA can elicit variation in movement during
the behavior. Both methods are useful for understanding
and quantifying human movement and associated health
outcomes.

There are several limitations in our current study. First,
FPCA is an exploratory statistical approach, and in this
study, we investigated cross-sectional FPCA-based sit-
ting patterns in relation to the health outcomes at base-
line. Rise for Health [24] is a longitudinal randomized
controlled trial, hence, the natural next step would be to
extend the MFPCA model implemented in the current
work to a 3-level model, in which participant is the level
1, visit (baseline and final visit) is the level 2 and day is the
level 3. The extension will not only bring us richer func-
tional data to model dynamic changes in movement pat-
terns, but will also allow us to compare outcomes across
different arms, control (healthy aging) and two interven-
tion groups: reducing sitting and increasing sit-to-stand
transitions. Besides blood pressure, additional health-
related outcomes can be considered. However, there are
methodological complexities in extending the current
MFPCA model to a longitudinal setup; we aim to explore
this extension in future work. Second, in the current
study, the day level PC scores were not incorporated into
the association assessment, mainly because clinical data
(outcomes) were not collected at the day-level. Applica-
tions that incorporate the day-level PCs could offer fur-
ther insights on sitting patterns. Third, the current daily
sleeping time was self-reported, which could be suscepti-
ble to recall, response and social desirability bias [38]. In
the recent release of activPAL scoring software, the built-
in algorithm can now identify “time in bed” start and
“time in bed” end, which would facilitate our proposal
to automate sleep time identification and removal in a
more consistent fashion in the future. Fourth, our sam-
ples were overweight sedentary postmenopausal women,
and majority were white and highly educated (i.e., college
and above), which might not represent a broader older
adult population. Lastly, the current MFPCA model was
built based on minute level VM counts to align with the
POPAI-based approach [6]. In theory, it is possible to
extend the model to different epoch lengths, such as 15
seconds. However, the computational feasibility might
become a major challenge.
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To illustrate the potential application of our approach
to public health studies, we evaluated associations
between the FPCA-derived SB patterns and blood pres-
sure, and found that less movement during sitting was
associated with higher diastolic blood pressure. While
our health-related analysis was largely a proof of concept,
our results have face validity. Prolonged sitting time,
has been linked to increased blood pressure, especially
after the age of 45 years in men and 5-10 years later in
women, often after menopause [21, 23, 46, 47]. Reducing
or interrupting prolonged sitting time (either by walking
or taking standing breaks) has been shown to have SBP
or DBP-lowering effects [22, 48—51]. Previous studies in
office environments have recommended workplace inter-
ventions to break up prolonged SB by dynamic chairs to
encourage movements [52, 53]. It has been shown that
energy expenditure increased significantly either using
an under-table leg-fidget bar or a fidget-promoting chair
compared to the standard office chair [54]; hence, one of
the approaches could be to render sitting more active,
called “dynamic sitting”, to provide an alternative for
when standing or getting up from a desk is not feasible
[53, 54]. While the types of active sitting in these previous
studies may differ from our study, our findings support a
proposition of replacing more inactive sitting with active
sitting. We emphasize that we are not recommending
replacing physical activity with active sitting. However
for some populations, such as highly sedentary, elderly,
and/or overweight individuals as in our study sample,
or those with comorbidities or physically disabled sub-
populations, adhering to physical activity guidelines may
not be feasible. For these populations light activity and
active sitting may provide viable alternatives and a more
achievable path to healthy living. Studies have suggested
that non-exercise activity thermogenesis (NEAT) has the
potential to prompt energy expenditure over time with
a higher rate of adherence [55]. More research, includ-
ing longitudinal studies as well as intervention trials, are
needed to further examine and evaluate the impact of
active sitting patterns on health-related outcomes.

Conclusion

To our knowledge, this is the first study to develop a
MEFPCA approach for examining movement during SB.
The unique design of time-matching both the posture-
based activPAL and movement-based ActiGraph acceler-
ometer data and applying FPCA to triaxial activity counts
within sitting time take advantage of the rich minute-
level data rather than daily or weekly summary metrics,
and furthermore avoids the use of cut-point thresholds at
the same time. We believe this approach offers a powerful
statistical tool to elucidate variation in SB patterns and
health [56-58].
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Abbreviations
SB Sedentary behavior

FPCA Functional principal component analysis
MFPC Multilevel functional principal component analysis
MLR Multiple linear regression

POPAI Posture and physical activity index

PC Principal component

BP Blood Pressure

SBP Systolic blood pressure

DBP Diastolic blood pressure

BMI Body mass index

VA Vertical axis

HA Horizontal axis

PPA Perpendicular axis

VM Vector magnitude

STAR Sedentary time and aging research

LFE Low frequency extension

cpm Count per minute

SD Standard deviation

se Standard error

BHFDR  Benjamini and Hochberg false discovery rate
p-FDR Benjamini and Hochberg false discovery rate adjusted p value
NEAT Nonexercise activity thermogenesis

MBE Mean bias error

RMSE Root Mean squared error
NRMSE  Normalized root mean squared error
SEM Standard error of mean
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