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Abstract—Personalized medicine tailors treatments based on
the individual characteristics of each patient. Recent work
targets comprehensive analysis of patient samples that contain
human, viral, and bacterial genomes. Novel technologies like
Simul-seq enable simultaneous analysis of such samples. How-
ever, existing workflows are slow and disjoint. In this paper, we
present FPGA accelerated genomics infrastructure, GenoMiX
, that supports multiple real-world analysis pipelines used in
personalized medicine, including phylogenetic assignment for
viral pathogens, variant calling that is key for cancer genomics,
and microbiome metagenome analysis. We integrate our work-
flow with Qiita, an open-source framework for managing and
analyzing multi-omics datasets. GenoMiX is not only up to 30×
faster than comparable CPU-based tools, but it also addresseNs
the challenges associated with handling reference databases
of varying sizes, encompassing viruses, human genomes, and
microbiomes. Our optimized infrastructure was a key compo-
nent enabling success of the award-winning UCSD’s ”Return to
Learn” program during the COVID-19 public health emergency
in San Diego County.

I. INTRODUCTION

Personalized medicine tailors treatments to the individual

characteristics of each patient. Protocols such as Simul-

seq [1] have enabled the comprehensive collection and anal-

ysis of patient samples that contain not just human genomes

but also bacterial and viral samples. This is critical to

understanding how human health is affected not only by

diseases such as cancer but also by native bacteria and outside

pathogens that interact with our bodies and the medicines

we take. Recent work in personalized medicine seeks to

understand the interaction between these various aspects.

However, state of the art tools such as [2]–[6] are too slow

to address this need.

Many accelerators have been proposed to date for various

components of the analysis pipeline, such as those based

on processing in memory (PIM) [7], [8], near-data comput-

ing [9], ASICs [10], and FPGAs [11]–[15]. Most of these are

not deployed in the actual analysis pipelines since they a) only

address a few components of the pipeline, b) their accuracy

may not be as good as CPU based tools, and c) they are

more difficult to use and less compatible with the existing

tools. For example, [7], [8] only accelerate filtering and

pairwise alignment, respectively; [9] accelerates seeding and

pre-alignment filtering but neglects computationally bounded
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Levenshtein distance computing; [11] runs from seeding to

pairwise alignment but doesn’t support backtrace to get the

compact idiosyncratic gapped alignment report (CIGAR);

[12] can get Bowtie2 [4]-like alignment accuracy, but cannot

get the mapping quality (MAPQ) needed by downstream

analysis.

In this work, we design a unified and fast tool, GenoMix,

that accelerates viral sequence analysis, variant calling in hu-

man genomics, and bacterial metagenomic comparative anal-

ysis. GenoMiX uses Qiita [16], an open-sourced framework

for managing and analyzing multi-omics datasets via a user-

friendly webpage, as a front end. As shown in Figure 1, the

three analysis pipelines share a common backbone: short read

alignment and sequence trimming, which we accelerate using

FPGA. In order to provide end-to-end support to medical

practitioners, we integrate downstream analysis tools into

GenoMiX such as DeepVariant [17] for variant calling, Pan-

golin [18] for viral analysis, and Unifrac [19] that is targeted

at microbiome. The phylogenetic assignment generates the

viral concise sequence and classifies it. Variant calling detects

whether the genome’s mismatches or indels are variants or

sequencing machine-induced errors. In metagenome com-

munity ecology, the samples, comprising multiple bacterial

species, use the unifrac distance as a metric, to discover and

compare a variety of microbiome communities. Run as a

plugin of Qiita [16], GenoMiX offers users the flexibility to

run all three pipelines simultaneously on the same dataset or

only specific pipelines they require on separate datasets. This

ensures an adaptable tool suitable for a variety of use cases,

from multi-omics analysis to single-dataset investigations. To

summarize, our system is:

• The first multi-in-one tool that integrates and accelerates

three different analysis pipelines by up to 30× speedup

at state of the art accuracy. Each U55c FPGA running

GenoMiX provides the same computation power of up

to 475 CPUs.

• Designed to efficiently handle reference databases of

various sizes involving viruses, human, and microbiome,

with as many as billions of base pairs;

• Integrated into state of the art Qiita [16] genomic study

management platform. The platform has been used over

the last three years in San Diego County as a part of

UCSD’s award winning ”Return to Learn” program [20]

during the COVID-19 public health emergency.
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Fig. 1. Overview of GenoMiX . GenoMiX is made up with the component �-� to accelerate the pipeline �-�. Standard tools chain includes aligner [2]–[4],
trimmer [5], [6], and downstream modules [17]–[19], [21], [22].

II. GENOMIX DESIGN AND IMPLEMENTATION

Figure 1 provides an overview of GenoMiX which runs

as a plugin in Qiita [16], as shown in �. GenoMiX ac-

clerates three pipelines (�-�) with four components (�-

�). The webpage frontend of Qiita [16] provides GenoMiX

a unified and user-friendly interface for the three analysis

pipelines that are represented in blue boxes: � runs variant

calling using DeepVariant [17] on GPU; � showcases viral

phylogenetic assignment pipeline utilized in UCSD’s ”Return
to Learn” Program [20]; � executes Unifrac [19] which

computes dissimilarity between microbial communities based

on their evolutionary relationships. The three pipelines have

common components represented in red boxes: sequence

alignment (�), adapter trimming and quality control (�),

and primer trimming (�). We profiled each of the three

pipelines and found that trimming and alignment, when run

on CPU, is by far the slowest, with 67% − 98% overhead,

so GenoMiX accelerates all of these on FPGA obtaining

up to 30× speedup. As shown in � adapter and � primer

trimming, which are detailed in Section II-A, remove the

low-quality regions and artifact segments. The alignment

component of GenoMiX , illustrated in � and discussed in

Section II-B, uses seeding and extension-based method with a

2-stage index table. It can not only identify mapping locations

but also generates CIGAR strings and accurately estimates

MAPQ values. The structure of the index table is discussed

in II-C. After alignment and trimming are completed, each

of the three pipelines runs their individual downstream tools:

Pangolin [18] on CPU, DeepVariant [17], and Unifrac [19]

on GPU, to obtain the final results that are then displayed

using Qiita [16] front end.

A. GenoMiX Trimming and Quality Control (QC)
GenoMiX trimming and quality control stages enhance

read alignment accuracy. This involves removing artifact

DNA sequences, like adaptors and primers, and discarding

low-quality reads and segments similar to Fastp [6] and

iVar [5] which run on CPU. GenoMiX utilizes a sliding

window to detect and discard adaptor parts when mismatches

fall below a specific threshold for adapter trimming. It

calculates moving average phred scores, which determine

the sequencing quality of each base, to remove low-quality

areas. This quality trimming can be set to one of three

modes: cut front, cut tail, and cut right. PolyX/G trimming
eliminates consecutive identical bases at the read tail that

may lack relevance. For example, polyG may occur in tails

from NextSeq platforms as G indicates no signal. When the

input data is paired, GenoMiX can perform base correction
to identify overlap regions and correct mismatched base

pairs if one base’s phred score is much higher than the

other. GenoMiX also has many filtering options, such as

discard reads with too many undefined bases, low average

phred scores, insufficient length, or low complexity. Primer

sequences are known segments used to amplify the target

DNA fragment. Unlike adapter trimming, which requires

base-by-base matching but only involves tens of sequences,

primer trimming deals with hundreds of artifact primer

sequences introduced by multiplex amplicon sequencing.

GenoMiX handles primer trimming in similar way to adapter

trimming.

B. GenoMiX Alignment
In DNA sequencing, short reads are often mismatched

with the reference. GenoMiX uses seeding-extension-based
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method to handle mismatches or indels. The seeding stage

identifies several k-mers from the sequence but may indicate

a large number of less optimal candidate locations. GenoMiX

prefilters those to improve the alignment quality.

REF  : TGGCTTCGGCAGC-AGTTAAGCCGTATGG

Read :     TACGGCAGCCAGT-AAGCC
 SeedingSeed1:     TACGG

Seed2:        GGCAG

SeedN:                   AAGCC

Seed1:     TACGG

Seed2:        GGCAG

SeedN:                   AAGCC
······

 Extension 

23576 76, 8429
Check

PTR
CAL

Fig. 2. Example of Seeding-and-extension based sequence alignment.

Seeding: Seeds are extracted by intercepting K-mers with

interval l. Since read direction isn’t predetermined, GenoMiX

stores entries of seeds corresponding to the original and its

reverse complement in the same bucket to reduce the number

of random accesses. Hash function converts a K-mer to a

2K + 1 bits integer, where the lower 2K bits are smaller

component of the 2bits-1bp representation of the seed and its

reverse complementary, and the most significant bit indicates

whether the original seed or the reverse complementary seed

is smaller. GenoMiX then looks up the candidate locations

of seed in a 2-stage hash table. The hashed value is split into

two parts: Hptr and Hcal, which corresponds to PTR table

and CAL table respectively. The PTR table is a conflict-free

mapping: the Hptr-th item of the PTR table points to the

entry of the CAL table storing this seed. The CAL table stores

Hcal-position pair, where the key is the rest of hashing value

of the seed, and the value is the location of this seed in the

reference.

Prefiltering speeds up and improves the quality of se-

quence alignment by removing unlikely matches. GenoMiX

can identify the most likely locations where the read may

align by subtracting the offset of each seed from the begin-

ning of the read from the candidate positions of the seed

in the reference genome. To account for the possibility of

small indels, positions that are adjacent within a certain

tolerance are treated as the same. The prefiltering will discard

the positions only a few seeds point to, making it can

focus on more promising candidate sequences. In addition to

filtering out the less-promising candidate positions, GenoMiX

’s prefilter will also calculate the Hamming distance to verify

if the read is able to align to the reference perfectly with only

a few mismatches and no indels. The number of mismatch

tolerance is a parameter making the trade-off between speed

and the possibility to find the best alignment.

Extension performs alignment using the Smith-Waterman

and Needleman-Wunsch algorithms and produces CIGAR as

output. Depending on the downstream applications, global,

local, or semi-global alignments may be used. GenoMiX esti-

mates the mapping quality MAPQ similar to BWA-MEM [2].

C. GenoMiX Table Indexing

GenoMiX limits CAL row size to improve sequence align-

ment efficiency. Each CAL row has a Hcal cell and a seed

position cell. The seed position is a 32-bit integer to fit the

whole human genome. The bucket size is also limited to avoid

the CAL table search bottleneck. Bucket size is limited to 32

rows, and if a bucket exceeds this limit, its Hcal are sorted by

the number of positions they point to, and half of the positions

are randomly discarded. This is repeated until the bucket size

is less than 32. GenoMiX table structure is optimized based

on the reference length. The default length Hptr and Hcal

is chosen for the reference as large as the human genome.

When the reference genome is smaller, such as with COVID-

19, there is only a small number of CAL entries that share

the same Hptr. In GenoMiX , the length of Hptr is reduced

to decrease the PTR table size, while the length of HCAL is

extended to maintain a constant seed length.

Fig. 3. Screenshot of Qiita webpage with COVID-19 analysis task

III. EVALUATION AND RESULTS

Experimental Setup: Qiita [16] was used to drive the

GenoMiX as a front end. Figure 3 shows the screenshot of

Qiita with GenoMiX when running COVID-19 analysis, but

we can run all three types of genomics data analysis - human,

bacteria, and virus. The acceleration kernels are written in

C++ and compiled by Xilinx Vitis HLS to run on Xilinx

FPGA U55c [23] which has 16GB high bandwidth memory

(HBM) split into 32 pseudo channels interconnected by 8 AXI

switch boxes. GenoMiX optimizes the architecture based on

the table size to leverage intra and inter box connectivity. For

example, viral reference is small and thus we store the PTR

table in a single HBM channel and the CAL table in internal

SRAM, with multiple table copies to enhance throughput.

The CAL tables for bacterial reference genome databases,

in contrast, are typically so large that they cannot fit in a

single FPGA, so GenoMiX divides them into multiple 2GB

subtables to ensure locality within the switch boxes. Our

FPGA uses AMD EPYC 7F72 CPU with 128GB RAM as

the host.

Datasets: Our design was evaluated using real-world

datasets, including COVID sequencing data obtained from

the UCSD’s ”Return to Learn” Program [20], human whole

genome sequencing data of NA12878 from the Genome in
a Bottle Project, and microbiome metagenomic sequencing

data from the EMP500 Project [24]. The size of the reference

genome varied across the datasets, ranging from a single virus

genome to a comprehensive microbiome reference database

consisting of over 10,000 bacterial and archaeal genomes.

Table I provides more details on them.

A. Varaint Calling

We tested the accuracy of GenoMiX on the cancer variant

detection task using sequencing data of a female subject

NA12878 with Platinum Genomes small variant truthset [29].
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TABLE I
REFERNECE GENOME

Description Name
Total
Length

PTR
Table

CAL
Table

Ref
Table

COVID-19 NC 045512.2 [25] 30Kbp 256MB 233KB 7.5KB
Chromosome 21 NC 000021.8 [26] 48Mbp 4GB 251MB 12MB

Whole human genome GRCh38 [27] 3.1Gbp 4GB 16GB 786MB
Microbiome database WoL [28] 33Gbp 40GB 195GB 8.2GB

GenoMiX has 12× higher throughput when running on a

single FPGA as compared with the BWA-MEM [2] running

on 16 cores. As shown in Figure 4, the difference of end-

to-end results between using GenoMiX and BWA-MEM [2]

is small. True positives refer to the number of variants that

the downstream application, DeepVariant [17], accurately

classifies. Conversely, errors refer to the number of variants

that DeepVariant is able to detect the variants but misclassify

them.

20,318 20,443 

52,205 52,205 

484 483

656 517

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000

GenoMix BWA-MEM [2]

# 
Va

ria
nt

s 

False Positive
True Positive
Error
False Negative

Fig. 4. Variant calling accuracy

B. Phylogenetic Assignment

We tested the COVID-19 phylogenetic assignment task

with COVID sequencing data obtained from the UCSD’s
”Return to Learn Program” [20]. Figure 5 shows the runtime

of GenoMiX compared to the state of the art BWA-MEM [2].

The baseline is running with 16 cores. GenoMiX is 3× faster

than CPU for alignment and 30× faster for trimming. Pile-

up and consensus sequence generation stages are pipeline

bottlenecks after GenoMiX acceleration on FPGA. Results of

the accelerated pipeline are very close in terms of accuracy

to the original toolchain [30], with the difference between the

consensus sequences generated of only 0.04%. Most of the

difference is caused by the insufficient coverage of sequenc-

ing, and would not influence the end-to-end results. GenoMiX

is able to get exactly the same phylogenetic assignment

results as the baseline state of the art tool, Minimap2 [3].

0 100 200 300 400

2 FPGAs

1 FPGA

CPU

Runtime (minute)

Minimap2-Aligner [3]
GenoMiX-Aligner
iVar-Trimmer [5]
GenoMiX-Trimmer
Pile-Up & Consensus
Phlogenetic Assignment

14× speedup

1.9× speedup

Fig. 5. End-to-end runtime of phylogenetic assignment

C. Microbiome Metagenomics Comparative Analysis

We tested the microbiome metagenomics comparative anal-

ysis workloads with common use EMP500 [24] dataset and

WoL [28] reference genome database. As shown in Figure 6,

alignment is the slowest component of the whole pipeline,

due to the large size of the WoL [28] database. Bowtie2 [4],

a state of the art tool often used for alignment of microbial

data due to its high accuracy, uses 44GB of memory when

running with WoL [28] database on a CPU. The challenge of

GenoMiX aligner is the scale of the microbiome reference

genome database: it may contain over 10K bacterial and

archaeal genomes which results in over 190 GB of index

tables. However, a single U55c only has 16 GB of onboard

memory, which is insufficient to store the index tables. To

solve this problem, we divided the original reference into

10 segments and built 10 sets of tables. At least 2 FPGAs

are required to finish the alignment. With 3 FPGAs, which

contain as much memory as Bowtie2 consumes, we can

achieve 4× speedup with comparable accuracy. GenoMiX

adapter trimmer and QC are 15× faster vs Fastp [6] on CPU.

Woltka [22], which is used for feature table generation, has

the highest throughput, as it is relatively simple. Even if

it is run on CPU can lead the throughput. Unifrac is not

shown as it runs in a few seconds on TB-size short-read

datasets. We would need 679 CPU cores or only 29 FPGAs

in order for alignment and trimming to match the throughput

of Woltka [22].

1 10 100 1000 10000
Throughput ( 10e3 reads/second)

16 CPUs 1 FPGA 2 FPGAs 4 FPGAs

24 FPGAs

610 CPUs

37 CPUs

Fig. 6. Microbiome metagenomics comparative analysis throughput.
GenoMiX is run with 1, 2, and 4 FPGAs while the other tools are run
with 16 CPUs.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an FPGA accelerated genomics

infrastructure, GenoMiX , that supports multiple real-world

analysis pipelines used in personalized medicine, including

the phylogenetic assignment for viral pathogens, variant

calling that is key for cancer genomics, and microbiome

metagenome analysis. GenoMiX has been integrated with

Qiita [16], an open-source framework for managing and

analyzing multi-omics datasets. It is up to 30× faster than

comparable CPU-based tools. The accelerated pipeline has

been deployed for COVID-19 analysis in San Diego County

during the last three years, as a part of UCSD’s ”Return to

Learn” program [20]. It shows comparable end-to-end results

with the ones generated by the mainstream tools.

As we look toward the future, we will investigate its

applicability in other fields of biology and medicine, such

as proteomics and transcriptomic. Besides, we aim to make

GenoMiX even more modular, enabling researchers to in-

tegrate new pipeline components as the field of genomics

advances.
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