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Abstract—Personalized medicine tailors treatments based on
the individual characteristics of each patient. Recent work
targets comprehensive analysis of patient samples that contain
human, viral, and bacterial genomes. Novel technologies like
Simul-seq enable simultaneous analysis of such samples. How-
ever, existing workflows are slow and disjoint. In this paper, we
present FPGA accelerated genomics infrastructure, GenoMiX
, that supports multiple real-world analysis pipelines used in
personalized medicine, including phylogenetic assignment for
viral pathogens, variant calling that is key for cancer genomics,
and microbiome metagenome analysis. We integrate our work-
flow with Qiita, an open-source framework for managing and
analyzing multi-omics datasets. GenoMiX is not only up to 30X
faster than comparable CPU-based tools, but it also addresseNs
the challenges associated with handling reference databases
of varying sizes, encompassing viruses, human genomes, and
microbiomes. OQur optimized infrastructure was a key compo-
nent enabling success of the award-winning UCSD’s ”Return to
Learn” program during the COVID-19 public health emergency
in San Diego County.

[. INTRODUCTION

Personalized medicine tailors treatments to the individual
characteristics of each patient. Protocols such as Simul-
seq [1] have enabled the comprehensive collection and anal-
ysis of patient samples that contain not just human genomes
but also bacterial and viral samples. This is critical to
understanding how human health is affected not only by
diseases such as cancer but also by native bacteria and outside
pathogens that interact with our bodies and the medicines
we take. Recent work in personalized medicine seeks to
understand the interaction between these various aspects.
However, state of the art tools such as [2]-[6] are too slow
to address this need.

Many accelerators have been proposed to date for various
components of the analysis pipeline, such as those based
on processing in memory (PIM) [7], [8], near-data comput-
ing [9], ASICs [10], and FPGAs [11]-[15]. Most of these are
not deployed in the actual analysis pipelines since they a) only
address a few components of the pipeline, b) their accuracy
may not be as good as CPU based tools, and c) they are
more difficult to use and less compatible with the existing
tools. For example, [7], [8] only accelerate filtering and
pairwise alignment, respectively; [9] accelerates seeding and
pre-alignment filtering but neglects computationally bounded
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Levenshtein distance computing; [11] runs from seeding to
pairwise alignment but doesn’t support backtrace to get the
compact idiosyncratic gapped alignment report (CIGAR);
[12] can get Bowtie2 [4]-like alignment accuracy, but cannot
get the mapping quality (MAPQ) needed by downstream
analysis.

In this work, we design a unified and fast tool, GenoMix,
that accelerates viral sequence analysis, variant calling in hu-
man genomics, and bacterial metagenomic comparative anal-
ysis. GenoMiX uses Qiita [16], an open-sourced framework
for managing and analyzing multi-omics datasets via a user-
friendly webpage, as a front end. As shown in Figure 1, the
three analysis pipelines share a common backbone: short read
alignment and sequence trimming, which we accelerate using
FPGA. In order to provide end-to-end support to medical
practitioners, we integrate downstream analysis tools into
GenoMiX such as DeepVariant [17] for variant calling, Pan-
golin [18] for viral analysis, and Unifrac [19] that is targeted
at microbiome. The phylogenetic assignment generates the
viral concise sequence and classifies it. Variant calling detects
whether the genome’s mismatches or indels are variants or
sequencing machine-induced errors. In metagenome com-
munity ecology, the samples, comprising multiple bacterial
species, use the unifrac distance as a metric, to discover and
compare a variety of microbiome communities. Run as a
plugin of Qiita [16], GenoMiX offers users the flexibility to
run all three pipelines simultaneously on the same dataset or
only specific pipelines they require on separate datasets. This
ensures an adaptable tool suitable for a variety of use cases,
from multi-omics analysis to single-dataset investigations. To
summarize, our system is:

o The first multi-in-one tool that integrates and accelerates
three different analysis pipelines by up to 30x speedup
at state of the art accuracy. Each U55¢ FPGA running
GenoMiX provides the same computation power of up
to 475 CPUs.

o Designed to efficiently handle reference databases of
various sizes involving viruses, human, and microbiome,
with as many as billions of base pairs;

o Integrated into state of the art Qiita [16] genomic study
management platform. The platform has been used over
the last three years in San Diego County as a part of
UCSD’s award winning “Return to Learn” program [20]
during the COVID-19 public health emergency.
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Fig. 1. Overview of GenoMiX . GenoMiX is made up with the component @-@ to accelerate the pipeline @-©. Standard tools chain includes aligner [2]-[4],

trimmer [5], [6], and downstream modules [17]-[19], [21], [22].
II. GENOMIX DESIGN AND IMPLEMENTATION

Figure 1 provides an overview of GenoMiX which runs
as a plugin in Qiita [16], as shown in @. GenoMiX ac-
clerates three pipelines (@-®) with four components (@-
@). The webpage frontend of Qiita [16] provides GenoMiX
a unified and user-friendly interface for the three analysis
pipelines that are represented in blue boxes: @ runs variant
calling using DeepVariant [17] on GPU; @ showcases viral
phylogenetic assignment pipeline utilized in UCSD’s ”Return
to Learn” Program [20]; ® executes Unifrac [19] which
computes dissimilarity between microbial communities based
on their evolutionary relationships. The three pipelines have
common components represented in red boxes: sequence
alignment (@), adapter trimming and quality control (@),
and primer trimming (@). We profiled each of the three
pipelines and found that trimming and alignment, when run
on CPU, is by far the slowest, with 67% — 98% overhead,
so GenoMiX accelerates all of these on FPGA obtaining
up to 30x speedup. As shown in @ adapter and @ primer
trimming, which are detailed in Section II-A, remove the
low-quality regions and artifact segments. The alignment
component of GenoMiX , illustrated in @ and discussed in
Section II-B, uses seeding and extension-based method with a
2-stage index table. It can not only identify mapping locations
but also generates CIGAR strings and accurately estimates
MAPQ values. The structure of the index table is discussed
in II-C. After alignment and trimming are completed, each
of the three pipelines runs their individual downstream tools:
Pangolin [18] on CPU, DeepVariant [17], and Unifrac [19]
on GPU, to obtain the final results that are then displayed
using Qiita [16] front end.

A. GenoMiX Trimming and Quality Control (QC)

GenoMiX trimming and quality control stages enhance
read alignment accuracy. This involves removing artifact
DNA sequences, like adaptors and primers, and discarding
low-quality reads and segments similar to Fastp [6] and
iVar [5] which run on CPU. GenoMiX utilizes a sliding
window to detect and discard adaptor parts when mismatches
fall below a specific threshold for adapter trimming. It
calculates moving average phred scores, which determine
the sequencing quality of each base, to remove low-quality
areas. This quality trimming can be set to one of three
modes: cut_front, cut_tail, and cut_right. PolyX/G trimming
eliminates consecutive identical bases at the read tail that
may lack relevance. For example, polyG may occur in tails
from NextSeq platforms as G indicates no signal. When the
input data is paired, GenoMiX can perform base correction
to identify overlap regions and correct mismatched base
pairs if one base’s phred score is much higher than the
other. GenoMiX also has many filtering options, such as
discard reads with too many undefined bases, low average
phred scores, insufficient length, or low complexity. Primer
sequences are known segments used to amplify the target
DNA fragment. Unlike adapter trimming, which requires
base-by-base matching but only involves tens of sequences,
primer trimming deals with hundreds of artifact primer
sequences introduced by multiplex amplicon sequencing.
GenoMiX handles primer trimming in similar way to adapter
trimming.

B. GenoMiX Alignment

In DNA sequencing, short reads are often mismatched
with the reference. GenoMiX uses seeding-extension-based
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method to handle mismatches or indels. The seeding stage
identifies several k-mers from the sequence but may indicate
a large number of less optimal candidate locations. GenoMiX
prefilters those to improve the alignment quality.

REF : TGGCTTC C-AGTT GTATGG
Read : TACGGCAGCCAGT-AAGCC
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Fig. 2. Example of Seeding-and-extension based sequence alignment

Seeding: Seeds are extracted by intercepting /-mers with
interval [. Since read direction isn’t predetermined, GenoMiX
stores entries of seeds corresponding to the original and its
reverse complement in the same bucket to reduce the number
of random accesses. Hash function converts a K-mer to a
2K + 1 bits integer, where the lower 2/ bits are smaller
component of the 2bits-1bp representation of the seed and its
reverse complementary, and the most significant bit indicates
whether the original seed or the reverse complementary seed
is smaller. GenoMiX then looks up the candidate locations
of seed in a 2-stage hash table. The hashed value is split into
two parts: H,;,. and H.,, which corresponds to PTR table
and CAL table respectively. The PTR table is a conflict-free
mapping: the H,,-th item of the PTR table points to the
entry of the CAL table storing this seed. The CAL table stores
H .q1-position pair, where the key is the rest of hashing value
of the seed, and the value is the location of this seed in the
reference.

Prefiltering speeds up and improves the quality of se-
quence alignment by removing unlikely matches. GenoMiX
can identify the most likely locations where the read may
align by subtracting the offset of each seed from the begin-
ning of the read from the candidate positions of the seed
in the reference genome. To account for the possibility of
small indels, positions that are adjacent within a certain
tolerance are treated as the same. The prefiltering will discard
the positions only a few seeds point to, making it can
focus on more promising candidate sequences. In addition to
filtering out the less-promising candidate positions, GenoMiX
’s prefilter will also calculate the Hamming distance to verify
if the read is able to align to the reference perfectly with only
a few mismatches and no indels. The number of mismatch
tolerance is a parameter making the trade-off between speed
and the possibility to find the best alignment.

Extension performs alignment using the Smith-Waterman
and Needleman-Wunsch algorithms and produces CIGAR as
output. Depending on the downstream applications, global,
local, or semi-global alignments may be used. GenoMiX esti-
mates the mapping quality MAPQ similar to BWA-MEM [2].

C. GenoMiX Table Indexing

GenoMiX limits CAL row size to improve sequence align-
ment efficiency. Each CAL row has a H.4 cell and a seed
position cell. The seed position is a 32-bit integer to fit the
whole human genome. The bucket size is also limited to avoid
the CAL table search bottleneck. Bucket size is limited to 32
rows, and if a bucket exceeds this limit, its H.,; are sorted by

the number of positions they point to, and half of the positions
are randomly discarded. This is repeated until the bucket size
is less than 32. GenoMiX table structure is optimized based
on the reference length. The default length H,;,. and H.q
is chosen for the reference as large as the human genome.
When the reference genome is smaller, such as with COVID-
19, there is only a small number of CAL entries that share
the same H ;.. In GenoMiX , the length of Hp;, is reduced
to decrease the PTR table size, while the length of He 45, is
extended to maintain a constant seed length.

COVID-19 Demo - ID 14760
COVID-19

Single Sample - ID 13713 (Amplicon) # Edtname | LPrepino & Sampia o (only s psp

Data Types (cickon

= Ampicon

Sequencer Ouut (D: 156856) Visity:sandbox /=avee | »
Fig. 3. Screenshot of Qiita webpage with COVID-19 analysis task

III. EVALUATION AND RESULTS

Experimental Setup: Qiita [16] was used to drive the
GenoMiX as a front end. Figure 3 shows the screenshot of
Qiita with GenoMiX when running COVID-19 analysis, but
we can run all three types of genomics data analysis - human,
bacteria, and virus. The acceleration kernels are written in
C++ and compiled by Xilinx Vitis HLS to run on Xilinx
FPGA U55c [23] which has 16GB high bandwidth memory
(HBM) split into 32 pseudo channels interconnected by 8 AXI
switch boxes. GenoMiX optimizes the architecture based on
the table size to leverage intra and inter box connectivity. For
example, viral reference is small and thus we store the PTR
table in a single HBM channel and the CAL table in internal
SRAM, with multiple table copies to enhance throughput.
The CAL tables for bacterial reference genome databases,
in contrast, are typically so large that they cannot fit in a
single FPGA, so GenoMiX divides them into multiple 2GB
subtables to ensure locality within the switch boxes. Our
FPGA uses AMD EPYC 7F72 CPU with 128GB RAM as
the host.

Datasets: Our design was evaluated using real-world
datasets, including COVID sequencing data obtained from
the UCSD’s "Return to Learn” Program [20], human whole
genome sequencing data of NA12878 from the Genome in
a Bottle Project, and microbiome metagenomic sequencing
data from the EMP500 Project [24]. The size of the reference
genome varied across the datasets, ranging from a single virus
genome to a comprehensive microbiome reference database
consisting of over 10,000 bacterial and archaeal genomes.
Table I provides more details on them.

A. Varaint Calling

We tested the accuracy of GenoMiX on the cancer variant
detection task using sequencing data of a female subject
NA12878 with Platinum Genomes small variant truthset [29].
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TABLE I
REFERNECE GENOME

Description Name Total PTR CAL Ref
Length Table Table Table
COVID-19 NC_045512.2 [25] 30Kbp | 256MB | 233KB 7.5KB
Chromosome 21 NC_000021.8 [26] | 48Mbp 4GB 251MB 12MB
Whole human genome GRCh38 [27] 3.1Gbp 4GB 16GB 786MB
Microbiome database WoL [28] 33Gbp 40GB 195GB 8.2GB

GenoMiX has 12x higher throughput when running on a
single FPGA as compared with the BWA-MEM [2] running
on 16 cores. As shown in Figure 4, the difference of end-
to-end results between using GenoMiX and BWA-MEM [2]
is small. True positives refer to the number of variants that
the downstream application, DeepVariant [17], accurately
classifies. Conversely, errors refer to the number of variants
that DeepVariant is able to detect the variants but misclassify
them.
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Fig. 4. Variant calling accuracy

B. Phylogenetic Assignment

We tested the COVID-19 phylogenetic assignment task
with COVID sequencing data obtained from the UCSD'’s
”Return to Learn Program” [20]. Figure 5 shows the runtime
of GenoMiX compared to the state of the art BWA-MEM [2].
The baseline is running with 16 cores. GenoMiX is 3 faster
than CPU for alignment and 30x faster for trimming. Pile-
up and consensus sequence generation stages are pipeline
bottlenecks after GenoMiX acceleration on FPGA. Results of
the accelerated pipeline are very close in terms of accuracy
to the original toolchain [30], with the difference between the
consensus sequences generated of only 0.04%. Most of the
difference is caused by the insufficient coverage of sequenc-
ing, and would not influence the end-to-end results. GenoMiX
is able to get exactly the same phylogenetic assignment
results as the baseline state of the art tool, Minimap2 [3].

14x speedup _ - --= "7 o Minimap2-Aligner [3]
- B GenoMiX-Aligner
I iVar-Trimmer [5]
GenoMiX-Trimmer
Pile-Up & Consensus
o Phlogenetic Assignment

<+
1FPGA I

1
11.9x speedup

2 FPGAs I I

0 100 200 300 400
Runtime (minute)

Fig. 5. End-to-end runtime of phylogenetic assignment

C. Microbiome Metagenomics Comparative Analysis

We tested the microbiome metagenomics comparative anal-
ysis workloads with common use EMP500 [24] dataset and
WoL [28] reference genome database. As shown in Figure 6,
alignment is the slowest component of the whole pipeline,
due to the large size of the WoL [28] database. Bowtie2 [4],

a state of the art tool often used for alignment of microbial
data due to its high accuracy, uses 44GB of memory when
running with WoL [28] database on a CPU. The challenge of
GenoMiX aligner is the scale of the microbiome reference
genome database: it may contain over 10K bacterial and
archaeal genomes which results in over 190 GB of index
tables. However, a single U55c only has 16 GB of onboard
memory, which is insufficient to store the index tables. To
solve this problem, we divided the original reference into
10 segments and built 10 sets of tables. At least 2 FPGAs
are required to finish the alignment. With 3 FPGAs, which
contain as much memory as Bowtie2 consumes, we can
achieve 4x speedup with comparable accuracy. GenoMiX
adapter trimmer and QC are 15x faster vs Fastp [6] on CPU.
Woltka [22], which is used for feature table generation, has
the highest throughput, as it is relatively simple. Even if
it is run on CPU can lead the throughput. Unifrac is not
shown as it runs in a few seconds on TB-size short-read
datasets. We would need 679 CPU cores or only 29 FPGAs
in order for alignment and trimming to match the throughput
of Woltka [22].

2
é* 16 CPUs WM 1FPGA W 2FPGAs N4 FPGAs

1 10 100 1000
Throughput (x10e3 reads/second)

10000

Fig. 6. Microbiome metagenomics comparative analysis throughput.
GenoMiX is run with 1, 2, and 4 FPGAs while the other tools are run
with 16 CPUs.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an FPGA accelerated genomics
infrastructure, GenoMiX , that supports multiple real-world
analysis pipelines used in personalized medicine, including
the phylogenetic assignment for viral pathogens, variant
calling that is key for cancer genomics, and microbiome
metagenome analysis. GenoMiX has been integrated with
Qiita [16], an open-source framework for managing and
analyzing multi-omics datasets. It is up to 30x faster than
comparable CPU-based tools. The accelerated pipeline has
been deployed for COVID-19 analysis in San Diego County
during the last three years, as a part of UCSD’s “Return to
Learn” program [20]. It shows comparable end-to-end results
with the ones generated by the mainstream tools.

As we look toward the future, we will investigate its
applicability in other fields of biology and medicine, such
as proteomics and transcriptomic. Besides, we aim to make
GenoMiX even more modular, enabling researchers to in-
tegrate new pipeline components as the field of genomics
advances.
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