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A B S T R A C T

For quality assurance and in-service safety, sufficient characterization of the materials is
essential during the development, manufacture, and processing of a material in any industrial
setting. Evaluation of elastic coefficients, material microstructures, morphological features,
and related mechanical properties are all part of the process of characterizing a material.
Ultrasonic signals are sensitive to material properties such as wave speeds, attenuation, diffusion
backscattering, microstructural variation, and elastic characteristics (e.g., elastic modulus,
hardness, etc.). Ultrasonic computed tomography (USCT) is an emerging imaging method that
can be implemented to obtain a quantitative estimation of material properties. In this study,
a source estimation technique was initially proposed to obtain the source time function for
accurate forward modeling by constructing a linear inverse problem for the unknown transducer
modeling. Finally, a material characterization approach was proposed with accurate source
estimation to extract wave speed distribution from an elastic material by employing a wave-
based method, known as full waveform inversion (FWI). Systematic performance analysis of
the proposed FWI model with accurate source estimation was assessed using experimental and
synthetic data obtained from a 6061 aluminum sample. Overall, the proposed FWI technique has
successfully reconstructed the wave speed distribution, exhibiting the potential of the proposed
method of material characterization in various engineering applications.

1. Introduction

Understanding the characteristics of a material is very important to model and effectively design many products in any
engineering application, especially in manufacturing industries. It is often challenging to achieve sufficient quantitative information
about the material through traditional characterization techniques [1]. In recent times, metal Additive Manufacturing (AM) is
increasingly being used to make functional components where one of the barriers for AM components to become mainstream is the
difficulty to characterize them [2–4]. AM components can have widely different properties based on process parameters. Improving
any AM process requires understanding process structure–property correlations, which can be gathered in situ and post-process
through nondestructive and destructive methods. Defects in AM components are inherently geometry-dependent; hence, functional
AM components must be certified on a case-by-case basis. Complex and varying AM procedures often impact the microstructure
(e.g., grain size and phase), which tends to dictate mechanical properties like hardness, yield strength, ultimate tensile strength,
elastic modulus, etc. [5].
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Ultrasound offers a wide variety of techniques for material characterization through nondestructive evaluation (NDE), which has
been used to qualify various processing treatments such as precipitation hardening, case hardening, and rolling texture, and to assess
the damage of metallic components due to various degradation mechanisms like fatigue, creep, corrosion, and embrittlement [6].
Ultrasonic signals have distinctive acoustic features, such as ultrasonic velocity and attenuation, related to the elastic modulus
and density [7]. An ultrasonic examination is usually volumetric, and can provide information about bulk material properties.
Ultrasonic parameters are significantly affected by changes in microstructural or mechanical material properties. Elastic modulus
and the density inside the polycrystalline or bulk materials control the velocity and attenuation of the ultrasonic wave, which in
turn are related to the microstructure through variations in the elastic modulus of the individual grains, the orientation of the grains
and relative amounts of the phases present [8–10].

Among various ultrasound characterization methods, the ray-based synthetic aperture focusing technique (SAFT) and time of
flight (ToF) are very commonly used [11–13]. For structures with less complexity, the ray-based method can accurately calculate
direct arrival and the reflected phases [14,15]. However, ray-based techniques are often ineffective for complex structures with
various impedance contrasts and insufficient sensitivity as the physics is considered to be simplified [16]. On the other hand, wave
equation-based imaging techniques are more effective because they consider not only the travel time (as in the case of ray-based
theory) but also the amplitude and waveforms inside a complex structure involving full acoustic or elastic wave equations [17].

Ultrasound computed tomography (USCT) is an emerging tomography-based ultrasound imaging technique that relies on the
transmission and reflection of ultrasonic energy through the object of interest. Full waveform inversion (FWI) is a partial differential
equation-constraint, nonlinear optimization technique widely used in geophysical imaging [18,19]. FWI is based on full wave-field
modeling and inversion to extract material parameter distribution using wave equations [20]. The FWI method generates a velocity
model by iteratively determining and minimizing a waveform residual, which is the difference between the measured data and the
modeled output.

FWI has emerged as a powerful imaging technique with diverse applications spanning various disciplines, including geo-
physics [21,22], oil and gas exploration [23,24], environmental monitoring [25], astrophysics [26,27], and numerous medical
imaging applications [28]. In recent years, applying FWI to ultrasound tomography-based imaging in non-destructive testing (NDT)
has shown promising results. Nguyen et al. [29] presented the FWI results in the detection of bridge-deck delamination. Köhn et al.
[30] demonstrated that FWI using elastic Rayleigh waves provides the S-wave velocity map of a weathered sandstone sample. Rao
et al. [31,32,33] successfully implemented FWI to ultrasonic-guided waves-based NDT and verified their findings with experimental
data. They performed this research by using a multi-scale inversion and a 2D acoustic approximation to solve the wave equations
in the frequency domain while conducting a large number of experiments. He et al. [34] studied the numerical evaluation of the
performance of FWI for inclusion inversion in various complex metallic components in a water-bathed environment and thereby
demonstrated the potential of applying FWI to complex structures. Anwar et al. [35,36] investigated the application of FWI to
enhance imaging accuracy for assessing inclusion and porosity, specifically within the context of additive manufacturing processes
through numerical studies.

FWI evaluates its data misfit measurements in the time or frequency domain. In FWI, the high dimensional gradient of the misfit
function is efficiently computed using the adjoint state method [37,38]. The gradient is evaluated by interacting the back-propagated
data misfit with the forward-propagated source wavefield. A new updated model is generated from the previous reference model
and the computed scaled gradient at each iteration. The iterations continue until the data misfit falls below predefined thresholds
or when other convergence measures are met. Such a process requires accurate temporal source function information. Significantly
incorrect source information may force the inversion towards a local minimum, severely compromising the inversion and leading
to significant artifacts in the resultant velocity model [39,40]. As a result, transducer modeling is one of the key components to
accurate FWI results.

Ultrasonic transducers, that convert ultrasonic electrical signals to mechanical movement, can be modeled using various
techniques that consider the electromechanical coupling effect. Both the finite element method (FEM) [41,42] and finite difference
time domain (FDTD) [43] methods are frequently used to model the wave propagation excited by ultrasound transducers in a variety
of applications. However, the transfer function of the transducer elements to represent this effect for FEM and FDTD modeling
is sometimes unknown. Multi-physics-based modeling software (e.g., COMSOL [44] and ANSYS [45]) can also be employed to
model ultrasonic transducers. For example, piezoelectric transducers can be modeled using piezoelectric constitutive equations,
that relate the material’s mechanical strain, electric field, and charge density. Multiphysics modeling approaches require these
properties (e.g., piezoelectric coefficients) for accurate modeling. However, some transducer information is sometimes proprietary
and unavailable to the end users. Additionally, factors such as couplant thickness are not fully controllable or measurable, thereby
hindering the accurate modeling of transducers even with a multiphysics solver.

Based on the above discussion regarding transducer modeling, it is evident that by taking transducer response into account to
characterize the transducer beam profile, one can add an extra layer of complexity to FWI. Instead, many researchers explored
a more straightforward approach where source signature can be estimated based on an inversion scheme. Pratt [46] introduced
a source estimation technique based on a linear inversion to extract source signatures from seismic exploration. This approach is
computationally efficient, requiring only one forward simulation per source to estimate the source time function. Sandhu et al. [47]
adopted a similar ultrasound waveform tomography technique for breast imaging with a ring transducer array in the frequency
domain based on the least square (L2-norm) misfit function. Suzuki et al. [48] suggested a source estimation technique comparable
to the abovementioned approach, effectively reducing the value of any cost function. However, the success of such a source
estimation approach in NDE-based material characterization using FWI has not been explored yet. This study proposes a source
estimation approach in elastic FWI for nondestructive material characterization and numerically and experimentally benchmarks
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Fig. 1. Schematic diagram of Full Waveform Inversion (FWI) process.

the material reconstruction results. In our preliminary study [49], we demonstrated the feasibility of FWI for reconstructing wave
speed distribution through numerical simulations. Additionally, we established the robust modeling capability of the spectral element
solver and introduced the transducer modeling technique in support of our proposed methodology.

The elastic FWI using ultrasonic bulk waves was initially evaluated in an elastic medium for a range of frequencies and velocity
distributions inside the domain corresponding to the variations in microstructural features. We then proposed a source estimation
technique to obtain the source time function for accurate forward modeling by constructing a linear inverse problem for the unknown
transducer modeling. The performance of the proposed FWI model with accurate source estimation was assessed using experimental
and synthetic data obtained from a 6061 aluminum sample. This paper is organized as follows. In Section 2, the principles of FWI in
elastic material characterization are introduced. In Section 3, micro-scale resolution investigations to demonstrate the potential of
the proposed FWI method for elastic material characterization are presented while benchmarking the imaging performance of FWI.
The experimental scanning setup is described in Section 4. The transducer source estimation workflow is described in Section 5.
The validation of the estimated sources is also presented. The performance of FWI-based USCT in elastic material characterization
with the estimated source utilizing both numerical data and experimental measurements is investigated in Section 6 and discussed
in Section 7. Finally, conclusions are summarized in Section 8.

2. Full waveform inversion theory for material characterization

As a way of introducing terminology used in the subsequent sections for inversion, the theory of full waveform inversion (FWI)
was briefly reviewed. As shown in Fig. 1, the FWI process includes selecting sources and an initial model, conducting forward
simulations, evaluating the data misfit, back-projecting the measured waveform difference, and optimizing the simulated model
until the measured and simulated signals ideally converge on a single underlying model [34]. The goal is to create a final model
that accurately represents actual model properties and minimizes the discrepancy between the experimental data and the signals
collected at the same corresponding locations in the numerical simulations (synthetic data).

2.1. Forward modeling

We can represent the equation of motion for elastic materials in terms of a three-component displacement wavefield s(x, t) [50],

⇢)t2s = ( � T + f , (1)

where ⇢ denotes mass density, T is the stress tensor, and f is the excitation forces. In this study, the excitation force f was considered
as a point source. In an elastic medium,

T = C : (s , (2)

where C is the stiffness tensor representing the elastic characteristics of the media. Here, ‘‘:’’ refers to the double dot product. Note,
for anisotropic material, it can hold the fully anisotropic tensor with 21 independent parameters [51]. Therefore, Eq. (1) can be
written in terms of displacement field as

⇢)2t s = ( � (C : (s) + f . (3)

2.2. Adjoint simulation

The synthetic waveform data, described in Section 2.1, is compared with real waveform data to calculate misfit between the
synthetic and experimental measurements. For seismic inversion, Tarantola [52] introduced the least-squares waveform misfit
function. In this study, the misfit function was defined for a single source as

�(m) = 1
2

N…
r=1  

T

0
Òs(xr, t;m) * d(xr, t)Ò2dt , (4)
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where m is the model space in ultrasound tomography, which is the parameters defining the elastic properties of the material, and
d(xr, t) and s(xr, t;m) are the experimental and synthetic signals, respectively at N receivers locations xr, r = 1,… ,N . Both wavefield
data are windowed on the time interval [0, T].

In this study, the density is assumed to be constant and the effects of attenuation in the inversion is neglected [53]. The goal of
FWI is to minimize the misfit function iteratively in the descent direction. The gradient of the misfit function is

��(m) =
N…
r=1  

T

0
[s(xr, t;m) * d(xr, t)] � �s(xr, t;m)dt , (5)

where �s(xr, t;m) is the perturbations in the displacement field s(xr, t;m) due to the model perturbations �m [37,54]. By introducing
‘‘adjoint sources’’ into the equation of wave motion as source time functions at the location of receivers, the adjoint wavefield is
computed to determine how to update the velocity model for misfit reduction [37]. The adjoint wavefield can express using adjoint
state methods (details can be found in [37,55]) by,

⇢)2t s
† = ( � (C : (s†) + f

† , (6)

where s
† and f

† are adjoint wavefield and adjoint sources, respectively. The adjoint sources for least-squares misfit function can be
expressed as data residuals by, f† = ≥

r[s(xr, T * t) * d(xr, T * t)]�(xr * x).
With the calculated adjoint wavefield, the equation can be rewritten (5) using the sensitivity kernel [37,54],

��(m) =   (�⇢K⇢ + �C :: Kc )d3x , (7)

where

K⇢(x) = *  s
†(x, T * t) � )2t s(x, t)dt , (8)

Kc (x) = *  (s†(x, T * t)(s(x, t)dt . (9)

These sensitivity kernels from all sources are combined to form a gradient that defines how the model parameters should be
updated. The typical method is to use a gradient- or Hessian-based algorithm to minimize the overall misfit function rather than
treating FWI as resolving a linear system [38,56]. The gradient-based technique (e.g., steepest descent method [57]) updates the
model by simply using the gradient but usually converges slowly [58]. In contrast, a Hessian-based approach (e.g., Newton’s method,
Gauss–Newton method) uses both the gradient and the Hessian (a second-order derivative of the misfit function) to provide a model
update [59]. In the Hessian-based technique, the new model (mnew) can be defined from the previous model (mold) by,

mnew = mold + ↵H*1
old (*gold ) . (10)

where g is the first-order derivatives of �( m), H is the Hessian matrix (a second-order derivative of the misfit function), and ↵ is the
step length [60]. However, the cost of computing the inverse of Hessian for a nonlinear optimization problem in FWI is impermissibly
high. Consequently, the Hessian-based technique suffers from expensive computing costs and massive storage requirements.

The Gauss–Newton method has been proposed to alleviate the high computing costs, where the misfit function is approximated
as a sum of squares of linear functions. The Hessian matrix (second-order derivative), H, of the misfit function, is approximated
by the Jacobian matrix (first-order derivative) of the linear functions [61]. This approximation results in a simplified quadratic
model of the misfit function that can be minimized analytically. The matrix–vector product of the inverse of the estimated
Hessian and the gradient at each iteration is required in the Gauss–Newton method to determine the descent direction, which is
computationally intensive for large-scale datasets. On the contrary, the quasi-Newton method, such as Broyden–Fletcher–Goldfarb–
Shanno (BFGS) [60], Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [62], outperforms the Gauss–Newton method
for the large-scale optimization problem, especially in FWI [63]. In this study, the L-BFGS optimization algorithm is implemented
to update the model.

3. Benchmarking imaging performance

Ultrasonic wave speeds in elastic material, especially AM metals, are sensitive to microstructures [64,65]. The polycrystalline
distribution of the grains in AM metals is inherently anisotropic. He et al. [53], in their recent work, presented the inversion for
anisotropic materials for a 2D numerical model. However, in this study, the aim is to benchmark the imaging performance of FWI
when the material property distribution can be treated as isotropic. Micro-scale resolution studies are also include to illustrate
the potential of the proposed method for material characterization. Moreau et al. [66] introduced a laser ultrasonic (LUS) system
for in-situ non-contact measurements of the mechanical properties, e.g., elastic moduli, microstructural phase transformation with
temperature, some measure of crystallographic texture, and grain growth of metals. Mutlu et al. [10] in their study presented that
the ultrasonic measurements (e.g., longitudinal wave speed) in AISI H13 tool steel alloy correlate to the microstructural phase
permitting nondestructive characterization of microstructure in steels.

Rivera et al. [67] discussed the microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive
manufacturing (SSAM). The microstructure of the as-built Inconel 625, which consisted of a distribution of grains in various
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Table 1
Wave speeds of the models.
Models Vp (m/s) Vs (m/s)

Initial model 5920.5 3180.08

True model

Top layer 6077–6091 3294–3322
average: 6075 average: 3308

Middle layer 5821–5838 3213–3239
average: 5832 average: 3224

Bottom layer 5750–5795 3049–3088
average: 5773 average: 3068

Outer region (light green) 5920.5 3180.08

shapes and sizes at different layers, was presented in this study. A numerical model was established, taking inspiration from
the abovementioned study to benchmark the imaging performance and evaluate the feasibility of the proposed FWI algorithm.
The numerical model was developed and solved by a 2D spectral element-based solver (SPECFEM2D [50]). A python based-
workflow (Seisflows [68]) was modified to implement FWI. Three velocity regions in this numerical model represent three layers
of microstructures with distinct velocity distributions inside each layer as shown in Fig. 2(c) and (d), which was considered as the
true model. The domain size was 1 mm by 1 mm. For the entire paper, unless explained otherwise, the center of the domain is
assumed to be the origin of the reference coordinate system. The true model was constructed with three layers of different velocity
ranges in the middle of the domain (*0.375 mm to 0.375 mm). For different microstructural patterns, bulk wave speeds inside
the materials should be random [67]. Therefore, in each layer, there were small square regions with slightly different velocities,
each aiming to represent a grain approximately from the sizing (other than anisotropy) perspective. The upper-velocity distribution
layer (in Fig. 2(c) and (d)) had a higher velocity range (average Vp: 6075 m/s and Vs: 3308 m/s) compared to the bottom two
layers (middle layer with average Vp was 5832 m/s and Vs was 3224 m/s and bottom layer with average Vp was 5773 m/s and
Vs was 3068 m/s). The outside of this middle domain (red region in Fig. 2(c) and (d)) had a constant Vp and Vs of 5920.5 m/s
and 3180.08 m/s, respectively. The initial model was composed of homogeneous background models with constant Vp and Vs wave
speeds of 5920.5 m/s and 3180.08 m/s throughout the entire domain (Fig. 2(a) and (b)). For simplicity, a constant density of 7830
kg_m3 was considered for both initial and true models in this study. The material properties of the model are shown in Table 1.

To scan this specimen, four evenly spaced linear arrays were distributed in the range of *0.5 mm to 0.5 mm at four boundaries
to fully surround the region. Each linear array contains 16 elements, and all elements of each array were excited individually. Thus,
64 such excitation events were generated that partially simulate possible non-contact laser-based scanning systems (e.g., [69,70])
to form a synthetic aperture data acquisition setup on the surface of the materials. All four surrounding linear arrays (a total of 124
equally spaced receiver elements) were used to collect the displacement signals (both in horizontal and vertical velocity components).
The excitation signal used in this section is a Ricker signal.

To benchmark and analyze FWI’s material characterization performance for both texture types and at grain levels, two center
frequencies, 8 MHz and 25 MHz, were considered, respectively. Implementing FWI for complex structures with high frequency can
cause a cycle-skipping phenomenon, where the misfit function converges to a local minimum due to lack of accuracy in the initial
model [18]. Therefore, an incremental frequency ramp-up strategy was adopted, transitioning from 8 MHz to 25 MHz through a
systematic progression of 1 MHz at each subsequent ramping stage (with 100 iterations), rather than directly applying the 25 MHz
frequency to the initial model. A detailed description of such an approach for highly nonlinear, anisotropic inversions can be found
in [53]. To reduce artifacts caused by the boundary wall reflection and scattered waves in the outer region (the light green region
in Fig. 2(c), (d)), a mask was used so that this region would update in the simulation. In Fig. 3, elastic wavefield snapshots when
the excitation source is at (0.03 mm, 0.5 mm) are shown, at 0.00075 �s, 0.075 �s, 0.15 �s, and 0.225 �s.

For an 8 MHz center frequency, Fig. 2(e) and (f) exhibit the reconstruction of Vp and Vs at the 100th iteration. While the velocity
differences among the three layers were detected for both Vp and Vs, the velocity distribution at each layer was not clearly observed.
The reconstruction results for a 25 MHz center frequency at 98th iteration for both Vp and Vs are shown in Fig. 2(g) and (h). The
velocity differences across the layers along with the velocity distribution within each layer were detected convincingly for 25 MHz.
It is notable from Fig. 4(a) and (b) that data misfits were reduced for both 8 MHz and 25 MHz.

In addition, to have better insights regarding the reconstruction of the overall velocity distributions, an arbitrarily chosen line
at x = 0.0066 mm across the z-axis was considered, and velocities (for both Vp and Vs) across this line are plotted in Fig. 2(i) and
(j). The overall velocity distributions throughout the z-axis were better reflected by the line at x = 0.0066 mm. In Fig. 2(i) and
(j), green and yellow dashed lines represent the velocities of the true model and initial model, respectively and the blue and red
solid lines represent the inverted velocities from the proposed FWI model at 25 MHz and 8 MHz, respectively. The variations in
inverted velocities, both Vp and Vs, in various domain regions for both 8 MHz and 25 MHz frequencies were broadly consistent
with the true models. The difference in velocity distributions between the inverted model and the true model is smaller for 25
MHz than that for 8 MHz. Hence, reconstructed images looked sharper at 25 MHz. As Vs was almost half of the Vp, the wavelength
with Vs was likewise around half of the wavelength with Vp, which allowed for better reconstruction of Vs map than the Vp map.
Comparing the reconstructed results from Fig. 2(e)–(j), it is clear that contrary to the 8 MHz model, the 25 MHz model provides a
better reconstruction of the velocity distributions across the layer as well as inside each layer.
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Fig. 2. Computational model of 1 mm ù 1 mm domain for benchmarking the performance of FWI. Figures (a), (b) are longitudinal wave speed (Vp) and shear
wave speed (Vs) of the initial model, (c), (d) are Vp and Vs of the model true, (e), (f) are Vp and Vs of inverted images of the model with 8 MHz frequency at
the 100 th iteration, (g), (h) are Vp and Vs of inverted images of the model with 25 MHz frequency at the 98 th iteration and (i), (f) is Vp and Vs comparison
of inversion models with 8 MHz and 25 MHz at x = *6.641275e * 06 mm, respectively.
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Fig. 3. Wave propagation simulations using the source at (0.03 mm, 0.5 mm) with 25 MHz center frequency at the time (a) 0.00075 �s, (b) 0.075 �s, (c) 0.15
�s and (d) 0.225 �s. (For all the simulations in this paper, the center of the domain is assumed to be the origin of the reference coordinate system.)

Fig. 4. Misfit function over iterations (in log scale) for (a) Inversion with 8 MHz frequency and (b) Inversion with 25 MHz frequency.

4. Experiments

4.1. Experimental scanning setup

An experiment using two linear transducer arrays as both sources and receivers was conducted to evaluate the approaches
proposed for ultrasound tomographic imaging of an elastic specimen. A multi-channel data acquisition (DAQ) system from Verasonics
(Fig. 5(c)) was used to acquire data from every possible source-receiver combination. Experimental measurements were performed
on a 300 mm by 101 mm by 51 mm 6061-aluminum block shown in Fig. 5(a) and (b). Two linear transducer arrays with a center
frequency of 0.5 MHz, each containing 32 identical transducer elements, were used in this experiment. The array elements spacing
(i.e., pitch) for each transducer was 2 mm. This experiment was performed at a relatively low center frequency of 0.5 MHz because
lower ultrasonic frequency results in less attenuation, allowing for deeper penetration depth and a wider coverage range [71].
Glycerin (Couplant B2 from Olympus) was used as couplant in this study. There are high acoustic impedance mismatches between
air and the test specimen. Glycerin can transmit sound energy more effectively by reducing the acoustic impedance mismatch.

4.2. Synthetic model

To perform the FWI using experimental measurements from the scanning setup mentioned in Section 4.1, a corresponding array
setup in SPECFEM2D (see Fig. 6) was used for generating scanning data. The source elements were assumed to be point sources.
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Fig. 5. Ultrasonic scanning setup for aluminum specimen using two 32-elements linear phased array transducer in transmission mode. (a) top view (b) side
view (c) multi-channel Verasonics data acquisition system.

The specimen used in the experiment had a considerably large horizontal dimension, making it easy to exclude the reflected signals
from the specimen’s left and right boundaries. Therefore, only a 101 mm by 101 mm domain (depicted in Fig. 6) was modeled
to reduce computational costs. The synthetic model’s left and right boundaries are subjected to absorbing boundary conditions.
Receiver array elements were placed at the bottom surface of the domain (marked in green). The spacing (i.e., pitch) between two
adjacent receiver elements was 2 mm, and the number of receiver elements was 32. Each source element was placed at the top
of the domain. In this study, the array elements of the source and receivers were numbered from left to right. For example, the
Source 4 location is marked as a yellow cross in Fig. 6, which is 24.5 mm away from the left boundary. To perform the inversion
for unknown materials, we purposefully assumed the initial model with an incorrect Vp of 6410 m/s. Vs was calculated based on
the assumed Vp to create the initial background model. Additionally, a constant density of 2660 kg_m3 was assumed. This model
was used in the following sections in the transducer source estimate framework and as an initial model in the FWI.

5. Transducer source estimation framework

5.1. Source estimation workflow

This section describes the general workflow of the proposed source estimation process. The synthetic model discussed in
Section 4.2 is utilized where, to represent a calibration block, the assumption was that the source was the only unknown term and
the velocity distribution was correct. To keep the synthetic and the experimental measurements in a consistent scale, normalized
signals throughout the source estimation process were considered. The workflow of the proposed source estimation process is shown
in Fig. 7.

First, experimentally acquired signals must be windowed in order to receive only the longitudinal waves (P-waves). Then, the
noise from the experimental measurements was filtered out. The measured data were then muted to remove all energy beyond the
direct arrival. The main goal is to mute any energy arriving beyond P-waves because FWI in this work will only fit P-waves. The
time windowing of the direct arrivals from experimental measurements is a very crucial step in the source estimation process and
ensures the elimination or at least suppression of the shear wave (SV-wave) effects from the experimental measurements.

A synthetic model based on the scanning setup (described in Section 4.2) is required to generate synthetic data. later in this
process, the synthetic data, will be compared with the experimental measurements to extract the source signal. Different signals
(e.g., Ricker, Gaussian, tone burst) can be considered as source time functions in the initial model. This selected unknown signal
should have a wider frequency bandwidth compared to that of the experimental source transducer (i.e., 0.5 MHz). A wider frequency
range is necessary to ensure that the process accounts for all of the useful frequencies of the actual source signals. As a result, the
first derivative of the Gaussian function was selected as the initial synthetic source time function.

The synthetic and the experimental measurements in the same time frame were converted in the frequency domain by performing
Fast Fourier Transform (FFT). A complex-valued scaling factor can be introduced to represent the mechanical source in the model
with respect to a known source. Correspondingly, the source signature can be estimated by optimizing a complex-valued scaling
factor utilizing the synthetic and experimental measurements in the frequency domain. The detailed formulation is described in
Section 5.2. An inverse Fourier transform was performed to achieve the estimated source function in the time domain.
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Fig. 6. Dimension of the synthetic model based on the experimental setup showed in Fig. 5. Source 4 position is marked which is 24.5 mm from the left
boundary. 32 receivers elements (green lines) are placed at the bottom surface.

Fig. 7. The flow chart of the proposed source estimation process. Initial STF of the synthetic model, synthetic data, and experimental data are the input to the
estimation process.

5.2. Formulation of source estimation as a linear inverse problem

A synthetic model is considered with a known source signal that is arbitrarily selected with a wider frequency bandwidth compare
to the experimental source transducer (i.e., 0.5 MHz). However, the source term required by the employed synthetic model is the
mechanical source that is unknown. The ultrasound tomography acquisition setup, which is depicted in Fig. 5, is employed in this
section to formulate the proposed source estimation process.

Although each element of the linear transducer array used in the scanning setup is rectangular in shape, a point source is assumed
to be positioned in the middle of the rectangular-shaped element, xs, in this formulation for 2D imaging model. Consequently, the
scattering effect from out-of-plane structures is neglected [47,72]. The goal of this framework is to invert for a source time function
(i.e., Q(t)) to serve as the mechanical input under this point source assumption to best represent the excitation force induced by
an element in 2D simulation. After FFT, the resulting STF should have a series of frequencies (!k, k = 1, 2, . . . , K) within the
bandwidth of the transducer. Equivalently, the goal is to invert for the STF at each of the selected frequencies (i.e., q(!)). For a
specific frequency, !k, the wavefield is measured by Nr and all receivers positioned at xr locations can be expressed as dobs(!k).
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For this source inversion, Nr receivers are employed. For a single frequency, !k, the complex valued experimental measurements,
dobs(!k), is a Nr ù 1 column vector. The unknown source time function, q(!k), is a scalar term as one point source is considered in
the formulation at !k. The forward wave equation in the frequency domain can then be defined in compact form as,

dobs(!k) = G(xr, xs;!k)q(!k) . (11)

where G(xr, xs;!k) (Nr ù 1) is the Green’s function at !k, which depends on the source/receiver locations and the medium
properties [73]. To implicitly create and obtain this G(xr, xs;!k) matrix, the following synthetic simulation can be performed.
The unknown q(!k), can be assumed to be linearly correlated with any known source time function, f (!k), with a unknown
complex-valued scalar, b(!k).

Then the unknown STF at !k can be represented as,

q(!k) = b(!k)f (!k) . (12)

The explicit dependence of each term in Eq. (11) on !k, xr, and xs will be dropped henceforth for the sake of brevity. Eq. (11)
can then be rewritten as,

dobs = Gbf . (13)

At this stage, a synthetic model (e.g., the one introduced in Section 4.2) can be built with the known source term f as,

dsyn = Gf . (14)

where dsyn is the Fourier-transformed, complex-valued measured from the synthetic model which is arranged as an Nr column
vector. The vertical component of the displacement is only considered in this source estimation process.

The only unknown term in Eq. (13) is the complex-value scalar, b, which needs to be computed at each specific frequency. It is
notable that, Eq. (13) is linear with respect to the source term, f . From the above definition of the forward model incorporating the
known source, f , and the unknown scalar term, b, a misfit function can be formulated by minimizing the sum of squared residual
errors (the L2 norm misfit function) [74],

E = 1
2 �d

T �d< . (15)

where �d is the residual data mismatch. Based on the above formulation, the residual data mismatch, �d, can also be expressed as
�d = bdsyn*dobs. The superscript T represents the ordinary matrix transpose and the superscript < represents the complex conjugate.

As a result, the misfit function can be written as,

E = 1
2 [bdsyn * dobs]T [bdsyn * dobs]<

= 1
2 [b
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(16)

By minimizing the misfit function (Eq. (16)) with respect to the complex-value scalar term b, an exact solution can be obtained.
Minimum misfit can be achieved when,

(bE = )E
)b

= 1
2 [2bd

T

syn
d
<
syn

* 2dT
syn

d
<
obs

] = 0 . (17)

Finally, the optimal complex valued source scaling factor, b, is achieved such that the synthetic and experimental measurements
best match in a mean squared sense. The optimal scalar value, b, can be derived from Eq. (17) as,

b =
d
T

syn
d
<
obs

dT
syn

d<
syn

. (18)

The complex-valued scaling factor, b, can be multiplied with the initially assumed known source term, f , to get an estimation
of an individual source signal of the experimental measurement. The magnitude spectrum of both synthetic and experimental
measurements was normalized. In other words, in the inversion process, the phase of the frequency components was only matched
neglecting the amplitude information, which may lead to residual artifacts. For each source, the forward model needs to be computed
once to estimate the source wavelet, which is independent of the initial model [46]. Finally, an inverse Fourier transform can be
performed to get the estimated source signals in the desired time domain.

6. Experimental results of source estimation and FWI

6.1. Source estimation

In this section, the accuracy of the estimated source time function was investigated in a systematic approach. The inverted STFs
were used to excite ultrasonic waves in the synthetic model of a SPECFEM simulation. The resulting received signals were compared
with the experimental measurements, and the degree of matching was used to evaluate the accuracy of the estimated STFs. Only
the P-waves were considered for source estimation and comparison of the signals. After explaining the selection of the known STF
for the source estimation, the source inversion results using a single pair of source/receiver signals is introduced first. Then, the
performance evaluation of the estimated STFs using the signals from multiple receivers for source inversion is summarized.
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Fig. 8. Time space signals of experimental measurements when Source 4 was excited. The longitudinal waves reached Receiver 4 at about 25 �s (marked by
red dashed lines).

6.1.1. Known source time function selection for source inversion
To demonstrate the source estimation process, the STF of the 4th element in the transmitting array (i.e., Source 4) was first

inverted as an example. Then, in Section 6.1.4 the contribution of multiple receivers’ to the source inversion process will be
investigated. The source inversion in this section was performed by incorporating the A-scans.

The P waves from the experimental A-scan were first extracted by performing time windowing. P waves will reach receiver
locations earlier than the shear wave since the P-waves travel faster than the shear waves. By closely observing the time-space
signals for Source 4 (see Fig. 8), it is clear that most of the P-waves have been acquired by Receiver 4 at about 25 �s. Therefore, the
experimental signals were extracted up to 25 �s to acquire only the P-waves. The time-windowed experimental A-scan at Receiver
4 is displayed in Fig. 9(c).

As described in the last section, the known STF for the synthetic model must have a wider frequency coverage than the source
input induced by the transducer. The first derivative of the Gaussian function was selected as the known STF (see Fig. 9(a)). With
the simulation domain described in Fig. 6, the corresponding received signal (Receiver 4 signal) using this known STF is shown in
Fig. 9(b). The frequency spectrum of the received signals from both the simulation and the experiment (shown in Fig. 9(e)) shows
that the bandwidth for the initial synthetic signal is wider than that of the experimental signal, indicating the suitability of the
selected known STF.

In the proposed source inversion, the complex-valued unknown scalar term was computed in the frequency domain as explained
in Section 5.2. Therefore, FFT was performed to convert the time domain signals from both experiment and simulation into the
frequency domain. The data were discretized into 1750 frequency components with a sampling frequency of 0.041 MHz. Following
the formulation described in Section 5.2, the unknown scalar factor (i.e., b) was computed at each frequency utilizing the normalized
synthetic and experimental signals at Receiver 4. At each frequency, the computed scalar factor (i.e., b) was then multiplied to the
known source term to calculate the actual source term (i.e., q) as shown in Eq. (12) in the frequency domain. Finally, inverse FFT
was performed to obtain the inverted time-domain STF of Source 4 (see Fig. 9(d)). Forward simulation for Source 4 using this
inverted STF was simulated to evaluate the quality of the estimated STF in the following subsection.

6.1.2. Forward modeling accuracy for different receivers from the same source
To validate the accuracy of the estimated STF using a single A-scan signal and the experimental signals, the degree of matching

between the simulated signals excited from the estimated STF at the same source location was investigated. Source-4 of the synthetic
model was excited by the inverted STF using the Receiver-4 (i.e., A-scan to Source 4) as described in Section 6.1.1.

The comparison of the synthetic and experimental signals at Receiver 4 and Receiver 16 (both using the same inverted STF
from Source 4’s A-scan measurement) are highlighted in Fig. 10(a)–(b), respectively. It is evident from Fig. 10(a) that the synthetic
A-scan signal at Receiver 4 is very well aligned with the experimental signal. However, there is a slight mismatch between the
synthetic and experimental signal at the Receiver 16 location when Source 4 was excited, particularly in the latter portion of the
signal (see Fig. 10(b)). Such mismatches of the signals at different receiver locations are expected due to the combination of the
electromechanical effects and difference in incident angles.

6.1.3. Forwarding modeling accuracy when using STF inverted from different source-receiver measurements
In this section, the estimated STF was reconstructed at one source location and it were then used for excitation at a different

source location in the forward simulation. The simulated signals was compared with the experimental measurement to evaluate the
accuracy. The STFs of two source elements (Source 1 and 16) were separately inverted for this comparison. As shown in Fig. 5,
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Fig. 9. (a) First derivative of Gaussian function as initial synthetic STF. (b) The signal at Receiver 4 location when Source 4 in the synthetic model was excited
by the first derivative of the Gaussian function. (c) The experimental signal at Receiver 4 location when Source 4 is excited (i.e., A-scan). (d) Inverted STF of
Source 4 using the signal at Receiver 4 location from synthetic and experimental measurements. (e) The frequency spectrum of both the initial synthetic signal
and experimental signal at Receiver 4 location when Source 4 is excited.

Source 1 was located on the left side of the top array, while Source 16 was in the middle of the transducer array. The corresponding
A-scan signals from Receivers 1 and 16 were separately used to invert the STFs for Source 1 and 16, respectively.

The effect of using an inverted STF from a different source was evaluated for the forward modeling at two source locations (Source
1 and Source 16). For each source location, two forward simulations were performed using (a) the STF inverted from its own A-scan
and (b) the STF inverted from the A-scan of the other source. Comparisons were made for all signals received from the 32 receiving
elements on the opposite side of the domain. To quantify the mismatch between each pair of the simulated and experimental signals,
L2 norm was used to evaluate the misfit at each of the 32 receivers, as shown in Fig. 11. For Source 1 evaluation, Fig. 11(a) shows
the 32 receiver misfits resulted from the two STFs — the green dots from the STF inverted using the A-scan of Source 1 (i.e., its
own A-scan) and the red crosses from the STF inverted using the A-scan of Source 16 (i.e., a different source). The misfit values are
consistently lower when the inverted STF estimated from the same source is used. To further verify this effect, the same process
was repeated by exciting both STFs from Source 16. Misfit values between the synthetic and experimental signals for Source 16 are
shown in Fig. 11(b). It is evident from the results presented in Fig. 11(a)–(b) that the inverted STF for a specific source from its
own A-scan will provide a more accurate synthetic signal.

6.1.4. Influence of receiver number on STF inversion
The source inversion results shown thus far used only A-scan signals. For the receiver elements that are relatively far away from

the source, synthetic signals using the estimated STF from A-scan do not match the experimental data as good as the signals from
closer receivers. For instance, in Fig. 10(a), the synthetic A-scan signal at Receiver 4 perfectly fits the experimental signal when
Source 4 was excited. On the contrary, for the same Source 4, the synthetic signal at Receiver 16 (far from Source 4) has some
mismatch with the experimental signal (Fig. 10(b)).



Mechanical Systems and Signal Processing 213 (2024) 111320

13

M. Aktharuzzaman et al.

Fig. 10. The comparison of the synthetic and experimental signals at different receiver locations. The synthetic signal exciting the Source 4 of the synthetic
model by the estimated STF (shown in Fig. 9(d)) is compared with the experimental signal at (a) Receiver 4, and (b) Receiver 16. The signals at Receiver 4 are
closely aligned, whereas there is a small mismatch in Receiver 16 signals.

Fig. 11. The L2 norm misfit between the experimental signals and synthetic signals was evaluated at each receiver location, to illustrate the influence on
the synthetic signal if estimated STF for a specific source is employed to a different source. The synthetic signal was acquired using the estimated STF
employing A-scan at Receiver 1 and 16, respectively. The computed misfit between the synthetic and experimental signal at each receiver location is compared
when excitation is done by (a) Source 1 and (b) Source 16. Red crosses and green dots are the misfit values between synthetic and the experimental signals at
each receiver location when the synthetic signals were generated employing the estimated STFs from A-scan signals at Receiver 1 (same source) and Receiver
16 (different source), respectively. The misfit values are lower when the estimated STF for the same source was employed for both Source 1 and Source 16.

To better match the signals from far receivers with experimental measurements, the performance of estimated STFs when signals
from multiple receivers were incorporated in source inversion is presented. Two specific cases are compared to highlight this effect:
Case 1 – when the source estimation was performed using the A-scan signal at the corresponding receiver location (as described in
the previous section) and Case 2 – when the source inversion was performed using signals from the 32 receivers. The same synthetic
model as described in Section 4.2 was used for source inversion in both Case 1 and 2.
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Fig. 12. L2 norm misfits between the experimental signals and synthetic signals from each acquisition were compared to illustrate the influence of the
receiver number on STF inversion when excitation is done by (a) Source 1 and (b) Source 16. Synthetic signals were generated for two specific cases: Case
1 – when the STFs were estimated using the A-scan signal at the corresponding receiver location, and Case 2 – when the STFs were estimated using signals
from the 32 receivers. Red squares and green triangles are the misfit values between synthetic and the experimental signals at each receiver location when the
synthetic signals were generated considering Case 1 STFs and Case 2 STFs, respectively. The misfit values are lower for most of the receivers that are far away
from the source when Case 2 STFs are incorporated to generate synthetic signals. The results verify that the matching accuracy of the signals at receivers far
from the source with experimental measurements improves when excitation is done by the STF estimated using 32 received signals.

For Sources 1 and 16, source inversion was performed in Cases 1 and 2, respectively (i.e., a total of four times). Simulations were
then performed using the inverted STFs to generate synthetic signals for each case. The L2-norm misfits between the synthetic and
experimental signals were used to characterize the performance of the STFs in Case 1 and Case 2. The misfit comparison between
Case 1 (red squares) and Case 2 (green triangles) is shown in Fig. 12(a) and (b) for Source 1 and Source 16, respectively.

From Fig. 12, it can be observed that the green triangles (Case 2) are below the red squares (Case 1) for most of the receivers
that are far away from the source, illustrating that the misfit values are slightly lower using more receivers for STF estimation. For
example, when Source 1 was excited by Case 2 STF, as shown in Fig. 12(a), the misfit values are smaller for most of the receivers
far from Source 1 (i.e., Receiver 2–28). The misfit values at Receiver 28–32 using Case 2 STF are not lower compared to Case 1
STF as shown in Fig. 12(a). The reason is that the signals from Receiver 28–32 within the considered time window do not contain
the tailed region of the P waves, which is the main contributing factor to the misfit values. Similarly, in Fig. 12(b), it is shown that
misfit values at far receivers (i.e., Receiver 1–9 and Receiver 22–32) are lower when Source 16 was excited by Case 2 STF. Within
the considered time window, the far left and right receivers (i.e., Receivers 1 and 32) contain the full P-wave energy. As a result,
for Source 16, synthetic signals at the far most receivers (i.e., Receiver 1 and 32) have lower misfits when excited by Case 2 STF.
Therefore, the results presented in Fig. 12 indicate that the far receiver signals align better with the experimental measurements
when signals from all receivers are considered in source estimation.

Finally, the synthetic signals generated using the Case 2 STFs are compared with the experimental measurements for all of the
signals in Fig. 13. The synthetic signals at each receiver location were very closely aligned with the experimental signals both in
the case of Source 1 and Source 16 shown in Fig. 13(a) and (b) respectively, which further verified the accuracy of the Case 2 STFs.

6.2. FWI results

In this section, the feasibility of FWI in elastic material characterization using experimentally reconstructed results is evaluated.
Initially, the performance of FWI with accurately inverted STFs against wrong STFs is compared. Next, the accuracy of the
reconstructed results using a numerical model while employing the estimated STFs in the FWI process is analyzed. Experimental
FWI results for a 6061 aluminum specimen are presented, and its potential for material characterization is discussed.

6.2.1. Synthetic reconstruction
To demonstrate the importance of STF accuracy, FWI was performed to study two specific cases: (1) FWI with wrong STFs, and

(2) FWI with the inverted STFs. The true model was developed with the longitudinal and shear wave speeds as 6288.7 m/s and
3167.7 m/s, respectively. The wave speeds were analytically computed from the known properties of 6061 aluminum (i.e., Elastic
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Fig. 13. Received signal comparison between the synthetic and experimental measurements from all the receiver elements for (a) Source 1 and (b) Source 16.
STFs in the synthetic model were estimated utilizing all the receivers’ signals for Source 1 and Source 16, respectively.

modulus, 70 GPa, and Poisson’s ratio, 0.3). The model described in Section 4.2 with Vp and Vs of 6410 m/s and 3126.4 m/s was
used as the initial model. The longitudinal wave speed distributions of the initial and true model are shown in Fig. 14(a) and (b),
respectively.

In the first case, the sources of the true model were excited by a five-peaked tone-burst signal with a center frequency of 0.5
MHz as an unknown STF to generate the observed signals. Then, the reconstruction was done by intentionally exciting the sources
with Ricker wavelets with a center frequency of 0.5 MHz to observe the effect of incorrect STFs on the performance of FWI. The
inverted Vp at the 4th iteration is shown in Fig. 14(c). The wave speed distribution in the middle region of the inverted model
exceeds 6500 m/s, indicating that the model is not converging towards the true model. Also, significant artifacts are present near
the sources/receivers and at the left and right boundaries. As expected, the model parameters fell into a local minimum due to the
incorrect STFs in reconstruction.

In the second case, FWI was performed employing STFs that are estimated using signals from 32 receivers (i.e., Case 2 STFs
addressed in Section 6.1.4) in the reconstruction to analyze the performance of estimated STFs. The reconstructed Vp in Fig. 14(d)
shows that the middle region of the domain was converging towards the Vp in the corresponding regions of the true model (*31
mm to 31 mm). In this case study, only one transmitting and one receiver transducer array with an aperture of 62 mm were used
to simulate the transmission mode acquisition. Consequently, the model did not update in the side boundary region during the
inversion due to limited transducer coverage. The misfit over iterations in case of both incorrect STFs and inverted STFs are shown
in Fig. 15(a) and (b), respectively.

From Fig. 15(a), it can be observed that in the case of incorrect STFs, the misfit values over iterations were not converging to a
minimum value; instead, the model update stopped at iteration 8. On the contrary, in the case of inverted STFs, the misfit values
were reduced over iterations, and after iteration 40, the misfit reduction became slower.

6.2.2. Reconstruction with experimental measurements
The feasibility of FWI in material characterization using experimental data from a 6061 aluminum specimen is considered in

this section. To perform FWI, the experimental measurements on the aluminum specimen (shown in Fig. 5) for every possible
combination of source-receiver in transmission mode were considered as the observed signals. The same initial model, as discussed
in the previous section with Vp and Vs of 6410 m/s and 3126.4 m/s, respectively, was used as the starting model. As an example,
the wavefield snapshots for Source 15 in the initial model across the elastic medium at 4.9 �s, 9.8 �s, 14.7 �s, and 19.6 �s are shown
in Fig. 16(a)–(d), respectively. The time-space signals acquired at all 32 receiver positions from Source 15 are presented in Fig. 17,
in which only the P-waves are considered in FWI.
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Fig. 14. Longitudinal wave speed distribution of (a) the initial background model, (b) the true model, (c) the inverted model with wrong STFs at iteration 4,
and (d) the inverted model using the true model at iteration 19. (In this section, the dimensions of all models are shown in meters.)

Fig. 15. Data misfit (in log scale) over iteration when inversion was performed with (a) wrong STFs, (b) inverted STFs. In case of wrong STFs, the inversion
is not converging and stopped at iteration 8. On the other hand, the misfit values reduced rapidly when inverted STFs were incorporated in the inversion, and
after iteration 40, the misfit reduction became slower.

Signals from Source 15 Receiver 20 are presented in Fig. 18 as an example. Fig. 18(a) shows the normalized input STF employed
in Source 15 and the experimental measurement from Receiver 20 when Source 15 was excited. The signal changes during the
inversion for the Source 15 Receiver 20 are summarized in Fig. 18(b) and (c). The comparison between the normalized signal from
the initial model and the experimental measurement is demonstrated in Fig. 18(b), which shows that the initial model’s signal differs
from the experimental measurement. On the other hand, Fig. 18(c) shows the normalized signal from the inverted model at iteration
11 and the experimental measurement. The signal from the inverted model closely aligns with the experimental measurement,
indicating the convergence of the model towards real wave speed (i.e., experimental measurements).

The wave speed distribution of the initial model is shown in Fig. 19(a), and the reconstructed wave speeds at different iterations
are shown in Fig. 19(b)–(d). The middle region in the model was updated over each iteration. Fig. 20 shows that data misfits are
reducing over iterations, and the misfit reduction diminished after iteration 11. The model started overfitting with the presence of
strong artifacts after iteration 11.
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Fig. 16. Wave propagation snapshots (displacement in vertical component) in the initial model for 6061 aluminum specimen at (a) 4.9 �s and (b) 9.8 �s (c)
14.7 �s (d) 19.6 �s.

Fig. 17. Time space signal of the experimental measurements for 15th excitation element.

6.2.3. Quantitative analysis
To further investigate the inversion results, a line at z = 0 mm across the x* z plane of the synthetic and experimental inverted

model was considered (shown in Fig. 21). At z = 0 mm, the velocity distributions of the initial model, true model, synthetic inverted
model at the 19th iteration, and experimental inverted model at the 11th iteration are plotted. The center of the domain is assumed
to be the reference point. From Fig. 21, it can be observed that for the updated synthetic model, Vp at the middle (*31 mm to 31 mm)
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Fig. 18. Individual signals at ‘Receiver 20’ when Source 15 was excited by the estimated STF. (a) The normalized input STF and the normalized experimental
measurement, (b) the synthetic signal with the initial model and the experimental measurement as the true model, and (c) the synthetic signal with the updated
model at iteration 11.

Fig. 19. Inversion results incorporating experimental measurements at different iterations. Experimental signals were acquired from the scanning setup described
in Section 4.1. Longitudinal wave speed distribution (a) at the initial model, (b) at iteration 1, (c) at iteration 8, and (d) at iteration 11.
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Fig. 20. Data misfit over iterations when the inversion was done using experimental measurement (in log scale).

Fig. 21. Longitudinal wave speed distribution along horizontal lines (blue and black dashed lines in the inverted models) at z = 0 mm of the synthetic inverted
model (blue dots) and inverted model using experimental measurements (black dots). The inverted models are shown in the box. The green and red lines in the
figure are the reference wave speed distribution along the horizontal line at z = 0 mm for the initial and true models, respectively.

closely converges to the Vp of the target model at the 11th iteration. For the experimental signal, the variation of the inverted Vp
in the middle (*31 mm to 31 mm) is about 15 m/s, representing about 0.25%, which is comparatively small and further supporting
an appreciable FWI performance.

6.2.4. Smoothing
In the reconstructed images depicted in Fig. 19, we can observe noticeable artifacts in the form of horizontal strips in close

proximity to the sources and receivers, which most likely come from the source-receivers acquisition. Additionally, there are circular
artifacts in the middle of the domain due to the wave path effect. The circular artifacts might come from the vertical velocity contrast
created by limiting the model laterally. To mitigate these spurious artifacts, a deliberate application of implicit regularization,
specifically in the form of smoothing, was employed [75]. In this section, we implemented a 2-D convolution of the unsmoothed
gradient kernel with a Gaussian smoothing operator. The Gaussian smoothing operator, applied in the 2-D context, is defined by
the Gaussian equation as follows,

G(x, y) = 1
2⇡�2

e*
�
x2+z2

�
_2�2 , (19)
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Fig. 22. Experimental reconstruction of longitudinal wave speed (Vp) model at iteration 11. (a) Vp model without applying any smoothing (� = 0.0). The
artifacts due to the sources–receivers acquisitions are pronounced in the vicinity of the sources and receivers (marked by black arrows). Vp models with Gaussian
smoothing, when (b) � = 0.003, (c) � = 0.006, and (d) � = 0.009. Significant artifacts near the sources and receivers are eliminated after applying smoothing.
For � = 0.003, some amount of artifacts still persisted, as marked by the black arrows in (b). Whereas significant artifacts near the sources and receivers are
successfully removed for � = 0.006 and � = 0.009. The artifacts inside the middle of the domain are less pronounced for � = 0.009.

where x is the distance from the origin in the horizontal axis, z is the distance from the origin in the vertical axis, and � is the
standard deviation of the Gaussian distribution.

To quantitatively assess the smoothing effect, a pivotal step involves the careful selection of the standard deviation, denoted as
� = �x = �z. The choice of � is expressed in terms of grid spacing [75]. Notably, the grid spacing in the model is intricately linked
to the dominant wavelength of the excited wave field. Thus, to ensure a reasonable application of smoothing, it is advisable to use
scale lengths smaller than the dominant wavelength in the simulation [76]. In our specific model, the dominant frequency was 0.5
MHz (corresponding to a wavelength of approximately 12 mm), and based on that, we selected the smoothing parameter (i.e., �)
value closer to the half wavelength.

To verify the effect of smoothing, we performed reconstructions by selecting � = 0.003, 0.006, and 0.009. When no smoothing
was applied, pronounced artifacts near the sources and receivers were observed, marked by black arrows in Fig. 22a. For � = 0.003,
the majority of artifacts near the sources were effectively eliminated, although a small number of artifacts persisted, as depicted
by the black arrows in Fig. 22b. Conversely, for � = 0.006 and � = 0.009, significant artifacts near the sources and receivers were
successfully removed. Notably, for � = 0.009, other artifacts within the domain were less pronounced and the velocity distribution
in the middle of the domain (*31 mm to 31 mm) was observed to be uniform (showed in Fig. 23).

7. Discussion

Several critical processes, such as selecting the synthetic and experimental time window for each source element, minimizing
the system-induced noises in the signal by applying a filter if necessary, and selecting the source frequency in the synthetic model,
contributed to the success of this approach. It is also worth mentioning that in case of a poor initial model, some data error might
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Fig. 23. Longitudinal wave speed distribution along horizontal lines (green and black dashed lines in the inverted models) at z = 0 mm. The black dotted lines
are the inverted model without applying Gaussian smoothing (� = 0.0), and the green dashed lines in the plot indicate longitudinal wave speed distribution of
the inverted model with applying Gaussian smoothing (� = 0.009).

manifest in the inverted STFs. In this case, an alternate source and model update might be required. The inverted source wavelet
(at each iteration or every so iteration) can also be changed with the model [77].

Another critical step of successful reconstruction is modeling the side boundary reflections, especially when dealing with scanned
fine-sized components. The results of an inversion can be affected by reflection from the side borders, particularly for engineering
structures with a limited horizontal length. Reflections from the side edges can overlap with scattered signals from internal features
in the specimen. In this study, to keep the problem simple, an aluminum sample with a horizontal length three times larger than
the vertical length (310 mm) was considered. Therefore, the boundary reflection from the left and right side boundaries cannot
affect the signal. As a result, the left and right boundary reflections were neglected, and the perfectly matched layer (PML) [78,79]
boundary conditions were introduced in the numerical model. In the future, side boundary reflections will be incorporated into
tomographic imaging. Additional information can be captured by allowing waves to reflect off the boundaries, leading to more
accurate and higher-quality reconstructed images. However, the implementation of this technique requires a careful modification
of the mathematical model and a thorough understanding of the underlying physics of wave propagation.

Several notable aspects of the reconstructed results are also observed. For instance, the model was not updating near the side
boundaries both in synthetic reconstructed images (Fig. 14(c)) and reconstructed images using experimental data (Fig. 19). This
phenomenon is expected due to the limited coverage of the transducer array. The model domain (101 mm) was larger than the
transmitting and receiving transducer’s aperture (62 mm), which is placed in the middle of the domain in the transmission mode as
shown in Section 4.1. One possible way to resolve this limitation is by implementing a more complex scanning with more sources and
receivers surrounding the domain to increase the coverage of the transducer array. However, increasing the number of sources will
increase the computational cost. In this current study, the goal is to prove the feasibility of FWI in material characterization. Despite
having limited coverage, the proposed model convincingly reconstructed the longitudinal wave speed in the region of interest.

Another limitation is the appearance of the artifacts near the source and receiver locations in the numerical (Fig. 14(c)) and
experimental (Fig. 19(d)) reconstructed images. These artifacts may have several causes, such as an inaccurate initial model,
potential noise in the data, or errors in numerical discretization [80]. Because of the aforementioned reasons, the higher non-
linearity appears in the inverse problem near the acquisition array where the computed gradient is singular. This non-linearity can
cause difficulties in accurately reconstructing the image and can lead to artifacts in the final reconstructed image. Freezing the
area near the source and receivers during the inversion can significantly lessen these artifacts. Modrak and Tromp [19] provided
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several potential solutions, such as using a custom preconditioner or a special filter (i.e., mask) to mute model updates close to
the locations of sources and receivers. However, a better adjustment of the approach as well as an improved understanding of the
properties of the uninverted zone and source/receiver responses, will probably be needed to limit these problems, and thus require
further investigation.

8. Conclusion

This paper proposed an FWI-based ultrasound computed tomography method with an accurate source modeling approach for
elastic material characterization. We conclude from the results that the proposed FWI framework shows promise in characterizing
different engineering structures with unknown material properties. To benchmark the imaging performance, a numerical model of
wave speeds using the spectral element method (SEM) was established. This model represents the isotropic bulk material property
variation in microstructures corresponding to varying grain types and sizes, demonstrating the proposed framework’s potential in
material characterization. One of the main challenges in FWI-based ultrasound tomography is accurate forward modeling, which
requires an appropriate definition of the source information. To alleviate this issue, a source modeling approach was introduced
that utilizes a linear inverse algorithm to estimate the source time function for modeling the transducer as a mechanical input of a
point source in SEM. The working principle of the source inversion process was demonstrated using transmission tomography data
from a 6061 aluminum specimen. A systematic performance analysis was presented to validate the accuracy of the estimated STFs.
The results show that the simulated signals using the estimated STFs for excitation closely matched with experimental signals such
that the accuracy of the estimated STFs was verified. Finally, FWI was implemented on experimental data from a 6061 aluminum
specimen with inverted STFs. The results show that the proposed FWI method successfully reconstructed the longitudinal wave
speed distribution. With high spatial resolution and sensitivity shown in the transmission scheme using in-house experimental data,
FWI with accurate source modeling shows promise to reconstruct the velocity structure within the scanned region effectively. Future
works related to this research should focus on improving the reconstruction results by increasing structural complexity and mitigating
the artifacts.
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