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ABSTRACT

In the era of exceptionally data-hungry models, careful selection of the training
data is essential to mitigate the extensive costs of deep learning. Data pruning of-
fers a solution by removing redundant or uninformative samples from the dataset,
which yields faster convergence and improved neural scaling laws. However, lit-
tle is known about its impact on classification bias of the trained models. We
conduct the first systematic study of this effect and reveal that existing data prun-
ing algorithms can produce highly biased classifiers. At the same time, we argue
that random data pruning with appropriate class ratios has potential to improve
the worst-class performance. We propose a “fairness-aware” approach to pruning
and empirically demonstrate its performance on standard computer vision bench-
marks. In sharp contrast to existing algorithms, our proposed method continues
improving robustness at a tolerable drop of average performance as we prune more
from the datasets.

The ever-increasing state-of-the-art performance of deep learning models requires exponentially
larger volumes of training data according to neural scaling laws (Hestness et al., 2017; Rosenfeld
et al., 2020; Gordon et al., 2021). However, not all collected data is equally important for learning as
it contains noisy, repetitive, or uninformative samples. A recent research thread on data pruning is
concerned with removing those unnecessary data, resulting in improved convergence speed, neural
scaling factors, and resource efficiency (Toneva et al., 2019; Paul et al., 2021; He et al., 2023).
These methods design scoring mechanisms to assess the utility of each sample, often measured by
its difficulty or uncertainty as approximated during a preliminary training round, that guides pruning.
Sorscher et al. (2022) report that selecting high-quality data using these techniques can trace a Pareto
optimal frontier, beating the notorious power scaling laws.
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Figure 1: The average test performance of various data pruning algorithms against dataset density
(fraction of samples remaining after pruning) and measures of class-wise fairness: worst-class accu-
racy, difference between best- and worst-class recall, and standard deviation of recall across classes.
Top: VGG-19 on CIFAR-100, Bottom: ResNet-18 on TinyImageNet. All results averaged over 3
random seeds; error bands represent min/max.
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The modus operandi of data pruning resembles algorithms that mitigate distributional bias—a well-
established issue in Al systems concerning the performance disparity across protected groups of
the population (e.g., race or gender) or classes (Dwork et al., 2012; Hardt et al., 2016). The early
approaches in this domain improve the worst-class performance of imbalanced datasets by subsam-
pling the majority classes (Barua et al., 2012; Cui et al., 2019; Tan et al., 2020). Data pruning
extends this strategy by designing finer pruning criteria and working for balanced datasets, too.
More recent developments apply importance weighting to emphasize under-represented or under-
performing groups or classes during optimization (Sinha et al., 2022; Sagawa* et al., 2020; Liu
et al., 2021; Idrissi et al., 2022; Wang et al., 2023; Lukasik et al., 2022; Chen et al., 2017). Data
pruning adheres to this paradigm as well by effectively assigning zero weights to the removed train-
ing samples. These parallels indicate that data pruning has potential to reduce classification bias in
deep learning models, all while offering greater resource and memory efficiency. We conduct the
first systematic evaluation of various pruning algorithms with respect to distributional robustness
and find that this potential remains largely unrealized (Figure 1). For example, Dynamic Uncer-
tainty by He et al. (2023) achieves superior average test performance on CIFAR-100 with VGG-19
but fails miserably in terms of worst-class accuracy. Thus, it is imperative to benchmark pruning
algorithms using a more comprehensive suite of performance metrics that reflect classification bias,
and to develop solutions that address fairness directly.

In contrast to data pruning, many prior works on distributionally robust optimization compute
difficulty-based importance scores at the level of groups or classes and not for individual training
samples. For pruning, this would correspond to selecting appropriate class ratios but subsampling
randomly within each class. To imitate this behavior, we propose to select class proportions based on
the corresponding class-wise error rates computed on a hold-out validation set after a preliminary
training on the full dataset, and call this procedure Metric-based Quotas (MetriQ). In particular,
given a target dataset density d € (0, 1), for each class k € [K] with recall i, we let its target
density be di, = d(1 — r)/Z where Z is a normalizing factor. Note that this procedure may yield
dy > 1 for some k € [K] when d is sufficiently large; we do not prune such classes and redistribute
the excess density across unsaturated (dj, < 1) classes according to their MetriQ proportions.

To validate the effectiveness of random pruning with MetriQ (Random+MetriQ), we compare it to
various baselines derived from two of the strongest pruning algorithms: GraNd (Paul et al., 2021),
and Forgetting (Toneva et al., 2019). In addition to plain random pruning, for each of these two
strategies, we consider (1) random pruning that respects class-wise ratios automatically determined
by the strategy (Random+StrategyQ), (2) applying the strategy for pruning within classes but dis-
tributing sparsity across classes according to MetriQ (Strategy+MetriQ), and (3) the strategy itself.
As demonstrated in Figure 2, MetriQ improves robustness of the existing pruning algorithms and
particularly shines when applied together with random pruning, substantially reducing the classifi-
cation bias of models trained on the full dataset while offering an enhanced data efficiency.
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Figure 2: The average test performance of various data pruning protocols against dataset density
and measures of class-wise fairness. Top: GraNd, VGG-19 on CIFAR-100; Bottom: Forgetting,
ResNet-18 on TinyImageNet. All results averaged over 3 random seeds.
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