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A Regiodivergent Truce-Smiles Rearrangement: A Strategy for the
Synthesis of Arylated Indoles promoted by KN(SiMe3s),
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A chemo- and regioselective synthesis of 2-benzhydryl and 2,3-disubstituted indoles via
cyclization and regiocontrolled Truce-Smiles (T-S) rearrangement is disclosed. A cascade 5-endo-
dig cyclization of 2-amino diphenylacetylenes mediated by KN(SiMes), is followed by a
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regiocontrolled T-S reaction.
controlled by ligands on K*.

Introduction

Non-fused benzenoid rings are found in most approved small
molecule medications.13 Contributing to their observed prevalence
is the utility and dependability of the Suzuki-Miyaura cross-coupling
reaction? for the installation of benzenoid rings. Despite its utility,
the Suzuki-Miyaura reaction has drawbacks, like the use of
transition metals and prefunctionalized coupling partners. To
address some of these limitations, chemists have turned to
transition metal catalyzed C-H arylation reactions to increase
generality and atom economy.> The need for transition metals in
these processes persists, rendering them less sustainable and
producing metal-containing waste, which can be difficult to
separate from desired products.®7 Thus, the demand for greener,
general transition metal-free arylation reactions that enable control
of regioselectivity remains high.810

To design greener processes, several research teams have
recently been attracted to the Truce-Smiles (T-S) reaction!l14 to
deliver an aryl group to a carbon-based radical center. The
rearrangement process itself does not require a transition metal,
although metals are often used to generate radicals and then set up
the rearrangement. Recent years have witnessed the introduction
of enantioselective versions of the radical T-S arylation reaction.!>
The T-S rearrangement!! can also proceed arylated products via a 2-
electron pathway and is similar to SyAr reactions. While Truce-
Smiles rearrangement reactions generally require electron-
withdrawing groups, the original work by Truce?® and recent studies
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This system provides the first example of T-S regioselectivity and is

by Clayden!”. 18 and others!® 20 have demonstrated that electron-
withdrawing groups are not always needed.

Arylated indole derivatives, represent one of the most important
classes of heterocyclic compounds that are found in bioactive
molecules, pharmaceuticals and natural products.21-26
Consequently, the development of efficient approaches for the
construction and functionalization of these privileged heterocyclic
compounds remains important.2’-41 For several years, members of
our team have been interested in the preparation of indoles under
transition metal free conditions.#% 43 This interest springs from our
long-standing goal: to generate and functionalize carbanions
derived from weakly acidic pronucleophiles under mild
conditions.44->2
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Scheme. 1 Synthesis of multifunctional indoles from 2-alkynylaniline derivatives.
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In combining our interest in indoles with transition metal-free
arylations, we focused on cyclization of 2-alkynylaniline derivatives
(Scheme 1). Both intra and intermolecular cyclization of 2-
alkynylaniline derivatives have become popular strategies for indole
synthesis and functionalization.53 54 The approach typically starts
with aminometallation of the C=C bond, usually with the aid of a
transition metal catalyst. It can be followed by a 1,3-migration of
functional groups from the metalated indole nitrogen, including
allyl,>5 56 propargyl,>” sulfonyl,58 and a-alkoxyalkyl>® moieties
(Scheme 1a). On the other hand, cyclization of a metallated ortho-
amino group on the alkyne forms an indolylmetal intermediate that
can be trapped by external electrophiles, for example, via the Heck
reaction,®0 Sonogashira reaction,®! or Suzuki reaction,52 63 among
others (Scheme 1b).64-74

In the current study (Scheme. 1c), we employ 2-arylpropargyl
anilines with weakly acidic benzylic sp® C-H bonds. Thus, base
initiated deprotonation-nucleophilic attack of the sulfonamido
nitrogen on the alkynyl moiety results in cyclization and produces a
reactive spZ-hybridized carbanion. This carbanion will be
protonated to give the 2-benzyl indole. Deprotonation of the
weakly acidic benzylic position produces the key resonance
stabilized anionic intermediate. We envisioned that this carbanion
could undergo a polar T-S rearrangement with the N-aryl
sulfonamide to form arylated products. The goal of this study was
to control the regiodivergent desulfonylated rearrangement’s>77 to
chemoselectively furnish either 2,3-disubstituted indoles or 2-
benzhydryl indoles. Our strategy was to judiciously choose ligands
for K* to steer the regioselectivity. Herein, we outline the
development of this transition metal-free regioselective T-S
rearrangement and the isolation of 2,3-disubstituted indoles and 2-
benzhydryl indoles (58 examples, up to 95% yield). To our
knowledge, this report represents the first example of control of
regioselectivity in a T-S rearrangement. It is also noteworthy that

crown ethers were next examined. The combination of
NaN(SiMes),/15-crown-5 gave indole 2a in 51% isolated yield
(entry 9), whereas LiN(SiMes),/12-crown-4 produced the
product in only 27% yield (entry 10). Interestingly, it was found
that only 5% vyield of 2a was obtained with KN(SiMes), but
without 18-crown-6, while the 2,3-disubstituted indole
product 3a was observed in 8% yield (entry 11). Clearly, the
crown ether plays a crucial role in the process.

Changing the ligand on K* changed the regioselectivity of
the T-S rearrangement. For example, the 3-phenyl indole 3a
was obtained as the sole product when the reaction was
conducted at 80 °C in the presence of N,N-
diethylethylenediamine (enEty) (entry 12, 43% yield). Of the
five solvents screened (toluene, THF, CPME, dioxane and
DME), to optimize the regiochemistry of the T-S
rearrangement, CPME was the best for the generation of 3a
(61% vyield, entry 13 vs. 26-55% for the others). Notably, this
transformation was favored under more dilute reaction
conditions in CPME (entry 17, 74% yield in 0.42 M vs. entry 13,
61% yield in 0.71 M). In addition, an excess of the combination
KN(SiMes),/enEt, was critical for high vyields and
regioselectivities. Reducing the molar equivalence of
KN(SiMes),/enEt; from 4 : 12 to 3 : 9 led to decreased vyield
(entry 18, 51%). Further elevation of the reaction temperature
to 100 °C increased the product 3a yield to 80% (entry 19),
while only 51% of the product was obtained at 60 °C (entry
20). Overall, the optimized T-S rearrangement conditions for
the chemoselective synthesis of both products were
established (entry 8 for 2-benzhydryl indole 2a and entry 19
for 3-phenyl indole derivative 3a).

Table 1. T-S Regioselectivity Optimization?2

== Ph Ph

the T-S rearrangement herein occurs even with electronically @\/ base, additive A or B m{h i\:\r\g—\
neutral migrating aryl groups. NH solvent, temp H Ph o R N Ph

og’S\Ph A: 18-crown-6 ;

1a Ay: 15-crown-5 2a 3a
Results and discussion Ag: 12-crown-4
B: N,N-diethylethylenediamine

Control of the regioselective T-S rearrangement. We initially
focused on the T-S rearrangement in the presence of
MN(SiMe3s), and crown ethers to generate solvent separated entry  solvent  MN(SiMes), ligand T(°C) 2a® 3a°
cations. In general, arylation at the benzylic position took
place to afford benzhydryl indoles. The benzhydryl group8 is a toluene  KN(SiMes), Ay 60 48 -
common structural motif in many biologically active 2 THF KN(SiMes). Ay 60 60 -
compounds, including indoles, and are contained in 3 CPME KN(SiMes), A1 60 49 -
triarylmethanes.”® Thus, 2-phenylpropargyl-N- 4 dioxane  KN(SiMes), A 60 40 -
phenylsulfonylaniline 1a was combined with KN(SiMes); and 5 DME KN(SiMe3s), Ay 60 49 -
18-crown-6 (18-C-6) at 60° C to search for a suitable solvent. 6 THF KN(SiMe3), A 40 61 -
Of those examined [toluene, THF, cyclopentyl methyl ether 7 THF KN(SiMe3s)2 A; rt 66 -
(CPME), dioxane and DME, Table 1], THF (60% yield) was the 8¢ THF KN(SiMes), A; rt 78 -
most promising for the T-S rearrangement leading to 2- gc THF NaN(SiMes), A, rt 51 -
benzhydrylindole 2a (entries 1, 3-5 vs 2). Lower temperatures 1(c THF LiN(SiMe3), As rt 27 -
were next examined. Comparable conversions to indole 2a q1c THF KN(SiMes), _ rt 5 8
were observed at 40 °C (entry 6, 61% yield) and room 124 THE KN(SiMes)s B 20 _ 43
temperature (ethry 7, 66% yield)..FortunateI}/, increts\sing the 134 CPME KN(SiMes)» B 20 _ 61
amount of KN(SiMes), from 2 equiv to 3 equiv. provided 78% 149 DME KN(SiMes)s B 30 _ 26

isolated yield (entry 8). Combinations of silyl amide bases and
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15d dioxane KN(SiMes), B 80 - 53 20de  CPME KN(SiMes), B 60 - 51
16¢ toluene  KN(SiMes), B 80 - 55 2Reactions were conducted with 1a (0.1 mmol), MN(SiMes) (0.2 mmol), ligand
17de CPME KN(SiMes), B 80 - 74 (0.4 mmol) solvent (1 mL), 12 h. bIsolated yields. <0.3 mmol of base, 0.6 mmol of
18f CPME KN(SiMes), B 80 - 51 ligand. 90.4 mmol of base, 1.2 mmol of ligand. €2 mL of solvent. f0.3 mmol of
19de CPME KN(SiMes), B 100 - 80 base, 0.9 mmol of ligand.
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Fig. 1 Scope of the chemoselective synthesis of 2-benzhydryl indoles. 2Reaction conditions: 1 (0.1 mmol), KN(SiMes)2 (0.3 mmol), 18-crown-6 (0.6 mmol), THF (1 mL),

rt, 12 h. bIsolated yield. <60 °C. 9DME (1 mL).

Scope of the benzylic T-S rearrangement. The scope of the T-S
rearrangement to the benzylic position is presented in Fig. 1. All
reactions were conducted at room temperature apart from one
example, which was performed at 60 ‘C. Various migrating aryl
groups were first examined. 2-Arylpropargyl sulfonylanilines
bearing aryl sulfonamides with electron withdrawing or
electronegative groups, such as 3-CFs;, 4-OCFs, and 4-Cl, gave the
desired products (2b, 2c, 2d) in 48%, 75%, and 72% vyield. Biphenyl,
2-naphthyl, and 1-naphthyl sulfonamides provided 2e-2g in
70-94% yields. A 1-naphthylsulfamide bearing an electron donating
5-NMe; also showed high conversion in this protocol, affording the
cyclization/rearrangement product in 87% yield. Interestingly,
sulfonamides possessing 3-pyridinyl, 2-thiofuranyl, and 8-(3-methyl-
quinolyl) (2i, 2j, 2k) groups were all suitable substrates, affording
the desired heterocyclic products in 43-67% yields.

Next, substitution on the aniline aromatic moiety was explored.
2-Arylpropargyl sulfonylanilines bearing alkyl (5-Me, 4-Me, 4-Bu)

This journal is © The Royal Society of Chemistry 20xx

and phenyl groups on the aniline-based ring reacted readily under
the optimal reaction conditions giving the 2-benzhydryl indole
products 2I-20 in 60-74% yields. In addition, both electron
donating (4-OMe, 2p), electronegative and electron withdrawing
groups (4-F, 2q; 4-Cl, 2r; 4-CF3, 2s) on the aromatic ring of 2-
arylpropargyl sulfonylanilines gave T-S rearrangement products in
this reaction, albeit electron poor substrates were less efficient
(34-38% for 2q-2s vs. 52% for 2p).

The scope of arylpropargyl groups on the T-S rearrangement was
next investigated. As shown in Fig. 1, a variety of aryl-substituted
propargyl derivatives were compatible with the T-S rearrangement
(2t—2ae), producing the products in 50-95% yields. To avoid the
duplication of the products above, 2-naphthalenesulfonamides
were employed, resulting in a 2-naphthyl undergoing the T-S
rearrangement. 2-Arylpropargyl 2-naphthyl-substituted
sulfonylanilines bearing alkyl (4-Me, 2t; 4-Bu, 2u), phenyl (2v), or
OMe (4-OMe, 2w; 3,5-diOMe, 2x) groups on the aryl ring of the aryl

J. Name., 2013, 00, 1-3 | 3
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propargyl group were successfully employed, furnishing the 2-
benzhydryl indoles in excellent yields (80-95%). Additionally, this
tandem reaction proceeded smoothly with substrates bearing
electronegative substituents on the arylpropargyl group, including
4-F (2y), 4-Cl (2z), 4-Br (2aa), and 4-OCF3 (2ab) (50-87% yields). Aryl
groups bearing ortho-substituents, such as 2-F (2ac) and sterically
hindered 2-Me (2ad) on the arylpropargyl group did not interfere

Journal Name

with the T-S rearrangement, affording products in 77-84% yields. A
substrate possessing a vinyl moiety on the arylpropargyl group was
tolerated, providing the 2-benzhydryl indole 2ae in 72% yield.
Unfortunately, aniline derivatives with Ar2 = 4-CgHs—l, 4-CsHs—F and
4-C¢Hs—Me were poor substrates that gave less than 35% yield. Not
surprisingly, when replacing the sulfonamide S-Ar with S-alkyl , no
T-S products were obtained.
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Fig. 2 Scope of the chemoselective synthesis of 2,3-disubstituted indoles. 2Reaction conditions: 1 (0.1 mmol), KN(SiMes)2 (0.4 mmol), N,N-
diethylethylenediamine (1.2 mmol), CPME (2 mL), 100 °C, 12 h. bIsolated yield. cToluene (2 mL).

T-S rearrangement to the indole 3-position. Next, we focused on
the chemoselective T-S rearrangement to the indole skeleton to
provide 2,3-disubstituted indoles. As presented in Fig. 2, substrates
bearing diverse aryl-substituted sulfonyl groups exhibited fair to
excellent reactivity. Aryl groups with electron withdrawing (3-CFs,
3b, 37% yield; 4-OCFs, 3¢, 63% yield) and electron neutral alkyl (4-

4 | J. Name., 2012, 00, 1-3

tBu, 3d, 75% vyield), and 4-phenyl (3e, 87% yield) gave the T-S
rearranged products. Moreover, substrates possessing 2-naphthyl
(3f), 1-naphthyl (3g), and 4-NMe,-1-naphthyl (3h) substituents on
the sulfonyl group were also well-tolerated in the T-S
rearrangement, providing the product in 71-80% yields. Of note,
heterocyclic 3-pyridyl (3i), 2-thiofuranyl (3j), and 8-(3-methyl-

This journal is © The Royal Society of Chemistry 20xx
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quinolyl) (3k) substituents were all compatible with this
transformation, assembling the desired products in 47-78% yields.

The diversity of the substituents on the aniline ring was next
explored. In general, good to excellent yields of 2,3-disubstituted
indoles were observed, regardless of the electronic nature of the
aniline substituents. Thus, alkyl (5-Me, 3I, 77% yield; 4-Me, 3m, 88%
yield; 4-tBu, 3n, 69% vyield), phenyl (30, 85% vyield), electron
donating (4-OMe, 3p, 66% yield) and electronegative substituents
(4-F, 3q, 83% yield; 4-Cl, 3r, 62% yield) were all compatible with the
cyclization/T-S rearrangement.

An exploration of the benzylic Art in Figure 2 was undertaken.
2-Arylpropargyl sulfonylanilines bearing Ar! groups with alkyl (4-Me,
3t, 74% vyield; 4-Bu, 3u, 87% yield), 4-phenyl (3v, 71% vyield),
methoxy (4-OMe, 3w, 71% vyield; 3,5-diOMe, 3x, 80% vyield), and
electron withdrawing (4-F, 3y, 56% yield; 4-OCFs, 3ab, 58% yield)
could be readily converted into the desired T-S rearrangement
products. It is noteworthy that the sterically hindered Ar! = 2-Tol
was successful in this reaction, giving the corresponding product
3ad in 76% yield.

To our knowledge, there are only a few examples of T-S
rearrangements wherein a vinyl group undergoes the migration.80-82
To exam the ability of the styrenyl group to participate in this
process, we prepared the B-styrenyl sulfenyl-containing substrate.
When exposed to reaction conditions with KN(SiMes); and diamine
ligand, indole formation was followed by T-S [3-styrenyl group
transfer producing the vinyl-containing product 3aE in 59% yield.
Here again, sulfonamides with Ar2 = 4-C¢H,—Cl and 4-C¢Hs—Me were
poor substrates giving none of the desired products.

Overall, a variety of 2,3-disubstituted indoles were readily
prepared by tandem cyclization/T-S rearrangement of 2-
arylpropargyl sulfonylanilines under
conditions.

To illustrate the practicality of this protocol, we conducted the
cyclization/T-S rearrangement of substrate 1w on a 3 mmol scale.
The corresponding product 2w was isolated in 91% yield (0.995 g,
Fig. 3a). In addition, 2,3-disubstituted indole 3x was isolated in 43%
yield (0.676 g) on scale up of the reaction (4 mmol).

Interestingly, in the case of substrate lac (Fig. 3b) bearing a 2-
fluoro phenyl, after the T-S rearrangement the reaction took an
unexpected turn and the product 4 was formed in 60% yield under
the standard reaction conditions. We hypothesize that the
polycyclic indole 4 arises from formation of the expected 2,3-
disubstituted indole, which then undergoes deprotonation at the
indole nitrogen. A key mechanistic step to illustrate the initiation of
the flow of electrons is shown in Fig. 3b, right. Once the new C—C
bond is formed, the SnAr is completed by loss of the fluoride. At
this stage, we cannot rule out a mechanism involving base-
promoted elimination of HF to generate a benzyne intermediate.

To gain insight into the reaction mechanisms of the indole
formation/T-S rearrangements, we set out to isolate key
intermediates in the process. We envisioned that replacement of
KN(SiMes), with a weaker base, K;COs, might allow the tandem
reaction to be halted at the indole stage (pre-T-S rearrangement).
As shown in Fig. 3c, in the presence of K,COs;, 1a underwent
cyclization to form indole 5 without initiating the T-S
Subjecting indole 5 to the KN(SiMes); and the
selectivity-controlling ligand in the T-S rearrangement gave 2-

transition metal-free

rearrangement.

This journal is © The Royal Society of Chemistry 20xx

benzhydryl indole 2a when the ligand was 18-crown-6 in 79% yield
and the 2,3-disubstituted indole 3a in 72% yield when KN(SiMes),
was used with excess N,N-diethylethylene diamine. These results
point to the formation of the common intermediate indole 5.

Finally, we wished to probe the T-S rearrangement to
understand if any of the observed products might emerge
from an intermolecular pathway in the presence of the crown
and diamine ligands. Thus, crossover experiments were carried
out as depicted in Fig. 3d. In the event, upon use of a
combination of alkynes 1a and 1x, only two products (2a and
2x in 75 and 86% yields, respectively) were detected when the
reaction was conducted under the influence of 18-crown-6
(Fig. 1 conditions). Likewise, using alkynes 1a and 1x with
KN(SiMes3); and in the presence of N,N-diethylethylene
diamine led exclusively to the formation of the 2,3-
disubstituted indoles 3a and 3x in 74-77% yields). Thus, only
intramolecular T-S processes were observed for both divergent
reaction pathways. These results are consistent with a 5-endo-
dig cyclization to give the indole core and a subsequent T-S
rearrangement.

J. Name., 2013, 00, 1-3 | 5



a Gram-scale synthesis of 2w and 3x
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Fig. 3 Scale up reactions and control experiments. a Scale up synthesis of
2w and 3x. b Synthesis of polycyclic indole 4 ,possibly through an SnAr. ¢
Isolation of a common pre-Truce-Smiles intermediate. d Cross-over

experiments.

The key advance in this study is the ability to control the
chemoselectivity of the Truce-Smiles rearrangement by simply
employing different ligands for K*. It is known from gas phase
studies that dimethoxy ethane binds to K* with a higher association
constant than ethylene diamine (en).83 The same study also
reported that the interaction of the third ethylene diamine with
K*(en), to give K*(en)s has a “much lower” binding constant than
the first two en molecules.®* Of course, Pederson’s8> 18-crown-6
has a very high binding affinity for K*.8° Thus, we hypothesize that
the benzylic C-H of the indole is readily deprotonated by the
KN(SiMes); in the presence of either 18-crown-6 (18-C-6) or N,N-
diethylethylenediamine (enEt,), as outlined in Scheme. 1c. In the
case of KN(SiMes),/18-C-6, the K* is sequestered to give a solvent

6 | J. Name., 2012, 00, 1-3

separated ion pair with K*e(18-C-6) or perhaps Kt+e(18-C-6)
interacting with the aromatic pi-system of the deprotonated benzyl
group or indole.8¢ In this situation, we envision unhindered access
of the carbanion to the SO,-Ar group ipso-carbon for the T-S
rearrangement. As a result, the T-S reaction readily takes place at
room temperature with a low barrier to the benzylic position. Note
that in the absence of the crown ether, it is anticipated that the K*
will be associated with the anionic indole. Such an interaction will
hinder the T-S rearrangement, which is consistent with the 5% yield
of benzhydryl indole observed under crown-free conditions (Table
1, entry 11). In the case of the diamine additive, it is likely that the
K*(enEtz)n has a stronger electrostatic interaction with the
deprotonated benzylic site and neighboring aryl ring, because the
weaker binding of the diamine. We propose that this tighter
interaction hinders the T-S attack of the benzylic anion on the SO,—
Ar group ipso-carbon. More forcing conditions (100 °C) are
required for attack by the anionic indole 3-position on the SO,—Ar
group ipso-carbon. Given the drive to more sustainable chemistry,
including arylation reactions, we envision that this approach to
steering the Truce-Smiles rearrangement by choice of ligands for
cationic metals will be applicable to other arylation strategies.
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