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Abstract—Deep neural networks have been incorporated into
healthcare for the purpose of diagnosing and detecting medical
conditions. However, studies have shown that the vulnerability
of neural networks to adversary and noise remains a pervasive
problem that compromises trust of medical practitioners and
accuracy in diagnosis, prognosis, and outcome prediction by such
systems. In this study we show that robust training methods can
help models perform more robustly against not only adversarial
attacks, but also noises and calibration errors.

Index Terms—Data Augmentation, Robustness, Medical Im-
ages, Deep Learning

I. INTRODUCTION

Machine learning models used in analysing medical images
must be robust to adversarial attacks and noise, meaning they
should perform well even when input data is intentionally
or unintentionally perturbed or corrupted. Adversarial attacks
are inputs specifically crafted to cause misclassification or
unexpected behavior in a model, while noise refers to random
variations in input data that can also impact model perfor-
mance. Model robustness is crucial in real-world deployment,
where models may encounter unexpected or adversarial inputs
that could lead to incorrect diagnosis or treatment, potentially
causing harm to patients.

In addition to model robustness, model calibration and
prediction uncertainty are equally important in medical image
applications. Model calibration ensures that the outputs of
a machine learning model accurately reflect the underlying
probability distribution of the data, which is critical in medical
imaging for informed decision making. Therefore, machine
learning models for medical image applications must be ro-
bust, accurately calibrated, and provide less randomness in
the output estimates to support informed decision making in
clinical practice.

In this study we propose a novel framework for evaluating
an Al system in medical domain along multiple dimensions of
performance (e.g., clean accuracy, adversarial robustness, nat-
ural robustness, probability calibration), we compare multiple
training methods along those dimensions, and we adapt robust
training techniques from the natural image domain (AugMix
[1] and RobustAugMix [2]) for use with medical images.
Our results demonstrate that RobustAugMix not only achieves

Sheida Nabavi
Computer Science and Engineering
University of Connecticut
Storrs, USA
sheida.nabavi @uconn.edu

robustness against adversarial perturbations and noise, but also
reduces the calibration error of the model.

II. METHODOLOGY

Our objective in this study is to examine the performance
of various robust learning strategies in analyzing biomedical
images when there are different sources of noise and corrup-
tions. We used the COVID-19 chest X-Ray imagery dataset
presented before by [3] to examine and compare the perfor-
mance of a standard deep neural network (DNN) model, and
models trained with three robust data augmentation strategies:
adversarial training [4], AugMix [1] and RobustAugMix [2].
We used ResNet 18 as the backbone architecture to train
the models with different training methods. We trained the
standard model using the Empirical Risk Minimization (ERM)
method [5], the robust model using the robust optimization
method [4], the AugMix model using the Jensen-Shanon Loss
[1], and RobustAugMix using the combination of Jensen-
Shanon and the robust optimization [2].

To examine the performance of these models we compare
their accuracy against clean, noisy, and adversarial images. In
this study, we show the benefits and the trade-off of using
robust learning in the medical domain. We study the accuracy
of the models when images are corrupted by different types
of medical images’ noise. Also, we examine the trade-off in
the model’s output estimates. To evaluate this, we compute the
calibration error of the model and the entropy of the predicted
class probabilities.

ITII. EXPERIMENTS

All the models in this study were trained for 41 epochs, with
the SGD optimizer and an initial learning rate of 0.01. The
robust models were trained using Projected Gradient Descent
(PGD) with an epsilon value of 4 and 7 gradient descent steps
[6]. Epsilon is the size of the perturbation. For the AugMix
which mixes augmented images through linear interpolation,
we used random flips augmentations.

A. Adversarial Attack

Adpversarial training was first introduced in [7] as a defense
against adversarial attacks [8]. In this study we tested the
models against PGD attacks. The epsilon values for these
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experiments goes from 1 to 5 with 20 steps. We calculated
the mean adversarial accuracy of these models as well, to
determine the overall robust model, considering all the epsilon
values. We used the Responsible Artificial Intelligence (RAI)
toolbox [9] to perform adversarial training and testing. Results
are presented in table I.

B. Corruptions

Miscalibration of imaging equipment can lead to noisy
images. For this reason the models should be robust to
these corruptions and avoid misclasification. We considered
common imaging noise: Gaussian, salt and pepper (S&P),
and Speckle. Gaussian noise is due to randomness and has a
normal distribution. S&P noise is created by replacing random
pixels of the image with dark and bright values that are at the
extreme ends. Speckle noise is created when coherent light
interacts with a rough surface, producing a random pattern of
bright and dark spots that can degrade image quality. We varied
the Gaussian and Speckle noise by changing the variance
between 0.1 to 1, and we varied the S&P noise by changing
the amount between values 0.1 to 1. The models’ accuracy are
presented in Table I.

It is evident that standard models in the medical domain
does not guarantee any robustness against these adversarial
attacks. Additionally, training the model using a data augmen-
tation technique like AugMix, which was primarily designed
for natural images, can reduce the model’s robustness against
adversarial attacks and noise. However, the Robust and Robus-
tAugMix models perform better compared to the Standard and
AugMix models against adversarial perturbations, Gaussian
noise and Speckle noise .

TABLE II

MODEL CALIBRATION AND OUTPUT RANDOMNES

Methods Calibration Error | Output Entropy
Standard 7.14% 2.96
Robust 5.61% 2.81
AugMix 6.11% 4.47
RobustAugMix 2.32% 4.09

TABLE I
ROBUSTNESS EVALUATION IN TERM OF ACCURACY IN
PERCENTAGE

Methods Clean | Adversarial | Gaussian | S&P | Speckle

Standard 95.80 22.24 72.78 72.00 86.51

Robust 95.96 89.83 82.91 61.98 95.91

AugMix 94.25 12.41 21.27 26.07 4435
RobustAugMix | 96.27 82.10 83.56 69.75 94.86

C. Calibration Error and Output Randomness

To measure the calibration error, we used the root mean
square calibration error (RMSCE) metric [10]. And to measure
the output estimate randomness we calculated the entropy of
the classification results. The results are shown in Table II
RMSCE quantifies the accuracy of the predicted class prob-
abilities and entropy measuring the randomness and spread
of the predicted class probabilities. A low RMSCE and low
entropy indicating a well-calibrated and certain model. It has
been reported that AugMix can reduce the calibration error
[1], and adversarial robust models have more stable predictions
[11], [12]. As shown in Table II, the combination of robust
learning and AugMix reduced the calibration error from 7.14%
to 2.32%. However, the Robust model provides the most
certain output estimates.

IV. CONCLUSION

This study explored various training approaches and pro-
posed a framework for evaluating the performance of DNNs
in the medical domain. We show that adversarial training can
make DNNs more robust against not only adversarial perturba-
tion, but also other kind of noise and corruptions, and results
in more calibrated and certain outputs. A well-calibrated and
robust model can aid doctors in making informed decisions
and decreasing the risk of misdiagnosis or mistreatment. It
can also contribute to the development of more accurate and
trustable medical decision support systems and enhance overall
care quality.
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