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A review of the shear rheology of
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The microstructural link to the rheology of carbon black suspensions has recently
become clear as a result of advances in computational and experimental methods.
This understanding reveals the important role of the restructuring, build-up, and
break-up of carbon black agglomerates in simple shear, rationalized by a
dimensionless balance of the hydrodynamic forces acting to break the
agglomerates apart against the cohesive forces holding them together (i.e., the
Mason number). The Mason number not only can predict the origin of reversible
thixotropy seen in carbon black suspensions observed at higher shear intensities,
but can also be used to rationalize the evolution of microstructure at lower shear
intensities. This review focuses on carbon black suspension behavior, but the
insights derived from carbon black suspensions are broadly applicable to a diverse
class of soft matter including colloidal gels relevant to a variety of applications.
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1 Introduction

Carbon black is one of the most abundant nanomaterials in use today because its properties
can be engineered for targeted applications including batteries [1], fuel cell electrodes [2],
conductive inks [3], and polymer composites [4]. In many of these applications, carbon black
must be formulated and processed while suspended in a liquid. These suspensions are soft
solids commonly known as colloidal gels. The macroscopic behavior of colloidal gels is
intimately connected with their microstructure and their rheology must be controlled during
processing to yield useful products. With a total global market for carbon black valued at $
12.61 billion in 2021, understanding how to process and control the rheological behavior of
carbon black suspensions is key to enabling a variety of emerging technologies.

The complex rheological behavior of carbon black is a direct result of the suspension
microstructure which evolves in flow. This microstructure is hierarchical [5] and the forces of flow
cause physical changes to occur that impact the microstructure on many length scales. The
hierarchy originates from the manufacturing of carbon particles which involves the partial
combustion of oils into solid primary particles. These primary particles are typically tens of
nanometer in length scale and have internal pores that act as a sponge to soak up bulk solvent,
thereby modifying the suspension rheology at relatively low weight loading. These primary
particles are fused to form primary aggregates that can be described by a fractal dimension, Ds and
a primary aggregate radius, a. These aggregates are the colloidal building blocks of the suspension.
While carbon blacks from a given manufacturer can be further milled to reduce the aggregate size
and density, it is generally assumed that once formulated in suspension the stresses experienced in
flow are insufficient to change the primary aggregate structure. Finally at the largest length scales
in suspension, the aggregates flocculate or cluster to form agglomerates whose size and number
distribution depend on the balance of attractive and repulsive forces acting between primary
aggregates and forces acting on the agglomerates as a result of flow. While surface modification of
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neat carbon black particles can significantly influence the pair potential
between primary aggregates (ex., [6-8]), the focus of this review is on
suspensions that are formulated using carbon blacks that exhibit
strongly attractive interactions where the agglomerates grow in size
to exceed several microns and exhibit a macroscopic yield stress.

While our understanding of carbon black suspension rheology
has matured in the last decade as a consequence of the incorporation
of carbon blacks in lithium-ion battery slurries and fuel cell catalyst
inks, there remain important unanswered questions for the prediction
of the suspension flow behavior. This review will outline the current
state-of-the-art understanding of the physical processes that
determine the evolution of carbon black agglomerates in steady
and transient shear flow and highlight areas of ongoing work that
are important to predict the flow behavior in coating flows.

2 Quiescent rheology of carbon black
suspensions

Rheological measurements of carbon black suspensions are
frequently used to understand how to engineer its processing. Such
measurements require first suspending the carbon black into a liquid of
interest. This is generally accomplished by blending the dry carbon
black powder with a liquid and subjecting that mixture to a high shear
intensity for several minutes. This high shear mixing is essential to not
only homogeneously disperse the carbon black in the liquid, but also to
ensure all carbon surfaces are uniformly wet by the suspending
medium. For example, in lithium-ion battery slurry processing [9],
high-intensity dispersing equipment, including hydrodynamic shear-
based mixers and kneaders, are applied to suspensions containing
carbon black [10, 11] to ensure homogeneous dispersion and minimal
aggregations. Similarly, in fuel cell ink suspensions, ultrasonic bath is
generally used with tuned parameters to achieve the desired dispersion of
carbon black agglomerates. The oil adsorption number (OAN), typically
measured according to ASTM D2414-01, indicates the amount of
suspending liquid that can be added to the dry carbon black powder
before a torque-sensing system observes a significant increase in viscosity.
The OAN gives some indication about the internal porosity of the carbon
black particle (i.e., the higher the oil adsorption number the more solvent
can be imbibed by the primary aggregate). Formulating a suspension (as
opposed to a paste) requires that there be a sufficient amount of the
suspending liquid present to fully wet all the carbon surfaces. The OAN
gives a good estimate for the maximum solid weight fraction of the
carbon black particles in the suspending liquid.

Carbon black suspension rheology is performed using a variety of
rheological accessories including plate-plate, cone-plate, and Couette
style devices. Typically, the as-mixed sample is loaded onto the rheometer
and then conditioned on the geometry prior to any rheological test to
erase the memory of the high shear mixing step. Suspensions are usually
measured shortly after preparation as their properties change in time.
Suspensions left to stand on the benchtop will frequently sediment over
several days. This sedimentation is accelerated if the suspension is mixed
at a lower shear rate (ex. on a roll-mixer). Once loaded onto the
rheometer, a typical shear protocol consists of a high shear intensity
step followed by small amplitude oscillatory shear (SAOS). Carbon black
gels are fragile and therefore the strain amplitude of the SAOS test is
typically below 0.3%. One such example from Trappe et al. [12] illustrates
(shown in Figure 1A) the fluid-solid transition in a carbon black
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suspension as a function of volume fraction determined using SAOS.
The sample consisted of carbon black suspended in mineral oil. As the
volume fraction increased, there was a divergence of the viscosity, #, at a
critical volume fraction, and at this same critical volume fraction the
onset of a finite elasticity as indicated by the increase in storage modulus,
G/, as shown in Figure 1A. The critical volume fraction is identified by
assuming critical scaling of the modulus and viscosity given as:

n=n(¢.~¢)" ;G =Go(p-¢.)"

where G is the modulus intercept, 7, is the solvent viscosity, and p and v
are the critical exponents. Fitting these forms identifies the concentration
of carbon black where a stress-bearing network can form, which is
commonly referred to as a colloidal gel. In the gel phase, the value of the
critical exponent, p, depends on the nature of local mechanical contacts
of the stress-bearing bonds, and both G, and p are thought to originate
from local network rigidity and topology.[13] These quantities are thus
intimately linked with the microstructure of the network building blocks.
While it is commonly assumed that these building blocks are the primary
particles, gels of carbon blacks frequently form as a result of the arrest of
clusters/agglomerates and not as a consequence of the dynamic arrest of
the primary aggregates themselves. [14] Understanding the fluid-cluster-
gel transition remains an outstanding challenge in colloidal science and is
outside of the scope of this review [15, 16].

At low frequencies, the elastic modulus is a weak function of
frequency in the gel phase. This reflects the highly arrested nature of
the carbon black particles, which cannot relax on time-scales accessible
to the rheometer. [17] observed that at high frequencies both the storage
and loss moduli, G”, increased with increasing frequency and that the
loss modulus crossed-over the storage modulus. They identified the
cross-over frequency, shifted the modulus and the frequency to form
scaled moduli, G' =bG' and G = bG"
@ = af. Using this scaled representation of the SAOS spectra, they

and a scaled frequency,

observed collapse of the curves as a function of carbon black volume
fraction and that G~ @, as shown in Figure 1B with the shift factors
shown in the inset. They also observed that high frequency response was
independent of carbon black volume fraction, which implied that it is
associated with the suspending fluid’s viscosity. Dages et al. [18] recently
performed SAOS at different shear histories, and while the plateau
modulus was sensistive to the preshear history, the scaled moduli
superimposed with the results of Trappe et al. [17]. The similarity of
the SAOS curves across the wide range of frequencies implies that there is
structural similarity between carbon black gels prepared with different
shear histories and different carbon black loadings. Legrand et al. [19]
recently showed that such similarity is violated upon addition of adsorbing
polymer to the suspending medium or when the carbon black in the
suspension is concentrated such that it forms a paste which incorporates
capillary interfaces homogeneously distributed throughout its volume.
SAOS is conducted in the linear viscoelastic region (LVR) where the
microstructure remains unaltered by deformation. However, non-linear
behavior can be explored by conducting an amplitude sweep. In an
amplitude sweep the strain amplitude, y, is increased at a fixed
frequency and the storage and loss mudulus are determined from
the transient oscillatory response. In the LVR (shown in Figure 1C), the
storage and loss modulus are independent of frequency, but as the strain
amplitude is increased beyond a critical strain, an increase in the loss
modulus is generally observed before the gel network transitions to non-
linear flow. An example amplitude sweep from a carbon black gel in
propylene carbonate from Hipp et al. [20] is shown in Figure 1C.
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FIGURE 1

(A) Figure 2 from [12]* shows optical microscopy images (left) of carbon black agglomerates suspended in basestock oil forming a mechanically
percolated network with increasing volume fraction, ¢. The fluid-solid transition manifests microscopically as the divergence of the zero-shear viscosity,
7, and the onset of a plateau modulus, Gy, with critical scalings of 7 ~ (¢. — ¢)™ and G ~ (¢ — ¢.)? (right). The vertical dashed line indicates the critical
volume fraction, ¢., associated with the transition. (B) Figure 2 from [17]° shows the scaled storage, G', and loss, G , moduli versus frequency, w. The
inset shows the shift factors applied to collapse the curves as a function of carbon black volume fraction. (C) Figure 2.3 from [20]* where an amplitude
sweep is performed on a gelled suspension of carbon black in propylene carbonate. The linear viscoelastic region (LVR) is marked by the vertical red lines
and the critical strain, y., is identified as the cross-over of the moduli prior to the transition to flow.

Increasing the strain amplitude beyond the critical strain causes the
suspension to fully fluidize. The yielding of the elastic carbon black
network is still poorly understood [21] and additional experiments that
probe the microscopic response of the carbon black network during
dynamic yielding and after cessation of flow are needed [22].

3 Rheology of carbon black
suspensions under flow

A variety of shear protocols are utilized to characterize the rheology of
carbon black suspensions including flow sweeps [23], flow ramps [24],

Used with permission of Springer Nature, from V. Trappe et al., Nature, 411,
772—775; permission conveyed through Copyright Clearance Center, Inc.

Reprinted Figure 2 with permission from V. Trappe et al, Phys Rev letter, 85,
449—452, 2000. Copyright 2000 by the American Physical Society.

This material is used with permission from author J. Hipp; Structure,
rheology, and electrical conductivity of high-structured carbon black
suspensions; 2021. Further reproduction, distribution or transmission is
prohibited, except as otherwise permitted by law.
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step-up and step-down shear tests [25-27], and large amplitude oscillatory
rheology [28]. In general, the goal of these tests is to understand how the
viscosity, #, of the suspension depends on shear rate, y, and time, t. As
carbon black suspensions fall into the category of yield stress fluids, their
rheological behavior is quite complex. The complexities of yield stress
fluids has been reviewed elsewhere [29-32]. In this section, we focus on
observations specific to carbon black suspensions, which share many
features in common with other yield stress fluids.

The rheology of carbon black suspensions is bifurcated. Ovarlez
et al. and Coussot et al. [33,27] showed that this bifurcation
manifests in a sensitivity of the flow curve to the preshear
history. In Figure 2A the dependence of the shear stress, g, on y
is shown as a function of preshear condition superimposed on the
steady state flow curve. At high shear intensities, all the curves have
the same stress and the stress is not a strong function of time.
However, at low shear intensities, the flow curve is sensitive to the
preshear history. This behavior is quite universal to carbon black
suspensions and conveniently divides the rheological behavior into
two flow regimes: 1) A strong flow regime where the suspension
exhibits reversible thixotropy, and 2) a weak flow regime where the
suspension exhibits a rheopectic response. Hipp et al. [26] identified the
division of the strong and weak flow regimes based on the observation
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(A) Figure 4 from [27]* shows the stress, o, as a function of the shear rate, y, for flow curves constructed from different preshear conditions with
circles, squares, and triangles corresponding to decreasing preshear stress respectively. The crosses represent the flow curve determined at steady state
and the lines are Hershel-Bulkley fits to the “intrinsic” flow curves. (B) Figure 3 from [26]° shows the time evolution, t, of a flow curve undergoing steady
shear presented as shear stress and viscosity, . The apparent yield stress, oy, is indicated by the horizontal dashed line and taken as the initial stress
determined from the stress after a step-down in shear rate. The implication of the inverse Bingham number, Bi™, is discussed in the text. As indicated by
the legend, the response changes in time resulting in an apparent shear thickening behavior commonly associated with carbon black gels. The preshear

condition for these flow curves was the highest shear rate tested, 2,500 s

of the transient stress observed during step-down shear tests performed
after imposition of high shear preshear step. In this way, they identified
an apparent yield stress, 0y, from the flow curve of a suspension of
carbon black in mineral oil that matched well with the yield stress
determined from creep measurements of the presheared sample [34].
Hipp et al. used this apparent yield stress to divide the flow curve based
on the inverse Bingham number, Bi"' = o/0,. When Bi' > 1, they
defined the suspension in the strong flow regime. When Bi™' < 1, the
suspension was associated with the weak flow regime. This is shown in
Figure 2B. The following two sections discuss important experimental
results associated with linking microstructure to macroscopic rheology
in the two flow regimes.

3.1 Reversible thixotropy in the strong-flow
limit: The Mason number

In his seminal review, Barnes [30] defined thixotropy as associated
with the reversible change from a “flowable fluid to a solid-like elastic
gel.” He further associated this change with the microstructural
evolution of a flocculated particle suspension whose structure can be
modified in flow via the build-up and break-up of the microstructure in
time. This generally occurs in materials where viscoelastic effects are
marginal. Reversible thixotropy is a more specific class of thixotropic
behavior. It is characterized by the ability to reversibly break-up and
recover the microstructure in the rheometer, which can be identified by
measurements of the viscosity. Dullaert et al. [25] identified reversible

4 Used with permission of Royal Society of Chemistry, from Rheopexy and
tunable yield stress of carbon black suspensions, G. Ovarlez et al., 9, 2013;
permission conveyed through Copyright Clearance Center, Inc.

5 Reprinted with permission from Structure-property relationships of
sheared carbon black suspensions determined by simultaneous
rheological and neutron scattering measurements, J. Hipp et al, J
Rheology, 63. Copyright 2019, The Society of Rheology.
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thixotropy as the decrease in viscosity in time upon a step-up in shear
rate and an increase in viscosity in time upon a step-down in the shear
rate applied to the suspension. This idea applied to a carbon black
suspension [35] suspended in a mixture of paraffin oil and poly
(isobutylene) produced a reversible thixotropic suspension that
exhibited slow build-up and break-up kinetic, slow enough that
transient microstructural changes in viscosity could be observed and
modeled with a structural kinetics model. Structural kinetics models are
popular for extracting rate constants associated with the build-up and
break-up of structure and predicting more complex flows based on
rheological tests. Larson et al. [36] has recently reviewed these
approaches and their summary is outside the scope of this review.
Nonetheless, for carbon black suspensions the origin of this time-
dependent rheological response is the changing average size of carbon
black agglomerates, which at higher shear intensity erode to smaller size
resulting a lower suspension viscosity [37,38]. Similarly, at lower shear
intensity agglomerates grow in size resulting in a larger viscosity. As the
transition to different agglomerate sizes upon step-change in shear rate
take a finite time to occur, a suspension can if left to stand eventually
form an elastic gel with a finite yield stress and elasticity.

In the strong flow limit, the change in viscosity is directly linked
to the change in microstructure [39, 40] by assuming that the break
up of agglomerates is controlled by the hydrodynamic stress, which
for fractal agglomerates is given as:

Om

.\ (Ds-3)/3
¢, = %(W)

and the viscosity given by the Kriegher-Dougherty equation:

s, >-z.s¢m
= 1-_Ta
’7 ’75 ( ¢mux

where ¢, is the volume fraction of agglomerates, Dy is the fractal
dimension, ¢, is the volume fraction of the primary particles, 7, is
the viscosity of the carrying fluid, ¢,,,, is the maximum packing
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(A) Figure 7 from [43]° shows the collapse of normalized agglomerate size, R‘;/a versus the modified Mason number, Mn. The data are measured for
different solvent types and carbon black volume fractions. The inset image is Figure 7 from [54]7, both 1.5 X 1.5 mm in area, showing micrographs of
carbon black suspensions under flow. The left image is at lower shear intensity (y = 133 1/s) and the rightimage is at higher shear intensity (y = 1330 1/s).
(B) Figure 6 from [45]® of the aggregate length, Lg, normalized to box size, H, versus the Mason number normalized to a critical value, Mn..
Aggregated colloidal suspensions of various volume fractions and attractive strength collapse on a single mastercurve. Three shear regimes are indicated:
dynamic yield, initial breakdown, and steady shear. The black dashed line indicates the scaling of agglomerate size with Mason number (C) Figure 9 from
[45] shows the simulated and experimental anisotropy factor, Ay, versus the Mason number, Mn, for attractive colloidal dispersions. The inset image is
Figure 3 from [45] which shows an example of the 2-D Fourier transform of the structure factor along the one to two plane. (D) Figure 11 from [45] shows
the final structure of colloidal agglomerates along the 1-2 (top) and 1-3 (bottom) plane. Images were generated from simulations using the Rotne-
Prager-Yamakawa (RPY) approximation that accounts for long-range hydrodynamic interactions and scales with the particle size.

volume fraction of the equivalent sphere, and o, is the stress
associated with the bond strength holding the agglomerates
together. These two equations predict that if the fractal
dimension is held constant, shear thinning originates from the

Reprinted with permission from Direct measurements of the
microstructural origin of shear-thinning in carbon black suspensions, J.
Hipp et al., J Rheology, 65. Copyright 2021, The Society of Rheology.

Reprinted Figure 7 with permission from C. Osuji et al., Phys Rev E, 77,
060402, 2008. Copyright 2008 by the American Physical Society.

Reprinted with permission from Large scale anisotropies in sheared
colloidal gels, Z. Varga et al, J Rheology, 62, 2018. Copyright 2018,
The Society of Rheology.
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reduction in the effective volume fraction of the agglomerates.
Harshe et al. [38] used Stokesian dynamics simulations to
examine the break up of fractal agglomerates in simple shear and
found that individual clusters restructure in flow and evolve toward
a common fractal dimension depending on the stress. They observed
a fractal dimension Dy = 2.4-2.6 depending on the initial cluster
configuration and a reduction in agglomerate size with increasing
stress. Based on these results, shear thinning should be enhanced as
the hydrodynamic forces acting on the particles is increased. This
can be accomplished by increasing the shear rate or the suspending
medium’s viscosity. This idea built on the work by Sonntag et al. [41]
which showed that the break-up of dilute flocs in shear flow is
governed by the balance of hydrodynamic stress to the cohesive
stress holding the flocs together. Sonntag collapsed this break up
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with the ratio, %’, a dimensionless group balancing the shear stress
acting on an agglomerate against the bond strength holding the
agglomerates together.

Evidence confirming this microstructural picture applied to
carbon black suspensions emerged first with experiments by
Osuji et al. [42] using rheo-microscopy. In these experiments, a
dilute carbon black suspension in mineral oil subjected to steady
shear was observed to undergo three characteristic flow regimes, as
shown in the inset in Figure 3A. In the strong-flow regime large
carbon black agglomerates transformed into smaller ones reversibly.
This microstructural transition coincided with strong shear
thinning. Hipp et al. [26] confirmed this for carbon black
suspensions using ultra-small angle neutron scattering (USANS)
experiments where at high shear intensities, a reduction in
agglomerate size occurred with increasing shear rate. Further,
they observed that this reduction in agglomerate size occured
with a constant fractal dimension, Dy ~ 2.5. This value agrees
closely with the simulated values from Harshe et al. [38]. By
expanding this study [43] to various solvent types and carbon
black volume fractions, they collapsed (as shown in Figure 3) the
normalized agglomerate size, R¢/a, with an empirical scaling law
Ri/a= 25.4Mn"! with the Mason number given as:

o2
Mn = 671%
Oy

The Mason number has a form similar to that proposed by
Potanin with a subtle modification that the cohesive force acting
to hold the agglomerate together is estimated from the apparent
yield stress defined by the flow curve, 0, = Zrgmy— as
assumed by Eberle et al. [44] and that the hydrodynamic
stress included the particle stress. The utility of this
representation is that the Mason number can be determined
solely from the flow curve without the need for other
measurements and used to predict the agglomerate size at a
given flow condition. A key picture that emerges from the
assumption of the self-similar break-up (i.e., constant fractal
dimension) is that the agglomerates reversibly transition from
one size to the next based solely on the magnitude of the
This is
microscopic origin of the reversible thixotropic response.

hydrodynamic stress in a given suspension.

While our current understanding of the rheology of carbon black
suspensions in the strong flow limit is quite advanced, there remain
significant areas where experiments and theory can contribute. For
example, Stokesian dynamics by Varga et al. [45] show that the Mason
number controls the size of agglomerates and their structural erosion
leads to strong shear thinning which agrees with experiments as
shown in Figure 3B. However, they also show large scale anisotropic
structures that form under these same flow conditions that contribute
to the shear thinning observed. They compute the anisotropy factor,
Ag as a function of the Mason number shown in Figure 3C.
Anisotropy in flocculated suspensions of spherical nanoparticles is
well known (ex., [44, 46]). However, a quantitative framework for
predicting the degree of alignment of carbon black agglomerates or
their direct observation in the strong-flow limit is not yet accessible to
experiments. Nonetheless, the qualitative similarity between the
microstructure observed in Figure 3D and the data from Osuji et
al. [42] indicate that these simulations accurately capture the

evolution of microstructure in shear flow. While advanced
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theoretical frameworks (ex., [47, 48, 36]) are emerging to develop
broadly applicable physical models which predict the thixotropic
nature of carbon black rheology, experiments that can quantify
anisotropy in sheared carbon black suspensions are needed to
confirm these models. Some progress in this direction comes from
Wang et al. [49] who used orthogonal superposition (OSP) rheometry
to quantify the development of anisotropy in carbon black
suspensions in mineral oil and found that the transient orthogonal
storage and loss moduli could be probed during step-down flow tests
and that these values were not equal in the presheared state. This is
consistent with Negi et al. [50] who found that residual stresses remain
post-shear in gels of flocculated laponite. Nonetheless, questions
remain. Directly measuring this anisotropy in the strong flow
regime and developing physical insight into its scaling with the
Mason number is critical to designing processes which control the
microstructure of carbon black suspensions.

3.2 Rheopexy in the weak flow limit

Build-up and break-up of carbon black agglomerates do not
always lead to a reversible thixotropic response in suspensions. A
second category of behavior occurs in the “weak flow limit” where
a slow decrease in viscosity is observed in time upon a step-down
in shear rate or stress and an increase in viscosity is observed in
time when the shear rate is returned to a high shear intensity [51, 52].
This phenomena is the opposite of a thixotropic response and is
often called rheopexy or “antithixotropy”. Experimentally, a
suspension will appear to shear thicken with increasing shear
rate during a flow sweep test ([23, 53-55]). The extent of shear
thickening will depend sensitively on the duration of the test, the
range of shear rates probed, the shear history, and the nature of
the agglomerates. Furthermore, suspensions may exhibit hidden
shear thickening which is usually masked by the yield stress [56].
Ovarlez et al. [27] observed this shear thickening behavior in
suspensions of carbon black and showed that the duration of flow and
the shear intensity not only determined the extent of shear thinning
upon step-down in shear rate, but also the suspensions retained
memory of their shear history manifest as an apparent decrease in
the yield stress of the material. They noted that the material became
softer as a consequence of the shear history and remarked that the
yield stress was controlled by the preshear stress imposed on the
sample. A similar observation had been noted by Helal et al. [24], who
also observed in rheo-electric measurements a strong dependence of
the suspension conductivity on the shear history.

As observed by Osuji et al. [42] the transition from strong to weak
flow leads to the formation of large and dense agglomerates, which
under certain conditions flow align in the vorticity direction. This
third category of rheological behavior is shown in Figure 4A [26] and
occurs at relatively low shear rates in the weak flow regime. At higher
shear rates in the weak flow regime, Hipp et al. [26] showed that the
agglomerates formed in the strong flow regime densify and grow in
size when the shear stress approaches the yield stress. Unlike the
agglomerates formed at high shear intensities (Dy = 2.5), these
agglomerates exceed tens of microns in size are not fractal as
shown in Figure 4B. Harshe et al. [37] used Stokesian dynamics
simulations on fractal agglomerates to show that a critical stress must
be exceeded to cause break-up of agglomerates. Below that critical
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(A) Figure 2 from [42]° shows rheo-optical images of carbon black suspensions undergoing shear deformation. Three flow regimes were observed:
vorticity aligned flocs (left), a weak flow regime (middle), and a strong flow regime (right). (B) Figure 7 from [26]*° shows desmeared ultra-small angle
neutron scattering (USANS) for a carbon black suspension in mineral oil. The scattering intensity, /(q), is plotted over the scattering wavevector, g, for
several shear intensities. At low shear rates, the agglomerates densify to form non-fractal agglomerates whose size exceeds the length scale
accessible with USANS (C) Figure 8 from [26] shows the normalized invariant, ¢4, as a function of normalized Couette height, L/L, for the carbon black
suspension of (B) sheared at 400 s™*. Sedimentation is observed over time in the Couette geometry of a rheo-SANS instrument.

stress, the agglomerates do not break-up but instead restructure. These
restructured agglomerates remain suspended in the fluid for some time
in shear flow but because of their higher densities will slowly sediment.
The sedimentation of agglomerates leads to an apparent shear thinning
in a Couette rheometer [57] as the suspended particles migrate out of
the gap. Acrivos et al. [58] predicted the extent of shear thinning caused
by sedimendation at a given shear rate to be controlled by the Shields
number, a dimensionless balance between the viscous forces and
buoyant forces given as:

on.y

T 2LgAp

Used with permission of Royal Society of Chemistry, from Highly
anisotropic vorticity aligned structures in a shear thickening attractive
colloidal system, C. Osuji et al., 4, 2008; permission conveyed through
Copyright Clearance Center, Inc.

10 Reprinted with permission from Structure-property relationships of
sheared carbon black suspensions determined by simultaneous
rheological and neutron scattering measurements, J. Hipp et al, J

Rheology, 63. Copyright 2019, The Society of Rheology.
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where L is the gap, Ap is the density contrast, and g is the
gravitational constant. Hipp et al. [26] confirmed that the Shields
number accurately predicted the transition from sedimenting
agglomerates to homogeneously dispersed agglomerates by
directly measuring the distribution of carbon black in a Couette
rheological accessory. The depletion of carbon black in the Couette
accessory was probed using neutron scattering and the carbon was
observed to migrate axially, L/L,, toward the bottom of the Couette
accessory with time as shown in Figure 4C. Regardless of the
migration, the sample could be reversibly restored through shear
rejuvenation in the strong flow regime.

Atlower shear rates in the weak flow regime, the transition to
vorticity aligned agglomerates occurs. This is a direct result of the
confinement of these dense agglomerates in the gap of the
rheometric accessory. In confinement, these agglomerates
trigger the formation of viscous eddies that maintain periodic
spacing within the gap, which orients the agglomerates to form
vorticity aligned flocs [42, 59, 60], These “log-rolling” structures
shown in the inset of Figure 4 are maintained under steady flow
with a conserved wavelength and diameter. These structures have
a striking appearance as they align in the neutral plan of flow and
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(A) Figure 13 from [60]™ shows the state diagram from rheo-optics experiments delineating vorticity aligned flocs from agglomerates that exhibit no
structuration. There is a critical shear rate, y, at a specific gap height, h, where this transition takes place regardless of carbon black volume fraction. The
inset shows a representative image of the vorticity aligned flocs in a cone geometry. (B) Figure 5 from [61] shows results of a positively split Ewald (PSE)
discrete element simulations that include the Rotne-Prager-Yamakawa (RPY) approximation to account for long-range hydrodynamic interactions
between particles. The simulations predict the same transition in (A) mapped to the critical Mason number, Mn,, as a function of the dimensionless gap
size, h/a. The inset shows the critical shear rate corresponding to the critical Mason number.

are maintained under steady shearing conditions. Time resolved
measurements [59] of their formation indicated an increase in
viscosity with time resulting from their formation. Grenard et al.
[60] showed that a critical shear rate predicted the transition
from dense agglomerates to vorticity aligned agglomerates based
on the interaction potential between agglomerates given as:

y= u SHPI3

where Uis the depth and d is the range of attractive well-depth of the
carbon-carbon pair potential, and & is rheometer gap as shown in
Figure 5A. Using this critical shear rate, a state diagram predicting
the transition from dense agglomerates to vorticity aligned
agglomerates was predicted across a range of weight fractions
and gap heights. Varga et al. [61] later showed that this critical
shear rate is equivalent to the Mason number and found therefore
that a critical Mason number Mn, = 2.5(h/Rg)_1'4 predicted the
transition from aligned to unaligned agglomerates, as shown in
Figure 5B. This indicates that the degree of confinement determines
the onset of the formation of vorticity aligned agglomerates. As long
as the Mason number is larger than the critical Mason number
(Mn > Mn,), then vorticity aligned agglomerates will not form.

4 Ongoing experimental and
computational needs

The rheological phenomena described here are quite universal
and impact the processing of suspensions containing carbon black

11 Used with permission of Royal Society of Chemistry, from Shear-induced
structuration of confined carbon black gels: steady-state features of
vorticity-aligned flocs, V. Grenard et al,, 7, 2011; permission conveyed
through Copyright Clearance Center, Inc.
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including those used for battery coatings and fuel cell electrodes. It
therefore remains relevant to continue to develop techniques to
quantify and directly measure the evolution of carbon black
agglomerates in shear flow. A particular need is the ability to
resolve spatial heterogeneity on the agglomerate length scale,
which spans 100 nm-100 um, in steady and transient flow. This
is particularly challenging for existing experiments. Traditional
rheo-optical techniques are restricted to relatively slow flows.
However, counter-rotating plates [62-64] permit access to a
stagnation plane in the middle of the gap that permits the
examination of structural changes of soft materials under
simple shear, but with no translation in the laboratory
reference frame. Challenges remain as these techniques cannot
yet penetrate through optically dense samples, like carbon black
suspensions, with the required resolution. Small angle neutron
and X-ray scattering are also promising tools for evaluating
structure and dynamics on these length scales. However,
current instruments with the necessary spatial resolution are
line-collimated, which severely limits information about
anisotropy, heterogeneity, and orientation. Point collimated
ultra-small angle X-ray scattering (USAXS) [65] and very-
small angle neutron scattering (VSANS) [43] measurements in
principle have access to the necessary spatial resolution, but the
collimation of these instruments needs to be improved in order to
access larger length scales (>1 um).

In many ways simulations are outpacing experiments [37, 38,
45]. Accelerated Stokesian dynamics [66, 67] are making accurate
computations of many thousands of particles in flow routine.
realistic

these
simulation tools provide a way to computationally access

Because they accurately and efficiently compute

hydrodynamic interactions between the particles,
quantities experiments cannot. A recent review [68] summarizes
succinctly the differences between various computational tools
colloidal

matching between information that is easy to access in

applied to suspensions. Developing quantitative
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simulations and experimentally accessible information will likely
bridge the gap in existing measurement capabilities. Extending these
measurements and simulations to predictive constitutive models
that can be used to capture realistic process flows remains an
important challenge that must be overcome. Incorporating
advanced computational tools including neural networks [69]
and machine learning may make this process computationally
more efficient in the future.

Finally, in many emerging applications where carbon black
suspensions are found, their electrical properties are particularly
important. Rheo-electric measurements have emerged as a powerful
tool to not only quantify how the imposition of flow modifies the
electrical properties of the suspension, but also to characterize the
performance of flowing electrochemical systems that incorporate
carbon black as a conductive additive. Rheo-electric measurements
of carbon black suspensions were pioneered by Mewis et al. [70],
where they showed that the electrical conductivity is highly sensitive
to the shear intensity. Mewis et al. speculated that the imposition of
shear induced a complex microstructural change, which resulted in a
nontrivial correlation between the electric properties and the
rheology. They extended this work [71] to interrogate the
dynamics of carbon black in flow and found that the electrical
response originated from hopping conduction between carbon black
agglomerates. Amari et al. [72] similarly used rheo-electric
shear

measurements to study

suspensions in linseed oil and found a direct correlation between

thinning of carbon black

the conductivity of the suspension and its viscosity, implying a deep
microstructural connection between the two properties. More recent
work has focused on transient rheo-electric measurements. For
example, Helal et al. [24] studied the evolution conductivity of
carbon black gels in mineral oil cessation of shear at different ramp
rates. They found a direct correlation between the rate of cessation,
the resulting modulus, and the conductivity of the quiescent gel.
They speculated that slowing the ramp rate caused topological
rearrangement of the network structure affecting both the
mechanical strength of the gel and its ability to transport charge.
Recently, Liu et al. [73] demonstrated that the dielectric strength
obtained from simultaneous rheo-electric measurements can serve
as a proxy to the carbon black agglomerate size under flow. In
addition to probing the structure of carbon black, rheo-electric
measurements have also been successfully used to evaluate the
performance of flowing electrochemical systems [8, 23], enabling
the fast optimization of these systems by tuning the formulations
and operating conditions. Enhanced understanding of the
underlying physics of electron transport in these suspensions is
needed if rheo-electric properties are used to predict process-
property relationships in emerging applications. For example, in
the manufacturing of solid-state energy storage systems slurries
containing, carbon blacks are utilized. These energy storage systems,
such as lithium-ion battery [74] and fuel cell [75] electrodes, have a
process-dependent microstructure that needs to be sensitively
controlled to achieve high performance. Characterizing both the
rheological and electrical properties of electrode slurries may be used
to the predictions of processed electrodes’ microstructure and
electric properties. If done accurately, rheo-electric measurements
promise to accelerate the speed of optimizing the processing
conditions of these energy-storage systems from a fundamental
understanding of materials properties.
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5 Conclusion

In summary, the rheology of carbon black suspensions
continues to be a topic of intense interest as the behavior is both
complex and relevant to existing and emerging applications in
energy storage. From the past 3 decades, a clear picture has
emerged that links the underlying microstructure of these
suspensions to their macroscopic behavior in flow. In particular,
the suspension viscosity is extremely sensitive to the size and fractal
dimension of the agglomerates, which can change during rheological
tests. In all cases, the evolution of microstructure can be predicted
using the Mason number, a dimensionless balance between the
hydrodynamic forces acting to break the agglomerates apart and the
cohesive forces holding them together. At low shear intensity, the
Mason number predicts the formation of stable and unstable
vorticity-aligned structure, while at high shear intensity, carbon
black agglomerates undergo self-similar breakup and the Mason
number predicts the agglomerate size. There are further
opportunities to probe both
anisotropy of the agglomerates in flow, currently inaccessible to

for new experiments spatial
existing experiments. Simulations will be particularly relevant
therefore, in the near term to filling the gap left by experiments.
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