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ABSTRACT: A convenient method to prepare 3-aryl isoquinolines via a base-promoted tandem reaction is presented. Simply com-
bining commercially available 2-methyl-arylaldehydes, benzonitriles, NaN(SiMe3)2, and Cs2CO3 enabled the synthesis of a variety 
of isoquinolines (23 examples, up to 90% yield). Among the syntheses of isoquinolines, the transition metal-free method described 
here is straightforward, practical, and operationally simple. 

INTRODUCTION 
Isoquinolines are an important class of heterocycles found in 

numerous natural products1 and bioactive molecules with anti-
tumor,2 anti-inflammatory,3 antimalarial,4 and cardiovascular5 
properties. They are also valuable building blocks in advanced 
functional materials6 and used in enantioenriched ligands for 
asymmetric catalysis.7 Consequently, numerous synthetic strat-
egies have been devoted to the synthesis of these privileged het-
erocycles. Arguably, the most popular route for the synthesis of 
isoquinolines is the annulation of 2-alkynylbenzyl azides with 
transition metal catalysts, including Pd, Ag, Au, Co, Cu, Ni, 
etc.8 Recent years have also witnessed several transition metal-
catalyzed annulation reactions of 2-alkylnyl aromatic imines9 
and oximes10 as viable alternatives. Other methods such as C–
H functionalization,11 dehydrogenation of N-heterocycles,10a 
and tandem processes12 have also been reported. Despite great 
advances made in this area, challenging issues associated with 

catalyst toxicity,2 the requirement of complex functionalized 
substrates,13 and poor chemoselectivities plague some meth-
ods.14 The development of more efficient approaches for the 
synthesis of isoquinolines, especially starting from readily 
available substrates, remains desirable.   
Our team has a long-standing interest in the functionalization 

of benzylic carbanions toward the preparation of valuable het-
erocyclic compounds. This line of research employs cation-p 
interactions to aid in the deprotonation of the weakly acidic tol-
uene derivatives (pKa = 43 in DMSO). For the reversible depro-
tonation of toluene derivatives, we employ silyl amide bases, 
MN(SiMe3)2, in the presence of Cs+ salts. We hypothesize that 
under the reaction conditions, CsN(SiMe3)2 or related heterobi-
metallic bases form that are active in these processes. Some re-
cent examples of our approach include the one-pot aminoben-
zylation of aldehydes with toluene derivatives (Scheme 1a)15 
and a convergent synthesis of indoles from benzonitriles and 
fluorotoluenes (Scheme 1b).16 We also introduced a series of 
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tandem processes for the synthesis of more functionalized in-
doles,17 3,4-dihydroisoquinolones,18 2-azaaryl tetrahydroquino-
lines,19 and 2,5-disubstituted pyrroles20 involving the function-
alization of benzylic or propargylic C−H bonds under basic 
conditions (Scheme 1c). Other impressive examples on func-
tionalization of toluene derivatives were developed by Koba-
yashi and co-workers, who introduced an asymmetric addition 
of toluene-derived benzyl groups to imines.21 The groups of 
Guan22 and Gandhi23 have also introduced methods for the func-
tionalization of toluenes. Wang and Ma outlined the synthesis 
of isoquinolone derivatives from 2-methylaryl aldehydes and 
benzonitriles.24 
Based on these studies, we were interested in developing an 

approach to 3-arylisoquinolines.  Herein we report the efficient 
synthesis of 3-arylisoquinolines via tandem reaction of 2-me-
thyl-arylaldehydes and nitriles (Scheme 1d). Compared to the 
existing routes, this protocol is simple, environmentally 
friendly, and atom economical.  During the final stages of this 
work, a closely related study was published by the Wang group 
in this journal.25 

Scheme 1. Our Previous Work.  

 

RESULTS AND DISCUSSION 
As a starting point, we employed 2-methylbenzaldehyde 1a 

and benzonitrile 2a in CPME (cyclopentyl methyl ether) at 100 
oC. Based on our past studies, we employed MN(SiMe3)2 (M = 
Li, Na, K) with 1.0 equiv of CsF as additive.  LiN(SiMe3)2 
showed higher yield than KN(SiMe3)2 and NaN(SiMe3)2 (Table 
1, entries 1–3, 51% vs. 31–32% yield). Screening of the cesium 
salts indicated that Cs2CO3 was the best choice, giving isoquin-
oline product 3aa in 59% yield (Table 1, entry 5). CsTFA ex-
hibited inferior performance (Table 1, entry 4, 41% yield) and 
only 11% yield of the product was obtained without Cs+ 

additives (Table 1, entry 6). Solvent screening with DME, 1,4-
dioxane, toluene, and THF indicated that reactions in DME and 
1,4-dioxane exhibited similar yields (Table 1, entries 7–8, 57–
58%), while toluene and THF both led to the product in 44% 
yield (Table 1, entries 9–10). In contrast, the isoquinoline prod-
uct was not observed with other solvents, such as dichloro-
methane, DMSO, and DMF. These did not match the yield with 
CPME, which was used in the remainder of the study. Decreas-
ing the amount of Cs2CO3 was detrimental to the reaction with 
0.5 equiv. of Cs2CO3 providing 50% yield (Table 1, entry 11) 
and 0.3 equiv. of Cs2CO3 generating 18% yield (Table 1, entry 
12). Increasing the amount of benzonitrile from 1.0 to 1.5 equiv. 
was beneficial, improving the yield of 3aa from 59% to 80% 
(Table 1, entries 5, 13, and 14). Notably, high temperature was 
essential. The isoquinoline product was isolated in 71% yield at 
80 oC and 82% isolated yield at 120 oC. Overall, the optimized 
reaction conditions are those in entry 16 and were carried for-
ward to explore the substrate scope.  
Table 1. Annulation Reaction Optimizationa 

 
Entry Solvent M Additive 1a:2a Yieldb 

(%) 1 CPME K CsF 1.5:1 32 
2 CPME Na CsF 1.5:1 31 
3 CPME Li CsF 1.5:1 51 
4 CPME Li CsTFA 1.5:1 41 
5 CPME Li Cs2CO3 1.5:1 59 
6 CPME Li − 1.5:1 11 
7 DME Li Cs2CO3 1.5:1 57 
8 1,4-Dioxane Li Cs2CO3 1.5:1 58 
9 Toluene Li Cs2CO3 1.5:1 44 
10 THF Li Cs2CO3 1.5:1 44 
11c CPME Li Cs2CO3 1.5:1 50 
12d CPME Li Cs2CO3 1.5:1 18 
13 CPME Li Cs2CO3 1:2 65 
14 CPME Li Cs2CO3 1:3 80 
15e CPME Li Cs2CO3 1:3 71 
16f CPME Li Cs2CO3 1:3 82 
aReactions were conducted with 1a (0.1 mmol), 2a (0.15 
mmol), base (0.3 mmol), additive (0.1 mmol), solvent (1 mL), 
100 oC, 12 h. bIsolated yields. c0.05 mmol of Cs2CO3. d0.03 
mmol of Cs2CO3. e80 oC. f120 oC. 

The substrate scope of arylnitriles was next examined with 2-
methylbenzaldehyde 1a under optimized conditions (Table 2). 
4-tert-Butylbenzonitrile and 4-phenylbenzonitrile produced 
3ab and 3ac in 70% and 69% yield, respectively. Benzonitriles 
bearing electronically diverse substituents, including electron-
donating (4-OMe, 3ad; 4-OPh, 3ae; 4-NMe2, 3af; 4-SMe, 3ag) 
and electronegative or electron-withdrawing groups (4-F, 3ah; 
4-Cl, 3ai; 4-CF3, 3aj) gave the annulation products. Substrates 
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with electronegative substituents were slightly less effective 
(52–67% yields for 3ah–3aj vs. 65–85% yields for 3ad–3ag). 
In addition, sterically hindered arylnitriles bearing electroni-
cally-diverse substituents at the ortho-positions (2-Ph, 2-Cl, 2-
OMe) were all suitable in this transformation, providing the cor-
responding products (3ak–3am) in 46–80% yields. A benzo-
nitrile possessing a 4-morpholino group furnished the isoquin-
oline product 3an in 46% yield. 4-Cyanopyridine was an appro-
priate substrate, affording the desired product 3ao in 65% yield. 
 

Table 2. Scope of Arylnitriles in the Synthesis of Isoquino-
lines a,b 

 
aReaction conditions: 1a (0.1 mmol), arylnitrile (0.3 mmol), 
LiN(SiMe3)2 (1.0 mol/L in THF, 0.3 mL, 0.3 mmol), Cs2CO3 
(0.1 mmol), CPME (1.0 mL), 120 oC, 12 h. bIsolated yield. cRe-
action conducted with 6 equiv of arylnitrile (0.6 mmol). 

  The scope of arylaldehydes was next explored with benzo-
nitrile 2a (Table 3). 2,5-Dimethylbenzaldehyde reacted with 
benzonitrile to give the isoquinoline products 3ba in 90% yield. 
For arylaldehydes bearing electron-donating substituents, 4-
methoxy-2-methylbenzaldehyde showed better performance 
than 5-methoxy-2-methylbenzaldehyde (86% yield, 3ca vs. 
54% yield, 3da). This may be due to the electron-donating na-
ture of the para-methoxy group, which will decrease the acidity 
of the methyl group. Substrates possessing fluoro groups, such 
as 4-fluoro-2-methylbenzaldehyde and 5-fluoro-2-methylben-
zaldehyde, showed lower conversions, affording the products 
3ea and 3fa in 40% and 36% yields, respectively. A possible 
side reaction with these aryl fluorides is via elimination to gen-
erate benzynes, which decompose under the reaction condi-
tions. Interestingly, 4-hydroxy-2-methylbenzaldehyde readily 

reacted with benzonitrile to furnish the annulation product 3ga 
in 90% yield. The sterically hindered 2-methylbiphenyl-3-
carbaldehyde provided the product 3ha in 61% yield. To illus-
trate the scalability of this method, we conducted the reaction 
of 4-hydroxy-2-methylbenzaldehyde (1g) and benzonitrile (2a) 
on a 8 mmol scale. The cyclization product 3ga was isolated in 
69% yield (1.22 g). Use of 4 and 5 equiv of LiN(SiMe3)2 did not 
improve the yield. 
 

Table 3. Scope of 2-methyl-arylaldehydes a,b 

 
aReaction conditions: 2-methyl-arylaldehyde (0.1 mmol), 2a 
(0.3 mmol), LiN(SiMe3)2 (1.0 mol/L in THF, 0.3 mL, 0.3 
mmol), Cs2CO3 (0.1 mmol), CPME (1.0 mL), 120 oC, 12 h. bI-
solated yield. cReaction conducted with 0.5 equiv of CsTFA 
(0.05 mmol). dReaction conducted on 8 mmol scale. 

A proposed reaction pathway is shown in Scheme 2. The re-
action is initiated with the reversible deprotonation of 2-
methylbenzaldehyde. Next, addition of the resulting benzyl an-
ion to the nitrile generates a metalated imine. Subsequent attack 
of the metalated imine on the aldehyde carbonyl leads to a cy-
clized intermediate. Elimination and aromatization is envi-
sioned to be initiated by transfer of a silyl group from the con-
jugate acid of the base to the alkoxy group of the tetrahedral 
intermediate. Finally, MN(SiMe3)2 (M = Li or Cs) promoted 
elimination of –OSiMe3 furnishes the 3-aryl isoquinoline prod-
uct. 
Scheme 2. Possible Reaction Path. 

 



 

 

CONCLUSION 
In conclusion, an efficient, transition metal-free method for 

the synthesis of 3-aryl isoquinolines is introduced. Benefits of 
this method include readily accessible starting materials and C–
C and C–N bond-formations in a simple procedure. Using this 
method a variety of 3-aryl isoquinoline derivatives were gener-
ated with 36–90% yields. Considering 3-aryl isoquinolines are 
valuable molecular scaffolds, which are common in natural 
products and pharmaceuticals, we envision that this protocol 
will be of interest in medicinal chemistry.  
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