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ABSTRACT: A convenient method to prepare 3-aryl isoquinolines via a base-promoted tandem reaction is presented. Simply com-
bining commercially available 2-methyl-arylaldehydes, benzonitriles, NaN(SiMe3),, and Cs,COs enabled the synthesis of a variety
of isoquinolines (23 examples, up to 90% yield). Among the syntheses of isoquinolines, the transition metal-free method described

here is straightforward, practical, and operationally simple.

INTRODUCTION

Isoquinolines are an important class of heterocycles found in
numerous natural products' and bioactive molecules with anti-
tumor,? anti-inflammatory,® antimalarial,* and cardiovascular®
properties. They are also valuable building blocks in advanced
functional materials® and used in enantioenriched ligands for
asymmetric catalysis.” Consequently, numerous synthetic strat-
egies have been devoted to the synthesis of these privileged het-
erocycles. Arguably, the most popular route for the synthesis of
isoquinolines is the annulation of 2-alkynylbenzyl azides with
transition metal catalysts, including Pd, Ag, Au, Co, Cu, Ni,
etc.® Recent years have also witnessed several transition metal-
catalyzed annulation reactions of 2-alkylnyl aromatic imines’
and oximes!? as viable alternatives. Other methods such as C—
H functionalization,'" dehydrogenation of N-heterocycles,'®
and tandem processes'? have also been reported. Despite great
advances made in this area, challenging issues associated with

catalyst toxicity,” the requirement of complex functionalized
substrates,"? and poor chemoselectivities plague some meth-
ods."* The development of more efficient approaches for the
synthesis of isoquinolines, especially starting from readily
available substrates, remains desirable.

Our team has a long-standing interest in the functionalization
of benzylic carbanions toward the preparation of valuable het-
erocyclic compounds. This line of research employs cation-n
interactions to aid in the deprotonation of the weakly acidic tol-
uene derivatives (pK, =43 in DMSO). For the reversible depro-
tonation of toluene derivatives, we employ silyl amide bases,
MN(SiMes),, in the presence of Cs" salts. We hypothesize that
under the reaction conditions, CsN(SiMes), or related heterobi-
metallic bases form that are active in these processes. Some re-
cent examples of our approach include the one-pot aminoben-
zylation of aldehydes with toluene derivatives (Scheme 1a)"*
and a convergent synthesis of indoles from benzonitriles and
fluorotoluenes (Scheme 1b).!'® We also introduced a series of



tandem processes for the synthesis of more functionalized in-
doles,'” 3,4-dihydroisoquinolones,'® 2-azaaryl tetrahydroquino-
lines," and 2,5-disubstituted pyrroles® involving the function-
alization of benzylic or propargylic C—H bonds under basic
conditions (Scheme 1c). Other impressive examples on func-
tionalization of toluene derivatives were developed by Koba-
yashi and co-workers, who introduced an asymmetric addition
of toluene-derived benzyl groups to imines.?! The groups of
Guan?? and Gandhi* have also introduced methods for the func-
tionalization of toluenes. Wang and Ma outlined the synthesis
of isoquinolone derivatives from 2-methylaryl aldehydes and
benzonitriles.?*

Based on these studies, we were interested in developing an
approach to 3-arylisoquinolines. Herein we report the efficient
synthesis of 3-arylisoquinolines via tandem reaction of 2-me-
thyl-arylaldehydes and nitriles (Scheme 1d). Compared to the
existing routes, this protocol is simple, environmentally
friendly, and atom economical. During the final stages of this
work, a closely related study was published by the Wang group

in this journal >

Scheme 1. Our Previous Work.
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RESULTS AND DISCUSSION

As a starting point, we employed 2-methylbenzaldehyde 1a
and benzonitrile 2a in CPME (cyclopentyl methyl ether) at 100
°C. Based on our past studies, we employed MN(SiMe3), (M =
Li, Na, K) with 1.0 equiv of CsF as additive. LiN(SiMes),
showed higher yield than KN(SiMes), and NaN(SiMe;), (Table
1, entries 1-3, 51% vs. 31-32% yield). Screening of the cesium
salts indicated that Cs,COs was the best choice, giving isoquin-
oline product 3aa in 59% yield (Table 1, entry 5). CsTFA ex-
hibited inferior performance (Table 1, entry 4, 41% yield) and
only 11% yield of the product was obtained without Cs"

additives (Table 1, entry 6). Solvent screening with DME, 1,4-
dioxane, toluene, and THF indicated that reactions in DME and
1,4-dioxane exhibited similar yields (Table 1, entries 7-8, 57—
58%), while toluene and THF both led to the product in 44%
yield (Table 1, entries 9—10). In contrast, the isoquinoline prod-
uct was not observed with other solvents, such as dichloro-
methane, DMSO, and DMF. These did not match the yield with
CPME, which was used in the remainder of the study. Decreas-
ing the amount of Cs,CO; was detrimental to the reaction with
0.5 equiv. of Cs,COj; providing 50% yield (Table 1, entry 11)
and 0.3 equiv. of Cs,CO; generating 18% yield (Table 1, entry
12). Increasing the amount of benzonitrile from 1.0 to 1.5 equiv.
was beneficial, improving the yield of 3aa from 59% to 80%
(Table 1, entries 5, 13, and 14). Notably, high temperature was
essential. The isoquinoline product was isolated in 71% yield at
80 °C and 82% isolated yield at 120 °C. Overall, the optimized
reaction conditions are those in entry 16 and were carried for-
ward to explore the substrate scope.

Table 1. Annulation Reaction Optimization®

0 MN(SiMe3),
©iJ\H s Py _ Additive @u\
solvent, T 7 Ph
1a 2a 3aa
Entry Solvent M Additive la:2a  Yield®
1 CPME K CsF 1.5:1 32
2 CPME Na CsF 1.5:1 31
3 CPME Li CsF 1.5:1 51
4 CPME Li CsTFA 1.5:1 41
5 CPME Li Cs,CO3 1.5:1 59
6 CPME Li - 1.5:1 11
7 DME Li Cs,CO3 1.5:1 57
8 1,4-Dioxane Li Cs2COs3 1.5:1 58
9 Toluene Li Cs2CO3 1.5:1 44
10 THF Li Cs,CO3 1.5:1 44
11¢ CPME Li Cs2CO3 1.5:1 50
124 CPME Li Cs,CO3 1.5:1 18
13 CPME Li Cs2CO3 1:2 65
14 CPME Li Cs2CO3 1:3 80
15¢ CPME Li Cs2CO3 1:3 71
16° CPME Li Cs2CO3 1:3 82

“Reactions were conducted with 1a (0.1 mmol), 2a (0.15
mmol), base (0.3 mmol), additive (0.1 mmol), solvent (1 mL),
100 °C, 12 h. ’Isolated yields. “0.05 mmol of Cs,COs. %0.03
mmol of Cs,COs. “80 °C. /120 °C.

The substrate scope of arylnitriles was next examined with 2-
methylbenzaldehyde 1a under optimized conditions (Table 2).
4-tert-Butylbenzonitrile and 4-phenylbenzonitrile produced
3ab and 3ac in 70% and 69% yield, respectively. Benzonitriles
bearing electronically diverse substituents, including electron-
donating (4-OMe, 3ad; 4-OPh, 3ae; 4-NMe,, 3af; 4-SMe, 3ag)
and electronegative or electron-withdrawing groups (4-F, 3ah;
4-Cl, 3ai; 4-CF3, 3aj) gave the annulation products. Substrates



with electronegative substituents were slightly less effective
(52-67% yields for 3ah-3aj vs. 65-85% yields for 3ad—3ag).
In addition, sterically hindered arylnitriles bearing electroni-
cally-diverse substituents at the ortho-positions (2-Ph, 2-Cl, 2-
OMe) were all suitable in this transformation, providing the cor-
responding products (3ak—-3am) in 46-80% yields. A benzo-
nitrile possessing a 4-morpholino group furnished the isoquin-
oline product 3an in 46% yield. 4-Cyanopyridine was an appro-
priate substrate, affording the desired product 3ao in 65% yield.

Table 2. Scope of Arylnitriles in the Synthesis of Isoquino-

lines
0 3 equiv LiIN(SiMes),
H o+ Are=N 1 equiv 0520?3 @l\
CPME, 120 °C Ar
2a-20 3aa-3ao
Ph

3aa 82% 3ab 70% 3ac 69%

~N ~N NN

7 7

! OMe OPh N(Me),

3ad 79% 3ae 65% 3af 79%°

SN N N

g O
3ag 85% SMe 3ah 529 3ai 61% cl

N N SN

g O

CF,4
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3am 60%° 3an 46% 3ao0 65%

“Reaction conditions: 1a (0.1 mmol), arylnitrile (0.3 mmol),
LiN(SiMes); (1.0 mol/L in THF, 0.3 mL, 0.3 mmol), Cs,CO;
(0.1 mmol), CPME (1.0 mL), 120 °C, 12 h. “Isolated yield. ‘Re-
action conducted with 6 equiv of arylnitrile (0.6 mmol).

The scope of arylaldehydes was next explored with benzo-
nitrile 2a (Table 3). 2,5-Dimethylbenzaldehyde reacted with
benzonitrile to give the isoquinoline products 3ba in 90% yield.
For arylaldehydes bearing electron-donating substituents, 4-
methoxy-2-methylbenzaldehyde showed better performance
than 5-methoxy-2-methylbenzaldehyde (86% yield, 3ca vs.
54% yield, 3da). This may be due to the electron-donating na-
ture of the para-methoxy group, which will decrease the acidity
of the methyl group. Substrates possessing fluoro groups, such
as 4-fluoro-2-methylbenzaldehyde and 5-fluoro-2-methylben-
zaldehyde, showed lower conversions, affording the products
3ea and 3fa in 40% and 36% yields, respectively. A possible
side reaction with these aryl fluorides is via elimination to gen-
erate benzynes, which decompose under the reaction condi-
tions. Interestingly, 4-hydroxy-2-methylbenzaldehyde readily

reacted with benzonitrile to furnish the annulation product 3ga
in 90% yield. The sterically hindered 2-methylbiphenyl-3-
carbaldehyde provided the product 3ha in 61% yield. To illus-
trate the scalability of this method, we conducted the reaction
of 4-hydroxy-2-methylbenzaldehyde (1g) and benzonitrile (2a)
on a 8§ mmol scale. The cyclization product 3ga was isolated in
69% yield (1.22 g). Use of 4 and 5 equiv of LiN(SiMe?), did not
improve the yield.

Table 3. Scope of 2-methyl-arylaldehydes “*

o 3 equiv LiN(SiMe3),
i N H 4+ Ph—=N 1 equiv Cs,CO4 71 TSN
o o >
T CPME, 120 °C = Ar
1a-1h 2a 3aa-3ha
SCUNNSCIESE
P> >
O ® a
3ba 90% 3ca 86% 3da 54%

O i J
/ 2 HO o

3ea 40%° 3fa 36% 3ga 90% (69%

N
o
L
3ha 90%
“Reaction conditions: 2-methyl-arylaldehyde (0.1 mmol), 2a
(0.3 mmol), LiN(SiMes), (1.0 mol/L in THF, 0.3 mL, 0.3
mmol), Cs,COs (0.1 mmol), CPME (1.0 mL), 120 °C, 12 h. *I-

solated yield. “Reaction conducted with 0.5 equiv of CsTFA
(0.05 mmol). “Reaction conducted on 8 mmol scale.

A proposed reaction pathway is shown in Scheme 2. The re-
action is initiated with the reversible deprotonation of 2-
methylbenzaldehyde. Next, addition of the resulting benzyl an-
ion to the nitrile generates a metalated imine. Subsequent attack
of the metalated imine on the aldehyde carbonyl leads to a cy-
clized intermediate. Elimination and aromatization is envi-
sioned to be initiated by transfer of a silyl group from the con-
jugate acid of the base to the alkoxy group of the tetrahedral
intermediate. Finally, MN(SiMes), (M = Li or Cs) promoted
elimination of —OSiMe; furnishes the 3-aryl isoquinoline prod-
uct.

Scheme 2. Possible Reaction Path.
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CONCLUSION

In conclusion, an efficient, transition metal-free method for
the synthesis of 3-aryl isoquinolines is introduced. Benefits of
this method include readily accessible starting materials and C—
C and C-N bond-formations in a simple procedure. Using this
method a variety of 3-aryl isoquinoline derivatives were gener-
ated with 36-90% yields. Considering 3-aryl isoquinolines are
valuable molecular scaffolds, which are common in natural
products and pharmaceuticals, we envision that this protocol
will be of interest in medicinal chemistry.

m EXPERIMENTAL SECTION
See the Supporting Information for the Experimental Section.
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