

Base-promoted synthesis of isoquinolines through a tandem reaction of 2-methyl-arylaldehydes and nitriles

Sujuan Shuai,^{1,3,4,‡} Jianyou Mao,^{5,‡} Fan Zhou,^{1,3,4,‡} Qifeng Yan,^{1,3} Lingfeng Chen,¹ Jie Li,^{*,1,3} Patrick J. Walsh,^{*,2} and Guang Liang^{*,1}

¹School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China

²Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA

³Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China

⁴College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China

⁵Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China

Supporting Information Placeholder

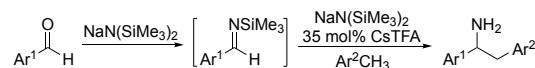
■ C-C and C-N bond formation ■ transition metal-free
■ operationally simple ■ tandem reaction

ABSTRACT: A convenient method to prepare 3-aryl isoquinolines *via* a base-promoted tandem reaction is presented. Simply combining commercially available 2-methyl-arylaldehydes, benzonitriles, $\text{NaN}(\text{SiMe}_3)_2$, and Cs_2CO_3 enabled the synthesis of a variety of isoquinolines (23 examples, up to 90% yield). Among the syntheses of isoquinolines, the transition metal-free method described here is straightforward, practical, and operationally simple.

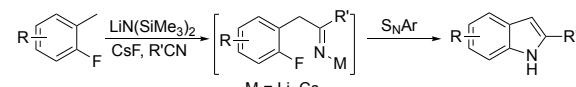
INTRODUCTION

Isoquinolines are an important class of heterocycles found in numerous natural products¹ and bioactive molecules with anti-tumor,² anti-inflammatory,³ antimarial,⁴ and cardiovascular⁵ properties. They are also valuable building blocks in advanced functional materials⁶ and used in enantioenriched ligands for asymmetric catalysis.⁷ Consequently, numerous synthetic strategies have been devoted to the synthesis of these privileged heterocycles. Arguably, the most popular route for the synthesis of isoquinolines is the annulation of 2-alkynylbenzyl azides with transition metal catalysts, including Pd, Ag, Au, Co, Cu, Ni, etc.⁸ Recent years have also witnessed several transition metal-catalyzed annulation reactions of 2-alkynyl aromatic imines⁹ and oximes¹⁰ as viable alternatives. Other methods such as C–H functionalization,¹¹ dehydrogenation of *N*-heterocycles,^{10a} and tandem processes¹² have also been reported. Despite great advances made in this area, challenging issues associated with

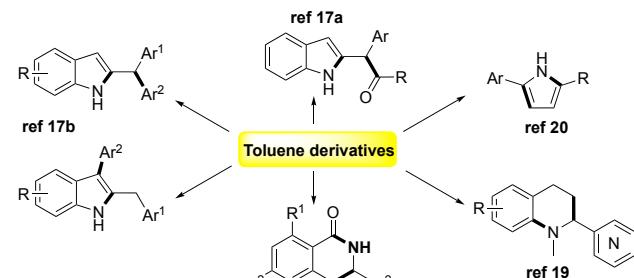
catalyst toxicity,² the requirement of complex functionalized substrates,¹³ and poor chemoselectivities plague some methods.¹⁴ The development of more efficient approaches for the synthesis of isoquinolines, especially starting from readily available substrates, remains desirable.


Our team has a long-standing interest in the functionalization of benzylic carbanions toward the preparation of valuable heterocyclic compounds. This line of research employs cation- π interactions to aid in the deprotonation of the weakly acidic toluene derivatives ($\text{p}K_a = 43$ in DMSO). For the reversible deprotonation of toluene derivatives, we employ silyl amide bases, $\text{MN}(\text{SiMe}_3)_2$, in the presence of Cs^+ salts. We hypothesize that under the reaction conditions, $\text{CsN}(\text{SiMe}_3)_2$ or related heterobimetallic bases form that are active in these processes. Some recent examples of our approach include the one-pot aminobenzylation of aldehydes with toluene derivatives (Scheme 1a)¹⁵ and a convergent synthesis of indoles from benzonitriles and fluorotoluenes (Scheme 1b).¹⁶ We also introduced a series of

tandem processes for the synthesis of more functionalized indoles,¹⁷ 3,4-dihydroisoquinolones,¹⁸ 2-azaaryl tetrahydroquinolines,¹⁹ and 2,5-disubstituted pyrroles²⁰ involving the functionalization of benzylic or propargylic C–H bonds under basic conditions (Scheme 1c). Other impressive examples on functionalization of toluene derivatives were developed by Kobayashi and co-workers, who introduced an asymmetric addition of toluene-derived benzyl groups to imines.²¹ The groups of Guan²² and Gandhi²³ have also introduced methods for the functionalization of toluenes. Wang and Ma outlined the synthesis of isoquinolone derivatives from 2-methylaryl aldehydes and benzonitriles.²⁴


Based on these studies, we were interested in developing an approach to 3-arylisouinolines. Herein we report the efficient synthesis of 3-arylisouinolines *via* tandem reaction of 2-methyl-arylaldehydes and nitriles (Scheme 1d). Compared to the existing routes, this protocol is simple, environmentally friendly, and atom economical. During the final stages of this work, a closely related study was published by the Wang group in this journal.²⁵

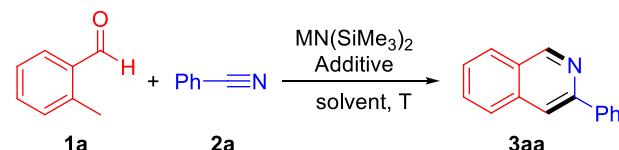
Scheme 1. Our Previous Work.


(a) One-pot aminobenzylation of aldehydes


(b) One-pot synthesis of indoles

(c) Our effort to prepare heterocyclic skeleton from toluene derivative carbanions

(d) This work


■ C–C and C–N bond formation ■ transition metal-free
■ operationally simple ■ tandem reaction

RESULTS AND DISCUSSION

As a starting point, we employed 2-methylbenzaldehyde **1a** and benzonitrile **2a** in CPME (cyclopentyl methyl ether) at 100 °C. Based on our past studies, we employed $MN(SiMe_3)_2$ ($M = Li, Na, K$) with 1.0 equiv of CsF as additive. $LiN(SiMe_3)_2$ showed higher yield than $KN(SiMe_3)_2$ and $NaN(SiMe_3)_2$ (Table 1, entries 1–3, 51% vs. 31–32% yield). Screening of the cesium salts indicated that Cs_2CO_3 was the best choice, giving isoquinoline product **3aa** in 59% yield (Table 1, entry 5). CsTFA exhibited inferior performance (Table 1, entry 4, 41% yield) and only 11% yield of the product was obtained without Cs^+

additives (Table 1, entry 6). Solvent screening with DME, 1,4-dioxane, toluene, and THF indicated that reactions in DME and 1,4-dioxane exhibited similar yields (Table 1, entries 7–8, 57–58%), while toluene and THF both led to the product in 44% yield (Table 1, entries 9–10). In contrast, the isoquinoline product was not observed with other solvents, such as dichloromethane, DMSO, and DMF. These did not match the yield with CPME, which was used in the remainder of the study. Decreasing the amount of Cs_2CO_3 was detrimental to the reaction with 0.5 equiv. of Cs_2CO_3 providing 50% yield (Table 1, entry 11) and 0.3 equiv. of Cs_2CO_3 generating 18% yield (Table 1, entry 12). Increasing the amount of benzonitrile from 1.0 to 1.5 equiv. was beneficial, improving the yield of **3aa** from 59% to 80% (Table 1, entries 5, 13, and 14). Notably, high temperature was essential. The isoquinoline product was isolated in 71% yield at 80 °C and 82% isolated yield at 120 °C. Overall, the optimized reaction conditions are those in entry 16 and were carried forward to explore the substrate scope.

Table 1. Annulation Reaction Optimization^a

Entry	Solvent	M	Additive	1a:2a	Yield ^b (%)
1	CPME	K	CsF	1.5:1	32
2	CPME	Na	CsF	1.5:1	31
3	CPME	Li	CsF	1.5:1	51
4	CPME	Li	CsTFA	1.5:1	41
5	CPME	Li	Cs_2CO_3	1.5:1	59
6	CPME	Li	–	1.5:1	11
7	DME	Li	Cs_2CO_3	1.5:1	57
8	1,4-Dioxane	Li	Cs_2CO_3	1.5:1	58
9	Toluene	Li	Cs_2CO_3	1.5:1	44
10	THF	Li	Cs_2CO_3	1.5:1	44
11 ^c	CPME	Li	Cs_2CO_3	1.5:1	50
12 ^d	CPME	Li	Cs_2CO_3	1.5:1	18
13	CPME	Li	Cs_2CO_3	1:2	65
14	CPME	Li	Cs_2CO_3	1:3	80
15 ^e	CPME	Li	Cs_2CO_3	1:3	71
16 ^f	CPME	Li	Cs_2CO_3	1:3	82

^aReactions were conducted with **1a** (0.1 mmol), **2a** (0.15 mmol), base (0.3 mmol), additive (0.1 mmol), solvent (1 mL), 100 °C, 12 h. ^bIsolated yields. ^c0.05 mmol of Cs_2CO_3 . ^d0.03 mmol of Cs_2CO_3 . ^e80 °C. ^f120 °C.

The substrate scope of arylnitriles was next examined with 2-methylbenzaldehyde **1a** under optimized conditions (Table 2). 4-*tert*-Butylbenzonitrile and 4-phenylbenzonitrile produced **3ab** and **3ac** in 70% and 69% yield, respectively. Benzonitriles bearing electronically diverse substituents, including electron-donating (4-OMe, **3ad**; 4-OPh, **3ae**; 4-NMe₂, **3af**; 4-SMe, **3ag**) and electronegative or electron-withdrawing groups (4-F, **3ah**; 4-Cl, **3ai**; 4-CF₃, **3aj**) gave the annulation products. Substrates

with electronegative substituents were slightly less effective (52–67% yields for **3ah**–**3aj** vs. 65–85% yields for **3ad**–**3ag**). In addition, sterically hindered arylnitriles bearing electronically-diverse substituents at the *ortho*-positions (2-Ph, 2-Cl, 2-OMe) were all suitable in this transformation, providing the corresponding products (**3ak**–**3am**) in 46–80% yields. A benzonitrile possessing a 4-morpholino group furnished the isoquinoline product **3an** in 46% yield. 4-Cyanopyridine was an appropriate substrate, affording the desired product **3ao** in 65% yield.

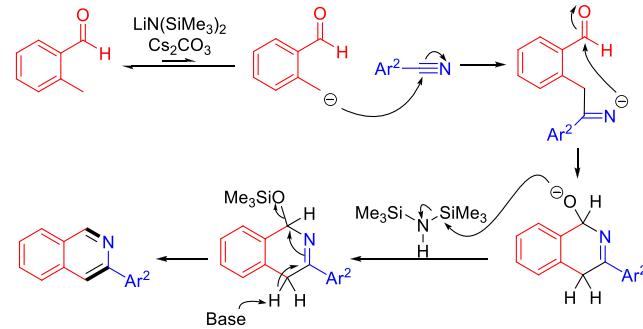
Table 2. Scope of Arylnitriles in the Synthesis of Isoquinolines ^{a,b}

1a	2a-2o	3aa-3ao
	82%	
	70%	
	69%	
	79%	
	65%	
	79% ^c	
	85%	
	52%	
	61%	
	67%	
	80%	
	46%	
	60% ^c	
	46%	
	65%	

^aReaction conditions: **1a** (0.1 mmol), arylnitrile (0.3 mmol), LiN(SiMe₃)₂ (1.0 mol/L in THF, 0.3 mL, 0.3 mmol), Cs₂CO₃ (0.1 mmol), CPME (1.0 mL), 120 °C, 12 h. ^bIsolated yield. ^cReaction conducted with 6 equiv of arylnitrile (0.6 mmol).

The scope of arylaldehydes was next explored with benzonitrile **2a** (Table 3). 2,5-Dimethylbenzaldehyde reacted with benzonitrile to give the isoquinoline products **3ba** in 90% yield. For arylaldehydes bearing electron-donating substituents, 4-methoxy-2-methylbenzaldehyde showed better performance than 5-methoxy-2-methylbenzaldehyde (86% yield, **3ca** vs. 54% yield, **3da**). This may be due to the electron-donating nature of the para-methoxy group, which will decrease the acidity of the methyl group. Substrates possessing fluoro groups, such as 4-fluoro-2-methylbenzaldehyde and 5-fluoro-2-methylbenzaldehyde, showed lower conversions, affording the products **3ea** and **3fa** in 40% and 36% yields, respectively. A possible side reaction with these aryl fluorides is *via* elimination to generate benzenes, which decompose under the reaction conditions. Interestingly, 4-hydroxy-2-methylbenzaldehyde readily

reacted with benzonitrile to furnish the annulation product **3ga** in 90% yield. The sterically hindered 2-methylbiphenyl-3-carbaldehyde provided the product **3ha** in 61% yield. To illustrate the scalability of this method, we conducted the reaction of 4-hydroxy-2-methylbenzaldehyde (**1g**) and benzonitrile (**2a**) on a 8 mmol scale. The cyclization product **3ga** was isolated in 69% yield (1.22 g). Use of 4 and 5 equiv of LiN(SiMe³)₂ did not improve the yield.


Table 3. Scope of 2-methyl-arylaldehydes ^{a,b}

	90%	
	86%	
	54%	
	40% ^c	
	36%	
	90% (69%) ^d	
	90%	

^aReaction conditions: 2-methyl-arylaldehyde (0.1 mmol), **2a** (0.3 mmol), LiN(SiMe₃)₂ (1.0 mol/L in THF, 0.3 mL, 0.3 mmol), Cs₂CO₃ (0.1 mmol), CPME (1.0 mL), 120 °C, 12 h. ^bIsolated yield. ^cReaction conducted with 0.5 equiv of CsTFA (0.05 mmol). ^dReaction conducted on 8 mmol scale.

A proposed reaction pathway is shown in Scheme 2. The reaction is initiated with the reversible deprotonation of 2-methylbenzaldehyde. Next, addition of the resulting benzyl anion to the nitrile generates a metallated imine. Subsequent attack of the metallated imine on the aldehyde carbonyl leads to a cyclized intermediate. Elimination and aromatization is envisioned to be initiated by transfer of a silyl group from the conjugate acid of the base to the alkoxy group of the tetrahedral intermediate. Finally, MN(SiMe₃)₂ (M = Li or Cs) promoted elimination of $-\text{OSiMe}_3$ furnishes the 3-aryl isoquinoline product.

Scheme 2. Possible Reaction Path.

CONCLUSION

In conclusion, an efficient, transition metal-free method for the synthesis of 3-aryl isoquinolines is introduced. Benefits of this method include readily accessible starting materials and C–C and C–N bond-formations in a simple procedure. Using this method a variety of 3-aryl isoquinoline derivatives were generated with 36–90% yields. Considering 3-aryl isoquinolines are valuable molecular scaffolds, which are common in natural products and pharmaceuticals, we envision that this protocol will be of interest in medicinal chemistry.

■ EXPERIMENTAL SECTION

See the Supporting Information for the Experimental Section.

■ ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published and online Supporting Information

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental details, additional results, ^1H NMR, $^{13}\text{C}\{^1\text{H}\}$ NMR, and MS (HRMS) data ([PDF](#)). FAIR Data is available as Supporting Information for Publication and includes the primary NMR FID files for compounds **3aa-3ah**.

AUTHOR INFORMATION

Corresponding Authors

Jie Li – *School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; orcid.org/0000-0002-4726-9838; Email: lijie@hzcu.edu.cn*

Patrick J. Walsh – *Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States; orcid.org/0000-0001-8392-4150; Email: pwalsh@sas.upenn.edu*

Guang Liang – *School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, People's Republic of China; orcid.org/0000-0002-8278-849X; Email: cuiliang1234@163.com*

Authors

Sujuan Shuai – *School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, People's Republic of China; orcid.org/0000-0002-8278-849X*

Jianyou Mao – *Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China*

Fan Zhou – *School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, People's Republic of China*

Qifeng Yan – *School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, People's Republic of China*

Lingfeng Chen – *School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, People's Republic of China*

Author Contributions

The manuscript was written through contributions of all authors. / All authors have given approval to the final version of the manuscript. / \ddagger SS and JM contributed equally.

ACKNOWLEDGMENT

L.J. thanks Zhejiang Provincial Natural Science Foundation of China (LY20C020003). P.J.W. thanks the US National Science Foundation (CHE-2154593).

REFERENCES

- 1.(a)K. W. Bentley, β -Phenylethylamines and the Isoquinoline Alkaloids, *Nat. Prod. Rep.*, 1992, **9**, 365-391; (b)K. W. Bentley, β -Phenylethylamines and the Isoquinoline Alkaloids, *Nat. Prod. Rep.*, 2006, **23**, 444-463; (c)W. H. Chueh and J. Y. Lin, Berberine, an Isoquinoline Alkaloid in Herbal Plants, Protects Pancreatic Islets and Serum Lipids in Nonobese Diabetic Mice, *J. Agr. Food Chem.*, 2011, **59**, 8021-8027; (d)M. Dastmalchi, M. R. Park, J. S. Morris and P. Facchini, Family Portraits: the Enzymes Behind Benzylisoquinoline Alkaloid Diversity, *Phytochem. Rev.*, 2018, **17**, 249-277; (e)A. Diamond and I. Desgagné-Penix, Metabolic Engineering for the Production of Plant Isoquinoline Alkaloids, *Plant Biotechnol. J.*, 2016, **14**, 1319-1328; (f)A. Y. Khan and G. Suresh Kumar, Natural Isoquinoline Alkaloids: Binding Aspects to Functional Proteins, Serum Albumins, Hemoglobin, and Lysozyme, *Biophys. Rev.*, 2015, **7**, 407-420; (g)Z. X. Qing, J. L. Huang, X. Y. Yang, J. H. Liu, H. L. Cao, F. Xiang, P. Cheng and J. G. Zeng, Anticancer and Reversing Multidrug Resistance Activities of Natural Isoquinoline Alkaloids and their Structure-activity Relationship, *Curr. Med. Chem.*, 2018, **25**, 5088-5114.
- 2.M. C. Sharma, S. Sharma, P. Sharma and A. Kumar, Comparative QSAR and Pharmacophore Modeling of Substituted 2-[2'-(Dimethylamino) Ethyl]-1,2-Dihydro-3H-Dibenzo[*d,h*]Isoquinoline-1,3-Diones Derivatives as Anti-tumor Activity, *Med. Chem. Res.*, 2013, **22**, 5772-5788.
- 3.T. Y. Jin, S. Q. Li, C. R. Jin, H. Shan, R. M. Wang, M. X. Zhou, A. L. Li, L. Y. Li, S. Y. Hu, T. Shen and L. Xiang, Catecholic Isoquinolines from *Portulaca Oleracea* and Their Anti-inflammatory and β_2 -Adrenergic Receptor Agonist Activity, *J. Nat. Prod.*, 2018, **81**, 768-777.
- 4.Y. Nishiyama, K. Iwasa, S. Okada, S. Takeuchi, M. Moriyasu, M. Kamigauchi, J. Koyama, A. Takeuchi, H. Tokuda, H. S. Kim, Y. Watanay, K. Takeda, Y. N. Liu, P. C. Wu, K. F. Bastow, T. Akiyama and K. H. Lee, Geranyl Derivatives of Isoquinoline Alkaloids Show Increased Biological Activities, *Heterocycles*, 2010, **81**, 1193-1229.
- 5.Y. Zhang, M. Li, X. Li, T. Zhang, M. Qin and L. Ren, Isoquinoline Alkaloids and Indole Alkaloids Attenuate Aortic Atherosclerosis in Apolipoprotein E Deficient Mice: A Systematic Review and Meta-Analysis, *Front. Pharmacol.*, 2018, **9**, 602.
- 6.(a)K. H. Fang, L. L. Wu, Y. T. Huang, C. H. Yang and I. W. Sun, Color Tuning of Iridium Complexes – Part I: Substituted Phenylisoquinoline-Based Iridium Complexes as the Triplet Emitter, *Inorg. Chim. Acta*, 2006, **359**, 441-450; (b)S. J. Liu, Q. Zhao, R. F. Chen, Y. Deng, Q. L. Fan, F. Y. Li, L. H. Wang, C. H. Huang and W. Huang, Π -Conjugated Chelating Polymers with Charged Iridium Complexes in the Backbones: Synthesis, Characterization, Energy Transfer, and Electrochemical Properties, *Chem. Eur. J.*, 2006, **12**, 4351-4361; (c)G. Y. Park, Y. Kim and Y. Ha, Iridium Complexes Containing Three

Different Ligands as White OLED Dopants, *Mol. Cryst. Liq. Cryst.*, 2006, **462**, 179-188; (d) I. S. Shin, J. I. Kim, T. H. Kwon, J. I. Hong, J. K. Lee and H. Kim, Efficient Electrogenerated Chemiluminescence from Bis-Cyclometalated Iridium(III) Complexes with Substituted 2-Phenylquinoline Ligands, *J. Phys. Chem. C*, 2007, **111**, 2280-2286; (e) A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino and K. Ueno, Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode, *J. Am. Chem. Soc.*, 2003, **125**, 12971-12979; (f) Q. Zhao, S. Liu, M. Shi, C. Wang, M. Yu, L. Li, F. Li, T. Yi and C. Huang, Series of New Cationic Iridium(III) Complexes with Tunable Emission Wavelength and Excited State Properties: Structures, Theoretical Calculations, and Photophysical and Electrochemical Properties, *Inorg. Chem.*, 2006, **45**, 6152-6160.

7.(a) R. Hrdina, I. Valterová, J. Hodacová, I. Císařová and M. Kotora, A Simple Approach to Unsymmetric Atropoisomeric Bipyridine *N,N'*-Dioxides and their Application in Enantioselective Allylation of Aldehydes, *Adv. Synth. Catal.*, 2007, **349**, 822-826; (b) C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M. Brown, A. R. Cowley, D. I. Hulmes and A. J. Blacker, Practical Preparation and Resolution of 1-(2'-Diphenylphosphino-1'-naphthyl)isoquinoline: A Useful Ligand for Catalytic Asymmetric Synthesis, *Org. Process Res. Dev.*, 2003, **7**, 379-384; (c) A. V. Malkov, L. Dufková, L. Farrugia and P. Kocovský, Quinox, a Quinoline-Type *N*-Oxide, as Organocatalyst in the Asymmetric Allylation of Aromatic Aldehydes with Allyltrichlorosilanes: the Role of Arene-Arene Interactions, *Angew. Chem. Int. Ed.*, 2003, **42**, 3674-3677.

8.(a) Y. N. Niu, Z. Y. Yan, G. L. Gao, H. L. Wang, X. Z. Shu, K. G. Ji and Y. M. Liang, Synthesis of Isoquinoline Derivatives via Ag-Catalyzed Cyclization of 2-Alkynyl Benzyl Azides, *J. Org. Chem.*, 2009, **74**, 2893-2896; (b) Y. Pan, G. W. Chen, C. H. Shen, W. M. He and L. W. Ye, Synthesis of Fused Isoquinolines via Gold-Catalyzed Tandem Alkyne Amination/Intramolecular O-H Insertion, *Org. Chem. Front.*, 2016, **3**, 491-495; (c) Y. F. Qiu, Y. J. Niu, X. Wei, B. Q. Cao, X. C. Wang and Z. J. Quan, AgSCF₃/Na₂S₂O₈-Promoted Trifluoromethylthiolation/Cyclization of *o*-Propargyl Arylazides/ *o*-Alkynyl Benzylazides: Synthesis of SCF₃-Substituted Quinolines and Isoquinolines, *J. Org. Chem.*, 2019, **84**, 4165-4178; (d) Q. Zhou, Z. Zhang, Y. Zhou, S. Li, Y. Zhang and J. Wang, Palladium-Catalyzed Synthesis of Indoles and Isoquinolines with in Situ Generated Phosphinimine, *J. Org. Chem.*, 2017, **82**, 48-56.

9.(a) X. Cheng, X. Cao, J. Xuan and W. J. Xiao, Silver(I)- and Base-Mediated [3+3]-Cycloaddition of *C,N*-Cyclic Azomethine Imines with Aza-oxallyl Cations, *Org. Lett.*, 2018, **20**, 52-55; (b) P. Fernández, C. Valdés, F. J. Fáñanás and F. Rodríguez, Unusual Reactivity of Isoquinolines Generated by Silver-Catalyzed Cycloisomerizations of Imines Derived from ortho-Alkynylsalicylaldehydes, *J. Org. Chem.*, 2019, **84**, 3184-3191; (c) R. Gujjarappa, N. Vodnala and C. C. Malakar, Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008, *Adv. Synth. Catal.*, 2020, **362**, 4896-4990; (d) R. P. Korivi and C. H. Cheng, Highly Efficient Synthesis of Isoquinolines via Nickel-Catalyzed Annulation of 2-Iodobenzaldimines with Alkynes: Evidence for Dual Pathways of Alkyne Insertion, *Org. Lett.*, 2005, **7**, 5179-5182; (e) T. Yao, T. Liu and C. Zhang, Palladium-catalyzed domino Heck/intermolecular cross-coupling: efficient synthesis of 4-alkylated isoquinoline derivatives, *Chem. Commun.*, 2017, **53**, 2386-2389.

10.(a) S. Bera, A. Bera and D. Banerjee, Nickel-Catalyzed Dehydrogenation of *N*-Heterocycles Using Molecular Oxygen, *Org. Lett.*, 2020, **22**, 6458-6463; (b) H. F. Jiang, J. D. Yang, X. D. Tang and W. Q. Wu, Divergent Syntheses of Isoquinolines and Indolo [1,2-a]quinazolines by Copper-Catalyzed Cascade Annulation from 2-Haloaryloxime Acetates with Active Methylene Compounds and Indoles, *J. Org. Chem.*, 2016, **81**, 2053-2061; (c) A. Nikbakht, S. Balalaie and B. Breit, Synthesis of 2-(Isoquinolin-1-yl)prop-2-en-1-ones via Silver(I)-Catalyzed One-Pot Tandem Reaction of ortho-Alkynylbenzaldoximes with Propargylic Alcohols, *Org. Lett.*, 2019, **21**, 7645-7648.

11.(a) S. C. Chuang, P. Gandeepan and C. H. Cheng, Synthesis of isoquinolines via Rh(III)-catalyzed C-H activation using hydrazone as a new oxidizing directing group, *Org. Lett.*, 2013, **15**, 5750-5753; (b) C. Kuai, L. Wang, B. Li, Z. Yang and X. Cui, Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group, *Org. Lett.*, 2017, **19**, 2102-2105; (c) J. Li, M. Tang, L. Zang, X. Zhang, Z. Zhang and L. Ackermann, Amidines for Versatile Cobalt(III)-Catalyzed Synthesis of Isoquinolines through C-H Functionalization with Diazo Compounds, *Org. Lett.*, 2016, **18**, 2742-2745; (d) Q. Z. Li, R. X. Liu, Y. Wei and M. Shi, Silver/Rhodium Relay Catalysis Enables C-H Functionalization of *In Situ* Generated Isoquinolines with Sulfoxonium Ylides: Construction of Hexahydrodibenzo[*a,g*]quinolizine Scaffolds, *Adv. Synth. Catal.*, 2021, **363**, 2664-2669; (e) V. K. Tiwari, N. Kamal and M. Kapur, One Substrate, Two Modes of C-H Functionalization: A Metal-Controlled Site-Selectivity Switch in C-H Arylation Reactions, *Org. Lett.*, 2017, **19**, 262-265; (f) X. Wu, H. Xiong, S. Sun and J. Cheng, Rhodium-Catalyzed Relay Carbonyl Functionalization of Aromatic C-H Bonds toward Fused Heteroarenes, *Org. Lett.*, 2018, **20**, 1396-1399.

12.(a) X. Wu, G. Ding, L. Yang, W. Lu, W. Li, Z. Zhang and X. Xie, Alkoxide-Catalyzed Hydrosilylation of Cyclic Imides to Isoquinolines via Tandem Reduction and Rearrangement, *Org. Lett.*, 2018, **20**, 5610-5613; (b) Q. Zi, M. Li, J. Cong, G. Deng, S. Duan, M. Yin, W. Chen, H. Jing, X. Yang and P. J. Walsh, Super-Electron-Donor 2-Azaallyl Anions Enable Construction of Isoquinolines, *Org. Lett.*, 2022, **24**, 1786-1790.

13.(a) S. Hayatgheybi, H. Khosravi, H. Zahedian Tejeneki, F. Rominger, H. R. Bijanzadeh and S. Balalaie, Synthesis of *N*-(Isoquinolin-1-yl)sulfonamides via Ag₂O-Catalyzed Tandem Reaction of ortho-Alkynylbenzaldoximes with Benchtop Stabilized Ketenimines, *Org. Lett.*, 2021, **23**, 3524-3529; (b) L. Zhang, W. Xiong, B. Yao, H. Liu, M. Li, Y. Qin, Y. Yu, X. Li, M. Chen, W. Wu, J. Li, J. Wang and H. Jiang, Facile synthesis of isoquinolines and isoquinoline *N*-oxides via a copper-catalyzed intramolecular cyclization in water, *RSC advances*, 2022, **12**, 30248-30252.

14.C. Si and A. G. Myers, A Versatile Synthesis of Substituted Isoquinolines, *Angew. Chem. Int. Ed.*, 2011, **50**, 10409-10413.

15.Z. Wang, Z. Zheng, X. Xu, J. Mao and P. J. Walsh, One-Pot Aminobenzylation of Aldehydes with Toluenes, *Nat. Commun.*, 2018, **9**, 3365.

16.J. Mao, Z. Wang, X. Xu, G. Liu, R. Jiang, H. Guan, Z. Zheng and P. J. Walsh, Synthesis of Indoles through Domino Reactions of 2-Fluorotoluenes and Nitriles, *Angew. Chem. Int. Ed.*, 2019, **58**, 11033-11038.

17.(a) F. Zhou, H. Jin, Y. Zhang, J. Li, P. J. Walsh and S. Lin, Base-Promoted Tandem Synthesis of 2-Substituted Indoles and *N*-Fused Polycyclic Indoles, *Org. Lett.*, 2023, **25**, 7132-7136; (b) F. Zhou, H. M. Jin, Z. H. Xiang, P. J. Walsh and J. Li, A Regiodivergent Truce-Smiles Rearrangement: A Strategy for the Synthesis of Arylated Indoles Promoted by KN(SiMe₃)₂, *Org. Chem. Front.*, 2023, **10**, 5265-5273.

18.J. Li, H. Wang, H. Jin, Z. Xiang, L. Chen, P. J. Walsh and G. Liang, Base-Promoted Tandem Synthesis of 3,4-Dihydroisoquinolones, *Org. Lett.*, 2022, **24**, 8125-8129.

19.S. Chen, L. Yang, Y. Shang, J. Mao and P. J. Walsh, Base-Promoted Tandem Synthesis of 2-Azaaryl Tetrahydroquinolines, *Org. Lett.*, 2021, **23**, 1594-1599.

20. H. M. Jin, F. Zhou, Z. H. Xiang, L. F. Chen, G. Liang, P. J. Walsh and J. Li, Base-Promoted Synthesis of N-H Free Pyrroles via Net [3+2]-Cycloaddition, *Adv. Synth. Catal.*, 2024, **366**, 942.

21.T. Hirata, I. Sato, Y. Yamashita and S. Kobayashi, Asymmetric C(sp³)-H functionalization of unactivated alkylarenes such as toluene enabled by chiral Brønsted base catalysts, *Commun. Chem.*, 2021, **4**, 36.

22.(a) H. Z. Du, J. Z. Fan, Z. Z. Wang, N. A. Strotman, H. Yang and B. T. Guan, Cesium Amide-Catalyzed Selective Deuteration of Benzylic C-H Bonds with D₂ and Application for Tritiation of Pharmaceuticals, *Angew. Chem. Int. Ed.*, 2023, **62**, e202214461; (b) C. C. Bao, Y. L. Luo, H. Z. Du and B. T. Guan, Benzylic Arylation of Toluenes with

Unactivated Tertiary Benzamides Promoted by Directed ortho-Lithiation. *Sci. China Chem.* 2021, **64**, 1349-1354.

23.(a) R. Sreedharan, P. K. Pal, P. K. R. Panyam, U. D. Priyakumar and T. Gandhi, Synthesis of α -Aryl Ketones by Harnessing the Non-Innocence of Toluene and its Derivatives: Enhancing the Acidity of Methyl Arenes by a Bronsted Base and their Mechanistic Aspects. *Asian J. Org. Chem.* 2022, **11**, e202200372 (b) R. Sreedharan, T. Gandhi, Masters of Mediation: MN(SiMe₃)₂ in Functionalization of C(sp₃)-H Latent Nucleophiles *Chem. Eur. J.* 2024, *n/a*, e202400435.

24. Ma, P.; Wang, Y.; Wang, J.; Ma, N.; LiN(SiMe₃)₂/KOtBu-Promoted Synthesis of Isoquinolone Derivatives from 2-Methylaryl Aldehydes and Nitriles. *J. Org. Chem.* 2023, **88**, 7425-7430.

25. P. Ma, Y. Wang, N. Ma and J. Wang, Alkaline-Metal-Promoted Divergent Synthesis of 1-Aminoisoquinolines and Isoquinolines, *J. Org. Chem.*, 2024, **89**, 1235-1240