
1

Data-Driven Flow and Injection Estimation in
PMU-Unobservable Transmission Systems

Satyaprajna Sahoo, Student Member, IEEE, Anwarul Islam Sifat, Member, IEEE, and Anamitra Pal, Senior
Member, IEEE

Abstract—Fast and accurate knowledge of power flows and
power injections is needed for a variety of applications in the
electric grid. Phasor measurement units (PMUs) can be used to
directly compute them at high speeds; however, a large number of
PMUs will be needed for computing all the flows and injections.
Similarly, if they are calculated from the outputs of a linear
state estimator, then their accuracy will deteriorate due to the
quadratic relationship between voltage and power. This paper
employs machine learning to perform fast and accurate flow and
injection estimation in power systems that are sparsely observed
by PMUs. We train a deep neural network (DNN) to learn
the mapping function between PMU measurements and power
flows/injections. The relation between power flows and injections
is incorporated into the DNN by adding a linear constraint to its
loss function. The results obtained using the IEEE 118-bus system
indicate that the proposed approach performs more accurate
flow/injection estimation in severely unobservable power systems
compared to other data-driven methods.

Index Terms—Flow and Injection estimation, Machine learning
(ML), Phasor measurement unit (PMU), Unobservability.

I. INTRODUCTION

Knowledge of active power flows and power injections is

fundamental for the reliable, resilient, and economic operation

of the electric grid. Traditionally, their knowledge had been

used to determine the cost for buying/selling energy as well

as for performing vulnerability/security assessment [1], [2].

More recently, with the growing frequency and intensity of

extreme weather events, such as wildfires, as well as increasing

penetration of renewable energy resources, a need has been felt

for high-speed tracking of the power flowing through critical

equipment, such as transmission lines and transformers [3],

[4]. Power flows and injections can be directly computed at

high speeds from the outputs of a phasor measurement unit

(PMU). However, a large number of PMUs will be needed to

estimate all of them. They can be calculated indirectly from

the outputs of a linear state estimator. However, the quadratic

relationship between voltage and power deteriorates the quality

of flow/injection estimates considerably (see Table I in Section

II for a sample illustration).

This paper presents a physics-inspired machine learning

(ML) formulation to perform data-driven power flow and

injection estimation in PMU-unobservable power systems.

We focus on the transmission system since most of them

already have some PMUs installed. However, the proposed

methodology is generic enough that it can be applied to

distribution systems as well.

Literature Review: In [5], a minimum variance unbiased

estimator was developed to calculate the power flows using
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the state estimation approach. However, the analysis was

restricted to DC power flows. A linearly constrained least-

squares optimization problem was formulated in [6] to esti-

mate nodal power injections that did not violate power flow

constraints. However, no information was provided regarding

how the formulation could perform high speed estimation

in unobservable power systems. A methodology to learn the

topology and estimate the injection statistics in distribution

systems with unobservable nodes at PMU timescales was

developed in [7]. However, it required the unobservable nodes

to be non-adjacent, which may not always be the case.

Main Contributions: This paper proposes the use of ML

to simultaneously estimate all power flows and injections

in a system that is sparsely observed by PMUs. The ML

model is built using deep neural networks (DNNs). The flows

and injections in a power system are related by the law of

conservation of energy. This knowledge is embedded into

the DNNs as a linear constraint; the resulting ML model

is referred to as a physics-inspired constrained-DNN (PIC-

DNN). The offline training is performed using slow timescale

historical data obtained from the supervisory control and

data acquisition (SCADA) system. The online implementation

only uses PMU data, ensuring high speed of estimation. The

superior performance of the proposed model over classical as

well as other ML models is demonstrated for different numbers

of PMUs placed in the IEEE 118-bus system.

II. SOURCES OF ERROR IN POWER CALCULATED FROM

STATE ESTIMATES

The most traditional way of determining electrical quantities

in a power system is through state estimation. The widely

used static state estimator provides an estimate of the voltage

phasor (magnitude and angle) of every bus of the system.

When a system is completely observed by PMUs, then by only

employing PMU data one can perform linear state estimation

(LSE); LSE is faster and more accurate than SCADA-based

state estimation [8]. However, there are two issues with

computing power flows/injections from the outputs of LSE:

(a) quadratic relationship between voltage and power, and (b)

non-Gaussian noise in PMU measurements. These two issues

are elaborated below.

Quadratic Relationship: Power flowing through a branch

located between bus i and bus j, denoted by pij , is related to

the voltages of the two buses by the equation shown below:

pij = gij(vi
2 − vivj cos δij)− bij(vivj sin δij) (1)

In (1), vi and vj denote the voltage magnitudes of buses i
and j, δij denotes the voltage angle difference between the two

buses, and gij and bij are the real and imaginary components
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of the admittance matrix, respectively. Similarly, the power

injection at bus i, denoted by pi, can be expressed as,

pi =

bri∑
j=1

pij =
bu∑
k=1

vivk(gik cos δik + bik sin δik) (2)

where bri denotes the total number of branches incident on

bus i, and bu denotes the total number of buses in the system.

It is clear from (1) and (2) that power is proportional to the

square of the voltage. Therefore, even a small error in the

voltage estimates will get amplified when used for calculating

the power flows and power injections.

Non-Gaussian Noise: LSE is most commonly performed

using the least squares method. However, least squares is the

solution to the maximum likelihood estimation problem under

Gaussian noise environments [9]. Recently, it has been demon-

strated that PMU data has non-Gaussian noise [10]. This, in

combination with the previously-mentioned source of error,

implies that an indirect estimation of power flows/injections

(by finding the voltages first using state estimation) can

result in lower accuracy. This implication is further reinforced

through a numerical analysis performed on the IEEE 118-bus

system. The results are provided in Table I below.

Table I shows the estimation performance (in terms of root

mean square error) when the output of a linear state estimator

is used to calculate the power flows and injections in the

presence of no noise, 1% total vector error (TVE) Gaussian

noise, and 1% TVE non-Gaussian noise. The non-Gaussian

noise is described by a two-component Gaussian mixture

model (GMM); its parameters are given in the last paragraph of

Section IV-A. It is observed from the table that the estimation

error increased by at least 60% when the distribution of the

noise changed from Gaussian to non-Gaussian. Furthermore, a

purely PMU-based LSE requires complete observability of the

system by PMUs (for obtaining the results shown in Table I,

PMUs were placed at 32 optimal locations that completely

observed the system [11]). This requirement of complete

observability is another concern of the LSE-based approach.

TABLE I
LSE RESULTS FOR VOLTAGE AND POWER ESTIMATES IN IEEE 118-BUS

SYSTEM

No noise Gaussian
noise (1% TVE)

Non-Gaussian
noise (1% TVE)

Voltage
magnitude (pu) 4.36 e-13 0.0036 0.0060

Voltage angle
(degrees) 1.88 e-11 0.1764 0.2890

Power
flow (MW) 1.46 e-10 1.3382 2.2273

Power
injection (MW) 2.69 e-10 1.3613 2.2912

Note that a PMU measures voltage and current phasors at

the location where it is placed (subject to its measurement

channel limitations [12]). This means that the outputs of a

PMU can be used to directly estimate all the power flows (and

subsequently the power injections using (2)). However, this

translates to the well-known minimum vertex cover problem

[13], which requires placing even more PMUs than those

required for complete observability for LSE (which is the so-

lution to the minimum dominating set problem). For example,

PMUs must be placed at 61 locations in the IEEE 118-bus

system to estimate all the power flows using only PMU data.

In this paper, we employ ML to directly estimate all the power

flows and injections at PMU timescales and with reasonable

accuracy while placing significantly fewer PMUs.

III. PHYSICS-INSPIRED ML FOR POWER ESTIMATION IN

PMU-UNOBSERVABLE SYSTEMS

Data-driven approaches have been shown to attain con-

siderable success for a variety of power system estimation

problems [14]. Some popular data-driven approaches include

linear regression (LR), support vector regression (SVR), and

DNN-based regression. As the linear relation between the

input (PMU measurements) and output (power flows and

power injections) for transmission systems that are sparsely

observed by PMUs is not guaranteed, LR may not be a good

fit for the problem considered in this paper. Similarly, the time

complexity of SVR is quadratic w.r.t. the number of training

samples [15], which makes it challenging to implement it in a

large network with wide variations in features. Therefore, we

employ DNNs to perform direct estimation of power flows and

injections from PMU measurements.

In Section III-A, we show how DNN-based regression can

be used to overcome the unobservability problem associated

with purely PMU-based estimation. In Section III-B, we

embed the physical law that relates flows and injections into

the DNN framework to create the proposed PIC-DNN.

A. DNN Regression to Overcome Unobservability

Recently, we have demonstrated the ability of DNNs to

perform high-speed time-synchronized static state estimation

in distribution systems that are sparingly observed by micro-

PMUs [16], [17]. We did this by using the slow timescale his-

torical smart meter data to create a mapping function between

the fast timescale micro-PMU measurements and the states.

The mapping function was learned using a DNN because it

has excellent approximation capabilities. Here, we leverage

this concept to perform power flow and injection estimation

from sparsely-placed PMUs in transmission systems.

We start by making two assumptions: (1) we have access

to historical SCADA data and system information (e.g., topol-

ogy) for a sufficient time-period (say, a few months), and (2)

PMUs are already placed on select buses of the system (say,

highest voltage buses). Using historical SCADA data and sys-

tem information, we solve the power flow problem to produce

voltage and current phasor measurements corresponding to the

locations where PMUs are placed. The power flow problem

also generates the flow and injection information that matches

the PMU measurements. Then, we train a DNN whose inputs

are the PMU measurements and outputs are the flows and

injections. Finally, during online implementation, streaming

data from a select few PMUs is fed into the trained DNN to

estimate all the flows and injections at PMU timescales. In

this way, a DNN can perform purely PMU-based estimation

without needing PMUs to completely observe the system. This

DNN model is henceforth referred to as a Direct DNN.
978-1-6654-6441-3/23/$31.00 ©2023 IEEE
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B. Incorporating Physics-based Constraints into DNN

The Direct DNN model developed in Section III-A can

estimate the power flows and power injections independently
from the phasor measurements coming from a select few

PMUs. However, as seen in (2), the flows and injections

are related by the law of conservation of energy. To account

for this physical law, we modify the DNN architecture by

appending a linear constraint to its loss function; the resulting

model, called PIC-DNN, is described below. In the following,

small-case letters indicate vectors, upper-case letters indicate

matrices, and the symbolˆ indicates estimates.

For an input, z, and output, y, a regular DNN with weights,

W , and biases, b, tries to find a function, F , that minimizes

the difference between y and ŷ, where ŷ = F (z,W, b). The

Direct DNN model described in Section III-A performs this

minimization using a mean squared error (MSE) loss function,

where z = [V ; I]n×1 and y = [Pf ; Pin]m×1. To incorporate

the law of conservation of energy into the Direct DNN model,

we start by defining the following loss function:

min
W,b

(y − ŷ)2

s.t. P̂in = A× P̂f

where A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1mb

a21 a22 . . . a2mb

...
. . .

...

a(m−mb)1 . . . a(m−mb)mb

⎤
⎥⎥⎥⎦

(3)

In (3), A is a sparse matrix (aij ∈ {0, 1}(m−mb)×mb ) which

denotes the power flows that must be added to calculate the

power injection of a bus, and mb and m − mb denote the

number of branch power flows and bus power injections in the

system, respectively. Now, power injections can be removed

from the output features of the DNN and calculated from the

power flow estimates in the following way:

ŷ = B × P̂f , B = [Imb
; A] ∈ {0, 1}m×mb (4)

The conversion matrix, B, is the vertical concatenation of an

appropriately sized identity matrix with A, and enables us to

get both flow and injection estimates. Thus, by modifying the

loss function of the conventional DNN in the manner shown in

(3) and (4), we are able to simultaneously minimize the error

in the estimates of power flows and power injections while

also accounting for the law that relates the two.

There are several ways to implement the above-mentioned

constrained formulation inside a DNN model. A simple strat-

egy would be to add a convex optimization layer to the model

output. However, the inclusion of such a layer will result in

solving two different optimization problems simultaneously

during training, which can become computationally burden-

some. A more intuitive strategy is to add a static layer after

the DNN output layer that calculates the combined ŷ from the

estimated P̂f and backpropagates the net error. The updated

loss function is given by,

min
W,b

(BTB)−1BT (y −B × P̂f )
2

where P̂f = F (z,W, b)
(5)

The static weight, (BTB)−1BT , is the Moore–Penrose in-

verse of the conversion matrix, B. This weight is not necessary

for optimization as it is static, but to ensure backpropagation

errors are dimensionally consistent with the output features.

Using (5), we are not only able to reduce the number of DNN

output variables to just the power flows but also implicitly

include the linear constraints into the loss function without

needing a separate convex optimization layer.

Next, the training dataset, ytrain, which is only composed

of the branch power flows, is split into multiple bins in

accordance with the variations that occur in the flows. This

improves the accuracy of the DNN because it now has to

estimate features that have similar variations. The selection

of the optimal number of bins, nbin, involves a trade-off.

Increasing the number of bins homogenizes the output data,

thereby improving the accuracy of the model. However, un-

restricted increment in bin count can increase computational

burden while decreasing performance utility.

In summary, the two ways in which we modify the Direct

DNN model to create the PIC-DNN model are: (1) modifying

the loss function to include a linear constraint, and (2) binning

ytrain in accordance with the observed variations in the power

flows in the training database. The overall implementation of

PIC-DNN is shown in Algorithm 1. The results obtained when

the PIC-DNN as well as other ML models are used to estimate

power flows and injections in the IEEE 118-bus system is

provided in the next section.

Algorithm 1 Implementation of PIC-DNN

Input: Noisy measurements, z
Output: Power flow and injection estimates, ŷ

1: procedure
2: Define A, B, nbin, epoch
3: Split ytrain into nbin bins

4: for i=1 to epoch do
5: for j=1 to nbin do
6: p̂j ← Fj(z,Wj , bj)
7: end for
8: P̂f ← [p̂1, p̂2, ..., p̂nbin

]
9: ŷ ← B × P̂f

10: δ ← (BTB)−1BT (y − ŷ)2

11: backpropagate δ
12: end for
13: end procedure

IV. RESULTS

The proposed PIC-DNN model for power flow and injection

estimation was applied to the IEEE 118-bus system. This

system has 99 loads, 54 generators, 11 high voltage (HV)

buses, and 186 branches. PMUs were assumed to be placed

by default on the 11 HV buses such that all the branches

coming out of these buses was directly monitored by them. To

obtain branch power flows and bus power injections for this

system, we solved an AC optimal power flow (ACOPF) using

MATPOWER [18]. The process is similar to the approach

in [17], where a distribution kernel was fit over historical

slow timescale data, and then multiple samples were drawn
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from it to generate realistic load variation data. For the given

application, the source of slow timescale data was the SCADA

system. However, SCADA data is not available for the IEEE

118-bus system. Therefore, we superimposed the variations

of similar loads found in the publicly available 2000-bus

Synthetic Texas system [19] onto loads of the IEEE 118-

bus system. Doing so ensured that our load variations were

realistic. Afterward, the outputs of the ACOPF were used to

train the ML models. The training and validation database had

a size of 20, 000 × n and 2, 000 × n, respectively, while the

test database had a size of 6, 000× n, where n is the number

of phasor measurements.

The performance of five ML models was investigated in this

study. The first two models are LR and SVR, with the latter

implemented using a radial basis function kernel. The third

model was an Indirect DNN. This model first performs state

estimation from sparsely-placed PMUs using the methodology

proposed in [17], and then computes the flows and injections

from the outputs of the state estimator. The fourth model

was the Direct DNN described in Section III-A, while the

last model was the PIC-DNN developed in Section III-B. The

hyperparameters used for the three DNN models are given in

Table II. The loss function for the Direct and Indirect DNN

models is the MSE, while for the PIC-DNN model we used

(5), with nbin = 5. Note that the number of neurons in each

hidden layer is kept flexible (using the scaling factor, η) to

account for the increase in number of input features due to

increase in number of PMUs (see Section IV-B).

TABLE II
HYPERPARAMETERS OF DNNS CREATED IN THIS STUDY

Parameter Value
Layers 3

Neurons in each hidden layer Number of input features ×η
Learning rate 1e-3

Number of epochs 200
Activation function Rectified Linear Unit

Optimizer Adam
Batch size 64

The simulations done to compare the performance of the

five ML models were conducted on a computer with an Intel

Core (TM) i7-11800H CPU @2.3GHz with 16GB of RAM

and an RTX 3070Ti GPU. The following two case-studies

were designed. The first case-study is a comparative analysis

between PIC-DNN and other ML models when PMUs are

placed on only the 11 HV buses of the test system. In the

second case-study, the performance of all five ML models is

investigated as more PMUs are added to the system.

A. Case-Study I: Performance Comparison with PMUs placed
only on HV buses

In this case-study, the inputs to the ML models are the

voltage and currents obtained from PMUs placed on the 11 HV

buses of the IEEE 118-bus system. Therefore, the number of

phasor measurements is 41 (= 11 voltage phasors + 30 current

phasors), i.e., n = 82, since one phasor has two components,

while the number of active power flows and injections are 490

(= 372 power flows + 118 power injections), i.e., m = 490.

To ensure the consistency of estimates obtained from the five

ML models, the analysis was repeated 100 times with different

random subsets of the test dataset.

The statistics of the error metric (RMSE) for the five ML

models are recorded in Table III. The results show that PIC-

DNN does better than the other ML models in both the mean

value of RMSE across all the flows and injections as well as

the variation of RMSE over the 100 trials. For example, the

proposed PIC-DNN outperforms others in terms of the mean

by at least 15% and in terms of standard deviation by at least

40%; this denotes a significant improvement in both accuracy

and consistency of power flow and injection estimates. The

poor performance of the Indirect DNN model can be attributed

to the quadratic relationship between voltage and power, as

highlighted in Section II. The relatively poor performance of

SVR is due to the input dataset being restricted to 5, 000
samples. This was done to compensate for its (longer) training

time, indicating the handicap of using SVR for large datasets

as its scalability is a concern [15].

Lastly, note that the results shown in Table III (as well as

the last column of Table I and Fig. 1) were obtained when

a two-component GMM noise was added to the voltage and

current phasors. The mean, standard deviation, and weights

of this noise for magnitudes and angles are (−0.4%, 0.6%)
and (−0.2°, 0.3°), (0.25%, 0.25%) and (0.12°, 0.12°), and

(0.4, 0.6), respectively. These values corresponded to a 1%
TVE error for voltage and current phasors, as mandated in the

IEEE/IEC Standard for PMUs [20].

TABLE III
PERFORMANCE COMPARISON OF ML MODELS FOR POWER ESTIMATION IN

TERMS OF THEIR ROOT MEAN SQUARE ERROR (RMSE)

ML Model Mean of RMSE Standard deviation of RMSE
LR 5.80 0.020

SVR 7.75 0.120
Indirect DNN 8.37 0.020
Direct DNN 5.91 0.024
PIC-DNN 4.92 0.012

B. Case-Study II: Impact of Increase in Number of PMUs

In this case-study, the number of locations where PMUs

must be placed is increased one at a time for each of the

five ML models to determine how their performance changes

with an increase in the number of PMUs in the IEEE 118-bus

system. This is a very practical scenario since, with additional

investment in grid modernization, power utilities will add more

PMUs not only in the lower voltages of the transmission

system but also in the distribution system. Therefore, this case-

study indicates the improvements in ML-based power flow and

injection estimation with an increase in PMU coverage.

The results obtained as the number of locations where

PMUs must be placed increased from 11 to 32 is shown in

Fig. 1. To ensure fairness in comparison, the next optimal bus

location for placing PMUs is determined independently for

each ML model. This means that the horizontal axis of Fig.

1 denotes the total number of buses where PMUs are placed;

however, the locations of PMU buses are different for each

model since this ensures best performance for the different

978-1-6654-6441-3/23/$31.00 ©2023 IEEE
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models. We stopped at 32 because by placing PMUs on that

many buses, we could directly compare the performance of

the different ML models with the conventional LSE results

(shown in Table I).

From Fig. 1, it can be realized that the proposed PIC-DNN

performs better than the other four ML models for higher

degrees of unobservability (fewer PMUs). With an increase

in the number of PMUs, the performance of LR becomes

comparable with the proposed approach (and even better than

PIC-DNN for PMUs placed at 30 or more bus locations). This

is expected because linear models can successfully express the

relations between the inputs and the outputs as the number

of sensors increase. Lastly, the superiority of data-driven

approaches is realized from the fact that when the number

of bus locations where PMUs are placed is 32, both LR and

PIC-DNN outperform LSE results with two-component GMM

measurement noise by 35% and 28%, respectively.

PMU Buses

R
M

SE
 (M

W
)

0

2

4

6

8

10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

LR
SVR

Indirect DNN
Direct DNN 

PIC-DNN

Fig. 1. Performance comparison of ML models with increase in PMUs

V. CONCLUSION

This paper proposes a physics-inspired ML approach that

uses DNNs to quickly and accurately estimate all the power

flows and injections directly from PMUs placed in the trans-

mission system. The proposed PIC-DNN model not only

performs consistent estimation when there are very few PMUs

in the system but also ensures that the law of conservation of

energy is always satisfied. The former is established by intel-

ligently combining inferences drawn from historical SCADA

data with real-time PMU data, while the latter is secured by

adding a linear constraint to the loss function of the DNN.

The results indicate that by placing PMUs on only 11 buses
of the IEEE 118-bus system, PIC-DNN can estimate the flows
and injections to within 5 MW of the actual value, even in the

presence of non-Gaussian noise in the PMU measurements.

When the PMU locations increase to 32, the estimation error

of the proposed approach becomes lower than 2 MW.

The focus of this paper has been on the transmission system.

In the future, we plan to extend our analysis to distribution

systems where PMUs are gradually being added and for

which fast detection of reverse power flows is crucial. We

will also combine the outcomes of this research to perform

a better security assessment of the power system (e.g., by

extending the research of [21]). The DNN models analyzed

here had fully-connected feed-forward architectures. We are

currently investigating the ability of graph neural networks to

better incorporate the physical properties of the power system

into ML training and execution (e.g., for ensuring robustness

during topology changes).
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