nature reviews genetics https://doi.org/10.1038/s41576-022-00550-0

Review article

W Check for updates

The nexus between RNA-binding

proteins and their effectors

Shiyang He ®'?, Eugene Valkov ®?3, Sihem Cheloufi®"** & Jernej Murn®"?

Abstract

Sections

RNA-binding proteins (RBPs) regulate essentially every eventin the
lifetime of an RNA molecule, fromits production toits destruction.
Whereas much has been learned about RNA sequence specificity and
general functions of individual RBPs, the ways in which numerous RBPs
instruct amuch smaller number of effector molecules, that is, the core
engines of RNA processing, as to where, when and how to act remain
largely speculative. Here, we survey the known modes of communication
between RBPs and their effectors with a particular focus on converging
RBP-effectorinteractions and their rolesin reducing the complexity
of RNA networks. We discern the emerging unifying principles and
discuss their utility in our understanding of RBP function, regulation
of biological processes and contribution to human disease.
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Introduction

The regulation of gene expression at the RNA level is fundamental to
essentially all biological processes. Its complexity presents one of the
most formidable challenges in molecular and systems biology'. Human
cellsmust ensure correct processing of each of their more than 20,000
different protein-coding RNAs, many more if one considers alternative
isoforms>. Thesetranscripts canrangeinlevel fromfewerthan0.1copies
to thousands of copies per cell**. Moreover, each transcript must be
processed at the right time, by the right processing molecule and at
the right subcellular location, often in a manner that is specific to a
particular cell type or conditions in the microenvironment'. There is
little room for error, as RNA misprocessing can lead to disrupted cell
homeostasis or cell death, as documented experimentally and by cases
of human disease>®”.

The scale of regulatory complexity began to emerge with the
inception of next-generation DNA sequencing in the 2000s®, which
allowed RNA processing to be studied from a systems perspective.
Since then, amultitude of transcriptome-wide approaches combining
high-throughput sequencing with genetic perturbation, biochemistry
and mass spectrometry-based approaches have transformed stud-
ies of RNA biology. In addition to allowing for the inference of RNA
regulatory networks, their principal goal has been to decipher the
functions of RNA-binding proteins (RBPs) as the core regulators of
RNA processing’ ™. Indeed, RNA-centric and RBP-centric systems-wide
studies that entail methods based on RNA immunoprecipitation (RIP),
crosslinking and immunoprecipitation (CLIP) and its many variants,
RNA interactome capture, RNA antisense purification coupled with
mass spectrometry (RAP-MS) and other related strategies jointly
identified more than1,500 human RBPs and characterized RNA binding
preferences of several hundred of themiin vitro and/or in vivo®’ %

Together with loss-of-function analyses and other functional
assays, these studies have elucidated some of the basic rules of RNA
regulation for numerous RBPs. The above ‘exponential technologies’,
however, also created ariftin the field between the rapid cataloguing
of protein-RNA interactions, along with their largely correlative func-
tional links, and a lagging understanding of the mechanisms of RBP
activities. These activities commonly rely oninteractions of RBPs with
their effector molecules, that is, proteins or protein complexes that
serve as core engines of RNA processing and thus define the activities
of many RBPs.

For the purpose of this Review, we designate as ‘effectors’ or ‘effec-
tor assemblies’ those molecular entities that operate as executors of
RNA processing or otherwise directly affect RNA processing but are not
classified as RBPs. We define as RBPs those proteins thatbind RNAina
sequence- or structure-specific manner and are not basal or auxiliary
components of effector assemblies, to avoid potential confusion when
referring to RBP-effector interactions. Forinstance, TIA1, asequence-
specific RBP, interacts with the spliceosome, an effector, to regulate
alternative pre-mRNAsplicing™"*.Furthermore, we consider RBP-effector
interactions as ‘converging’ if there exists experimental evidence
for the capacity of at least two different RBPs in a species to separately
connecttothe same effector of RNA processing. For example, the RBPs
ZFP36 (also known as TTP) and Roquin-1(also known asRC3H1) canboth
interact with the effector CCR4-NOT to regulate mRNA stability" %,

Like RBPs, effectors have crucial roles in essentially all stages of
RNA processing; however, unlike RBPs, they and their interactions
with RBPs have primarily been studied using reductionist approaches,
including X-ray crystallography, in vitro studies of protein-protein
interactions (PPIs) and RNA processing, RNA-tethering assays and

targeted genetic experiments”*2, Studies at the nexus between RBPs
and their effectors have also been outpaced by the recent resurgence
ofinterestin the formation of biomolecular condensates, which have
beguntoshedlight onentirely differentlevels of spatiotemporal con-
trol of RNA processing” . Together, these developments have pro-
pelled our understanding of RNA networks at two discrete levels of
theregulatory hierarchy, while leaving behind the intervening level at
which RBPs communicate with effectors of RNA processing. This dis-
connection has arguably hampered our understanding of RBP function
aswellasthe overall operation of RNA networks, which recent studies
are now beginning to address.

Here, we focus on the nexus between RBPs and their effectors,
with a particular emphasis onits emerging rolesin the control of RNA
processing, regulation of biological outcomes, and its contribution to
human health and disease. We first define the function of the nexusin
managing the complexity of modern RNA networks, then discern the
unifying features of RBP-effector interactions along with their physio-
logical roles usingillustrative examples. We then consider how cellular
processes regulate and are regulated at the nexus, followed by a discus-
sion of genetic disorders that affect, and therapeutic opportunities
that emerge at, the RBP-effector interface.

The complexity of RNA networks

The evolution of progressively more complex RNA networks mandated
solutionsto theincreasingly more challenging regulation and need for
flexibility". Such solutions are built into many modern RNA networks in
the form of distinct molecular and systems-level features**” % (Fig. 1).
These traits facilitate the regulation of RNA networks by minimizing the
need for complexity, including the number of required connections,
while also improving network performance and speed of adaptation
to the environment.

The associations between RBPs and their effectors have a central
rolein the regulatory hierarchy of RNA networks by unifying the fates
of multiple RBP-RNA modules and serving as a functional bridge to
the formation of larger, high-concentration ribonucleoprotein (RNP)
assemblies, which confer a higher level of spatiotemporal control*>°
(Fig 1). At the RBP-effector nexus, the effectors often end up being
recruited to RNA by RBPs, either directly orindirectly,and actin cisby
processing the RBP-bound RNA, although there also exist other modes
of RBP-dependent effector engagement with RNA that may have a
substantially differentimpact on RNA processing (Fig. 2).

Akin to the capacity of atypical RBP to bind and regulate the fates
of different RNA molecules, a typical effector of RNA processing can
bind to different RBPs and subdue their bound RNAs to acommon pro-
cessing event. In this manner, effectors handle essentially allcommon
RNA processing events, including the multiple steps of RNA biogenesis,
modification, transport, storage, decay and, in the case of coding
RNAs, translation.

Because a large number of RBPs must converge onto a smaller
number of effectors, one might expect different RBPs to use a similar
strategy to contact a particular effector. Contacts between RBPs and
their effectors must secure specificity to couple the right RBP-RNA
modules with theright RNA processing events and be transient enough
toenable arapid reuse of both the RBP and the effector. RBP-effector
interactions thus require acompromise between highly specific, high-
affinity contacts, such as those that mediate the domain-domain
interactions that commonly establish macromolecular complexes™,
and weaker, less-specificinteractions, such asthose implicated inthe
formation of RNP condensates®.
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Fig.1| Traits and organization of RNA networks associated with the
management of regulatory complexity. A, Traits of RNA networks. Aa, The
recognition of specific RNA sequences and/or structures allows trans-acting
factors, including RNA-binding proteins (RBPs) and small RNAs, such as
microRNAs (miRNAs), to act upon some but not other transcripts. This trait

also allows for synchronized processing of multiple, often functionally related
transcripts'®. Recognition of specific RNA features defines the most elementary
regulatory level of RNA networks that determines which transcripts will be
controlled by which trans-acting factors. Different RNA specificities of different
RBPs considerably simplify the challenge of coordinated regulation, inaddition
to allowing for network adaptation through rewiring of RNA targets'**,

Ab, Relayed RNA processing refers to the correct sequence of post-transcriptional
processing events. For instance, a typical pipeline would ensure that RNA splicing
occurs prior to RNA export and localization to a distal intracellular region,
followed by localized translation and that RNA degradation occurs last”. Any
other sequence of events could be detrimental to cell homeostasis. General
molecular and cellular organization, e.g. association of the splicing machinery
with RNA polymerase Il (Pol Il) and separation of nuclear from cytoplasmic
components, respectively, as well as more specific molecular interactions
contribute to the correct relay of RNA processing events®'*>, Correct and

rapid relay of RNA processing events secures directness and energy-efficient
regulation of RNA processing. Ac, The formation of ribonucleoprotein (RNP)
condensates increases local concentration of RBP-RNA modules along with
their effector complexes. RNP condensation is driven primarily by intrinsically
disordered regions (IDRs) of different RBP molecules, which multimerize
through numerous weak, non-specific interactions, and is aided by transient
secondary structures formed within IDRs as well as contributions from the
associated RNA”. RNP condensation can stabilize the association of individual
RBPs with their recognition motifs on RNA and contribute to correct RNA
folding that may be required for processing**'*. In addition, increased local

P e

concentration of effector proteins and RNA canincrease the rate of biochemical
reactions, or assist in storage or transport of these molecules?. Upon extensive
RNP condensation, a physicochemical phenomenon of liquid-liquid phase
separation occurs through which various types of RNA granules, including

stress granules, P-bodies, splicing speckles, neuronal granules, and others, are
generated. Such granules, also referred to as ‘membraneless organelles’, exist
inliquid-like and occasionally solid-like physical states that exhibit distinct
physiological roles?**°. Mechanisms that govern the formation and dissolution of
RNP condensates include membrane surfaces, molecular chaperones, including
nuclearimport receptors, RNA helicases, and post-translational modifications
of condensate components**'®’, Ad, Convergent molecular evolution has an
important role at different levels of RNA processing and contributes to the
hierarchical structure of RNA networks. At the RBP-RNA level, convergence has
been observed in RNA-targeting specificities of RBPs and in the evolutionary
adaptation of RNA molecules to a particular mode of post-transcriptional
processing, including alternative splicing and mRNA decay®*'**'*°, Convergent
evolution also occurs at the level of RBPs interacting with their effector molecules.
Short linear motifs (SLiMs), which are typically located in IDRs of RBPs or adaptor
proteins, are specifically recognized by cognate domains of effectors and
frequently evolve ina convergent manner®*°°, These examples point to abroad
potential of convergent evolution to unify the fates of different transcripts by a
common regulatory step. Ae, Hierarchical organization is commonly observed
inbiological networks and is thought to evolve due to the high cost associated
with creation and maintenance of network connections”. B, Hierarchically wired
networks, including RNA networks, not only exhibit fewer connections, but also
adapt faster to the environment and show higher overall performance compared
to non-hierarchical networks?. RNA networks show several hierarchical
regulatory levels, with control at higher levels having broader effects on RNA
processing. RBD, RNA-binding domain.
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There is currently little consensus on the nature of interactions
between RBPs and their effectors. Consequently, there is limited knowl-
edge about how these interactions enable RBPs to instruct differ-
ent types of RNA processing, how they may be regulated or how they
lead to human disease when misregulated. Below we draw together
key aspects of how RBPs directly or indirectly interact with effector
assemblies and discuss the importance of these interactions for RNA
processing (Figs. 3,4 and Supplementary Table 1). We review specific
examples of RBP-effector interactions that have been characterized
at both the molecular and functional levels with an aim to highlight
effectors as points of convergence for diverse RBPs and their bound
RNA. We gather these findingsin aseries of vignettes, each specific to
aparticular effector and its physiological role.

The nexus in and around the nucleus

RBPs and positive transcription elongation factor b. Research of
RBPs has traditionally focused on their post-transcriptional activi-
ties; however, it is becoming increasingly clear that RBPs also have
arole in regulating gene transcription itself*’. One notable example
involving converging RBP-effector interactions is transcriptional
control of paused genes. Promoter-proximal RNA polymerase Il
(Polll) pausing has emerged as awidespread mechanism of transcrip-
tional regulation, affecting approximately 30% of metazoan genes
and enabling rapid transcriptional responses to activation signals®.
Release of paused Pol Il into productive transcriptional elongation can
betriggered by the kinase activity of the multiprotein complex positive
transcription elongation factor b (P-TEFb) uponits delivery to paused
genes® (Fig.3a). Aviral RBP, called Tat, and afew cellular RBPs have been
found to stimulate transcription of specific genes by recruiting P-TEFb
to paused Pol Il while bound to nascent RNA in a sequence- and/or
structure-specific manner* %, It is presently unclear whether the
cellular RBPsrecruit P-TEFb via direct PPIs, akin to the viral Tat protein,
orindirectlyincrease the pool of locally available P-TEFb by liberating
it from the promoter-proximal 7ZSK RNP complex (Fig. 3a).

RBPs and the spliceosome. A large proportion of multi-exongenesin
higher eukaryotes (more than 95% in humans) undergoes alternative
splicing, a process that is crucial for generating proteomic diversity
and is thought to sustain speciation and phenotypic complexity®.
Sequence-specific RBPs regulate alternative splicing by modulating
the activity of the spliceosome in the vicinity of their targeted loci
on pre-mRNA’. A notable type of RBP is SR proteins, which stimulate
splicessite selection by locally stabilizing the ‘early’ components of the
spliceosome through PPIs between arginine- and serine-rich intrinsi-
cally disordered regions (IDRs), also called RS domains, present in
both the SR proteins and the spliceosome?+*° (Figs. 2b,3b, Table 1 and
Supplementary Table 2). Such bondingis strengthened by the observed
phosphorylation of the RS domains*, which sensitizes alternative
splicing to signal transduction pathways and presents an important
therapeutic opportunity, as discussed below. Regulatory strategies that
rely onspliceosome stabilization are also employed by other RBPs with
characterized interactions that use short stretches of IDRs to contact
various protein subunits of the early spliceosomal components (Fig. 3b
and Table1). FUS, the splicing activity of which relies onaninteraction
with spliceosomal RNA rather than a protein subunit, represents an
apparent exception to this rule*.

RBPs and survival motor neuron protein. Survival motor neuron pro-
tein (SMN) is an essential effector protein the canonical role of which

is in the assembly of nuclear RNPs. This protein is notorious for its
reduced function causing spinal muscular atrophy (SMA), afatal auto-
somalrecessive disorder characterized by degeneration of lower motor
neurons*>*, Although the reason for the specific manifestation of
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Fig.2|Modes and dynamics of RBP-dependent effector engagement with
RNA. a, RNA-binding proteins (RBPs) (blue shapes) can recruit effectors to target
RNA viadirect orindirect protein-protein interactions (PPIs) that typically

entail ashortlinear motif (SLiM; red), which typically resides in anintrinsically
disordered region (IDR) of the RBP or an adaptor protein, and a structured
domainlocated in the effector. Indirect interactions can involve additional
proteins or can be mediated by non-coding RNAs (not shown). Upon recruitment,
the effector can exert activity in cis, that is, on the RBP-bound RNA (dashed
curved arrow) and occasionally also on the recruiting RBP (solid curved arrow), or
intrans, thatis, on other molecules (not shown). b, Instead of serving a recruiting
role, some RBP-effector interactions may facilitate repositioning or stabilization
of a pre-bound effector to modulate its activity'”. ¢,d, Certain activities of RBPs
do not entail contacts with effector molecules, either because RBPs themselves
operate as effectors, as is the case for RBPs with enzymatic activities™'”' >
(panelc), or because they operate by modulating effector access to RNA, such as
heterogeneous nuclear ribonucleoproteins (hnRNPs) in regulation of splicing*®
(panel d). e, RBP-mediated recruitment of an effector to RNA is transient and
occursinfrequently. Shown is a hypothetical steady-state scenario in which
copies of an RBP (blue ovals), the number of which matches the number of RBP-
binding sites (BS1-BS8) on RNA (black wavy lines), compete for a limiting number
ofavailable effector molecules (grey ovals). Only an RNA-RBP-effector assembly
can process RNAin cis (dashed arrow). IDR,, IDR of antagonizing RBP; RBD,
RNA-binding domain; RBD,, RBD of antagonizing RBP.
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SMN deficiency in motor neurons remains unclear, several studies
have pointed to additional roles of SMN in neuronal mRNA traffick-
ing and control of local translation; these processes rely on and are
regulated by direct interactions between SMN and various RBPs***4¢
(Table 1). Curiously, unlike most other RBP-effector contacts, these
interactionsrely primarily on recognition of a single residue, amono-
or dimethylated but not non-methylated arginine embedded in an
arginine-glycine (RGG/RG)-rich IDR of an RBP, by the conserved

Fig.3 | Converging RBP-effector interactions regulating (peri-)nuclear RNA
processing. a, RNA-binding protein (RBP)-dependent release of paused RNA
polymerase Il (Pol II) by positive transcription elongation factor b (P-TEFb). RBPs
canstimulate relocation of P-TEFb from alocal 7SK complex to the vicinity of Pol Il
either by recruiting P-TEFb via direct protein-protein interactions (PPIs) while
bound to nascent RNA (step 1) or indirectly by associating with or disassociating
from the 7SK complex (step 2). b, RBPs directly interact with spliceosomal
components, including Ulsmall nuclear ribonucleoprotein (snRNP), U2 snRNP
and U2AF subunits, to promote the early stages of spliceosome assembly.
Illustrated is an overview of all interactions (left) along with azoomed-in view of
the U1snRNP (right). Grey arrows denote intron or exon definition interactions*’,
several of which are mediated by RS domains (dashed sections of shapes) of SR
proteins, such as SRSF1and SRSF2, and components of the spliceosome. RBPs
other than SR proteins, including YBX1, SAM68 and TIAL, use short stretches of
theirintrinsically disordered regions (IDRs) (red dashes) to contact the indicated
spliceosomal proteins. FUS recognizes the stem-loop (SL) region 3 (SL3) of the
Ulsmall nuclear RNA (snRNA). Sm proteins are seven core spliceosomal proteins
that make up astable ring-like structure. ¢, Dimethylated arginines (DMAs) in the
RGG/RG-richregions of theindicated RBPs are recognized by the aromatic cage
within the Tudor domain of survival motor neuron protein (SMN). Dashed red line
denotes additional IDR-mediated interactions of some of the listed RBPs with the
YG box domain (YG). The asterisk indicates that the same RBP-SMN interactions
might also participate in processes other than RNP assembly in the nucleus®.

For clarity, RBP-bound RNA is not drawn. d, RBPs that use a proline-tyrosine-rich
nuclear localization sequence (PY-NLS) short linear motif (SLiM) (red dash) to
interact with transportin1(TNPOI) for their nuclear import. The disaggregase
activity of TNPOlis notindicated (Fig. 4e). Drawings of multiple RBPs binding to
the same effector molecule inindividual panels solely illustrate that different RBPs
canbind to a particular effector; they do not imply simultaneous interactions

of multiple RBPs with different segments of the same effector or competition
between different RBPs for binding to a particular region of an effector molecule.

Tudor domain of SMN*****8 (Fig. 3c and Table 1). Little is known about
the exact regulatory role of these contacts. However, intragenic
SMA-associated mutations within the Tudor domain of SMN that dis-
rupt RBP-SMN interactions point to their directinvolvement in disease
pathogenesis**>*,

RBPs and nuclear import receptors. Most RBPs with a nuclear role
require an active, carrier-mediated process for their import into the
nucleus. This is facilitated by nuclear import receptors (NIRs) that
bind RBPs exposing a nuclear localization sequence (NLS) and ferry
them across a nuclear pore complex, while securing directionality of
transport into the nucleus through competitive interactions with a
small GTPase, Ran®' (Fig.3d). NIRs suchas KapB1/Impaand transportin1
(TNPO1) specifically recognize the classical, lysine-rich NLS (cNLS) and
proline-tyrosine (PY)-NLS, respectively. Remarkably, beyond their role
in nucleocytoplasmic trafficking, NIRs have recently been found to
moonlight as RBP chaperones, having the capacity to prevent cytoplas-
mic condensation of aggregation-prone RBPs, and as ‘disaggregases’,
denoting their ability to dissolve preformed, including aberrant, RNP
condensates®* > (Fig1). How do these unexpected moonlighting activi-
ties of NIRs come about? Akin to most other shortlinear motifs (SLiMs)
of RBPs that mediate PPIs with effectors, NLSs are largely disordered,
flanked by IDRs, and bind a structured surface of NIRs. However, most
NLSs exhibit significantly higher effector-binding affinities than sev-
eral other characterized SLiMs of RBPs (Table 1). The high-affinity
interactionwith NLSinturn facilitates secondary, low-affinity contacts
that a NIR makes with other IDR domains, especially prion-like and
RGG/RG-rich domains of the cargo RBP. These weak and dynamic
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interactions are thought to be essential in antagonizing homeostatic
and pathological RNP condensate formation® . We discuss their
therapeutic potential below.

Cytoplasmic activities of the nexus

RBPs and motor proteins. Subcellular localization of mRNA enables
precise control over the site of protein synthesis>®. This in turn allows
acellto configure different subcellular domains for specialized func-
tions to support biological processes as diverse as budding in yeast,
embryonic patterning in the fruitfly and synaptic activity in mamma-
lian neurons®. Molecular motor-based transport of membraneless
RNA granules has emerged as the prevailing mechanism of mRNA
localization, and much of the mRNA transport was found to occur
throughaprocess called ‘hitchhiking’, whereby RNA granules dock onto
membrane-bound organelles thatin turn couple to motor proteins for
transport®®>*’. However, certain RNA granules were found to directly
connect to motor proteins viaRBPs for autonomous transport of their
RNA cargo, offering a plausible explanation for the observed diversity
of mRNA localizations®°. For instance, direct RBP-motor protein PPIs
were found to mediate mating type-defining asymmetrical localization
of ASHI mRNA inbudding yeast®®* transport of Actb mRNA to cellular
leading edge to support migration of amouse fibroblast?® or dendritic
translocation of neurospecific mRNAs for their localized translation
atthesynapse®* (Fig.4a, Table1and Supplementary Table 2). Adeeper
understanding of this nexus should help to clarify how hundreds of dif-
ferent mRNAs are distinctly localized in the cell to allow for an exquisite
spatial and temporal control of gene expression.

RBPs and the RNA helicase UPF1. Half-lives of cellular mRNAs are
heavily dependent on stability-linked cis-acting RNA elements.
Ahandful of RBPs with specificity for stem-loop structures or extended
double-stranded RNA stretches are known to interact with a unique
effector, the RNA helicase UPF1, to promote decay of mRNAs that
harbour such elements®. UPF1, which is best known as a central compo-
nent of amajor quality control pathway known as nonsense-mediated
decay®, thus operates as a point of convergence for functionally diverse
RBPs, each of which regulates the stability of its targeted mRNAs
(Fig. 4b). To stimulate the RNA helicase activity of UPFI, the recruit-
ing RBPs must bypass the intramolecular autoinhibitory interaction
between the CHdomain and the helicase domain of UPF1 (refs.°**”). How
this is achieved remains unclear, although several reports point to an
activating role of direct, IDR-mediated contacts between RBPs and the
inhibitory domains of UPF1 (refs.?>*%%°) (Table 1and Supplementary
Table 2). Upon activation, UPF1is believed to unwind the RBP-bound
RNAstructureto facilitate local endonucleolytic cleavage, which, along
withadecapping complex and exonucleases, ensures rapid destruction
of the targeted transcript’’. Additional RBPs are speculated to engage
this pathway of mRNA decay®.

RBPs and the CCR4-NOT complex. Poly(A) tails are required for
stability and translational efficiency of mRNAs, but are also subject
to enzyme-mediated shortening, or deadenylation, a process that is
key for initiating mRNA decay”. The CCR4-NOT deadenylase trims
adenosines proximally to the 3’ untranslated region (UTR) with amajor
effect on mRNA stability. Notably, in addition to its role in ‘baseline’
deadenylation of bulk mRNA, CCR4-NOT is widely thought of as
a hub of regulated, mRNA-specific deadenylation, much of which
is driven by RBPs, microRNAs (miRNAs) and codon optimality” 2.
Inthe multi-subunit CCR4-NOT complex, the CNOT9 subunit and the

CNOT2-CNOT3 heterodimer constitute the major regulatory hotspots
throughwhichseveral RBPs are thought torecruit CCR4-NOT to select
mRNAs for deadenylation'>”*”’ (Fig. 4c and Table 1). Interestingly,
the concave surface of CNOT9 non-specifically binds RNA, albeit in
a mutually exclusive manner with RBPs (Fig. 4d). This has led to an
intriguing hypothesis that, through competition for CNOT9 binding
withmRNA, RBPs might divert the deadenylating activity of CCR4-NOT
from bulk mRNA to specific mRNA targets’. Notably, most, if not all,
studied PPIs seem to conform to the general trend whereby an IDR
of an RBP, often a defined SLiM, interacts with a structured domain of
a CCR4-NOT subunit (Fig. 4c and Table 1). A particular case is the
convex surface of CNOT9, which recognizes individual tryptophanresi-
dues presentinthe DR of ZFP36 or the TNRC6 (also known as GW182)
adaptor proteins; the latter recruit CCR4-NOT to Argonaute (AGO)-
miRNA-targeted mRNAs and have a crucial role in miRNA-mediated
genesilencing”™’® % (Figs. 4¢,4f).

RBPs and the cytoplasmic poly(A)-binding protein. Although neither
aclassic effector nor a transcript-specific RBP, the abundant cytoplas-
mic poly(A)-binding protein (PABPC) is central to promoting efficient
translation and surveillance of translation and decay rates of nearly
every mRNA’., Canonical functions of PABPC encompass control-
ling the length of the poly(A) tail, physical communication between
the two ends of the mRNA, and recruitment of various effectors and
regulators of mMRNA processing’"®* (Fig. 4d). The latter function of
PABPC is mediated via its main protein-binding platform, the MLLE
domain, which specifically recognizes a SLiM, known as PAM2, found
in IDRs of diverse proteins, including a handful of RBPs** (Fig. 4d and
Table 1). Curiously, in contrast to the expected roles in regulation of
mRNA stability and translation®> 4, a couple of rather unexpected
roles have recently been found for RBP-PABPC interactions (Table 1).
Inparticular, PABPC has been found to moonlight asan RNA-dependent
chaperone that prevents spontaneous condensation of the intrinsi-
cally disordered RBP ataxin 2 (ATXN2)®. The chaperoning role of the
ATXN2-PABPCinteractionis especially notable because aberrant con-
densation of ATXN2 has been associated withtwo neurodegenerative
disorders, spinocerebellar ataxia-2 and amyotrophic lateral sclerosis
(ALS)*. Through aseparate PAM2-mediated interaction, PABPC helps
to position makorin1(MKRNI) upstream of premature poly(A) tails to
block mRNA translation and facilitate ribosome-associated quality
control®. Interestingly, an orthologous Mkrnl-pAbp PPlin the fruitfly is
required for derepression of oskar mRNA translation during embryonic
patterning®*.

Giventhe precedent of ATXN2 and MKRN], it is tempting to specu-
late about other non-canonical functions of RBP-PABPC interactions.
These would beimportant to understand especially when one consid-
ersthelarge number of RBPs that might potentially bein close contact
with PABPC via PAM2 motif-MLLE domain interactions. Specifically,
our reanalysis of published data indicates that 77 human PABPC1-
bound proteins detected by in vivo proximity-dependent biotinyla-
tion (BiolD) analysis (77/120, 64%)%® are RBPs that harbour either a
consensus PAM2 motif or a PAM2-like peptide sequence thatisno more
divergent from the consensus than the PAM2 motif of MKRN1, which
differs from the consensus by three mismatched residues™*"* (Fig. 4d
and Supplementary Table 3). Much larger numbers of candidate MLLE
domain-binding RBPs with or without mismatches to the consensus
PAM2 motif are obtained if allannotated human RBPs are considered”
(Fig.4d and Supplementary Table 3). Thisis notable given that the MLLE
domain is unique to PABPC and just one other, much less abundant
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human protein, the E3 ubiquitin ligase UBRS5 (ref.%?). It would thus be
of interest to probe potential interactions of these RBPs with PABPC

and determine their functions.

RBPs and translation initiation factors. Rare examples of direct RBP-
effector interactions with primary roles in controlling mRNA transla-
tionindicate various possible regulatory modes, most of which entail 3’
UTR-bound RBPs and components of the translation initiation machin-
ery (Fig.4e).Forinstance, in yeast, aset of RBPs directly associate with
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elF4G toblock recruitment of the preinitiation complex®’, whereas in
higher organisms, RBP-dependent recruitment of the translational

repressor 4EHP (also known as elF4E2) prevents elF4E from binding to
the 5’ cap ontargeted transcripts (Fig. 4e and Table 1), amechanism that

sustains normal oogenesisin the fruitfly and in mammals'®*°"’, Several
other translationally linked RBP-effector interactions lack evidence
of convergence; however, they largely seem to conform to the gen-
eral SLiM- or IDR-structure type of interaction (Table 1). We also note
that gene-specific translational control by RBPs is often coupled with
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Fig. 4| Converging RBP-effector interactions regulating cytoplasmic RNA
processing. a, Myo4p motor protein-mediated transport of She2p/She3p
RNA-binding protein (RBP)-bound mRNA along an actin filament, a process
required for asymmetrical mRNA localization in budding yeast. Red segments
indicate intrinsically disordered regions (IDRs) of She3p in contact with She2p
and mRNA. b, Interactions of RBPs with the RNA helicase UPFlimplicated in
regulation of mMRNA decay. Red highlights represent IDR segments that form
key protein-proteininteractions (PPIs) required for activation of specific
RBP-mediated mRNA decay pathways. Yellow dot denotes glucocorticoid, the
ligand required for efficient association of the glucocorticoid receptor (GR)
withthe PNRC2 adaptor. Dashed oval indicates dimerization of Staufen (STAU)
proteins. Red arrows point to approximate (domain-resolution) sites of contact
on UPF1. Drawingin theinset illustrates a generalized mode of RBP-stimulated
UPF1-mediated mRNA decay. Dashed arrows denote indirect stimulation in cis of
exo-orendo-ribonucleolytic cleavage or translational repression. ¢, Schematic
of the CCR4-NOT complex with indicated protein subunits and domains of

the largest, CNOT1subunit. Blue shapes indicate regulatory RBPs that bind to
CCR4-NOT whereas red and black arrows point to sites of contact of RBPs and
RNA, respectively. Red dash denotes short linear motif (SLiM)-containing IDR
segments and letters W indicate tryptophan residues that form PPIs with CCR4-
NOT. The asterisk indicates that the RNA-binding capacity of Bam s currently
uncertain. The grey wavy line represents TNRC6 proteins that can serve as
adaptors to connect RBPs with CCR4-NOT. RBP-bound mRNA has been omitted
for clarity. d, RBPs that use a PAM2 or a PAM2-like SLiM (red dash) to interact

with the MLLE domain of cytoplasmic poly(A)-binding protein (PABPC) bound

to apoly(A) RNA sequence (left). Numbers of human PABPC1-bound proteins

or annotated human RBPs that contain a PAM2 or a PAM2-like SLiM shown in
proportional Venn diagrams. Total pools of proteins in each group were defined
previously"** and are listed in Supplementary Table 3. The two PAM2 motifs,
LIG_PAM2_1and LIG_PAM2_2, annotated in the ELM database were considered as
canonical (no mismatching residues; darkest shade of blue). Proteins that harbour
motifs with one, two or three residues that deviate from either of the canonical
PAM2 motifs are indicated in progressively lighter shades of blue (right). Note
that the PAM2-like SLiM of makorin 1 (MKRN1) contains three residues that
mismatch LIG_PAM2_1. None of the 26 PABPC1-bound non-RBPs harbours any
PAM2 or PAM2-like motifs (that is, those with zero to three mismatches). e, Direct
RBP-effector interactions that regulate translation initiation. Red segments of
mRNA-bound RBPs denote IDRs that interact with different initiation factors

or the 40S ribosomal subunit, as indicated. f, Cooperation of RBP-adaptor—
effector conduits in miRNA-AGO-mediated gene silencing. Several co-associated
molecules and processes have been omitted for clarity. Blunt or sharp arrows
towards or away from the ribosomes (green shapes) indicate repressive or
activating net effect on translation, respectively. Drawings of multiple RBPs
binding to the same effector molecule in panels b-d solely illustrate that
different RBPs can bind to a particular effector; they do not imply simultaneous
interactions of multiple RBPs with different segments of the same effector or
competition between different RBPs for binding to a particular region of an
effector molecule. NMD, nonsense-mediated decay; RRM, RNA recognition motif.

regulation of mRNA stability and involvesindirect, adaptor-mediated
interactions with effectors, asis the case for AGO-miRNAs and several
other RBPs"*??? (Fig. 4f and Supplementary Table 2).

Plasticity and dynamics of connections

An overview of the converging RBP-effector contacts shows that the
large majority of them form between a short stretch of an IDR of an
RBP, or adefined SLiM residingin it, and a structured part of an effec-
tor protein (Table 1). Suchinteractions not only confer high specificity
and span arange of affinities to satisfy the required dynamics of PPIs,
butalso canberegulated and exhibit significant evolutionary plastic-
ity”. Notably, because SLiMs are short, harbour a small number of
essential residues and often reside in IDRs, they can rapidly evolve
de novo from random peptide sequences and rewire protein interac-
tion networks”"*. These properties allow novel cases of a particular
SLiMto evolveindependently in different RBPs for binding to the same
structured binding site in a given effector, thus contributing to the
convergent evolution of the nexus (Fig1). A classic example is provided
by independently evolved, dissimilar-in-sequence SLiMs of RBPs and
competing non-RBPs that bind to the same contact site inthe concave
surface of CNOTO (refs.">"*%°) (Fig. 4¢).

Dynamics of RBP-effector interactions should be considered
together with the events that occur at the level of RBPs binding to RNA,
asRNA processing by many RBP-regulated effectors eventually depends
ontheirrecruitment to RNA (Fig. 2e). Notably, arecent kinetic analysis
suggested that, in cells, RBPs bind to their cognate RNA sites transiently
andinfrequently, thatindividual binding events may last only seconds
or shorter, and that few if any regulatory RBPs might be bound to a
given mRNA atany given time”. If true, then how might adding another
layer of transient and possibly infrequent interactions, in this case
between RBPs and their effectors, still allow for assembly of functional
RNA-RBP-effector modules to secure timely processing of RNA?

The answer might depend on the RNA process in question. For
instance, several forms of RBP-regulated RNA processing might require

onlyinfrequent formation of relatively short-lived RNA-RBP-effector
assemblies to initiate a process that can be propagated by effector-
independent means. This may apply to processes such as decap-
ping-triggered mRNA decay, stimulation of alternative splicing and,
conceivably, mRNA clamping-dependent translational repression®.
By contrast, processes such as TNPO1-mediated RBP extraction and
nuclearimport, or motor protein-driven mRNP transport may require
more stable associations. Indeed, the reported affinities of PY-NLS
motifs for TNPO1lare generally one to two orders of magnitude higher
than most other measured SLiM/IDR-effector interactions (Table 1).
Alternatively,inmRNA transport granules, high concentration of RBPs
couldfortify their sometimes already superstoichiometric binding to
motor proteins via avidity effects®**’ (Fig. 4a).

Regulation of RBP-effector interactions

The formation and break-up of RBP-effector interactions do not rely
solely on their strength and the local availability of interacting mole-
cules in the cell but can additionally be regulated by cellular cues.
The amenability to regulation can serve a host of biological processes
that may require anything from fine-tuning RNA processing, enabling
rapid, switch-like responses tointracellular or extracellular stimuli, to
permanent rewiring of RNA networks. To accommodate such broad
regulatory flexibility, RBP-effector interactions can be modulated
either pre-translationally through alternative splicing (Fig. 5a),
or post-translationally, by post-translational modifications (PTMs) or
competitiveinteractions (Fig. 5b—d). Below, we discuss the principles
oftheseregulatory strategies and list examples linked to regulation of
diverse biological processes.

Rewiring of networks through pre-translational control

Alternative splicing, which affects the expression of nearly 95% of
human multi-exon genes'’, has emerged as a central mechanism for
functional diversification of eukaryotic proteomes'”’. When alter-
native splicing affects an RBP or an effector of RNA processing, an
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Table 1| Interface between RBPs and their effectors

Effector Effector protein® Effector contact RBP* RBP contact region® Ky (uM)° Process regulated by the
region® RBP-effector interaction
Spliceosome  SNRNP70 (U1-70K)¢ RS domain (IDR) SRSF1/2 (SC35) RS domain (IDR) Pre-mRNA splicing
SNRPA (U1A) RRM1 domain (SD) SAM68 (KHDRBST) Y-rich (YY) region (IDR)
SNRPC (U1C)¢ N terminus (SD) TIA1 Q-rich domain (IDR)
U1 snRNA¢ SL3 of U1snRNA FUS RRM domain (SD)
U2AF65 RS domain (IDR) YBX1 Basic/acidic repeats (IDR)
SMN SMN Tudor domain (SD) ELAVL4 (HuD) NR mRNA transport, translation
IGF2BP1(ZBP1) KH domain region
KHSRP (FUBP2) NR (methylated Arg) (IDR) mMRNA stability
FUS RGG box (IDR) and RRM (SD) Pre-mRNA splicing
Tudor domain (SD) HNRNPR RGG box (IDR) mMRNA transport, pre-mRNA
and YG box (SD) splicing
SYNCRIP RGG box (IDR)
EWSR1 RG domain (IDR) NR
YG box (SD) FMRP Internal segment (IDR) mMRNA transport, translation
NR HNRNPU RGG box (IDR) NR
NIRs TNPO1 HEAT repeats (SD) HNRNPA1 PY-NLS SLiM (IDR)® 0.042 Nuclear import,
RBP chaperoning/
HNRNPA2B1 disaggregation
EWSR1
TAF15
FUS 0.0095
HNRNPF Nuclear import
HNRNPM 0.01
HNRNPD 0.0032
HNRNPDL 1
SAM68 (KHDRBS1)
ELAVL1 (HUR)
KAP1040east Nab2ptrees 0.037
Hrp1pteast 0.032
KapB1/Impa HEAT/Arm repeats TDP43 (TARDBP) cNLS SLiM (IDR)® 0.066 Nuclear import,
(SD) RBP chaperoning/
disaggregation
Motor Myo4pteast C terminus (SD) She3ptest Pseudocoiled-coil (SD) 0.058  mRNA transport
proteins She3p-She2pteastf P/R sites (IDR)-structure (SD) 1.6
KIF11 Tail domain (IDR/SD)  IGF2BP1(ZBP1) RRM domains (SD)
KIF3C C terminus (IDR) FMRP NR
UPF1 UPF1 Helicase domain (SD) SLBP N-terminal half (IDR) mMRNA stability
RecA domain (SD) ZC3H12A (regnase 1) Internal segment (IDR) and
and Thr28 (IDR) RNase domain (SD)
N terminus STAU1/2 Tubulin-binding domain (IDR)

Nature Reviews Genetics | Volume 24 | May 2023 | 276-294

284


http://www.nature.com/nrg

Review article

Table 1 (continued) | Interface between RBPs and their effectors

Effector Effector protein® Effector contact RBP? RBP contact region® Ky (uM)°  Process regulated by the
region® RBP-effector interaction
CCR4-NOT CNOT1 HEAT domain (SD) ZFP36 (TTP) SLiM (IDR) 2 mRNA stability, translation
ZFP36L1 (BRF1)
NR TNRC6C (GW182)° W-containing motifs (IDR)
CNOT9 Concave surface Bam CBM SLiM (IDR) 0183
&) RC3H1/2 (Roquin 1/2) mMRNA stability
CNOT4 mMRNA stability
Convex surface (W ZFP36 (TTP) Isolated W residues (IDR) 5.5 mMRNA stability
pockets) (SD) TNRC6A/C (GW182)° MRNA stability, translation
NOT module NR (SD) RC3H1/2 (Roquin 1/2) C terminus (IDR) mMRNA stability
HELZ mMRNA stability, translation
PUM1/2 N-terminal domain (IDR)
Bicaudal C KH domains (SD)
SHD (SD) NANOS1-3 SLiM (IDR) Translation
YTHDF2 P/Q/N-rich region (IDR) RNA stability
CNOT4 C terminus (IDR) mMRNA stability
PABPC PABPC1 MLLE domain (SD) ATXN2 PAM2 SLiM (IDR) 0.7 RBP chaperoning
HELZ NR
NR USP10 26 NR
Multiple domains MKRN1 RQC, translation
PABPC1/4 NR NFX1 mRNA stability
4EHP 4EHP Dorsal surface (SD) Bicoid (Bcd) SLiM (IDR) Translation
NR PKNOX1 (Prep1)
elFAG TIF4631/20eas) C terminus Scdevessy RGG box (IDR)
Khd1veas) NR
Internal region Sbp1veast RGG box (IDR)
Internal regionand C  Npl3¥es)

terminus

CBM, CAF40-binding motif; IDR, intrinsically disordered region; K, dissociation constant; NIR, nuclear import receptor; NLS, nuclear localization sequence; NR, not reported; PABPC, cytoplasmic

poly(A)-binding protein; PY-NLS, proline-tyrosine-rich NLS; RBP, RNA-binding protein; RQC, ribosome quality control; RRM, RNA recognition motif; SD, structured domain; SLiM, short linear
motif; SMN, survival motor neuron protein; snRNP, small nuclear ribonucleoprotein; STAU, Staufen; TNPO1, transportin 1. *Only those direct RBP-effector interactions are listed where a contact
region has been mapped in at least one of the interacting proteins. For a fully referenced list of direct and indirect interactions, see Supplementary Table 2. Effectors and RBPs are named by their
official gene symbol with text in brackets indicating popular aliases. All interacting proteins are metazoan except for the indicated yeast proteins. *IDR (or its part) or SD (or its part) in brackets
indicates peptide organization of the contact region in its non-bound state. Where not reported, this information was obtained through modelling of the protein structure using the structure

prediction algorithm AlphaFold'”. “The K in most cases pertains to an in vitro interaction between SLiM of an RBP and the interacting effector domain or the full-length effector protein. ®Part of U1
snRNP. °NIRs can also form secondary, low-affinity contacts with other domains of their cargo RBPs***°. ‘Both She2p and She3p are RBPs in contact with the transported mRNA®2. STNRCBA-C are

paralogous adaptor proteins that recruit CCR4-NOT to microRNA-targeted messages largely via capture of W residues by tandem W pockets present in CNOT9 and AGO (Argonaute) proteins’™.

opportunity arises for the establishment of new or alteration of exist-
ing RBP-effector interactions. The observation that IDRs and their
embedded SLiMs, but not structured domains of proteins, commonly
reside in non-constitutive exons suggests that alternative splicing of
IDR-rich RBPs, rather than their SLiM-binding effectors, more com-
monly impinges on RBP-effector interactions’%%, Pre-translational
modulation of RBP-effector interactions via alternative splicing offers
additional regulatory opportunities, including stable rewiring of RNA
networks (Fig. 5a). Notably, rewiring of PPIs often occursin a cell- or
tissue-specific manner and can crucially contribute to development
and tissue identity'®.

Several alternative RBP isoforms have beenidentified that harbour
identical RNA-binding domains and differ only in short stretches of
IDR, yet exhibit distinct effector roles and biological functions. For
instance, two alternative isoforms of the Drosophila How RBP, one
restricted to the nuclei of precursor cells and the other found in both
the nucleiand the cytoplasm of mature cells, regulate aswitchintendon
cell differentiation by exerting opposing effects on mRNA stability'**.
Interestingly, asimilar switch mechanism enforced through differential
subcellularlocalization butapplied to the control of splicing and trans-
lation is used by alternative isoforms of the orthologous Quaking (QKI)
RBPin regulating myelinationin the mammalian nervous system'®*'%”,
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Fig. 5| Physiological regulation at the interface of RBPs and their effectors.
a-d, Modes of pre-translational (panel a) and post-translational (panels b-d)
regulation of RNA-binding protein (RBP)-effector interactions involvedin

the control of biological processes. a, Tissue-specific alternative splicing,
illustrated here as skipping or inclusion of the small linear motif (SLiM)-encoding
alternative exon (red) in stem cells (left) or neurons (right), respectively, can
facilitate rewiring of RNA networks. b, Phosphorylation, which isimplemented
by kinases and removed by phosphatases, most often disrupts RBP-effector
interactions and occurs in RBP regions flanking the SLiM segment (red) that
contacts the effector surface (top). Interactions of SR proteins with components
ofthe spliceosome present a particular case in which phosphorylation of the RS
domains (red) of both interacting partners stimulates contact establishment
(bottom). ¢, Monomethylation or dimethylation of arginine residues of RBPs
canstimulate RBP-effector interactions, typically through recognition of a
methylated arginine by the Tudor domain'”, as illustrated, or can weaken the
affinity of RBPs for effectors, as in the case of the RBP-transportin1(TNPO1)
interactions (not shown). It is unclear whether demethylation of RBPs also occurs
invivo (denoted by a question mark), although arginine demethylating activity
has been ascribed to a handful of enzymes'°. d, Competition between an RBP
and other RBPs or non-RBPs for acommon binding site on an effector can exert
adirectregulatory effect on RNA processing. Competition of RanGTP with RNA-
free RBPs for binding to nuclear import receptors can be considered as having an
indirect effect on RNA processing (Fig. 3d). Curved dashed arrows depict effector
activityonRNAincis. e, The interface of RBPs and their effectors serves asa
sensor of intracellular and extracellular signals as well as a regulator of cellular
responses to signalling. Illustrated are signal transduction pathways (pathways 1-4)
that trigger responses through distinct modes of post-transcriptional RNA
processing. Hormonal stimulation of oocytes triggers their maturation, in part,
via phosphorylation-dependent reconfiguration of cytoplasmic polyadenylation
element binding protein (CPEB)-effector interactions. This turns CPEB from
arepressor to anactivator of polyadenylation-induced translation, a process
thatis crucial for germ-cell development. A highly similar pathway leading to
CPEB activation s triggered upon synaptic stimulation of neurons and plays a

key partin synaptic plasticity (termsinred, where indicated, are specific to the
neuronal pathway)'”’. Green shapes indicate translocating ribosomes (pathway 1).
Activities of SR proteins are modulated by external and internal signals via
phosphorylation by SR protein kinases (SRPKs) and CDC-like kinases (CLKs),
respectively, with the capacity to trigger a systemic response through changes
innumerous alternative splicing events (pathway 2). Regulation of RBP—

effector interactions via phosphorylation has a central role in securing a timely
response toimmune signalling, as well as its resolution. Upon stimulation with
lipopolysaccharide (LPS), phosphorylation prevents association of ZFP36 with
CCR4-NOT to help stabilize the induced and ZFP36-bound pro-inflammatory
mRNAs. This response is rapidly reversed once the signalling subsides via protein
phosphatase 2A (PP2A)-mediated dephosphorylation of ZFP36 and the ensuing
recruitment of CCR4-NOT, which deadenylates the ZFP36-bound transcripts,
which are thenrapidly degraded (pathway 3). A series of largely nuclear RBPs
(dark blue circles) with prion-like domains operate as splicing factors but
partially also shuttle to the cytoplasm where they take on additional roles.

Upon cellular stress, these and other aggregation-prone RBPs, such as ataxin 2
(ATXN2), potentially with their bound RNA, relocate to ribonucleoprotein (RNP)
condensates/stress granules where they are kept functionally inert. Effectors that
moonlight as RBP chaperones, including nuclear import receptors (NIRs) and
cytoplasmic poly(A)-binding protein (PABPC), assist by preventing irreversible
aggregation of RBPs in part through their recognition via nuclear localization
sequence (NLS) and PAM2 motifs (red), respectively. Condensation properties
aswellas NIR interactions and nuclear import of some RBPs are additionally
regulated by methylation by protein arginine methyltransferases (PRMTSs).
Excessive stress, RBP mutations (yellow asterisks) and ageing can prolong the
time that RBPs spend in a condensed state, increasing the risk of RBP aggregation
and neuronal degeneration. NIRs can act as disaggregases, with anintrinsic
capacity to dissolve certain types of aberrant RNP condensates (pathway 4).
CaMKIl, calcium/calmodulin-dependent protein kinase II; EGFR, epidermal
growth factor receptor; ePAB, embryonic poly(A) binding protein; MK2,
MAPK-activated protein kinase 2; NMDAR, N-methyl-d-aspartate receptor;

PR, progesterone receptor; TLR4, Toll-like receptor 4.

Differential localization also underlies the function of ZAP (also known
as ZC3HAV1), whose long isoform targets viral RNA for degradation,
with the shortisoform assisting by inhibiting programmed ribosomal
frameshifting and resolving the antiviral response'*®'°°, By contrast,
with no overt differenceinlocalization, oneisoform of Musashi2 (Msi2)
RBP sustains a translation-repressive activity to promote anchorage-
independent cell growth, whereas the other uniquely responds to
differentiation-inducing phosphorylation'’. Nonetheless, despite the
marked biological impact of rewiring RBP-effector interactions via
alternative splicing, our understanding of how such rewiring might lead
to system-wide changes that underlie observed phenotypes remains
minimal.

Responding to signal transduction via post-translational
modulation

Reversible regulation of RBP-effector contacts is typically achieved
by PTMs, of which phosphorylation has arguably garnered the most
attention, particularly in the context of signal-regulated RNA process-
ing events. The fast turnover of phosphorylation in fact renders this
PTM particularly well suited to mediating rapid responses of several
types of RNA processing to various signals™ " (Fig. 5a). For instance,
phosphorylation by SR protein kinases (SRPKs) and CDC-like kinases
(CLKs) affects pre-mRNA splicing by regulating interactions between
SR proteins and components of the spliceosome'”. In this manner,
SRPKs operate as major transducers of growth signals; upon activation

by growth factors, SRPKsrelocate to the nucleus and cause widespread
changes in alternative splicing™ (Fig. 5e). By contrast, CLKs reside in
thenucleus and act, forinstance, inrestoring the phosphorylation state
of SR proteins during recovery from cellular stress'.

The importance in regulated RBP-effector interactions has also
beenobservedinthe control of polyadenylation-induced translation,
which hasessential roles indiverse biological processes, suchas germ-
cell development, cell cycle progression and synaptic function"®. In
these settings, asequence-specific RBP cytoplasmic polyadenylation
element binding protein (CPEB) initially keeps dormant aset of mMRNAs
with relatively short poly(A) tails. In oocytes stimulated to mature by
progesterone, asignalling cascadeisinitiated thatactivatesthe Aurora
A kinase, which in turn phosphorylates CPEB and converts it from a
repressor into anactivator of translation'” (Fig. Se). This switch in CPEB
activity results frommolecular rearrangements that affect interactions
of CPEB with several effectors involved in the control of poly(A) tail
length and mRNA translation®. Remarkably, a highly similar signalling
cascadeleading to CPEB activation and stimulation of local translation
is triggered upon synaptic stimulation of neurons™’ (Fig. Se). In fact,
loss-of-function genetic experiments in mice have demonstrated that
CPEB-dependent translational control by cytoplasmic polyadenylation
has animportant role in synaptic plasticity, a process that is believed
to form the underlying basis of learning and memory'°.

Akin to pre-mRNA splicing and protein synthesis, signalling-
mediated regulation of contacts between RBPs and their effectors
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also has a central role in the control of mRNA stability, the biological
significance of which is well illustrated by the regulation of innate
immune responses by the AU-rich element (ARE) binding to RBPs
such as ZFP36'”. In cells that receive an inflammatory stimulus — for
instance, lipopolysaccharide (LPS)-activated macrophages —asignal-
ling cascade is triggered that revamps the transcriptional landscape
to instate a pathogen-induced gene expression programme typified
by induction of short-lived, ARE-containing mRNAs that encode pro-
inflammatory cytokines as well as ZFP36 mRNA'. The same stimulus
activates a kinase cascade that phosphorylates the ZFP36 protein,
preventing it from recruiting the CCR4-NOT deadenylase and allow-
ing for accumulation of ZFP36-bound pro-inflammatory mRNAs and
their encoded proteins' (Figs. 4¢,5¢). When signalling ceases,PP2A
dephosphorylates ZFP36, prompting it to recruit CCR4-NOT to the
bound mRNAs, which then undergo rapid deadenylation followed by
degradation”'?*, Thus, regulation of the interactions between ZFP36
and CCR4-NOT is instrumental in controlling the magnitude and
duration of the inflammatory response.

Swift post-transcriptional responses to neurotransmitter release
or inflammatory stimuli exemplify biological processes that require
quick-acting changes in RBP-effector connectivity; such modulation
can be rapidly enacted by phosphorylation. However, in other physi-
ological settings, a longer-lasting action may be required that is less
sensitive to speed of onset or termination. Although controlled phos-
phorylation might again serve such needs, other, generally less-studied
PTMs of RBPs can have just as potent regulatory roles at the nexus of
RBPs and their effectors™. For instance, in yeast, arginine methylation
was found to fortify the interactions between Scdé or Sbpl and elF4G
tofacilitate translational repression of targeted mRNAs in response to
glucose deprivation?'>, Arginine methylation also strengthenedinter-
actions between KHSRP and SMN to secure correct localization and
mRNA stability in neurites of differentiating mammalian neurons'®®,
but weakened the contact between FUS and TNPO1 to modulate the
dynamics of nuclear import in HeLa cells**'* (Fig. Se). These findings
suggest that methylation, which displays aninherently slow turnover'?s,
canbeadeptatregulating awide variety of post-transcriptional events
atthe RBP-effectorinterface'”. On that note, very little is known about
the spatiotemporal control of RBP methylation, including the activities
of protein arginine methyltransferases (PRMTs), which catalyse the
deposition of this PTM, and it remains unclear whether RBPs are ever
demethylated in vivo.

System-wide studies have implicated acetylation as another
common PTM of RBPs, and recent evidence suggests that acetylation,
akin to phosphorylation and methylation, may also have aregulatory
role at the RBP-effector juncture*°. For instance, similar to arginine
methylation, lysine acetylation was found to disrupt the interaction of
FUS with TNPO1, reducing nuclear import and stimulating the locali-
zation of FUS in cytoplasmic stress granule-like inclusion bodies™".
Lysine acetylation was also reported to weaken the interaction of
EWSR1 with the U1snRNP component SNRPC to regulate alternative
splicing in response to DNA damage'. Notably, the identification
of specific enzymes that catalyse acetylation and deacetylation of
these RBPs indicates that the above PTM events might indeed be
regulatory"1%,

At the level of RBP-RNA interactions, competition for the same
RNA target site between RBPs with different, potentially opposing
effects on a given post-transcriptional process, for example, splic-
ing or mRNA stability, leads to distinct regulatory outcomes*®'**7¥,
Similar competition canoccur at the level of RBP-effector interactions

(Fig.5d). Todate, fewif any studies have documented such competition
between different RBPs; however, experimental evidence has been
gathered for competition between RBPs with non-RBPs for a com-
mon binding site on an effector. Examples supported by functionally
relevant outcomes include the aforementioned competition between
Staufen (STAU) RBPs and UPF2 for binding to UPF1 (ref.*®), competi-
tionbetween TOB, PAN3 and eRF3 for binding to PABPC1 (ref.”*), or the
recently proposed competition between RBPs and RNF219 for binding
to CCR4-NOT®®. Given the regulatory impact of competitive effector
binding on RNA processing, as well as the abundance of converging
RBP-effector interactions (Supplementary Table 2), future studies
arewarranted toshed light onthe prevalence and significance of such
interactions in various biological processes.

Genetic disorders and potential therapies
Given their central roles in regulating all aspects of gene expression
at the RNA level, it is not surprising that compromised function of
RBPs underlies the origin of many diseases. According to a recently
updatedtally, astaggering 30% of all annotated human RBPs (1,054 of
3,470 RBPs) are mutated in Mendelian or somatic genetic diseases, with
neurological disorders, metabolic diseases and cancer among the most
common associated disease categories'. Similar to our minimal under-
standing of RBP-effector roles compared with RBP-RNA interactions,
wesstillknow verylittle about the pathomechanisms of RBPs in disease.
The wealth of data garnered through disease association studies
suggests that disease-linked mutations occur more frequently inIDRs
and RBP domains other than RNA-binding domains'®. Furthermore,
proteome-wide analyses reveal an enrichment of disease-related muta-
tionsinSLiMs within IDRs, especially at functionallyimportant residues
of SLiMs™*°. Given the central role that SLiMs have in establishing RBP-
effectorinteractions (Table1), it seems plausible that interference with
theseinteractions in disease might contribute to the pathobiology of
mutations in RBPs. This consideration becomes particularly worth-
while in light of the observation that the ELM database, the largest
repository of experimentally validated SLiMs'*, currently lists only
around 4,000 out of more than 100,000 SLiMs that a eukaryotic pro-
teome is predicted to contain®. Limited general knowledge of SLiMs
and RBP action thus restricts our understanding of the involvement
of the RBP-effector nexus in disease to only a handful of documented
examples. However, several recent studies demonstrate the therapeutic
potential of targeting RBP-effector interactions genetically or pharma-
cologically, highlighting the regulatory and biological potency of the
nexus from a novel perspective.

Mutations that disrupt the nexus

Arguably the best-characterized disease-linked mutations that inter-
fere with RBP-effectorinteractions cause pathological aggregation of
misfolded RBPs, asignature trait of neurodegenerative disorders'. For
instance, mutations in FUS can cause familial ALS as well as rare cases
of frontotemporal lobar degeneration (FTLD) (Table 2). Remarkably,
approximately half of these mutations occur within the PY-NLS and
disrupt the high-affinity interaction of FUS with TNPO1 (ref.'*?) (Table 1).
This disruption compromises nuclear import and leads to aberrant
cytoplasmicaccumulation of the otherwise largely nuclear FUS, which
eventually becomes deposited in pathological protein aggregates, as
seen in brains of affected individuals'*’. Notably, the severity of the
defectinnuclearimport of FUS faithfully tracks with disease onset and
progression, supporting a causal relationship between the mutations
in PY-NLS and disease pathogenesis'***,
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Table 2 | RBP-effector interactions in human disease

RBP-effector interaction

Genetic disorder or developmental
abnormality

Causative or associated
mutation

Therapeutic approach

Disease-linked mutations that affect RBP-effector interactions

FUS-TNPO1 ALS, rare cases of FTLD'* Mutations in PY-NLS or NR

HNRNPA1-TNPO1 ALS'” cNLS of RBPs

HNRNPH2-TNPO1 Neurodevelopmental delay, autism'*®

TDP43-KapB1/Impa ALS"8177

MATR3-TREX complex ALS, vocal cord and pharyngeal Mutations in IDRs of NR
weakness with distal myopathy'*'"® MATR3

RBP-SMN SMA#17® Mutations in the Tudor NR

domain of SMN

Therapeutically targeted RBP-effector interactions

SRSF6-U1snRNP

Familial dysautonomia (Riley-Day
syndrome)

Intronic mutation in ELP1

Small-molecule CLK1 agonist-enhanced SRSF6 phosphorylation
to rescue abnormal skipping of the IKBKAP exon 20 (ref.”*®)

SRSFs-U1/U2 snRNPs

Duchenne muscular dystrophy,
cystic fibrosis, anhidrotic ectodermal
dysplasia with immunodeficiency

Exonic mutation in DMD,
intronic mutations in
CFTR and IKBKG

Pharmacological CLK inhibition to suppress SRSF
phosphorylation and pathogenic exon inclusion'*'8%'

SRSFs-U1snRNP

Leukaemia, prostate cancer, colon
cancer, breast cancer, lung cancer,
neovascular eye disease

Cancer-associated
mutations in tumour
suppressor genes and
oncogenes

Inhibition of SRPK activity to normalize isoform levels of genes
linked to cancer progression, apoptosis and angiogenesis'*°'%?

FUS-TNPO1
EWSR1-TNPO1

ALS, FTLD, Alzheimer disease,
multisystem proteinopathy

Aggregation-promoting
mutations in RBPs or

Delivery of NIRs to afflicted neurons or modulation of arginine
methyltransferase activity®*°>2/164

TAF15-TNPO1
HNRNPA1-TNPO1
HNRNPA2-TNPOT1
TDP43-KapB1/Impa

disrupted arginine
methylation

ATXN2-PABPC Spinocerebellar ataxia 2, ALS

in ATXN2

Expansion of the
polyglutamine domain

Designer PABPC-like chaperones to counter pathogenic RNP
condensate formation®

ZFP36-CCR4-NOT Rheumatoid arthritis, psoriasis,
multiple sclerosis, juvenile idiopathic

arthritis, inflammatory diseases

Mutations in and/or
reduced expression of
ZFP36, aberrant signalling

PP2A agonists to activate ZFP36 or forced expression of ZFP36
in peripheral tissues or immune cells'®>'%162153

RBM38-elF4E Cancers NR

SLiM-mimicking synthetic peptide Pep8 increases expression
of p53 by blocking the inhibitory RBM38-elF4E interaction'®®

ALS, amyotrophic lateral sclerosis; ATXN2, ataxin 2; cNLS, lysine-rich NLS; FTLD, frontotemporal lobar degeneration; MATR3, matrin 3; NIR, nuclear import receptor; NLS, nuclear localization
sequence; NR, not reported; PABPC, cytoplasmic poly(A)-binding protein; PP2A, protein phosphatase 2A; PY-NLS, proline-tyrosine-rich NLS; RBP, RNA-binding protein; SLiM, short linear
motif; SMA, spinal muscular atrophy; SMN, survival motor neuron protein; snRNP, small nuclear ribonucleoprotein; TNPO1, transportin 1; TREX, transport and export.

Several other RBPs associated with neurodegenerative disorders,
including HNRNPA1, HNRNPH2 and TDP43, can set off pathogenic
cascades remarkably similar to that of FUS, with mutations in NLS
leading to defective nuclearimport, aberrant cytoplasmic accumula-
tion, eventual aggregation and neurological disease'*® (Table 2). Aside
from their functional similarities, a key property common to these
RBPs is their proneness to aggregation, which stems largely from
their prion-like domains. Thus, the time, made longer by stress and
ageing, that the aberrantly cytoplasmic RBPs spend in a condensed
stateis believed tobe akey parameterinirreversible RBP aggregation
and the resulting neuronal degeneration®** (Fig. 5e). Interestingly,
whereas mutations of NLS in HNRNPA1 or TDP43 can lead to neuro-
degeneration akin to that caused by mutated FUS, a similar mutationin
HNRNPH2 was found to compromise neurodevelopment and manifest
in autism™,

Circumstantial evidence also exists for disruption of other types
of RBP-effector interaction in human disease. For instance, several
mutations in the IDRs of the nuclear matrix RBP matrin 3 (MATR3),
which are associated with neuromuscular disorders, were shown to

affect interactions of MATR3 with components of the transcription
and export (TREX) effector complex and with defects in the nuclear
export of mRNAs'’. However, the directness of these interactions
and their contribution to disease remain unclear, especially given
that these mutations also lead to potentially pathogenic associations
of MATR3 with other proteins™°. Curiously, disease-linked mutations
that compromise RBP-effector interactions might also occur in the
effector rather than its bound RBPs. Approximately 5% of patients
with SMA carry intragenic mutations in the SMNI gene; a few of these
mutations, such as Glu134Lys, locate to the Tudor domain of SMN and
weaken its affinity for a series of RBPs***® (Fig. 3c and Table 1). Such
effector mutations would be expected to broadly compromise RNA
metabolism and cellular function; however, their manifestation in
a specific phenotype points to the cellular context as an important
determinant of disease phenotype®™'**, It remains to be seen whether
disease-linked alterations identified in other effectors might cause
pathology by compromising interactions with RBPs'*"**'>>, Improved
understanding of the RBP-effector nexus is sure to shed light on the
underpinnings of various human disorders.
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Drugging the nexus

Somerecent discoveries have electrified the field by demonstrating a
striking potential of manipulating RBP-effector interactionsin treat-
ment of some of the most devastating human diseases, including neuro-
muscular disorders and cancer. Below, we summarize opportunities
for therapeutic intervention at the nexus that arise from modulating
the strength of existing interactions or through establishment of novel
contacts between RBPs and their effectors.

One of the most promising therapeutic modalities harnesses
the regulatory role of phosphorylation and the relative ease with
which one can pharmacologically manipulate kinase and phosphatase
activities. Notably, phosphorylation of SR proteins, which regulates
the contacts of RBPs with the spliceosome and thus their activities
as splicing factors (Fig. 3b), has been successfully modulated by
small molecules to affect therapeutically relevant splicing decisions
(Fig. 5e). For instance, the RECTAS compound, an agonist of CLK1,
has shown promise for treatment of familial dysautonomia (FD), a
fatal recessive neurodegenerative disease caused by a mutation in
intron 20 of the ELPI gene, which leads to abnormal skipping of the
ELPI1 exon 20 (refs.>**7), RECTAS was found to directly interact with
and activate CLK1, leading to enhanced phosphorylation of the SR
protein SRSF6 and restorative inclusion of exon 20 in multiple FD
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Fig. 6 | Anetwork view of the nexus. Shown is acompilation of converging
RNA-binding protein (RBP)-effector interactions that have been characterized
atboth the molecular and functional levels. Note that several RBPs (blue shapes)
connect (black lines) to more than one effector (grey shapes) and that there also
exist RBP-independent interactions between different effectors (grey lines).
Solid and dashed lines denote direct and indirect (adaptor-mediated) protein-
proteininteractions (PPIs), respectively. The green line that connects FUS and
the spliceosome represents an RBP-RNA interaction. Purple lines represent
disease-associated or therapeutically targeted interactions (Table 2). The purple
circle around survival motor neuron protein (SMN) indicates spinal muscular
atrophy (SMA)-linked mutations of SMN that weaken its affinity for multiple RBPs.
Only mammalian RBPs are shown. Motor proteins (motors; KIF11, KIF3C, KIF5A,
KIF3AB) and translation initiation factors (elFs; eIF4E, eIF4E2 (4EHP), eIF4G)
have been grouped together and are shown as a single effector. Non-converging
PPIs discussed in the text, TDP43-KapB2/al and MATR3-TREX, are omitted.
CPEB, cytoplasmic polyadenylation element binding protein; MKRN1, makorin1;
PABPC, cytoplasmic poly(A)-binding protein; STAU, Staufen.

disease models™®. By contrast, CLK inhibitors have proved effective
in reducing phosphorylation of SRSFs and promoting therapeutic
skipping of mutation-affected exons. One such example is TGO03
inhibitor-promoted skipping of a mutated exon in the dystrophin
(DMD) gene, which increases production of the DMD protein in cells
of patients with Duchenne muscular dystrophy™® (Table 2). Moreover,
synthetic SRPK inhibitors, which likewise suppress phosphorylation
of SRSFs and their interactions with the spliceosome, have shown
potent tumour-suppressive activities in diverse cancer types that
present with pathological exoninclusions in genes such as VEGF, MYB,
BRD4 and MED24 (refs.”**1°%), Together, these studies exemplify how
chemical control of RBP-effector interactions might provide a new
mechanism-oriented therapeutic opportunity.

Neurodegenerative disorders have long been considered incur-
able and with few treatment options. Disorders such as ALS, FTLD
and Alzheimer disease are characterized by disrupted homeostasis of
aggregation-prone RBPs, which is thought to underlie the formation
of abnormal inclusion bodies®. The pathogenesis associated with
this process may result from toxic properties of the inclusion bod-
ies themselves and/or loss of function due to RBP mislocalization'®.
The recent discovery that NIRs, including TNPO1 and Kap1/Impa,
act as chaperones and disaggregases beyond their canonical roles in
the nuclear import of RBPs has generated considerable excitement
aboutthe prospect of reversing RBP aggregation to mitigate neuronal
degeneration®>*>'** (Fig. 5e). These studies provide a rationale for
therapeutic strategies that aim to increase the level of NIRs via gene
therapy approaches or, conceivably, pharmacological strengthening
of theinteractions between mislocalized RGG/RG-richRBPs and TNPO1
(refs.”*'¥) (Table 2). Althoughimplementation of these strategies or the
ATXN2-chaperoning PABPC in human therapy may prove challenging®,
the unique potential to combat some of the most devastating genetic
diseases warrants further investigation.

Manipulating RBP-effector interactions has also shown promise
in treating autoimmune and inflammatory disorders. For instance,
targeting the anti-inflammatory RBP ZFP36 with agonists of PP2A,
which results in dephosphorylation of ZFP36 and recruitment of the
CCR4-NOT deadenylase, can confer significant protection against
inflammatory arthritis and bone erosion in mice'® (Fig. 5e). Consist-
ently, adenoviral delivery of ZFP36 protected against bone loss and
led to reduced inflammatory cell infiltration in rats'*’, whereas mice
withgenetically stabilized ZFP36 exhibited protectionagainstinduced
forms of arthritis and other immune disorders'’ (Table 2).

Aside from modulating the nexus-regulated RNA splicing, stability
and RNP condensation discussed above, a case has also been made for
the control of mRNA translation. The activity of the cancer-associated
RBP RBM38, which suppresses p53 translation by directly interacting
with elF4E on TrpS3mRNA'®, could be inhibited by a synthetic, RBM38
SLiM-mimicking peptide, called Pep8, that interferes with the RBM38-
elF4Einteraction, derepresses p53 translation and attenuates tumour
sphere formation and growth of xenograft tumours'®. Incidentally,
several small molecules and designer peptides that mimic SLiMs have
shown promise as drugs that act by inhibiting various types of PPI,
and some have already entered clinical trials®.

Taken together, the above examples illustrate the breadth of
therapeutic opportunities arising from manipulation of RBP-effector
interactions, which is all the more significant in light of our still rudi-
mentary knowledge of this nexus. Whereas pharmacological targeting
approaches seem readily translatable to human therapy, implemen-
tation of strategies entailing gene therapy will necessitate further
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feasibility studies. We note that with expanding understanding of the
nexus, additional targeting modalities may emerge; antisense oligo-
nucleotides, several of which are currently being used in the clinic'”’,
might, for instance, find therapeutic utility in the pre-translational

manipulation of SLiMs (Fig. 5a).

Conclusions and perspectives

The regulation of RNA networks has largely been understood at the
level of RNA recognition by RBPs and more recently at the level of
RNP condensate formation. Progress in these and other areas of RNA
research has revealed much about the organizational principles of
RNA networks, the complexity of which is managed by converging
molecular interactions that are apparent at every level of network
organization. Despite these insights, relatively little is known about
the mechanisticbases of RBP activities or the waysinwhich effectors, the
chief executors of RNA processing, contribute to the overall struc-
ture and operation of RNA networks. Interestingly, anintegrated view
ofthebinary interactions considered in this Review alone suggests that
the regulatory level at which RBPs communicate with their effectors
might consist of a network that is perhaps more interconnected than
anticipated (Fig. 6). Technological breakthroughs along with accu-
mulating knowledge about the functions and structures of RBPs and
their effectors are certain to enable amore expansive view and better
understanding of this nexus.

Several pertinent questions remain. For instance, oftentimes,
amodeof post-transcriptional controlbyanRBPbecomesapparent from
meta-analysis of transcriptome-wide data sets, but many, sometimes
most, individual transcripts are not regulated as expected, despite
being bound. Could this be explained by transcript-dependent effi-
ciency of effector recruitment (or blockage of effector recruitment) by
the RBP, alternative RBP isoforms or PTM of effectors? Is regulation of
RNAbinding by RBPs, as seeninbudding yeast, embryonic patterning
inthe fruitfly or polarization of mammalian neurons, coordinated with
the regulation of RBP-effector interactions®’? Could functions of RBPs
beaccurately predicted based on knowledge of their interactions with
effectors — or presence of SLiMs alone — in addition to RNA-binding
information? Does the condensation propensity of many RBPs affect
their ability to recruit effectors? How is the availability of effectors
affected when condensate formation becomes pathological? Could
we avert neurodegeneration by manipulating RBP-NIR interactions?

Unlike the large arsenal of high-throughput methods tailored to
studies of RNA binding by RBPs, investigations of RBP-effector inter-
actions have traditionally been limited to reductionist approaches.
Althoughinvaluableto the current understanding of communication
between RBPs and effectors, such studies often yield limited and pos-
siblyinaccurate information about the dynamic nature, complexity and
effects of these interactionsin vivo. To tackle this problem, additional
approaches that more directly capture the in vivo context of RBP-
effectorinteractions arerequired. For instance, cryo-electron micros-
copy (cryo-EM) studies of purified RBP-effector complexes could
provide views of concurrently interacting molecules and their con-
formations to help address the many unanswered questions about
the workings of RBP-adaptor-effector conduits. These efforts could
be aided by single-molecule biophysical experiments as well as kinetic
assays that entail ultra-fast crosslinking strategies to investigate the
dynamics of the interactions”. It may also be possible to devise pull-
down protocols that combine, for example, enzyme-mediated prox-
imity tagging with CLIP or RIP to study RBP-effector interactions
in vivo transcriptome-wide. Such studies could centre on either the

effector, adaptor or RBP of interest and explore protein complexes that
simultaneously bind to RNA in a position-specific manner.

With the large majority of the annotated RBPs still unstudied, novel
adaptor and effector proteins continuing to be discovered”"’? and
with fewer than 5% of the expected number of SLiMs being functionally
annotated”™'", itis clear that we have only just begun to delve into the
converging RBP-effectorinterface. Expanding this knowledge will be
important tobetter understand the mechanisms of RNA processing as
well as the aetiology of human disease.

Published online: 23 November 2022
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