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Abstract
We develop a Q-tensor model of nematic liquid crystals occupying a stationary surface
which represents a fluidic material film in space. In addition to the evolution due to
Landau–deGennes energy, the model includes a tangent viscous incompressible flow
along the surface.A thermodynamically consistent coupling of a two-dimensional flow
and a three-dimensional Q-tensor dynamics is derived from the generalized Onsager
principle following theBeris–Edwards systemknown in the flat case. Themain novelty
of the model is that it allows for a flow of an arbitrarily oriented liquid crystal so the
Q-tensor is not anchored to the tangent plane of the surface and also obeys an energy
law. Several numerical experiments explore kinematical and dynamical properties of
the novel model.
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1 Introduction

Modeling of materials with orientational order is a challenging task. There is a vari-
ety of approaches including particle theories as well as continuum director field and
Q-tensor theories which may be customized by specifying the energy landscape to
accommodate different types of phase transitions.

In this paper, we focus on the Q-tensor approach (Borthagaray and Walker 2021;
Mottram andNewton 2014). Themain idea is to characterize the nematic liquid crystal
state by averaging the probability density ρp at a point p over the unit sphere S which
is the statistical distribution of the orientations of liquid crystal molecules at p. More
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specifically, a Q-tensor at p is a symmetric, traceless matrix

Q =
∫
S2

ρp(s)s ⊗ s ds − 1

3
I

defined as the difference between the second moments (the first moments are trivial
due to the so-called tail-to-head symmetry) and the isotropic state 1

3 I. The physically
relevant information derived fromaQ-tensor simulation is the eigenframe of thematrix

Q = λ1(q1 ⊗ q1) + λ2(q2 ⊗ q2) + λ3(q3 ⊗ q3) (1.1)

with the most significant orientations qi and corresponding eigenvalues λi . Then, the
Landau–deGennes energy of a liquid crystal occupying a domain � combines the
elastic energy with a material constant L > 0 and the double-well potential F[Q]
with material constants c > 0, a, b:

ELdG [Q] =
∫

�

L

2
|∇Q|2 +

∫
�

F[Q] , (1.2)

F[Q] = a

2
|Q|2 − b

3
(Q : Q2) + c

4
|Q|4 , (1.3)

where the so-called one-constant approximation (Borthagaray and Walker 2021; De
Gennes and Prost 1993; Sonnet and Virga 2012) is considered for simplicity. At
the same time, Onsager reciprocity principle (Onsager 1931a, b) suggests that space
variations of the orientational order should be matched with a macroscopic flux of
momentum (Yang et al. 2016) to have an energy law provided by thermodynamics.
The coupling of the Q-tensor dynamics with the transport of the momentum is a
delicate matter due to possible non-conservative behavior of the total energy of the
system.Awell-known thermodynamically consistentmodel is theBeris–Edwards sys-
tem (Beris and Edwards 1994; Zarnescu 2012) in which the transport of the Q-tensor
exerts Ericksen stress � = QH − HQ and Leslie force H : ∇Q to the momentum
flow. Here, themolecular field H is the traceless and symmetric variation of ELdG [Q]
with respect to Q.

A surface Beris–Edwards model would help in understanding the dynamics of
thin nematic liquid crystals shells. Thin nematic liquid crystal shells are potential
candidates for self-assembling colloids due to the configuration of defects in a thin
LC shell (Nelson 2002), which can be tuned by varying the thickness of the LC shell
(Lopez-Leon et al. 2011).

The analytical properties of the Beris–Edwards system for flat domains in R
2 and

R
3 has been studied extensively. A non-exhaustive list of references include works

on existence of weak solutions in R
2, R

3 (Paicu and Zarnescu 2012), weak–strong
uniqueness and higher regularity in R

2 (Paicu and Zarnescu 2012), short time exis-
tence for strong solutions in bounded domains (Abels et al. 2015), existence of weak
solutions and short time well-posedness with mixed boundary conditions (Abels et al.
2014), and physical eigenvalue preservation of the Q-tensor in the corotational Beris–
Edwards system (Hao et al. 2019). To the best of our knowledge, many of these
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questions of existence, possible uniqueness, regularity, and eigenvalue preservation
remain open for hydrodynamical models of liquid crystals on curved surfaces.

Regarding numerical methods for the Landau–deGennes dynamics and for the
Beris–Edwards model for flat domains, we refer to Zhao et al. (2017), Cai et al.
(2017), Gudibanda et al. (2020) and references therein. In addition, we refer to Sonnet
and Virga (2012) for modeling of dissipative ordered fluids.

We aim to extend the Beris–Edwards model to stationary curved surfaces. For an
example of a situation in which the model is relevant, one may think of a liquid crystal
material confined between two parallel surfaces which may be far enough apart to
fit normally oriented rod-like particles but are sufficiently close so Q-tensor states
are constant along the thickness. Yet tangent distortions of the orientational order
generate a tangent macroscopic flow of matter. The main challenge is thus to establish
a thermodynamically consistent energy law for a curved surface while still having a
generically oriented Q-tensor.

We start with a discussion of situations where a generically oriented Q-tensor
description of a liquid crystal may be desirable. In the case of long bulk cylinders
with homeotropic anchoring on the cylinder wall, experiments show that the liquid
crystal may experience what is called an escape to the third dimension (Crawford
et al. 1991; Meyer 1973; Williams et al. 1972). This behavior has also been shown
theoretically using director field models (Meyer 1973). For flat 2D disks, escape to
the third dimension has also been observed to be energetically favorable for Q-tensor
models due to the complex Landau–de Gennes energy landscape (Ignat et al. 2016,
2020).We point to Yucheng et al. (2016) for a numerical exploration of this landscape.
Moreover, in thin flat domains where tangential anchoring is present on the top and
bottom boundary, numerical experiments suggest that the liquid crystal orientation
may not stay planar (Chiccoli et al. 2002). For thin shells with varying thickness and
a bead inside, the numerics in Gharbi et al. (2013) provide a plausible explanation
of experiments of a metastable configuration with an escape to the third dimension
near defects. Numerical experiments of three-dimensional LC shells show the escape
to the third dimension near defects when the shell increases in thickness (Bates et al.
2010; Koning et al. 2013). Additionally, Koning et al. (2016) provides a plausible
explanation of the presence of two +1/2 defects and one +1 defect in experiments
(Lopez-Leon et al. 2011): the +1 defect is composed of two boojums on the confin-
ing surfaces and escape to the third dimension occurs in the thickness of the shell.
We finally point to the experiments in Murray et al. (2017) where escape to the third
dimension is observed near topological defects in a thin LC cell. This escape to the
third dimension depends on the strength of surface anchoring. All these situations do
not involve coupling with a fluid, but do suggest that a generically oriented Q-tensor
description may be warranted.

Existing models of liquid crystals films differ from each other in the assumed
structure of the Q-tensor eigenframe and its relation to the tangent plane of the surface.
For example, in the thin-film models of Kralj et al. (2011), Napoli and Vergori (2012)
the Q-tensor is assumed to be conforming and flat-degenerate with zero eigenvalue
in the normal direction. We define these concepts as follows for a general Q-tensor
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Q ∈ R
3×3 on a surface �:

Q is called conforming to � at a point x ∈ � if one of the eigenvectors equals

the unit normal vector n(x) to �; (1.4)

Q is called flat-degenerate at a point x ∈ � if one of the eigenvalues is zero.(1.5)

Physically a conforming and flat-degenerate Q-tensor with zero eigenvalue in the
normal eigendirection corresponds to the case of liquid crystalmolecules being located
strictly in the tangent plane essentially forming a two-dimensional liquid crystal state in
each tangent plane. The assumption that theQ-tensor is conforming andflat-degenerate
at each point requires the presence of an ad-hoc large interface force, e.g., a reaction
force from rigid walls surrounding the thin film from one or both sides, which dom-
inates all the other forces because otherwise the Q-tensor field would evolve to a
uniform, uniaxial state in R

3 violating the conformity assumption.
The conformity assumption reduces the number of independent coefficients for a

general traceless, symmetric Q-tensor (Nestler et al. 2020). In the conforming case,
when one eigenvector is normal to the surface, the tangent orientational order of
the liquid crystal state is described by a tangent director field and a scalar order
parameter. The normal orientational order, i.e., the eigenvalue corresponding to the
normal eigenvector, is described by a scalar field which often (e.g., Nitschke et al.
2019) has a prescribed constant value; see (Nestler et al. 2020) for a general discussion
of conforming models. Thus, the conformity assumption facilitates the reduction of
the number of Q-tensor unknowns from 5 to 3. The expression of the elastic energy
|∇Q|2 from (1.2) in terms of a tangent director field contains several geometric terms
which complicate the numerical implementation. Note that strategies for dimension
reduction of the Landau–deGennes energy other thanNestler et al. (2020) are possible,
e.g., Novack (2018).

In addition to conformity, the assumption of flat-degeneracy in the normal eigendi-
rection further reduces the number of independent variables of the Q-tensor field by
1 - from 3 to 2. It should be noted that such flat-degenerate Q-tensor fields are biaxial
from the perspective of R

3, while the minimizers of a double-well potential have to be
uniaxial; see Definition 5.2. Consequently, the assumption of flat-degeneracy means
that there exists a force with a special structure to prevent the evolution of a Q-tensor
toward a uniaxial state.

Besides (Kralj et al. 2011) and (Napoli and Vergori 2012), where conformity and
flat-degeneracy in the normal eigendirection are assumed, other models of liquid crys-
tal filmsmay relax some of these assumption but not entirely. In Nitschke et al. (2018),
the eigenvalues of a Q-tensor may be general but the eigenframe is assumed to be
conforming to the surface. The normal eigenvalue and the tangent-order parameter
undergo interrelated L2 gradient flows which are formulated in the language of local
tensor calculus. In Golovaty et al. (2017), the Q-tensor does not have to be conforming
but no evolution laws are discussed. The bulk Landau–deGennes energy of a thick film
is combined in Golovaty et al. (2017) with an anchoring energy of the film interfaces,
and the minimizers of the resulting landscape are studied via �-convergence.
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The aforementioned references involve liquid crystal models with no hydrody-
namical properties. To the best of the authors’ knowledge, the only paper in which a
coupling of a Q-tensor and linear momentum is considered for curved liquid crystal
films is Nestler and Voigt (2022). In such a paper, the Q-tensor is assumed to be con-
forming but the evolution laws are not shown to have an energy structure. An important
conclusion of the present paper is the requirement of thermodynamical consistency,
namely the existence of a proper energy law, and strongly ties the kinematics and the
dynamics of curved liquid crystal films. Nevertheless, it is physically reasonable that
there are regimes for which the anchoring of Q-tensors can be justified if it is posed
weakly with an energy term that penalizes the non-conformity.

We also note that the model derived in this paper reduces to surface Navier–Stokes
equations when Q ≡ 0. There has been extensive work on surface Navier–Stokes for
modeling and numerics. We point to Arroyo and DeSimone (2009), Reuther and Voigt
(2015), Koba et al. (2017), Jankuhn et al. (2018), Mietke et al. (2019) for works on
modeling and Reuther and Voigt (2015), Nitschke et al. (2012), Fries (2018), Fries
(2018), Reuther et al. (2020), Brandner et al. (2022), Pearce et al. (2019) for works on
numerics of surface fluid flows.

The goal of this paper is threefold. The first one is to derive a surface model of
the liquid crystal flow where the orientational order is not anchored to the surface or,
in other words, the Q-tensor is not conforming to the surface. This model is derived
via the generalized Onsager principle mainly following (Sonnet and Virga 2012; Yang
et al. 2016), [62] and a private communicationwithQiWang.A similar approach called
Lagrange–Rayleigh principle has been applied to Ericksen–Leslie theory involving a
director field tangent to the film (Napoli and Vergori 2016). The formalism of Onsager
is quite general, and it does not involve any assumptions on the relation between the
dimensions of the model and its environment, and, hence, is suitable for the modeling
of embedded surfaces. So, the applicability of the generalized Onsager principle as
a guiding physical principle of thin-film modeling is assumed in this paper. We refer
to Doi (2011) for the principle’s thermodynamical premises and to Doi (2015), Wang
et al. (2021) for further details of its application to the particular physical systems. The
second goal is to use the language of differential geometry in Cartesian coordinates
instead of the language of differential geometry that refers to local parametric coordi-
nate systems (Nestler and Voigt 2022), thus simplifying implementation of the model
in standard computational packages. The application of this approach to Q-tensors on
surfaces appears to be new. The third goal is to explore computationally the action of
three forces, one new to our surface model, and the consequences of non-conformity
for the dynamics of Q-tensors on surfaces.

The outline of the paper is as follows. In Sect. 2, following (Jankuhn et al. 2018), we
give the preliminaries of tangential calculus and introduce two tensor derivatives on
a surface �: The external surface derivative (2.1) and the covariant surface derivative
(2.9) - both will be used in our surface model; in Appendices A and B we provide
further discussion and proofs. Section3 is devoted to the development of the kinemat-
ical properties of the surface Beris–Edwards system. We introduce the new notion of
passive transport of generically oriented Q-tensors along a surface flow; see Definition
3.7. This novel concept is based on Assumption 2 which possesses a clear physical
meaning. In Sect. 4, we apply systematically the generalized Onsager principle (Wang
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2021) to derive a thermodynamically consistent surface Beris–Edwards model based
on the kinematical properties defined in Sect. 3 and establish the underlying energy law.
In Sect. 5, we discuss the biaxiality parameter β[Q] and the non-conformity param-
eter r�[Q] and study their properties. We conclude in Sect. 6 with several numerical
simulations of the surface Beris–Edwards model derived in Sect. 4 to demonstrate its
basic properties and investigate the action of the three induced forces and role of non-
conformity. We do observe non-conforming dynamics connecting conforming states
in Sect. 6.3.1. The parameters β[Q] and r�[Q] are crucial to describe the numerical
experiments.

2 Preliminaries in Tangential Calculus

In this section, the surface and all the fields are assumed to be sufficiently smooth.
Although we are concerned with a surface model, we intentionally work with tensor
fields in R

n , the ambient space to the surface, to avoid the less practical parametric
approach. This section summarizes and clarifies two types of surface derivatives of
tensors of order up to two, see, e.g., Jankuhn et al. (2018), Nestler et al. (2019), which
are both relevant to the surface Beris–Edwards model to be derived in this paper. Some
preliminary notations are given in Appendix A. Integration by parts for the two types
of derivatives is discussed in Appendix B.

2.1 External surface Derivatives

Here, we introduce some standard operators of calculus on embedded surfaces. Intu-
itively, these operators replicate standard Cartesian operators with an assumption that
their tensor arguments are extended from the surface constantly along the normal
direction. Although the concept is certainly not novel, in this paper we will call such
operators external to highlight the difference from similar operators which are based
on the covariant derivative, see Sect. 2.2.

Consider a closed surface � ⊂ R
n defined as the zero level set of its distance

function d ∈ C2(�δ) where �δ = {x ∈ R
n : |d(x)| < δ} is a tubular neighborhood

of � of thickness δ > 0. The boundary ∂�δ consists of two parallel surfaces, �+
δ =

{x ∈ R
n : d(x) = δ} and �−

δ = {x ∈ R
n : d(x) = −δ}. By means of the unit vector

field n = ∇d ∈ C1(�δ)
n , which is orthogonal to level sets of d(x), we define the

projectors N and P onto the normal and tangent subspaces to such level sets as well
as the shape operator B (or Weingarten map) to be

N = n ⊗ n ∈ C1(�δ)
n×n , P = I − n ⊗ n ∈ C1(�δ)

n×n ,

B = ∇n ∈ C(�δ)
n×n , x ∈ �δ

where I is the identity operator.
Consider a tensor (scalar, vector, matrix) field T on �δ . The so-called external

derivative ∇MT (see Definition 2.1) guarantees that
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(∇MT)v = (∇T)Pv, ∀v ∈ R
n, x ∈ �δ.

Essentially, this condition prescribes a non-standard Cartesian derivative in �δ which
disregards variations of the tensor field in the normal direction: If v = Pv, then ∇
and ∇M coincide. We stress that the external derivative ∇MT evaluated on � depends
only on the values of T on �. The latter is straightforward for scalar tensor fields and,
therefore, holds for the external derivatives of a vector and a matrix fields as well since
they are based on the external derivatives of scalar components.

Definition 2.1 (external derivative) For a scalar field f , a vector field u, and a matrix
field A on �δ , the external surface derivative is given by

∇M f = P∇ f =
n∑
j=1

(Pe j )∂ j f ,

∇Mu = (∇u)P =
n∑
j=1

∂ ju ⊗ Pe j =
n∑
j=1

e j ⊗ ∇Mu j ,

∇MA =
n∑
j=1

∂ jA ⊗ Pe j =
n∑
j=1

e j ⊗ ∇M (AT ) j , x ∈ �δ.

(2.1)

Therefore, the external surface directional derivative along a vector field v is then
given by

(∇T
M f )v = (∇T f )Pv =

n∑
j=1

v · (Pe j )∂ j f ,

(∇Mu)v = (∇u)Pv =
n∑
j=1

(v · Pe j )∂ ju =
n∑
j=1

(∇Mu j · v)e j ,

(∇MA)v =
n∑
j=1

(v · Pe j )∂ jA =
n∑
j=1

(∇MA j )v ⊗ e j .

(2.2)

Note that ∇T
M f is a short notation for (∇M f )T . We note that the surface directional

derivative (∇Mu)v of a vector field u may have nonzero normal components.

Remark 2.2 (normal extension) Consider a tensor field T with values on � only. The
normal extension Te on �δ is defined by

Te(x) := T(x − d(x)n(x)) , x ∈ �δ;

thus, ne = n. A key property of the normally extended tensor fields is the vanishing
of the derivative in the normal direction which can be expressed via (A.2) as:

(∇Te(x))n(x) = 0 , x ∈ �δ. (2.3)
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Consequently, the external derivative of the normal extensions Te satisfies

(∇MT)v = (∇T)Pv = (∇Te)v ∀v ∈ R
n , x ∈ � , (2.4)

whence for a normally extended tensor field the directional derivatives due to ∇ and
∇M coincide for any v (not just for v = Pv). Note that 2.4 could be seen as a way to
compute ∇MT on �: Given a field on �δ , restrict its values to �, extend it normally
to �δ and find its Cartesian gradient.

The surface divergence operator is defined in the same spirit: For normally extended
tensors, the result corresponds to the Cartesian divergence (A.4):

divMu = tr(∇Mu) , divMA =
n∑
j=1

e j divM (AT ) j ,

divM∇MA =
n∑
j=1

e j ⊗ divM∇M (AT ) j .

Remark 2.3 (alternative definition of divergence) We note that the surface divergence
is the trace of the surface gradient. This definition coincides with those in differential
geometry and other works in finite element methods for surface PDEs. For instance,
we note that our definition of divM is consistent with previous work on finite elements
for surface PDEs (Dziuk and Elliott 2007, Eq. (2.7)), and our definition of div� below
is consistent with the definition of surface divergence found in previous work on
modeling of elastic surfaces (Gurtin and Murdoch 1975, Eq. (2.8)). This definition of
surface divergence is not the L2-adjoint of ∇� for a vector field with nonzero normal
component as seen in Proposition B.5 (covariant integration by parts).

Definition 2.4 (external strain-rate and spin tensors) For a given velocity field v on �,
we define the external strain-rate and external spin tensors, respectively, as follows:

DM (v) = 1

2
(∇Mv + ∇T

Mv) , WM (v) = 1

2
(∇Mv − ∇T

Mv) . (2.5)

Again,∇T
Mv is a short notation for (∇Mv)T . These rates correspond to symmetric and

antisymmetric parts of the Cartesian gradient of the vector field normally extended
from the surface � to its neighborhood �δ . Using (A.3) and (2.2), we define the
contractionC : ∇MA of a second-order tensorC and the surface gradient of a second-
order tensor A as a vector such that for all v ∈ R

n we have

(C : ∇MA) · v = C : (∇MA)v . (2.6)
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Since C : (∇MA)v = ∑n
j=1(v · Pe j )C : ∂ jA =

(∑n
j=1(C : ∂ jA)Pe j

)
· v, we obtain

C : (∇MA) =
n∑
j=1

(C : ∂ jA)Pe j (2.7)

which shows that vector C : ∇MA is tangent to �.

2.2 Covariant Surface Derivatives

Here, we discuss covariant operators on the surface �, considered as an isometric
embedding of a C2 Riemannian manifold, which are intrinsic in the sense that they
only depend on the Riemannian structure and the surface values of the argument if it
belongs to the tangent plane. Intuitively, the covariant derivative of a tangent object
measures the tangent part of the change of the object in a tangent direction.

For each x0 ∈ �, the subspace {x ∈ R
n : x − x0 = P(x0)(x − x0)} is identified

with the tangent space of the manifold at x0. A linear operator A is called tangent if
the normal n is in its kernel and its range belongs to the tangent plane, or A = PAP.
Given a tangent vector v at x0, consider a regular curve γ : (a, b) → �, γ (t0) = x0,
t0 ∈ (a, b) such that γ ′(t0) = v. In the following, we assume that all tangent planes of
R
3 are identified with itself as usual so the addition of tensors from different points is

meaningful. The tangent component of the variation along the curve defines the action
of the covariant directional derivative:

(∇T
� f (x0))v = lim

t→t0

1

t − t0
( f (γ (t)) − f (x0))

(∇�u(x0))v = P(x0)
(
lim
t→t0

1

t − t0
(u(γ (t)) − u(x0))

)

(∇�A(x0))v = P(x0)
(
lim
t→t0

1

t − t0
(A(γ (t)) − A(x0))

)
P(x0)

which, by extending the tensor fields normally and applying (2.2), can be shown to be
equivalent to the following expressions for all x ∈ �

(∇T
� f )v = (∇T

M f )v, (∇�u)v = P(∇Mu)v

(∇�A)v = P(∇MA)vP =
n∑
j=1

(∇�A j )v ⊗ Pe j .
(2.8)

Note that ∇T
� f is a short notation for (∇� f )T . Finally, we give the definition of the

covariant surface derivative, which applies to fields that are not necessarily constant
along the normal direction:

123



Journal of Nonlinear Science (2024) 34 :5 Page 11 of 63 5

Definition 2.5 (covariant derivatives) For a scalar field f , a vector field u, and amatrix
field A on �δ , the covariant surface derivative is given by

∇� f = ∇M f =
n∑
j=1

(Pe j )∂ j f ,

∇�u = P∇Mu =
n∑
j=1

P∂ ju ⊗ Pe j =
n∑
j=1

Pe j ⊗ ∇Mu j ,

∇�A =
n∑
j=1

P(∂ jA)P ⊗ Pe j .

(2.9)

In fact, it can be shown (Jankuhn et al. 2018) that for points x ∈ � the covariant
derivatives (2.9) of tensors extended from � are independent of the chosen extension.

The covariant divergence of a vector field u and a matrix field A is defined as:

div�u = tr(∇�u) , div�A =
(
div�(AT )1, div�(AT )2, div�(AT )3

)T
, x ∈ �δ ,

(2.10)

; namely, the divergence of A is computed by rows. However, because of the cyclic
property of traces we have

div�u = tr(P∇uP) = tr(∇uP) = divMu , div�A = divMA . (2.11)

Definition 2.6 (covariant strain-rate and spin tensors) For a given velocity field v on
�, we define the covariant strain-rate and covariant spin tensors, respectively, as
follows:

D�(v) = 1

2
(∇�v + ∇T

� v), W�(v) = 1

2
(∇�v − ∇T

� v). (2.12)

These tensors correspond to symmetric and antisymmetric tangent parts of the instant
deformation of a tangent plane due to the flow v. Essentially, formulas in (2.12) as
well as the ∇� operator represent objects intrinsic to � which one may compute using
the Riemannian structure only.

Finally, we note the relation of the external and covariant rates because of (2.1) and
(2.9):

D�(v) = PDM (v)P , W�(v) = PWM (v)P . (2.13)

3 Kinematics of Q-Tensors on Surfaces

In this section, we discuss kinematic properties of the model of surface flows of liquid
crystals developed in this paper. The kinematic properties are introduced by defining
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the dependence of the state variables, which are the momentum and the Q-tensor, on
the prescribed deformation of the domain, caused by a vector field v in the absence of
any forces. The resulting operators, if set equal to zero, are called passive transport
equations. For example, the passive transport of a scalar field f , e.g., the density, along
a tangent flow v on a surface � is usually given by

ḟ = ∂t f + (∇T
� f )v = ∂t f + (∇T

M f )v = 0 (3.1)

which attaches scalar values to the flow v. Similarly, we will define a notion of surface
transport of the linear momentum and a notion of surface transport of generically
orientedQ-tensor fields based on the derivatives introduced in previous sections.While
the former is well-established in the literature (Jankuhn et al. 2018), the latter is
new. The definition of the Q-tensor passive transport will be motivated by kinematic
assumptions with a clear physical meaning: A tangent eigenvector is embedded into a
surface flow similar to the flat case in R

2, and a normal eigenvector has to stay normal
along the flow.

3.1 MomentumTransport

We assume the density ρ is constant and often omitted it in this section for clarity.
To express the rate of change of the linear momentum field ρu in the ambient space,
we need to use the Euclidean parallel transport equation (2.1) of a velocity field u
normally extended from �:

∂tu + (∇Mu)v = ∂t (uT + uNn) + (∇MuT + uN∇Mn + n ⊗ ∇MuN )v

= ∂tuT + (∇MuT )v + n(∂t uN + (∇T
MuN )v) + uN (∇Mn)v

= [∂tuT + (∇�uT )v] + N(∇MuT )v + u̇Nn + uNBv

= [∂tuT + (∇�uT )v] − (v · BuT )n + u̇Nn + uNBv,

(3.2)

where we split the velocity u into the normal and tangent components as in (B.4)
and used (B.2) and Proposition A.1. We consider films which are stationary in space,
whence the surface � does not evolve in time and the velocity u = uT + uNn is
tangent to �, i.e., uN = 0. We express the transport of linear momentum by setting
v = uT in (3.2). What remains in (3.2) is the tangential material acceleration

∂tuT + (∇�uT )uT (3.3)

and the normal centripetal acceleration −uT · BuT . Since we require uN = 0, the
centripetal acceleration has to be balanced by the reaction forces which enforce the
constraint that the surface does not evolve. This suggests that the tangent part of the
rate of change, P(∂tu+ (∇Mu)u) = ∂tuT + (∇�uT )uT , should represent the passive
transport of momentum in a surface model. This idea is summarized in the following
assumption.
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Assumption 1 (kinematics of momentum) The passive transport of the linear momen-
tum field ρu = ρuT along the velocity uT is the parallel transport (3.3), i.e.:

∂tuT + (∇�uT )uT = 0 .

Based on this kinematic assumption on how the momentum ρu is transported in the
absence of any forces, we define the surface material derivative, which suits Assump-
tion 1, as follows:

Definition 3.1 The surface material derivative u̇ of a vector field u : � → R
3 along

a given tangent vector field v is a vector field with the following normal and tangent
components:

Nu̇ = u̇Nn , Pu̇ = ∂tuT + (∇�uT )v .

Remark 3.2 The passive transport u̇ = 0 by the surface material derivative given in
Definition 3.1 has the following properties. The normal component u · n = uN of the
vector field u is transported by (3.1) as a scalar field. Consequently, if at the initial
moment of time the vector field u is tangent, then it remains tangent along the passive
flow by a vector field v. The tangent component uT = Pu satisfies the Riemannian
parallel transport equation ∂tuT + (∇�uT )v = 0.

Finally, we would like to show that the passive transport of the velocity field along
itself has the property of preserving the kinetic energy and the linear momentum in
the ambient space R

3. We start with a property of the convective term, which is well
known in flat domains.

Lemma 3.3 (vanishing of the convective term) Let uT , vT , wT be tangent vector field
on a closed surface �. Then, trilinear convective form satisfies

((∇�vT )wT ,uT )� + ((∇�uT )wT , vT )� = −(vT · uT , div�wT )� .

and it vanishes provided div�wT = 0 and uT = vT , namely

((∇�uT )wT ,uT )� = 0 . (3.4)

Proof UsingLemmaB.5 (covariant integration by parts) followed by (2.11) andPropo-
sition A.1 (product rules) for normally extended ueT , veT ,we

T , we deduce

0 = (
div�((vT · uT )wT ), 1

)
�

= (
(vT · uT ) divMwT + wT · ∇M (uT · vT ), 1

)
�

= (
(vT · uT ) div�wT + uT · (∇MvT )wT + vT · (∇MuT )wT , 1

)
�

.

Invoking (2.9), namely P∇Mu = ∇�u, and reordering yields the assertion. 
�
Corollary 3.4 (preservation of kinetic energy and linear momentum) Let uT be a tan-
gent and incompressible velocity field that is passively transported; namely, u satisfies
div�uT = 0 and ∂tuT + (∇�uT )uT = 0, for sufficiently smooth initial condition on
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a closed surface �. Then, the kinetic energy 1
2

∫
�

ρu2T and the total linear momentum∫
�

ρuT are preserved over time.

Proof Taking into account that density ρ is constant, we compute

d

dt

∫
�

ρ

2
u2T = ρ

(
∂tuT ,uT

)
�

= −ρ
(
(∇�uT )uT ,uT

)
�

= 0 ,

according to (3.4). To treat the vector of total linear momentum, we consider its x-
component

d

dt

(∫
�

ρuT · ex
)

= ρ
(
∂tuT , ex

)
�

= −ρ
(
(∇�uT )uT , ex

)
�

= −ρ
(∇�(uT · ex ),uT

)
�

= 0

where used Lemma B.5 (covariant integration by parts) with u = uT and f = uT · ex
at the last step. Other components of uT are dealt with similarly. This completes the
proof. 
�

3.2 Q-Tensor Transport

Although many objective rates are available for modeling of Q-tensor flows even in
R
3, we aim to choose one, the corotational derivative (3.5), and show how it should be

adapted for the case of a fixed surface � resulting in Definition 3.7. Modeling flows
of liquid crystal material in R

3 often involves the following objective rates of change
(Sonnet and Virga 2012; Xiao et al. 1998)

∂tq + (∇q)v − (∇v − ∇T v)
2

q , ∂tQ + (∇Q)v + Q
∇v − ∇T v

2
− ∇v − ∇T v

2
Q

(3.5)

which are the corotational derivatives of a vector field q and of a matrix fieldQ along
the flow v. These corotational derivatives express the rate of change of tensors with
respect to the (Lagrangian) coordinate system embedded in the fluid, and sometimes
they should be chosen over the parallel Euclidean transport to model the physics
adequately. For example, one uses the parallel Euclidean transport ∂tu + (∇u)v to
express the rate of change of the non-material momentum vector ρu, while if one
workswith the rate of change of theQ-tensor, which provides the statistical description
of the liquid crystal orientation, the objective rate (3.5) should be used. We refer to
Nitschke and Voigt (2022, Section 10) for discussion of different time derivatives for
vectors and Q-tensors on surfaces.

Remark 3.5 Azero corotational derivative (3.5) of a vector fieldqmeans that the vector
field is embedded in the flow v in the following kinematical sense (Sonnet and Virga
2012): It is transported parallelly in R

3 by the flow v and, in addition, is rotated along
it by the spin tensor 1

2 (∇v − ∇T v). To make this point concrete, we consider X(t)
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to satisfy d
dtX(t) = v(t,X(t)). Computing the time derivative of q̃(t) = q(t,X(t))

yields

d

dt
q̃ = ∂tq + (∇q)v = (∇v − ∇T v)

2
q = (∇v − ∇T v)

2
q̃.

At the same time, a zero corotational derivative (3.5) of a Q-tensor fieldQmeans that
its eigenframe is embedded in the flow v: The eigenvectors are transported and rotated
as vectors by (3.5) and the eigenvalues are transported as scalars by (3.1).

In this paper the flow v is two-dimensional and is tangent to a surface �, but the
Q-tensor is three-dimensional. This raises the question of what rate of change should
be utilized to model the passive motion of Q-tensors along the surface flow.

It is natural to try the following transport equation

∂tQ + (∇MQ)v + Q
∇Mv − ∇T

Mv

2
− ∇Mv − ∇T

Mv

2
Q = 0 , (3.6)

where all the derivatives correspond to Cartesian derivatives of the normal extensions
of arguments. Unfortunately, the Q-tensor of type n ⊗ n − 1

3 I is not in the kernel of
the operator (3.6). In fact, using (2.3), (2.2) and Lemma B.1 we compute

0 = (∇M (n ⊗ n))v + (n ⊗ n)
∇Mv
2

+ ∇T
Mv

2
(n ⊗ n)

=
n∑
j=1

(v · Pe j )∂ j (n ⊗ n) + 1

2

(
n ⊗ (∇T

Mv)n + (∇T
Mv)n ⊗ n

)

= (∇Mn)v ⊗ n + (∇Mn) ⊗ Bv + 1

2
(n ⊗ (−Bv) + (−Bv) ⊗ n)

= 1

2
(Bv ⊗ n + n ⊗ Bv)

whence B = 0 or, equivalently, the surface has to be flat. We have just shown that
transport of a Q-tensor by (3.6) does not keep alignment with respect to the normal
direction. These considerations suggest that there aremanyways to define the transport
of a Q-tensor field and that we need to choose one based on some kinematic assump-
tions similar toAssumption 1. In fact, to transport a three-dimensional tensorwe need a
three dimensional spin tensor which cannot be provided by a two-dimensional surface
flow.

At a point x ∈ � consider an orthonormal basis t1, t2,n of R
3 where the first two

vectors belong to the tangent plane of�. A general three-dimensional skew-symmetric
spin tensor W can be represented in this local basis with the help of a tangent vector
wT = (w2t1 − w1t2) and a tangent tensor WT = w3(t2 ⊗ t1 − t1 ⊗ t2):

W = w3(t2 ⊗ t1 − t1 ⊗ t2) + w2(t1 ⊗ n − n ⊗ t1) + w1(n ⊗ t2 − t2 ⊗ n)

= PWP + (w2t1 − w1t2) ⊗ n − n ⊗ (w2t1 − w1t2)

= WT + wT ⊗ n − n ⊗ wT .

(3.7)
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Motivated by the three-dimensional corotational derivatives (3.6), we are in posi-
tion to determine the structure of the surface corotational derivatives of Q-tensors.
Consider a vector field v tangent to �, a matrix field Q, and its eigenvector field q. A
surface corotational derivative along the flow v can be expected to be given by

◦
q = ∂tq + (∇Mq)v − Wq ,

◦
Q = ∂tQ + (∇MQ)v + (QW − WQ) , (3.8)

where the spin tensorW is yet to be defined viawT andWT in (3.7). For completeness,
we define the corotational derivative of a scalar field by its material derivative (3.1),

◦
f = ḟ .

We specify WT and wT in (3.7) by making the following assumption.

Assumption 2 (kinematics of Q-tensors) The tangent vector wT and the tangent spin
tensorWT are such that the normal eigenvector q = n of a conforming Q-tensor is in
the kernel of the passive transport operator (3.8) along a tangent flow v = uT . Also,
the passive transport of a tangent eigenvector q = t of a conforming Q-tensor field is
a combination of the parallel transport (3.3) and the instant rotation by the covariant
spin tensor (2.12):

◦
n = 0 ,

◦
t = ∂t t + (∇�t)uT − 1

2
(∇�uT − ∇T

� uT )t .

In view of Remark 3.5,
◦
t = 0 means that the tangent vector field t is also embedded

in the flow uT but this time in the sense of the Riemannian structure on �. This

rate of change
◦
t of a tangent vector field t is known as surface Jaumann derivative

(Nitschke and Voigt 2022). From this modeling assumption on how the eigenframe of
a conforming Q-tensor is transported, we immediately find what should wT and WT

be like.

Lemma 3.6 (characterization of spin tensor) In order to satisfy Assumption 2, the spin
tensor W in (3.8) should be given by (3.7) with

wT = BuT , WT = 1

2
(∇�uT − ∇T

� uT ) (3.9)

Proof Indeed, using the structure of (3.8) and the definition of the shape operator
B = ∇Mn we compute

◦
n = ∂tn + (∇Mn)uT − Wn = BuT − wT
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, and because
◦
n should vanish, we have to have wT = BuT in (3.7). Similarly, using

Definition 3.1, we compute

◦
t = ∂t t + (∇M t)uT − Wt = ∂t t + (∇�t)uT + N(∇t)uT − Wt

= ṫ + N(∇t)uT − WT t + (wT · t)n = ṫ − WT t − (n ⊗ Bt)uT + (wT · t)n
= ṫ − WT t

which leads to the choice WT = W�(uT ) to suit Assumption 2. Consequently, the
spin tensor (3.7) can be expressed in terms of the covariant spin tensor W� from
(2.12) or of the external spin tensor fromWM (2.5) as follows (using (B.3) in the last
equality)

W = W�(uT ) + BuT ⊗ n − n ⊗ BuT = W�(uT ) + W∗(uT )

= WM (uT ) + 1

2
W∗(uT ) (3.10)

where the star spin tensor W∗ is defined for a given velocity uT by

W∗(uT ) := BuT ⊗ n − n ⊗ BuT . (3.11)

This concludes the proof. 
�
Based on Assumption 2 (kinematics of Q-tensors) on how the eigenframe of a con-
forming Q-tensor is transported in the absence of any forces, we define the surface
corotational derivative of general Q-tensors in the following definition.

Definition 3.7 (external surface corotational derivative) The surface corotational

derivatives
◦
q of a vector field q : � → R

3 and
◦
Q of a matrix field Q : � → R

3×3

along a tangent vector field v are given by

◦
q = ∂tq + (∇Mq)v − (W�(v) + W∗(v))q , (3.12)
◦
Q = ∂tQ + (∇MQ)v + Q (W�(v) + W∗(v)) − (W�(v) + W∗(v))Q (3.13)

Clearly, the structure of Cartesian corotational derivative (3.5) can be recognized in
Definition 3.7 but the special spin tensor (3.10) is used because the domain of definition
of all objects is a surface, and the flow v is two-dimensional, while the Q-tensor is
three-dimensional.

3.3 Properties of the Surface Corotational Derivative

In this section, we characterize the surface corotational derivative
◦
q of general vector

fields q using the splitting (B.4). We also explain the structure of the surface corota-

tional derivative
◦
Q of a Q-tensor Q by relating the passive transport equation

◦
Q = 0
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to the passive transport equations
◦
qi = 0,

◦
λi = 0 of the eigenvectors and eigenvalues

of Q.
We first present some intuitive properties of the vector (3.12) and the matrix (3.13)

surface corotational derivatives. It is shown that if a vector field q = qNn+qT satisfies

the passive transport equation
◦
q = 0, then the normal component qN is transported

by (3.1) as a scalar field, while the tangent component qT undergoes a combination of
the parallel transport (3.3) and the instant rotation by the covariant spin tensor (2.12).
In other words, the tangent component is embedded in the tangent two-dimensional
flow in this case. At the same time, we recover the usual meaning of the corotational

derivative of matrices but for the case of a surface (see Remark 3.5): If
◦
Q = 0, then

the eigenvalues and the eigenvectors are embedded (in the sense described above) into
the flow along a surface.

We start with the basic properties of corotational derivatives in the next lemma.

Lemma 3.8 (properties of corotational derivatives)The surface corotational derivative
(3.12) along a tangent flow v has the following distributive properties for vector fields
a,b and matrix field A

◦
(a · b) = ◦

a · b + ◦
b · a ,

◦
( fA) = ḟA + f

◦
A ,

◦
(a ⊗ b) = ◦

a ⊗ b + a ⊗ ◦
b .

Proof The properties follow from Lemma A.1, (2.1), (3.10) and v = Pv:

◦
(a · b) = ∂ta · b + a · ∂tb + v · ((∇Ma)Tb + (∇Mb)T a)

= (∂ta + (∇Ma)v) · b + a · (∂tb + (∇Mb)v)

= (
◦
a + Wa) · b + (

◦
b + Wb) · a = ◦

a · b + ◦
b · a + a · (W + WT )b

= ◦
a · b + ◦

b · a
◦

( fA) = ∂t ( fA) + ∇M ( fA)v + ( fA)W − W( fA)

= ∂t fA + f ∂tA + ( f ∇MA + A ⊗ ∇M f )v + f (AW − WA) = ḟA + f
◦
A

◦
(a ⊗ b) = ∂ta ⊗ b + a ⊗ ∂tb + ∇M (a ⊗ b)v + (a ⊗ b)W − W(a ⊗ b)

= (∂ta + (∇Ma)v) ⊗ b + b ⊗ (∂tb + (∇Mb)v) − a ⊗ Wb − Wa ⊗ b

= ◦
a ⊗ b + a ⊗ ◦

b

This concludes the proof. 
�
Assumption 2 (kinematics of Q-tensors) dictates how the eigenframe of a conforming
Q-tensor field is transported by a tangent flow. In the following lemma, we characterize

the passive transport
◦
q = 0 of an eigenvector which is neither normal nor tangent to

�.
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Lemma 3.9 (corotational derivative of a vector) The surface corotational derivative
◦
q

of a vector field q : � → R
3 is a vector field with the following normal and tangent

components:

N
◦
q = q̇Nn , P

◦
q = q̇T − W�qT

Proof We recall Definition 3.1 and (3.1). Since v = Pv, we compute

◦
q = ∂t (qT + qNn) + (∇MqT + n ⊗ ∇�qN + qNB)v

− W�qT − qNBv + (Bv · qT )n

= (∂tqT + P(∇MqT )v) + (∂t qN + (∇�qN ) · v)n
+ (N∇MqT )v − W�qT + (Bv · qT )n

= P(q̇T − W�qT ) + (q̇N + n · (∇MqT )v + Bv · qT )n

= P(q̇T − W�qT ) + N(q̇Nn)

where we used symmetry of B,W� = PW�P and (B.1) in the last step. 
�

Remark 3.10 The passive transport
◦
q = 0 of vector fields by the surface corotational

derivative given in Definition 3.7 has the following properties. If at the initial moment
of time a vector field q is tangent, then it remains to be tangent along the passive flow
by a vector field v. The tangent component qT is subjected to the parallel transport
(3.3) and the instant rotation by the covariant spin tensor (2.12) embedded in the flow
along v. Also, the normal component q ·n of a non-tangent vector field q is transported
by (3.1) as a scalar field.

Finally, we characterize the corotational transport (3.13) of a general Q-tensor,
namely non-conforming to�, via its eigenframe: The eigenvectors and the eigenvalues
of a Q-tensor are embedded into the flow and are passively transported in the sense of
the ◦ operator.

Theorem 3.11 (corotational derivative of a tensor)Given a symmetric matrix fieldQ ∈
C1(� × (0, T ))3×3 consider a point x ∈ � and its neighborhood U (x) ⊂ � such that
there exists a spectral decomposition (1.1) with eigenvalues λi ∈ C1(U (x) × (0, T ))

and the corresponding unit-length eigenvectors qi ∈ C1(U (x)× (0, T ))3, i = 1, 2, 3.
If in U (x) × (0, T )

• all eigenvalues are distinct, then

◦
Q = 0 ⇐⇒ ◦

qi = 0 , λ̇i = 0 , i = 1, 2, 3;

• two eigenvalues are equal but distinct from the third one with eigenvector qm, then

◦
Q = 0 ⇐⇒ ◦

qm = 0 , λ̇i = 0 , i = 1, 2, 3;
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• all eigenvalues are equal, then

◦
Q = 0 ⇐⇒ λ̇i = 0 , i = 1, 2, 3 .

Remark 3.12 Three cases appear in the statement because eigenvectors are not deter-
mined uniquely if some of the eigenvalues coincide. For example, in the case of
two equal eigenvalues, one can discuss the transport of the corresponding planar
eigenspace, but eigenvectors that form this eigenspace may undergo arbitrary defor-

mations without affecting
◦
Q = 0.

Proof We start with the case of distinct eigenvalues. The spectral decomposition
Q(x) = ∑3

k=1 λk(x)(qk(x) ⊗ qk(x)) holds for all x ∈ U (x) and q1(x),q2(x),q3(x)
form an orthonormal basis. We take the corotational derivative and apply its properties
from Lemma 3.8:

◦
Q =

3∑
k=1

(qk ⊗ qk) λ̇k + λk

( ◦
qk ⊗ qk + qk ⊗ ◦

qk
)

from where the sufficiency follows immediately. To show the necessity, we contract
the result with qi from the right and then with q j from the left:

◦
Qqi = λi

◦
qi + λ̇iqi +

3∑
k=1,k �=i

λk(
◦
qk · qi )qk

q j · ◦
Qqi = λiq j · ◦

qi + λ̇iq j · qi +
3∑

k=1,k �=i

λk(
◦
qk · qi )(q j · qk)

where we used the identity (
◦
q j · qi ) + (

◦
qi · q j ) = 0. Consider the diagonal, i = j ,

and off-diagonal, i �= j , contractions separately:

qi · ◦
Qqi = λ̇i , q j · ◦

Qqi = (λi − λ j )q j · ◦
qi

If
◦
Q = 0 and λi �= λ j , then λ̇i = 0 and all the projections of

◦
qi on the basis vectors

q1,q2,q3 are zero.
The case of two equal eigenvalues λi = λ j = λ is similar.We rearrange the spectral

decomposition

Q = λm(qm ⊗ qm) + λ(qi ⊗ qi + q j ⊗ q j ) = λm(qm ⊗ qm) + λ(I − qm ⊗ qm)

= λI + (λm − λ)qm ⊗ qm
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compute the corotational derivative, and contract it with qm from the right and from
the left

◦
Q = λ̇I + (λ̇m − λ̇)(qm ⊗ qm) + (λm − λ)

(◦
qm ⊗ qm + qm ⊗ ◦

qm
)

◦
Qqm = λ̇mqm + (λm − λ)

◦
qm , qm

◦
Qqm = λ̇m

which shows the equivalence. The case of three equal eigenvalues is trivial. 
�

Remark 3.13 The preceding surface corotational derivatives
◦
q and

◦
Q have a physically

intuitive explanation:They correspond to the three-dimensional,Cartesian corotational
derivatives (3.5) along the special rotational extension vr of a surface flow v from the
surface � to a bulk three-dimensional neighborhood of it. This rotational extension vr

is described below.
Consider the tangential projector P, the normal projectorN, and the shape operator

B in the basis of principal directions t1, t2,n of �:

P = ti ⊗ ti , N = n ⊗ n , B = ∇�n = κi ti ⊗ ti

where κi are principle curvature fields on �. We may extend a tangent velocity field
v = vi ti from � to �δ in the normal direction constantly or rotationally:

ve = (vi )etei , vr = (1 + dκe
i )(v

i )etei = ve + d Beve

where d is the signed distance to �. In other words, if a surface velocity v is aligned
with a principle direction, then its rotational extension vr changes linearly away from
the center of curvature; if the velocity has two nonzero components along the surface
principle directions, then the rotational extensions act on these components separately.
Using Proposition A.1 (product rules), the bulk gradient of vr evaluated on � is

∇vr = ∇ve + (Beve) ⊗ ∇d + d∇(Beve) = ∇Mv + (Bv) ⊗ n.

Hence, 1
2 (∇vr − ∇T vr ) on � is 1

2 (∇vr − ∇T vr ) = WM +W∗ = W. Essentially, the
surface corotational derivatives (3.12) and (3.13) provide the same rate of change as
the bulk corotational derivatives (3.5) evaluated on � in which v is set as the rotational
extension vr . Although the surface corotational derivatives (3.12) and (3.13) are
independent of the normal extension, the bulk corotational derivatives (3.5) do depend
on the extension, and vr is one particular choice of bulk extension such that (3.5)
coincides with (3.12) and (3.13). One reason it is called the rotational extension is
that this extension is more physical for rotational velocity fields. For example, if we
consider � to be the unit circle with prescribed velocity v = (cos θ, sin θ) on �, where
θ is the polar angle, then div ve �= 0, while div vr = 0 in this special case in two
dimensions. Although div vr = 0 will not hold for more general surfaces, the above
reasoning explains why vr is called the rotational extension.
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4 Derivation of Surface Beris–Edwards Model

We develop a model of fluidic liquid crystal films following (Yang et al. 2016, [62],
Yang et al. yyyy; Eck et al. 2009) and (Nochetto et al. 2014). The modeling approach
chosen in this paper is the so-called generalized Onsager principle (Wang 2021; Doi
2011) which is used as a tool. The principle is formulated without referring to dimen-
sions of the system and its environment, and it appears to be suitable for modeling
of embedded surfaces. We refer to Doi (2011) for the principle’s thermodynamical
premises and to Doi (2015), Wang et al. (2021) for further details of its application
to particular physical systems. The generalized Onsager principle is not an extremal
principle which only needs a constitutive relation to complete the model (e.g., of an
elastic body) but rather a sequence of predetermined steps which guide the creation
of a model with a thermodynamically consistent energy structure based on prede-
termined kinematic properties. We briefly outline these abstract steps (also see Wang
et al. 2021, Section 2.3) as they should be applied to adapt the classical Beris–Edwards
model (Beris and Edwards 1994) in flat domains to the case of curved surfaces �.

Step 1: Kinematics. We choose the state variables of the forthcoming thermodynam-
ical system on � to be the tangent momentum field ρu and the Q-tensor
field Q; density ρ is constant. We postulate that the kinematics of the system
are dictated by the surface material derivative u̇ and the surface corotational

derivative
◦
Q given by Definitions 3.1 and 3.7;

Step 2: Energy landscape. We define the total energy Etotal of the system to be the
sum of the kinetic energy and the Landau–deGennes energy and express its

time derivative in terms of the rates
◦
Q and u̇ from Step 1;

Step 3: Evolution laws.Wepropose a suitable structure of the evolution laws involving

the rates
◦
Q, u̇ fromStep1 and several thermodynamical quantities (generalized

forces) yet-to-be-determined.We split the latter into reversible and dissipative
forces;

Step 4: Reversible quantities. The generalized reversible forces are responsible for the
Hamiltonian structure of the system, whence they do not change the energy
from Step 2 over time. Exploiting this fact, we determine these reversible
quantities;

Step 5: Dissipative quantities. The generalized dissipative forces are responsible for
the total energy decrease over time. We propose a non-equilibrium dissipative
process in terms of a suitable least action principle, which identifies these
dissipative quantities.

We apply in detail the five steps of the generalized Onsager principle in Sect. 4.1
and summarize the resulting surface Beris–Edwardsmodel in Sect. 4.2, which satisfies
a natural energy decay over time dictated by the dissipative quantities, namely

d

dt
Etotal ≤ 0.
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4.1 Generalized Onsager Principle

In this section, we apply the generalizedOnsager principle following the steps outlined
above. After the last step, the resulting system is simplified using Lemma B.6.

Step 1: Kinematics.We start by assuming that a fluidic liquid crystal film is a non-
equilibrium thermodynamical system on a stationary surface � described by two state
variables, namely the tangent incompressible velocityfieldu and the three-dimensional
symmetric and traceless Q-tensor field Q:

Q = Q(x, t), u = u(x, t), x ∈ �.

Moreover, we describe the kinematical properties of u andQ via the surface material

derivative u̇ (or acceleration) and the surface corotational derivative
◦
Q introduced in

Definitions 3.1 and 3.7. Such definitions are consistent with transport in the absence

of any forces (passive transport), in which case they reduce to
◦
Q = 0 and u̇ = 0.

Step 2: Energy landscape.Wepostulate that the thermodynamical system possesses
a total energy Etotal = ELdG + K , given by the following Landau–deGennes energy
ELdG[Q,∇MQ], and kinetic energy K [u]:

ELdG [Q, ∇MQ] =
∫
�
e[Q, ∇MQ] :=

∫
�

L

2
|∇MQ|2 +

∫
�
F[Q] , K [u] =

∫
�

ρ

2
|u|2,
(4.1)

where |∇MQ|2 is the surface Frank energy (Golovaty et al. 2017) and F[Q] is the
double-well potential (1.3). More complicated forms of elastic energy ELdG can be
postulated here, but we choose to consider the one-constant model of energy for the
ease of presentation. To compute the rate of change of the total energy, we use the fact
that � is a closed, time-independent surface and u is tangential. This can be viewed as
an application of Leibniz formula (Dziuk and Elliott 2007, Lemma 2.1). The resulting
change in total energy is

d

dt
Etotal[Q,∇MQ,u] =

∫
�

(
∂e

∂t
[Q,∇MQ] + 1

2

∂(ρu2)
∂t

)
.

We simply write
∫
�

ρu · ∂tu for the second term, while for the first term we have

∫
�

∂e

∂t
[Q,∇MQ] =

∫
�

∂e

∂Q
: ∂Q

∂t
+ ∂e

∂(∇MQ)

...
∂(∇MQ)

∂t
,

where we recall the notation (A.3) for the contraction “
...”. Commuting ∂t and ∇M ,

because � is stationary, and using Corollary B.9 (external integration by parts) yield
for any matrix field C

∫
�

∂e

∂(∇MQ)

... ∇MC =
∫

�

L∇MQ
... ∇MC = −

∫
�

L divM
(∇MQ

) : C.
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This implies

∫
�

∂e

∂t
[Q,∇MQ] =

∫
�

(
− L divM

(∇MQ
) + F ′[Q]

)
: ∂tQ = −

∫
�

H : ∂tQ ,

(4.2)

where the molecular field H is the traceless symmetric matrix

H = P
(
L divM∇MQ − F ′[Q]

)
, (4.3)

and P is the projection operator on the subspace of symmetric and traceless matrices.
Note that H here is neither conforming nor flat-degenerate in the normal direction, in
the sense of definitions (1.4) and (1.5), because Q is general.

We next intend to express d
dt Etotal in terms of the surface material derivative u̇

and surface corotational derivative
◦
Q, or equivalently to substitute ∂tu and ∂tQ by

u̇ and
◦
Q. To this end, we recall the kinematical properties from Definition 3.1 and

Definition 3.7,

∂tu = u̇ − (∇�u)u, ∂tQ = ◦
Q − (∇MQ)u + S, (4.4)

where (3.10) and (3.11) are used to split the tensor S = S[u,Q] = W(u)Q−QW(u)

as follows:

S := S� + S∗ , S� := W�(u)Q − QW�(u) , S∗ := W∗(u)Q − QW∗(u) .

(4.5)

This, together with the fact that (u, (∇�u)u)� = 0 according to (3.4), yields the
following expression for the rate of change of total energy

d

dt
Etotal[Q,∇MQ,u] =

∫
�

( − H : ∂tQ + ρu · ∂tu
)

= −
(
H,

◦
Q

)
�

+
(

ρu, u̇
)
�

+
(
H, (∇MQ)u − S[u,Q]

)
�

.

(4.6)

Step 3: Evolution laws. Following the classical Beris–Edwards model in R
3, we

postulate that the surfacemodel is driven by abstract evolution equations on the surface
� with the kinematics derived from Assumptions 1 (kinematics of momentum) and 2
(kinematics of Q-tensors). Note that only the structure is postulated, while the required
new quantities (adT , F

d , ar , frT ) are yet-to-be-determined. We formulate these abstract
evolution laws as follows.

Assumption 3 (evolution laws) The thermodynamics of the surface Beris–Edwards
model has both a dissipative and a Hamiltonian structure (Yang et al. 2016). The
dissipative structure is due to a symmetric tangent stress adT = PadTP and a symmetric
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tensor Fd . The reversible Hamiltonian structure is due to a skew-symmetric stress ar

and a tangent force frT = PfrT . Motivated by the structure of the three-dimensional
Beris–Edwards model, we propose the kinematic equations

ρu̇ = P div�(adT + ar ) + frT ,

◦
Q = Fd ;

(4.7)

the terms frT and adT in the surface momentum equation are assumed to be tangent
to the surface � because the model involves a two-dimensional viscous flow along �

which is expected to be recovered upon setting Q = 0 in (4.7); also, see Remark 4.6.

Remark 4.1 (alternative definition of surface divergence and evolution laws) As men-
tioned in Remark 2.3, our definition of div� follows that in differential geometry.
However, suppose we posit the evolution laws to be

ρu̇ = P d̂iv�(adT + ar ) + f̂rT ,

◦
Q = Fd ,

where d̂iv� is defined as the L2(�) adjoint of ∇M as motivated by the integration-by-
parts formula in Lemma B.7 (covariant integration by parts). The procedure outlined
in Steps 4 and 5 would yield exactly the same surface Beris–Edwards system as (4.13)
and (4.14). The resulting f̂rT would be slightly simpler than frT because of using the

L2(�) adjoint d̂iv� , but the right-hand sides of the equations for u̇ would be identical.

Our next task is to combine Assumption 3 with (4.6). We first invoke Lemma B.7,
i.e.,

(
u, ρu̇

)
�

= −
(

∇Mu, adT + ar
)
�

+
(

(trB)(adT + ar )n,u
)
�

+
(
u, frT

)
�

,

and take into account the symmetry and tangentiality of adT = PadTP to write(
adT ,∇Mu

)
�

= (
adT ,D�(u)

)
�
because of (2.5) and (2.13), as well as the skew sym-

metry of ar and (2.5) to obtain

(
u, ρu̇

)
�

=
(
u, frT + (trB)arn

)
�

−
(
D�(u), adT

)
�

−
(
WM (u), ar

)
�

. (4.8)

Similarly, (4.7) yields

(
H,

◦
Q

)
�

=
(
H,Fd

)
�

,

and, in view of S = S[u,Q] = W(u)Q − QW(u), we see that

(
H, (∇MQ)u − S[u,Q]

)
�

=
(
u,H : ∇MQ

)
�

−
(
H,W(u)Q − QW(u)

)
�

.
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We define the skew-symmetric Ericksen stress � and the Leslie force � to be

� = QH − HQ, � = −H : ∇MQ; (4.9)

the latter is tangent to � due to (2.7), whereas the former is unrelated to �. Conse-
quently,

(
H, (∇MQ)u − S[u,Q]

)
�

= −
(
u,�

)
�

+
(

�,W(u)

)
�

.

Using (3.10) for u = uT tangential to �, namely W(u) = WM (u) + 1
2W∗(u), we

deduce

� : W(u) = � : WM + B�n · u

because � and W∗(u) = Bu ⊗ n − n ⊗ Bu being antisymmetric yield

1

2
� : W∗ = � : (Bu ⊗ n) = tr(nuTB�) = tr(uTB�n) = B�n · u.

Hence, the rate of change of the total energy Etotal[Q,∇MQ,u] is given by

d

dt
Etotal[Q,∇MQ,u] = −

(
H,Fd

)
�

−
(
D�(u), adT

)
�

+
(
u, frT − � + (trB)arn + B�n

)
�

−
(
WM (u), ar − �

)
�

, (4.10)

where the dissipative and reversible terms are collected in separate lines.

Remark 4.2 Only the dissipative terms in the first line of (4.10) should contribute to
the energy rate d

dt Etotal as identified by Assumption 3. Two reversible terms from the
second line should cancel with each other for any possible dynamics of the system.
From the perspective of theory of constitutive modeling, this gives rise to a plethora
of possible models where the functional dependence of ar and frT on u and Q varies
even in the flat case. We will require in the Step 4 that each term in the second
line vanishes separately. This modeling choice is consistent with the classical Beris–
Edwards system in flat domains. One could try to attribute this choice to the principle
of frame indifference, but it is beyond the scope of this paper.

Step 4: Reversible quantities. To find the reversible quantities ar and frT we recall
that these terms should not contribute to the time derivative of the total energy (4.10).
Some of the reversible quantities in (4.10) are paired with the velocity u which rep-
resents a uniform motion of an infinitesimal material volume, while others are paired
with WM (u) which represents a rotation of an infinitesimal volume. As discussed in
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Remark 4.2, none of these conjugated pairs should produce mechanical work, whence
the last two terms in (4.10) vanish for any u:

ar = � frT = � − (B + (trB)P)�n . (4.11)

Consequently, the reversible quantities in (4.7) are fully determined.
Step 5: Dissipative quantities.To find the dissipative quantities adT andFd , wemake

an additional assumption regarding the non-equilibrium thermodynamics of themodel
in the form of the least action principle (see Wang 2021 for details) First, we define
the dissipation functional

�[Fd , adT ] :=
∫

�

(
|Fd |2
2M

+ |adT |2
4μ

)

where themobilityM and the viscosityμ arematerial constants. According to the least
action principle, dissipative quantities should minimize the expression d

dt Etotal + �

at every time during the evolution to be thermodynamically consistent. Therefore, its
first variation must vanish

δ(adT ,Fd )

(
d

dt
Etotal[Q,∇MQ,u] + �[Fd , adT ]

)
= 0 .

In view of the first line of (4.10), we discover that the tensors adT and Fd satisfy

− D�(u) + 1

2μ
adT = 0, −H + 1

M
Fd = 0. (4.12)

Consequently, the dissipative quantities in (4.7) are fully determined.
We have just finished the five steps of the generalized Onsager principle and are

now ready to write the ensuing system of equations on �. Inserting (4.11) and (4.12)
into (4.7) yields

ρu̇ = 2μP div�D�(u) + P div�� + � − (
B + (trB)P

)
�n , (4.13)

◦
Q = MH , (4.14)

which by construction enjoys the following energy structure.

Proposition 4.3 (energy law) The system of equations (4.13)-(4.14) on the surface �

satisfies

d

dt
Etotal[Q,∇MQ,u] = −2μ‖D�(u)‖2� − M‖H‖2� . (4.15)

Proof Simply replace (4.11) and (4.12) into (4.10). 
�
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A further simplication of (4.13) is in order.We express the tangential force P div��

due to the Ericksen stress � defined in (4.9) in terms of the tangent Ericksen stress
�� = P�P and a remainder. We resort to Lemma B.6 to relate div�� to div��� as
follows:

P div�� = P div��� + tr(B)P�n + B�Tn . (4.16)

We observe that the term tr(B)P�n in (4.16) cancels with the last term in (4.13), while
the skew symmetry� = −�T of the Ericksen stress impliesB�n−B�Tn = 2B�n.
We thus end up with the following reduced form of the momentum equation

ρu̇ = 2μP div�D�(u) + fE + � − f∗ , (4.17)

with the Ericksen force fE and star force f∗ defined by

fE := P div���, f∗ := 2B�n. (4.18)

Both forces are tangent to �, fE due to the projection P and f∗ because the range of
the shape operator B is contained in the tangent plane at each point of �. It is worth
realizing that thermodynamics consistency requires the presence of the novel force
f∗ in (4.17). If the surface � is flat, e.g., a domain in R

2, then B = 0 and f∗ = 0.
Moreover, f∗ vanishes again provided �n = 0 as it would happen if bothQ andH are
assumed to be conforming and flat-degenerate. The relaxation of these assumptions is
the main contribution of this paper.

We further explore the extraction of the tangent part �� from � in (4.16) that
leads to the Ericksen force fE of (4.18). In fact, we present a simple characterization
of fE , which is of independent interest and quite useful to understand simulations in
Sect. 6.2.2.

Lemma 4.4 (characterization of the Ericksen force) There exists a scalar function θ

such that

fE = n × ∇�θ . (4.19)

Proof Consider the right-handed basis of principal directions t1, t2,n at a point x ∈ �.
Any second-order tensor A may be represented in this basis via dyads as follows:

A =
2∑

i, j=1

ai j ti ⊗ t j +
2∑

i=1

(a3in ⊗ ti + ai3ti ⊗ n) + a33n ⊗ n

for some components ai j , 1 ≤ i, j ≤ 3. Since the surface Ericksen stress �� = P�P
is tangent, its representation does not include any dyads involving n. Moreover, skew
symmetry �� = −�T

� implies a11 = a22 = 0 and a21 = −a12 = θ , where θ is the
only non-trivial component of �� and is a function of x ∈ �. Consequently,

�� = θ (t2 ⊗ t1 − t1 ⊗ t2) ,
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and the second-order tensor�n := t2⊗t1−t1⊗t2 maps t1 to t2 and t2 to−t1. It is thus
a rotation by π

2 around the axis n or, simply, the cross-product operator �na = n× a
according to the corkscrew rule. It turns out that�n admits the following cross product
matrix representation in terms of the canonical Cartesian basis ex , ey, ez

�� = θ�n = θ

⎛
⎝ 0 −nz ny

nz 0 −nx
−ny nx 0

⎞
⎠ . (4.20)

Note that the function θ and the normal n fully describe the surface Ericksen stress
�� . Moreover, using (2.11), (2.3) together with Proposition A.1 (product rules), we
calculate

div��� = divM�� = div�e
� = div (θe�e

n) = θediv�e
n + �e

n∇θe .

We finally observe that div�e
n = −curl ne = 0, because ne = ∇d, to obtain that

div��� = n × ∇�θ and that fE = P div��� is given by (4.19) as asserted. 
�
We point out that the orientation of n is not unique. If we change n to −n, then we

also have to exchange t1 with t2 to have a right-handed basis and this flips the sign of θ ;
hence, the representation of (4.19) iswell defined.Moreover, since div��� = n×∇�θ

is already tangent to�, we deduce that the projectionP in the definition fE = P div���

is superfluous.

4.2 Surface Beris–Edwards Model

We are now in a position to present the novel model of fluidic liquid crystal films. Let a
closed surface � represent the liquid crystal film. The liquid crystal may be generally
oriented in R

3, but the material flows tangentially to � so that � does not change
over time. The incompressible flow is described by the tangential velocity u, which
is assumed to be divergence-free div�u = 0. Therefore, the density ρ is constant and
the scalar pressure field p enforces div�u = 0 on �.

The new model combines the equations 4.14 and (4.17) with the expressions (4.3)
and (4.4) and the constitutive relations (4.9) and (4.18). Given initial conditions u0
and Q0, the model reads: Find symmetric and traceless matrix fields H,Q as well
as tangent velocity u = Pu and scalar pressure p on � such that for all times the
following system of PDEs is satisfied on �

H + PF ′[Q] = L P divM∇MQ,

∂tQ + (∇MQ)u = MH + (S� + S∗),
ρ
(
∂tu + (∇�u)u + ∇� p

) = 2μP div�D�(u) − (f� + f∗),
div�u = 0,

(4.21)

where
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S� = S�[Q, u] = W�(u)Q − QW�(u) , S∗ = S∗[Q,u] = W∗(u)Q − QW∗(u) ,

� = �[Q,H] = QH − HQ , �� = ��[Q,H] = P�P ,

f� = f�[Q,H] = −P div��� + H : ∇MQ , f∗ = f∗[Q,H] = 2B�n .

Here, S� is the corotation (4.5) by the covariant spin tensor W� in (2.12), S∗ is the
corotation (4.5) by the star spin tensor W∗ in (3.11), � is the Ericksen stress (4.9)
with the tangent part �� = P�P, f� is the tangent surface Beris–Edwards force
which consists of the Ericksen force fE = P div��� in (4.18) and the Leslie force
� = −H : ∇MQ in (4.9), and f∗ is the star force from

(4.18). The first variation of the double-well potential F[Q] in (1.3) is given by

PF ′[Q] = aQ − bQ2 + b

3
tr(Q2)I + c tr(Q2)Q , (4.22)

where P is the projection onto the subspace of traceless and symmetric matrices.
The operator P acts likewise on the variation divM∇MQ of the elastic energy. The
surface Beris–Edwards model (4.21) obeys the energy law (4.15) by construction.

Remark 4.5 We would like to stress that the star corotation tensor S∗ and the star
force f∗ distinguish our model from the model in Nestler and Voigt (2022) whereQ is
assumed to be conforming to the surface with a prescribed eigenvalue in the normal
direction. These terms guarantee the thermodynamical consistency of our model for
a non-flat surface. We demonstrate the behavior of conforming and non-conforming
Q-tensors in our numerical experiments of Sect. 6.

Remark 4.6 If we disregard the Q-tensor equations and the coupling force f� + f∗, we
will be left with the well-known surface Navier–Stokes system (Jankuhn et al. 2018)
which models an incompressible surface flow driven by inertia.

5 Representation of Q-Tensors on Surfaces

In this section, we define the notions of uniaxiality and flat-degeneracy, along with the
biaxiality parameter β[Q] which relates them. We also introduce the non-conformity
parameter r�[Q]. These parameters will be instrumental in describing and visualizing
the numerical experiments in Sect. 6.

5.1 Biaxiality Parameter

We start with a simple definition: Unit vector fields q ∈ R
3 will be called director

fields.

Definition 5.1 (flat-degeneracy) A Q-tensor Q ∈ R
3×3 is flat-degenerate if one of its

eigenvalues is zero, say λ2 = 0 whence λ1 = −λ3. Therefore, if r := 2λ1, then Q
reads
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Q = λ1 (q1 ⊗ q1 − q3 ⊗ q3) = r

(
q1 ⊗ q1 − 1

2
Pq2

)
, (5.1)

where Pq := I − q ⊗ q is the projector onto the orthogonal plane to the director q.

This definition is consistent with (1.5). A flat-degenerate state of the form (5.1) is
essentially a two-dimensional Q-tensor state in the plane orthogonal to q2. Another
important class of three-dimensional Q-tensor states is given by the following defi-
nition (Mottram and Newton 2014; Borthagaray and Walker 2021; Sonnet and Virga
2012).

Definition 5.2 (uniaxiality) A Q-tensorQ ∈ R
3×3 is uniaxial if it may be represented

as

Q = s

(
q ⊗ q − 1

3
I
)

(5.2)

for some director q and order parameter s. Otherwise the Q-tensor is biaxial.

The following biaxiality parameter (Majumdar 2010) relates the notions of flat-
degeneracy and uniaxiality of Q-tensors and allows for a classification of Q-tensor
fields useful in simulations.

Definition 5.3 (biaxiality parameter) For a nonzero Q-tensorQ ∈ R
3×3, the biaxiality

parameter is the real number

β[Q] = 1 − 6
(trQ3)2

(trQ2)3
. (5.3)

It is well known that the vanishing of β[Q] indicates that Q is uniaxial (Majumdar
2010), but the opposite limit, when it is equal to one, indicates the flat-degeneracy of
liquid crystal state as shown in the following Lemma.

Lemma 5.4 (properties of biaxiality parameter) The biaxiality parameter satisfies

0 ≤ β[Q] ≤ 1 ∀Q ∈ R
3×3, Q �= 0. (5.4)

The minimal value, β[Q] = 0, corresponds toQ being uniaxial, whereas the maximal
value, β[Q] = 1, corresponds to Q being flat-degenerate.

Proof We exploit the spectral decomposition (1.1) to write Q j = ∑3
k=1 λ

j
k (qk ⊗ qk)

for j ∈ N, whence trQ j = ∑3
k=1 λ

j
k . In view of the definition (5.3), we have to prove

0 ≤ 6

(
trQ3

)2
(
trQ2

)3 ≤ 1.
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The leftmost inequality is trivial. The rightmost one entails the following tedious
computation. Since trQ = 0, we let λ2 = −λ1 − λ3 and rewrite the desired traces in
terms of α = λ−1

1 λ3

trQ2 = λ21
(
1 + (1 + α)2 + α2) = 2λ21(1 + α + α2),

trQ3 = λ31
(
1 − (1 + α)3 + α3) = −3λ31α(1 + α),

becauseQ �= 0 implies either λ1 �= 0 or λ3 �= 0. Consequently, we obtain the asserted
inequality

(
trQ2)3 − 6

(
trQ3)2 = 2λ61

(
2 + 3α − 3α2 − 2α3

)2 = 2λ61(1 − α)2(2α + 1)2(α + 2)2 ≥ 0.

Moreover, this explicit expression reveals that β[Q] = 0 is equivalent to either
α = 1, α = − 1

2 or α = −2. This in turn corresponds to λ1 = λ3, λ1 = −2λ3
(i.e., λ2 = λ3) or λ3 = −2λ1 (i.e., λ2 = λ1). According to the characterization of a
uniaxial Q-tensor after Definition 5.2, we deduce that β[Q] = 0 is equivalent to Q
being uniaxial.

In contrast, β[Q] = 1 is equivalent to trQ3 = 0 which reduces to either α = 0 or
α = −1. This in turn reads either λ3 = 0 (or symmetrically λ1 = 0) or λ3 = −λ1
(i.e., λ2 = 0). According to Definition 5.1, we infer that β[Q] = 1 if and only if Q is
flat-degenerate. This completes the proof. 
�

Finally, the following result is proved in Majumdar (2010, Proposition 1, but we
state it as a lemma for further reference in Sect. 6.

Lemma 5.5 (minimizer of F) Let the parameters a, b, c of the double-well potential
F in (1.3) satisfy a < 0, b > 0, c > 0. Then, F[Q] is minimized by a uniaxial state
(5.2) with s given by

s+ = b + √
b2 − 24ac

4c
. (5.5)

5.2 Non-Conformity Parameter

In this section, we turn to the representation of Q-tensors on surfaces and introduce
a scalar field which quantifies the notion of non-conformity of Q-tensors. In fact, we
extend the representation of conforming Q-tensors of Nestler et al. (2020, equation
(5)) to arbitrary Q ∈ R

3×3.
Strictly speaking, sincewe are concernedwith general Q-tensors, there is no a priori

relation between the surface � and the eigenframe of Q. Nevertheless, we would like
to split the general state of the Q-tensor into liquid crystal states related to the normal
and tangent subspaces to �.
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Given the unit normal n to � and a tangent director field q� , i.e., q� · n = 0, we
consider sums N� + T� of arbitrary traceless matrices of the form

N� = n�

(
n ⊗ n − 1

2
P
)

= 3

2
n�

(
n ⊗ n − 1

3
I
)

, T� = s�

(
q� ⊗ q� − 1

2
P
)

,

(5.6)

where N� is an uniaxial homeotropic Q-tensor (normal to �), and T� is a flat-
degenerate Q-tensor tangent to �. Note that β[N�] = 0 and β[T�] = 1 and that
bothN� and T� are always conforming. Clearly, an arbitrary Q-tensorQ ∈ R

3 cannot
be represented by such sums if its eigenframe does not include the normal vector.
Therefore, for Q ∈ R

3 we define its traceless conforming (normal and tangential)
componentsN�[Q] and T�[Q] by minimizing the residual with respect to n� and T�:

min
n�,T�

|R�|2 , R� = Q − N� − T� . (5.7)

Lemma 5.6 (homeotropic decomposition ofQ on�)An arbitrary Q-tensorQ ∈ R
3×3

admits the orthogonal decomposition Q = N�[Q] + T�[Q] + R�[Q] into three
traceless symmetric tensors, where N�[Q] is a uniaxial Q-tensor given by (5.6) with
n� = nTQn, T�[Q] is a flat-degenerate tangent Q-tensor, and R�[Q] has minimal
Frobenius norm. Moreover, they satisfy |Q|2 = |N�[Q]|2 +|T�[Q]|2 +|R�[Q]|2 and
are given by the expressions

N�[Q] = n�

(
n ⊗ n − 1

2
P
)

, T�[Q] = PQP + n�

2
P,

R�[Q] = (Q − n�I)n ⊗ n + n ⊗ (Q − n�I)n.

(5.8)

Proof We expand the residual

|R� |2 = (Q − T� − n�nn
T − n�

2
P) : (Q − T� − n�nn

T − n�

2
P)

= Q : Q − 2Q : T� + T� : T� − 2n�(Q − T�) : nnT − n�P : (Q − T�) + 3

2
n2� ,

and compute its first variations. Since n� is scalar, we readily have

0 = ∂

∂n�

|R�|2 = −2Q : nnT + tr(PQP − T�) + 3n� .

On the other hand, since T� is traceless and tangent to �, a general variation of T�

reads PCP− 1
2 tr

(
PCP

)
P for an arbitrary symmetric matrixC ∈ R

3×3. Consequently,
a tedious computation of ∂

∂T�
|R�|2 : C using that trP = 2 yields

0 = ∂

∂T�

|R�|2 = −2PQP − tr(PQP)P + 2T� .
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Exploiting that tr(T�) = 0, these equations give the optimal values

n� = 2

3
nTQn − 1

3
tr(PQP), T� = PQP − 1

2
tr(PQP)P.

Since

PQP = (
I − n ⊗ n

)
Q

(
I − n ⊗ n

) = Q − n ⊗ Qn − Qn ⊗ n + (
nTQn

)
n ⊗ n ,

and Q is traceless, we deduce tr
(
PQP

) = −nTQn whence n� = nTQn and the
expressions for T� and R� in (5.8) follow immediately. Moreover, N�[Q] and T�[Q]
are orthogonal because

N�[Q] : T�[Q] = n�

(
n ⊗ n − 1

2
P
)

:
(
PQP + n�

2
P
)

= n�

2

(
nTQn − n�

) = 0 ,

whence the minimization property (5.7) is equivalent to the orthogonality of R�[Q]
and N�[Q] + T�[Q]. This concludes the proof. 
�

Now, we are in a position to introduce a quantitative measure of non-conformity
for an arbitrary Q-tensorQ ∈ R

3. Since both N�[Q] and T�[Q] are conforming to �,
possible non-conformity of Q is dictated by the solution R�[Q] of the minimization
problem (5.7). The relation |R�[Q]| ≤ |Q| motivates the forthcoming definition.

Definition 5.7 (non-conformity parameter) The non-conformity parameter r�[Q] of
an arbitrary Q ∈ R

3×3 on � is the fraction 0 ≤ r�[Q] ≤ 1 defined by

r�[Q] := |R�[Q]|
|Q| . (5.9)

Remark 5.8 We see that r�[Q] = 0 if and only ifQ = N�[Q]+T�[Q] or equivalently
R�[Q] = 0. In contrast, r�[Q] = 1 if and only ifN�[Q] = T�[Q] = 0 or equivalently
n� = 0 and

Q = R�[Q] = Qn ⊗ n + n ⊗ Qn .

Therefore, if r�[Q] = 1, we infer that Qn is tangent to � because n� = nTQn = 0
and Qq is perpendicular to � for any tangent vector q because 0 = T�[Q]q = PQq.

Remark 5.9 If Q is conforming to �, i.e., r�[Q] = 0, and its normal component
N�[Q] = 0, then Q = T�[Q] is flat-degenerate. Therefore, according to Lemma 5.4,
Q is biaxial and the biaxiality parameter β[Q] = 1 is maximal.

5.3 Enforcing Conformity: The Hess–Osipov Energy

We consider enforcing conformity through penalization. Natural penalizations are the
following physically justified energies, which can be found in Nestler et al. (2020, Eq.
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(4)) and Golovaty et al. (2017, Eq. (8)), and are closely tied to the energies found in
Golovaty et al. (2015, Eq. (4)) and Osipov and Hess (1993, Eq. (7)):

Epen[Q] := γ

∫
�

|PQn|2, Enorm[Q] := α

∫
�

∣∣nTQn − δ
∣∣2. (5.10)

The energy Epen[Q] with penalty parameter γ weakly enforces that Qn be normal.
In fact, in the limit γ → ∞, the energy Epen[Q] is minimized provided PQn = 0 or
equivalently ifQn is normal. This is the strong form of conformity according to (1.4).

On the other hand, the energy Enorm[Q] with penalty parameter α > 0 enforces a
value δ of orientational order in the normal direction. For conforming Q-tensors, the
value n� = nTQn is the eigenvalue ofQ in the normal directionn according to Lemma
5.6 (homeotropic decomposition of Q on �). However, unless n is an eigenvector of
Q, the limit α → ∞ only penalizes the deviation of nTQn from δ, which may vary
along �.

The role of (5.10) will be computationally explored in Sect. 6.3.1 and Sect. 6.3.2.

6 Exploration of the Surface Beris–Edwards Model

In this section, we explore computationally basic properties of the surface Beris–
Edwards model presented in Sect. 4.2. We resort to the biaxiality parameter β[Q] of
Sect. 5.1 and the non-conformity parameter r�[Q] of Sect. 5.2 to interpret and display
our results. We start in Sect. 6.1 with the kinematics of the surface Landau–deGennes
equation without transport of momentum. In Sect. 6.2, we compute profiles of the
Leslie force (4.9) and the Ericksen and star forces (4.18) on some simple Q-tensor
configurations with a defect; this provides basic intuition on the thermodynamical
coupling of the Q-tensor and the momentum transport on surfaces. In Sect. 6.3, we
demonstrate computationally that the transition between two conforming states may
occur through non-conforming intermediate states. Finally, we show in Sect. 6.4 why
the relaxation of the conformity assumption (1.4) may be critical for the modeling
of liquid crystal films. We consider a homeotropic, radially symmetric Q-tensor on a
unit sphere and investigate the influence of the weak anchoring on the stability of this
Q-tensor configuration.

6.1 Landau–de Gennes Dynamics on a Sphere

In this section, we consider the surface Landau–deGennes model from Sect. 4.2
without the momentum equation and explore the main kinematical and dynamical
properties of this simplified model. For all experiments in this section, we set the
mobility M , the elastic constant L , and the parameters of the double-well potential
a, b, c in (4.22) to be

M = 1, L = 1, a = −5, b = 1, c = 10.

Consequently, the equilibrium value (5.5) of the order parameter is s+ ≈ 0.60.
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Fig. 1 Passive surface corotational transport of an initially uniaxial Q-tensor along a rotation of the unit
sphere � given by the prescribed velocity field v = πez × (x, y, z) for (x, y, z) ∈ �; all pictures display the
(x, y)-plane so ez is perpendicular to it. a) largest eigenvalue of Q and corresponding oblique eigenvector
q. b) biaxiality parameter β[Q] of (5.3) and velocity field v. Since β[Q] stays close to zero, Q remains
uniaxial with respect to q. The uniaxial Q-tensor state (s, q) is uniform on the spherical cap and rotates
rigidly. Therefore, the entireQ-tensor eigenframemoves along the sphere as if the ambient space experiences
the rotation

6.1.1 Passive Corotational Transport of a Non-Conforming Q-Tensor

The first numerical simulation demonstrates the action of the corotational derivative◦
Q defined in (3.13). To this end, we consider the passive velocity v(x, y, z) = πez ×
(x, y, z) for (x, y, z) ∈ � over the unit sphere �; v is tangent to � and corresponds
to a rigid rotation of � around the axis ez . We examine the passive transport equation
◦
Q = 0 dictated by v over � where the initial condition Q0 of Q is uniaxial

Q0(x, y, z) := s0

(
q0 ⊗ q0 − 1

3
I
)

, (x, y, z) ∈ � , (6.1)

and the order parameter s0 and director q0 are given by

s0(x, y, z) = s+
(
1 + exp(−20(y − 0.6))

)−1
, q0(x, y, z) = (1, 1, 0)/

√
2 .

(6.2)

We stress that q0 is neither normal nor tangent, and s0 localizes Q0 to a spherical cap
0.6 � y. We display the passive dynamics in Fig. 1.
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According to Theorem 3.11, and the property that a Q-tensor with two equal eigen-

values is uniaxial, the solution to
◦
Qwith initial condition (6.1) is the uniaxial Q-tensor

Q(x, y, z, t) = s

(
q ⊗ q − 1

3
I
)

, (x, y, z) ∈ � , (6.3)

where s = s(x, y, z, t) and q = q(x, y, z, t) satisfy the initial value problems on �

ṡ = 0 , s(0) = s0 ,
◦
q = 0 , q(0) = q0 . (6.4)

In view of Lemma 3.9, the director field q admits the decomposition q = qT + qNn
in terms of normal component qN and tangential component q� , which satisfy the
following initial value problems:

q̇N = 0 , qN (0) = (q0)N , ∂tqT + (∇�qT )v − W�(v)qT = 0 , qT (0) = (q0)T ,

Since v is a rotation of the sphere, the solution (s(t),Q(t)) of the initial value problem
(6.4) is just the rigidly rotated initial condition (s0,q0). This solution of (6.4) for
t ∈ [0, 0.5] is shown in Fig. 1: At the final time t = 0.5, the solution (s(t),Q(t)) has
rotated π/2 around ez and the biaxiality parameter β[Q] ≈ 0. This corroborates that
Q(t) remains uniaxial for all t .

It is worth realizing that if one did not use the covariant spin tensorW� defined in
(2.12) in the transport of the tangent component qT , then the parallel transport (3.3)
would not result in the rotated solution q(t) (andQ(t)). This numerical example high-
lights the importance of corotational derivatives (3.12) and (3.13) for the kinematics
of liquid crystal films.

6.1.2 Diffusion of a Uniaxial Q-Tensor.

In this example, we explore the so-called dry case of the surfaceBeris–Edwardsmodel.
The Q-tensor changes are driven solely by the interaction of elastic energy and double-
well potential F in the Landau–deGennes energy (4.1) in the absence of momentum
transport. We thus set u = 0 (no fluid) in the system (4.21) from Sect. 4.2, thereby
resulting in the gradient flow dynamics for the surface Landau–deGennes energy
ELdG[Q,∇MQ]

H + PF ′[Q] = L P divM∇MQ,

∂tQ = MH,
(6.5)

which is supplemented with the initial condition Q(0) = Q0 from (6.1). The initial
value problem (6.5) is solved numerically on a unit sphere �, and the results are
displayed in Fig. 2. The numerical solution exhibits two crucial aspects of the Landau–
deGennes dynamics. First, since the initial condition is localized approximately to the
spherical cap y > 0.6, the Q-tensor state diffuses due to the term L P divM∇MQ in
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Fig. 2 Diffusion along the unit sphere � of a Q-tensor Q with initial uniaxial condition Q0 given by (6.1)
localized to a spherical cap. All pictures show the xy-plane view: a) the largest eigenvalue and corresponding
eigenvector of Q; b) the biaxiality parameter β[Q] ≈ 0 for all times indicates that Q is always uniaxial
according to Lemma 5.4. The localized Q-tensor diffuses along � while staying parallel toQ0 to minimize
the elastic energy. At the same time, the double-well potential F[Q] drives the scalar order parameter s of
Q to the minimizer s+ of F[Q] stated in (5.5)

(6.5). Second, the order parameter s is zero away from a spherical cap that expands
downwards (light blue in Fig. 2a). The nonlinear termPF ′[Q] in (6.5), associated with
the double-well potential F[Q], drives the order parameter s everywhere to the value
s+ that minimizes F[Q] according to Lemma 5.5. In addition, the director field q stays
parallel to the initial value q0 to minimize the elastic energy in (4.1). The solution is
thus uniaxial and given by (6.3). This is corroborated in Fig. 2b, which depicts the
biaxiality parameter β[Q] defined in (5.3). In fact, β[Q] ≈ 0 for all times in the entire
surface, which is only possible if Q is uniaxial according to Lemma 5.4. Therefore,
the uniaxial evolution of the Q-tensor field is preferable to avoid competition between
the elastic and potential energies that give rise to ELdG [Q,∇MQ] in (4.1), provided
the initial director field q0 is constant and the corresponding elastic energy vanishes.

6.1.3 Evolution of a Uniform Q-Tensor Under Passive Rotation.

This example couples the Landau–deGennes dynamics on the unit sphere � of
the previous example with a passive rotation. We prescribed the tangential veloc-
ity v(x, y, z) = πez × (x, y, z) for (x, y, z) ∈ � and replace the time derivative

∂tQ in (6.5) with the corotational derivative
◦
Q of (3.13). We consider the initial

Q0 = s0
(
q0 ⊗ q0 − 1

3 I
)
in (6.1) with uniform director field q0 given by (6.2) but
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Fig. 3 Evolution of a uniform Q-tensor under passive rotation around the z-axis with velocity field v =
πez × (x, y, z) for (x, y, z) ∈ �. All pictures show the xy-plane view: a) the largest eigenvalue and
corresponding eigenvector of Q; b) the biaxiality parameter of (5.3) satisfies β[Q] ≈ 0 for all times.
Lemma 5.4 implies that the Q-tensor remains uniaxial for all times. In fact, Q is always uniform in space
and rotates rigidly with v, whence the elastic energy vanishes. The order parameter s evolves uniformly in
space from s0 = 0.1 to the minimizer s+ of the potential energy F[Q] in (5.5)

with the non-equilibrium value s0 = 0.1 of the order parameter s. This results in the
following initial value problem

H + PF ′[Q] = L P divM∇MQ,

◦
Q = MH.

(6.6)

withQ(0) = Q0. Figure3 documents the evolution for t ∈ [0, 1]. Since the prescribed
velocity v is a rotation around the z-axis, the solution consists of the concatenation
of diffusion without velocity with a rigid rotation. Since the initial condition Q0 is
uniform, the elastic energy is zero and only the double-well potential F[Q] is active to
drive the order parameter s. This is precisely what Fig. 3a illustrates: The eigenframe
of Q at each point of � rotates by an angle π in the plane orthogonal to ez , while
s evolves toward the minimizer s+ of the potential F[Q] given by (5.5). Moreover,
Q remains uniaxial for all time because the biaxiality parameter β[Q] ≈ 0 in light
of Fig. 3b, whence Lemma 5.4 applies. This example reveals the essential role of the
corotational derivative (3.13) in modeling liquid crystals on surfaces in that it does not
generate spurious biaxial states during a passive dynamics of the eigenframe of Q.
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6.2 Coupling Forces in theMomentum Equation of Surface Beris–Edwards Model

This set of experiments explores the action of the forces on the momentum equation
(4.21)c

ρ
(
∂tu + (∇�u)u + ∇� p

) = 2μP div�D�(u) + � + fE − f∗, (6.7)

namely the Leslie force � in (4.9), and the Ericksen fE and star f∗ forces in (4.18)

� = −H : ∇MQ, fE = P div���, f∗ = 2B�n. (6.8)

We deal with the following configuration of Q lying in the xz-plane and described in
terms of polar coordinates (r , φ), i.e., φ = atan2(x, z), r = √

x2 + z2. Let ω ≥ 0 be
a parameter that controls the swirled director field qω perpendicular to ey = (0, 1, 0)

qω = qω(r , φ) = (
cos(φ + ωr), 0, sin(φ + ωr)

)
, (6.9)

and let the order parameter sk,ξ (r) vary between 0 and s+ defined in (5.5) via a
regularized radial step function which is the logistic sigmoid with midpoint ξ and
width k

sk,ξ = sk,ξ (r) = s+
1 + exp (−2k(r − ξ))

.

The Q-tensor is uniaxial with eigenvector Pqω tangential to � and order parameter
sk,ξ , namely

Q = Q[k; ξ ;ω] = sk,ξ

(
Pqω

|Pqω| ⊗ Pqω

|Pqω| − 1

3
I
)

. (6.10)

This is a regularized degree +1 defect because at the origin, where qω becomes
singular, the order parameter sk,ξ is about zero. The largest eigenvalue ofQ is λmax =
2/3s+ ≈ 0.82 with s+ defined in (5.5). Moreover, the physical parameters of the fluid
are its density ρ = 0.1 and viscosity μ = 0.1 in (6.7).

Remark 6.1 We point out that to generate nonzero Ericksen stresses � we need a
configuration of the Q-tensor with a swirled and regularized director field qω. Figure4
shows homeotropic and uniform Q-tensors on a spherical cap for which all coupling
forces in (6.8) are zero. Hence, no transport of momentum appears in such Q-tensor
configurations.

6.2.1 Leslie Force on a Flat Disk

Wefirst examine� in (6.8). To this end, we consider a flat disk� of radius 5 orthogonal
to (0, 1, 0) with Dirichlet boundary conditions for the Q-tensor Q and the velocity u.
We let ω = 0 and Q be the radial uniaxial regularized defect Q[5; 2.5; 0] of degree
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Fig. 4 Q-tensors on spherical caps for which all the forces in (6.8) are zero. Left: a homeotropic Q-tensor
Q = s+ (n ⊗ n − I/3), right: a uniform Q-tensor Q = s+ ((1, 1, 1) ⊗ (1, 1, 1) − I) /3

Fig. 5 Leslie force � = −H : ∇MQ (left) for the Q-tensor Q[5; 2.5; 0] in (6.10) on a flat disk of radius
5; this is a regularized defect of degree +1 with order parameter sk,ξ about zero at the origin (right). The
gradient of sk,ξ , which is radial and points outwards, is mostly responsible for the structure of � (left). In
fact, its concavity flips in the transition region near the circle of radius r = ξ = 2.5, thereby resulting in a
radial � that point outwards for r > ξ and inwards for r < ξ

+1 defined in (6.10) without a “swirl”. The order parameter sk,ξ of Q is almost flat
except near the circle of radius r = ξ = 2.5, whence its gradient is radial and points
outwards. Figure5)b displays Q.

The molecular field H might be thought of approximately as the Laplacian of Q,
whence it changes sign around r = ξ where the convexity of sk,ξ flips to concavity.
Since ∇MQ must be radial, because of symmetry arguments, the Leslie force � =
−H : ∇MQ is also radially symmetric and points inwards for r < ξ and outwards for
r > ξ . This is shown in Fig. 5)a.

Since the disk � is flat, the shape operator B = ∇Mn vanishes and so does the star
force f∗ = 2B�n in (6.7). In addition, computations reveal that the Ericksen tensor
� = QH − HQ is zero and so is the Ericksen force fE = P div��� . Therefore, the
only active force is the Leslie force�, which is not divergence-free according to Fig. 5.
Computations also show that � does not produce fluid flow because the velocity is
u = 0, which in turn implies that � is a gradient equilibrated by the pressure term to
enforce the incompressibility condition div�u = 0.

6.2.2 Ericksen Force on a Flat Annulus

We now examine the impact of the tangent Ericksen stress �� = P(QH−HQ)P and
corresponding Ericksen force fE = P div��� on the momentum equation (6.7). We
consider the flat annulus � of inner radius 1 and outer radius 5 which is orthogonal
to ey = (0, 1, 0) = n. Note that removing the inner disk gets rid of the defect at the
origin. Throughout �, we take the order parameter s to be the constant s+ defined in
(5.5) and the swirl parameter ω = 0.1 in the definition (6.9) of the director qω. We
consider the following uniaxial Q-tensor
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Fig. 6 Velocity field u produced by the Ericksen force div��� on an annulus [1, 5]×S1 (top left). Uniaxial
tensor Q given by (6.10) with swirl parameter ω = 0.1 and constant order parameter sk,ξ = s+ defined in
(5.5) (top right). The complex flow exhibits two regions of rotation, the outer one clockwise and the inner
one counterclockwise, separated by an stagnation layer of vanishing velocity. The parameter θ from (4.19)
corresponds to the unit normal n = (0, 1, 0) of � pointing upwards (bottom left). The vector ∇�θ is radial
and points toward the stagnation layer in both the inner and outer annuli. Therefore, the Ericksen force
fE = n×∇�θ is rotational and mimics the velocity. The largest eigenvalue and corresponding eigenvector
of the tensor H (bottom right), which is also conforming with zero eigenvalue in the normal direction. The
eigenframes of Q and H do not coincide

Q = s+
(
qω ⊗ qω − 1

3
I
)

, (6.11)

which is depicted in Fig. 6b. The value ω �= 0 is responsible for the Ericksen tensor
� = QH−HQ �= 0, for otherwise radial symmetry forcesH andQ to have the same
conforming, radial eigenframe at every x ∈ � and � = 0. On the other hand, s+
minimizes the double-well potential, according to Lemma 5.5 (minimizer of F), and
Q in (6.11) satisfies PF ′[Q] = 0.

We impose Dirichlet boundary conditions to both the Q-tensor Q and the velocity
u and report the computational results in Fig. 6. It turns out that the Ericksen force fE
generates a rotational incompressible flow with two distinct regions of rotation sepa-
rated by a stagnation layer with zero velocity; this is displayed in Fig. 6a. In the inner
region, the flow rotates counterclockwise, while in the outer region the liquid crystal
material flows in the opposite direction. Since the Q-tensor, displayed in Fig. 6b, has
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a uniformly clockwise swirl on the entire annulus, one might wonder what originates
this complex flow.

First, we investigate analytically the structure of the molecular field H and surface
Ericksen stress �� forQ in (6.11). If we consider the basis q1 = qω,q2 = n×qω,n,
which is an eigenframe for the uniaxial Q-tensor Q, then Q and the projector P may
be represented by

Q =
⎛
⎝

2
3 s+ 0 0
0 − 1

3 s+ 0
0 0 − 1

3 s+

⎞
⎠ , P =

⎛
⎝1 0 0
0 1 0
0 0 0

⎞
⎠ .

On the other hand, the tensor H satisfies (6.6) with PF ′[Q] = 0, whence

Hn = LP divM (∇MQ)n = 0

due to the flatness of � and conformity of Q. Since H is traceless and symmetric, we
get

H =
⎛
⎝a b 0
b −a 0
0 0 0

⎞
⎠ , (6.12)

in the basisq1,q2,n for suitable functions a and b. The Ericksen stress� = QH−HQ
reads

� =
⎛
⎝ 0 s+b 0

−s+b 0 0
0 0 0

⎞
⎠ (6.13)

in the same basis and shows that b �= 0 is required for a non-trivial �. In other words,
the eigenframe ofH should not coincide with that ofQ for� �= 0, as alluded to earlier
in Sect. 6.2.2. Moreover, comparing � = �� in (6.13) with (4.20), the function θ in
(4.19) satisfies

θ = −s+b , fE = P div��� = −s+n × ∇�b . (6.14)

Intuitively, the molecular field H enters the expression of ∂tQ in (4.21b), and a
nonzero off-diagonal component, b �= 0, in (6.12) means that the eigenframe of H
rotates relative to that of Q. In this sense, the surface Ericksen force fE in (6.14)
encodes the spatial rate of change of the eigenframe rotation: The linear momentum is
the thermodynamic counterpart of the relative rotation of the molecular field H from
(6.12) due to the swirl structure of Q in (6.11).

We next provide a computational justification for the intriguing flow in Fig. 6a. We
resort to the parameter θ in (4.19), which provides the representation fE = n × ∇�θ

of the Ericksen force according to Lemma 4.4. The scalar field θ is displayed in
Fig. 6c, whence its gradient∇�θ is radially symmetric and pointing toward an annulus

123



5 Page 44 of 63 Journal of Nonlinear Science (2024) 34 :5

Fig. 7 a) Velocity field u (left) created by the swirled regularized defect Q[5; 2.5; 0.1] defined in (6.10)
(right) on a flat disk � of radius 5. b) Ericksen force fE = div��� (left) and Leslie force � = −H : ∇MQ
(right) near the transition region near r = ξ = 2.5 depicted by the green circle. Note that� exhibits a larger
magnitude than fE , but only the rotational part of � may generate incompressible flow. The rotational flow
is mostly due to fE

where θ exhibits its largest value; hence, ∇�θ changes orientation from an inner to
an outer annular region. Therefore, the Ericksen force fE is rotational and exhibits
the same structure as the velocity field in Fig. 6a with inner and outer regions of
counterclockwise and clockwise orientation.

6.2.3 A Regularized Swirled Defect on a Flat Disk

We next combine the effects of the Ericksen force fE = div��� and the Leslie force
� = −H : ∇MQ in one single experiment. We consider the swirled regularized
Q-tensor Q[5; 2.5; 0.1] defined in (6.10) with swirl parameter ω = 0.1 and transition
parameter ξ = 2.5onaflat disk� of radius 5orthogonal to (0, 1, 0). The computational
results are shown in Fig. 7. The parameter ξ characterizes the green layer in Fig. 7b
where the incompressible flow changes the direction of rotation. For r < ξ , the fluid
rotation is counterclockwise according to Fig. 7a, which also depicts Q, namely both
the swirl director field qω and order parameter sk,ξ in (6.10). Moreover, in Fig. 7b we
display the profiles of fE and � and realize that the fluid flow is consistent with the
rotational character of fE and the azimuthal component of �.
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Fig. 8 Star force f∗ = 2B�n (left) for a regularized radial defect Q[5, 0.5, 0] of degree +1 defined in
(6.10) on the unit sphere � with ey pointing upwards (right). The Leslie force � is similar to the flat disk
(Fig. 5), and the Ericksen force fE is zero (neither is shown). The total force generates no flow

Fig. 9 Velocity field u (left) produced by the star force f∗ = 2B�n for a regularized swirled defect
Q[5, 0.5, 1.5] of degree +1 defined in (6.10) (right) on a unit sphere �. The field u rotates clockwise near
the defect at the north pole and counterclockwise near the equator

Notice that, in contrast to the experiment in Sect. 6.2.1 where ω = 0, the Leslie
force � has a radial and an azimuthal component. The former is absorbed into the
pressure and does not create linear momentum as in Sect. 6.2.1. However, the latter
adds to the Ericksen force fE to give rise to an inner region r < ξ with clockwise
rotational flow and an outer region r > ξ with opposite flow. We observe that the
velocity magnitude is much larger in the transition region r ≈ ξ than in the inner and
outer regions and that even though fE is smaller in magnitude than �, it is mostly
responsible for the counterclockwise flow.

6.2.4 The Star Force on a Unit Sphere

The star force f∗ = 2B�n is zero on flat geometries because the shape operator
B = ∇Mn vanishes. In this experiment, we consider the unit sphere �, for which
B = P, to show the non-trivial behavior of f∗ even for a surface with a simple shape
operator. To demonstrate the action of f∗ on �, we choose regularized uniaxial Q-
tensors defined in (6.10): radialQ[5, 0.5, 0]withω = 0 and swirledQ[5, 0.5, 1.5]with
ω = 1.5. Figures8 and Fig. 9 show these configurations with unit vector ey = (0, 1, 0)
pointing upwards. The definition (6.10) of Q is relative the xz-plane perpendicular to
ey , so the transition region occurs at r = √

x2 + z2 = ξ = 0.5.
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It turns out that the “radial” tensor Q[5, 0.5, 0] generates no flow. This is because
the star force f∗ = 2P�n = 2�n has a radial structure and is localized near the
transition region r ≈ ξ , where the Ericksen stress � = QH −HQ is nonzero; hence,
f seems to be a corotational gradient that is compensated by ∇� p in (6.7). Moreover,
the Leslie force � = −H : ∇MQ (not shown in Fig. 8) is also radial and similar to
that in Fig. 5, whence it can also be absorbed into the pressure term. However, the
profiles of f∗ and � are quite different: The former has a direction pointing toward
the equator in both the upper and lower spherical caps of � (see Fig. 8a), whereas the
latter flips its direction near the transition region as in Fig. 5a. Finally, the Ericksen
force fE = P div��� appears to be zero, while �n is clearly not.

In contrast, the swirled tensor Q[5, 0.5, 1.5], shown in Fig. 9b, creates a force f∗
that generates flow. Viewed from the north pole, such a flow develops an outer region
r > ξ , where the velocity rotates counterclockwise, as well as an inner region r < ξ ,
where the velocity rotates clockwise but is much smaller in magnitude than the former
(see Fig. 9a). On the other hand, Q swirls clockwise (see Fig. 9b).

6.3 Relaxation of a Flat-Degenerate State

In Sect. 1, we argued that assuming Q-tensors to be conforming, namely to obey (1.4),
may be inconsistent with their surface dynamics unless an additional (penalty) energy
enforces this configuration. We now explore such inconsistency computationally on
a simple configuration of the Q-tensor on the unit sphere �. The initial configuration
is a flat-degenerate Q-tensor field with zero normal eigenvalue (see Definition 5.1),
while the final configuration is uniaxial with nTQn = 2

3 s+ (see Definition 5.2) and
s+ = 1.5 given in (5.5). We will see that the intermediate states are generally non-
conforming even if we penalize the lack of conformity, unless the penalty parameters
are sufficiently large.

To describe Q0 = Q(0) in Fig. 10, let ey = (0, 1, 0) point upwards and let the
director field m = Pey/|ey | be tangent to the unit sphere �, where P = I − n ⊗ n.
Then, let

Q0 = s+
(
m ⊗ m − 1

2
P
)

(6.15)

be a flat-degenerate Q-tensor with degree +1 defects at both north pole y = 1 and
south pole y = −1. Therefore, the biaxiality parameter β[Q0] = 1 defined in (5.3)
attains the largest possible value, according to Lemma 5.4), at all points of � except
for the defects. Since minimizers of the double-well potential F[Q] are uniaxial states
(Lemma 5.5) and Q0 is far from uniform and carries large elastic energy at the
defects, we expect Q0 to be far from a minimizer of the Landau–deGennes energy
ELdG[Q,∇MQ] in (4.1). In fact, the final configuration is a uniaxial state (5.2) with
director field q = n and orientational order s = s+, whence

nTQn = 2

3
s+ (6.16)
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t = 0.005 t = 0.015 t = 0.023 t = 0.03

t = 0.05 t = 0.075 t = 0.1 t = 0.4

Fig. 10 Relaxation of the Q-tensor from the axisymmetric flat-degenerate stateQ0 in (6.15) to the uniaxial
state (5.2) with q = n and s = s+. The interface parameters in the energy (6.17) are α = 10, δ = 2

3 s+.

The Q-tensor relaxes from nTQn = 0 to nTQn = 2
3 s+ = 1 passing through non-conforming states. Top:

maximum eigenvalue and corresponding eigenvector of Q evolve from tangential to normal to �. Bottom:
biaxiality parameter β[Q] and velocity field u (scaled by 0.5); β[Q] varies from 0 to 1 with intermediate
alternating regions of biaxiality. Vertical direction corresponds to the director ey

is the eigenvalue in the normal direction. Flat-degenerate Q-tensors are prototypical
for simulations in flat, two-dimensional domains. However, we stress that the evolution
of Q0 involves non-conforming Q-tensors with three nonzero eigenvalues.

6.3.1 Normal Anchoring Penalization

As discussed in Sect. 5.3, the Landau–deGennes energy (4.1) of a liquid crystal film
may include, in some applications (Golovaty et al. 2015, 2017; Nestler et al. 2020;
Osipov and Hess 1993), the energy Enorm[Q] with penalty parameter α > 0 defined
in (5.10), which enforces a value δ of orientational order in the normal direction
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Enorm[Q] = α

∫
�

∣∣nTQn − δ
∣∣2 . (6.17)

The dynamics of the Beris–Edwards system is dictated by the competition of sev-
eral energies: The double-well potential F[Q] promotes uniaxial states with order
parameter s+; the elastic energy L|∇MQ|2/2 promotes uniform states in R

3; and the
energy Enorm[Q] promotes a certain degree of orientational order, but does not affect
the conformity. A rigid condition of the form nTQn = c, as discussed in Sect. 1,
is often a modeling assumption postulated along with the conformity assumption. If
this condition is relaxed but the conformity assumption is still applied, then nTQn is
an additional scalar variable representing the normal orientational order. One could
model a transition from the conforming flat-degenerate state (6.15) with nTQn = 0
to the conforming uniaxial state with nTQn = δ enforcing conformity of Q for all
intermediate times. However, our simulations show that our Beris–Edwards model
find non-conforming intermediate states more energetically favorable.

We simulate the full surface Beris–Edwards system (4.21) with initial conditions
u(0) = 0 andQ(0) = Q0 given by (6.15), aswell as the augmentedLandau–deGennes
energy (4.1) by (6.17). This leads to the following variant of (4.21)a

H + P(F ′[Q] + E ′
norm[Q]) = L P divM∇MQ, (6.18)

where E ′
norm[Q] is the variational derivative of Enorm . We choose the parameters

a = −1, b = 1, c = 1; M = 1, L = 1, ρ = 0.1, μ = 0.1; α = 10, δ = 2

3
s+ = 1.0

in (1.3), (4.21) and (6.17), respectively. We report in Fig. 10 the numerical results for
time evolution of the augmented surface Beris–Edwards system (4.21)–(6.18). The
Q-tensor relaxes from the flat-degenerate state with nTQn = 0 to the uniaxial state
with nTQn = 2

3 s+ passing through non-conforming states. The biaxiality parameter
β[Q] is uniform at the beginning and end of the simulation, with values β[Q] = 1
(biaxial) to β[Q] = 0 (uniaxial), respectively, and exhibits alternating and space-
dependent values in between. The energy landscape is complex with non-conforming
intermediate states.

6.3.2 Non-Conformity Penalization

To further check our claim of non-conformity on the transition from flat-degenerate
to uniaxial configurations, we develop a second experiment. To enforce that Qn be
normal, whence n be an eigenvector of Q, we incorporate the physically justified
anchoring energy (Golovaty et al. 2015, 2017; Nestler et al. 2020; Osipov and Hess
1993),

Epen[Q] = γ

∫
�

|PQn|2 . (6.19)
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γ = 0 γ = 1e2 γ = 1e4

γ = 0 γ = 1e2 γ = 1e4

Fig. 11 Relaxation of the flat-degenerate Q-tensor field (6.15), with director ey pointing upwards, for
different values of the parameter γ in (6.19) that penalizes non-conformity; γ = 0 corresponds to Fig. 10.All
snapshots are taken for the time t = 0.023, which is far from the final steady state. Small-to-moderate values
of γ give rise to intermediate non-conforming Q-tensor fields. Top: maximal eigenvalue and corresponding
eigenvector. Bottom: non-conformity parameter r�[Q] defined in (5.9). Note that, for γ = 1e4, at each
point of the sphere one of the eigenvectors is almost exactly normal. What is shown on the figure is the
eigenvector with the largest eigenvalue so a discontinuity may appear where two eigenvalues are equal and
are largest

alreadydiscussed in (5.10). Therefore, the limitγ → ∞ imposes the strong conformity
condition Qn = λn because (6.19) is minimized if Qn is normal.

We now repeat the preceding simulation of the augmented system (4.21)–(6.18)
but this time adding Epen[Q] + Enorm[Q] to the Landau–deGennes energy (4.1). We
choose

γ = 0, γ = 100, γ = 10000

in (6.19) and display in Fig. 11 (top) the maximal eigenvalue and corresponding eigen-
vector of Q at the fixed time t = 0.023 far from equilibrium. We also report the
non-conformity parameter r�[Q] defined in (5.9) in Fig. 11 (bottom). The parameter
γ = 0 corresponds to the simulations in Fig. 10. As expected, large values of γ pro-
mote conformity of the Q-tensor for all times, while for small-to-moderate values of
γ intermediate states are non-conforming.

6.3.3 Enforcing Conforming and Flat-Degenerate Q-Tensor Dynamics

Inspired by dynamic simulations of a conforming and flat-degenerate Q-tensor on a
unit sphere from Nestler and Voigt (2022), we explore the predictions of our model
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t = 0.01 t = 0.1 t = 2

Fig. 12 Evolution toward a tetrahedral minimizer starting from a conforming, flat-degenerate Q-tensor field
(6.22) with defects in the X Z -plane (horizontal). The Q-tensor stays conforming and flat-degenerate for
all times via penalization (6.17) and (6.19). The maximal eigenvalue and corresponding eigenvector are
shown at times t = 0.01, 0.1, 2, along with green segments connecting the center of the unit sphere with
the vertices of a fixed regular tetrahedron. Two of the four +1/2-defects are visible and move toward their
final positions at the vertices of the tetrahedron. The angles between the green segments are in the range of
109 ± 3 degrees which is close to the angle of the regular tetrahedron. The vertical direction corresponds
to the Y -axis

and numerical approach in the same context. In fact, we show that enforcing the Q-
tensor dynamics to be conforming and flat-degenerate in the normal direction via
(6.17) and (6.19) leads to the so-called tetrahedral configuration. This minimizing
equilibrium configuration consists of four +1/2-defects located at the vertices of a
regular tetrahedron inscribed in the unit sphere, as depicted in Fig. 12.

We take the initial condition proposed in Nestler and Voigt (2022). It consists of
two tangent vector fields on the unit sphere � given by

qx = P(0, y, z)T

|P(0, y, z)T | , qz = P(x, y, 0)T

|P(x, y, 0)T | , (6.20)

which have +1-defects at (±1, 0, 0) and (0, 0,±1), respectively. Next a composite
vector field mxz on � is defined as follows,

mxz = qx , y ≥ 0 , mxz = qz, y < 0 , (6.21)

With the help of this composite vector field, we construct a conforming, flat-degenerate
Q-tensor,

Q0 = s+
(
mxz ⊗ mxz − 1

2
P
)

. (6.22)

The advantage of this initial configuration is that Q0 quickly transforms into a
planar configuration of four +1/2-defects located in the X Z -plane and resembling
tennis ball patches (Fig. 12 (left)). This planar configuration slowly evolves toward the
minimizing tetrahedral configuration depicted in Fig. 12 (right). In this simulation, we
set
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t = 0 t = 1 t = 4

Fig. 13 Stability of a homeotropic Q-tensor anchored to the unit sphere by γ = 10 in the Beris–Edwards
model. The order parameter of the initial condition minimizes the double-well potential. The competition
between the elastic energy and the double-well potential drives the configuration to a new homeotropic
state with a constant order parameter s close to 0.6 which is shown at the most right snapshot. The Q-tensor
stays conforming and uniaxial for all times. The vertical direction corresponds to the X axis

a = −10, b = 1, c = 10; M = 1, L = 0.1, ρ = 0.1, μ = 0.1;
α = 100, γ = 10000, δ = 0 .

The choice of penalization parameters α, γ, δ ensures that the Q-tensor stays conform-
ing and flat-degenerate in the normal direction for all times.

We observe from Fig. 12 that the final equilibrium configuration is still conforming
and flat-degenerate and it corresponds to the expected tetrahedral arrangement of four
+1/2-defects that maximizes the distance between defects (Nestler and Voigt 2022).
This shows the flexibility of our model to accommodate Q-tensor conformity via the
Hess–Osipov energy described in Sect. 5.3. However, this desirable consistency does
not mean that our model always reduces to that in Nestler and Voigt (2022) in the
limit α, γ → ∞without further structural assumptions on the molecular fieldH. This
crucial discovery is under current investigation.

6.4 Homeotropic State: Instability andWeak Anchoring of Q-Tensors

Although it should be clear that the general kinematics of Q-tensors introduced in
Sect. 3 is inconsistent with the conformity assumption, we would like to demonstrate
how this assumption affects the behavior of the Beris–Edwards model in a concrete
example which is of standalone interest. Consider an initial condition on a unit sphere
which is homeotropic (i.e., conforming and uniaxial with respect to the normal n):

Q = s+
(
n ⊗ n − 1

3
I
)

with the constant order parameter s+ from (5.5) that minimizes the double-well poten-
tial. The configuration is rotationally symmetric, and it is interesting to check if it is
a stable one.

Assume the Q-tensor has to stay conforming for all times. Since the elastic energy
of such radial configuration is nonzero, the elastic part of Landau–deGennes energy
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t = 5 t = 10 t = 12

t = 16 t = 21 t = 23

Fig. 14 Instability of the initially homeotropic, radially symmetric Q-tensor Q0 in (6.23), with director
ey = (0, 1, 0) pointing upwards, weakly anchored to the unit sphere � via (6.19) with parameter γ = 0.1.
The initial conditionQ0 is the same as in Fig. 13 but γ ismuch smaller. Since the anchoring is not sufficiently
strong, the Q-tensor loses stability through non-conforming configurations, starting with the formation of
a biaxial ring, followed by the splitting of the +1 defect in the north pole by two +1/2 defects that repel
each other initially. They eventually coalesce to form the global minimizer—a uniaxial state, uniform in
R
3, with s = s+ as the order parameter. Top: maximal eigenvalue and corresponding eigenvector. Bottom:

biaxiality parameter β[Q] and velocity field u (scaled by 5)
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Fig. 15 Velocity fields (scaled by 5) for specific times t = 12 (left) and t = 21 (right) of the same experiment
as in Fig. 14. Coloring corresponds to the biaxiality parameter (5.3): Two dark spots with low biaxiality,
corresponding to Q-tensor defects, are surrounded by annuli with high biaxiality. The velocity fields for
splitting (left) and merging (right) of defects are similar but opposite. This saddle-like pattern of velocity
is consistent with the splitting and merging of defects for flat domains

can be minimized by either evolving the order parameter s from s+ to a smaller value
or even by generating a biaxial state which would break the radial symmetry. We
choose

a = −1, b = 1, c = 1; L = 1, M = 1, ρ = 0.1, μ = 0.1; γ = 10,

in the double-well potential (1.3), the Beris–Edwards system (4.21), and the anchoring
energy (6.19), respectively. The effect of (6.19) is to penalize the lack of conformity,
whence theQ-tensor field evolves according to thefirst scenario,which slightly reduces
the order parameter while keeping the Q-tensor radially symmetric and homeotropic
provided γ is large. In fact, for γ → ∞ we expect a strong imposition of conformity.
Figure13documents this claim forγ = 10 and reveals that thefinal radially symmetric,
conforming, homeotropic Q-tensor configuration is stable for moderate values of γ .

To trigger the onset of instability, we perturb the initial director as follows

Q̃0 = s+
(
ñ ⊗ ñ − 1

3
I
)

, ñ = n + 0.2(1, 0, 0)

|n + 0.2(1, 0, 0)| , (6.23)

and examine the full surface Beris–Edwards model (4.21) augmented with (6.19) via
the small parameter value γ = 0.1. The numerical results, displayed in Fig. 14, reveal
that the initial configurationQ0 loses stability because theweak anchoring provided by
γ is not strong enough. The ensuing dynamics is quite rich: The instability manifests
first via the formation of a biaxial ring with +1 defect in the north pole (t = 10),
which splits into two +1/2 defects (t = 12). The nature of these defects is apparent
in the display of the Q-tensor in the first row. These defects initially repel from each
other (t = 16), but later they coalesce (t = 21 and t = 23). Figure15 displays the
velocity fields for these extreme stages of splitting and merging: They are similar but
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point in opposite directions and resemble saddle-like patterns already documented in
flat cases. The final Q-tensor state is uniaxial uniform in R

3, and close to the global
minimizer Q = s+

(
ey ⊗ ey − 1

3 I
)
of the double-well potential with ey = (0, 1, 0)

pointing vertically in Fig. 14. The final orientation is affected by the perturbation (6.23)
of the initial condition.

This experiment indicates that the stability and evolution of simple Q-tensor config-
urations depend on the penalization parameter γ which controls the anchoring energy
Epen[Q]. It is thus conceivable that the actual size of γ coming frommaterials science
applications might not be sufficiently large to enforce the conformity assumption.

7 Conclusions

This paper derives and explores a novel model of liquid crystal films with general
orientational order. For a given smooth, stationary and closed surface �, the main
contributions are:

• Non-conforming Q-tensors: We develop a new notion of Q-tensor kinematics on
surfaces, which hinges in Assumption 1. We introduce the surface corotational
derivative of Q-tensors (3.13) to transport a generically oriented Q-tensor field.
This allows for transport of Q-tensors such that the unit normal vector n to � is
not an eigenvector (non-conformity). In this vein, Assumption 2 dictates how the
eigenframe of a conforming Q-tensor is transported.

• Energy law:We invoke the generalizedOnsager principle to derive amodel with an
energy structure that mimics the Beris–Edwardsmodel inR

3.We imposeAssump-
tion 3 to define the structure of the evolution laws. The derivation employs extrinsic
calculus in R

3, thereby avoiding surface parametrizations and making finite ele-
ment discretizations in R

3 readily available. The surface model contains three
distinct forces: the Leslie force � and Ericksen force fE , which already exist in
flat domains, as well as the new star force f∗ which is responsible for thermody-
namics consistency for non-conforming Q-tensors.

• Simulations: We conduct a systematic computational study of the surface Beris–
Edwardsmodel to unravel the role of several forces andmechanisms. This includes

– experiments with the “dry” surface Landau–deGennes (gradient flow dynam-
ics without linear momentum) to examine the novel Q-tensor kinematics;

– experiments that illustrate the role of the three forces �, fE and f∗ and their
profiles for a Q-tensor configuration with a degree +1 defect;

– experiments of the dynamics connecting two conforming states which undergo
more energetically favorable non-conforming intermediate states;

– conforming dynamics of four + 1
2 defects enforced via penalization that lead

to a regular tetrahedral structure consistent with Nestler and Voigt (2022).
– simulations of the instability of a radially symmetric, homeotropic Q-tensor
on a unit sphere due to insufficient anchoring, which showcases the effect of
non-conformity.
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The relaxation of the conformity assumption, via a thermodynamically consistent
model, and computational exploration of its consequences are the main novelties
of our work.
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Appendix A: General Notation

In this appendix, preliminary definitions and notations are clearly presented for the
ease of further reading.We adopt thematrix notationwhere a vector x is represented by
the column of its components x j = (x) j in the standard basis e j of R

n , j ∈ {1, ..., n}.
A linear operator A is represented by the n × n matrix Ai j = (A j )i where the vector
A j = Ae j is the image of e j under A. The gradient of a scalar function f is a column
of partial derivatives, (∇ f ) j = ∂ j f . The matrix of the gradient of a vector field u
consists of rows of transposed gradients of the field components, (∇u)i j = ∂ jui . We
denote ∂kA the matrix (vector) of k-th partial derivatives of a matrix (vector)A applied
component-wise.

We will often use dyads. The dyadic or tensor product of two vectors, u ⊗ v, is a
linear operator with thematrix representationuvT , while the inner productu·v denotes
the scalar uT v. A linear operator A may be represented by dyads involving either its
column vectors,

∑n
j=1A j ⊗ e j , or its row vectors,

∑n
j=1 e j ⊗ (AT ) j . Higher-order

tensor products can be derived from the associativity of u ⊗ v ⊗ q, e.g., (A ⊗ u)v =
(u · v)A and (u ⊗ A)v = u ⊗ (Av).

The standard gradient operator in R
n for a scalar field f , a vector field u, and a

matrix field A is defined in the language of vector algebra as follows (Jankuhn et al.
2018)

∇ f =
n∑
j=1

e j∂ j f , ∇u =
n∑
j=1

∂ ju ⊗ e j =
n∑
j=1

e j ⊗ ∇u j ,

∇A =
n∑
j=1

∂ jA ⊗ e j =
n∑
j=1

e j ⊗ ∇(AT ) j

(A.1)

The associated directional derivative in R
n along a vector v is given by
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(∇T f )v =
n∑
j=1

v j∂ j f , (∇u)v =
n∑
j=1

v j∂ ju =
n∑
j=1

(∇u j · v)e j ,

(∇A)v =
n∑
j=1

v j∂ jA =
n∑
j=1

(∇A j )v ⊗ e j

(A.2)

Here and later, ∇T f is a short notation for (∇ f )T . We define the pointwise inner
product of two matrices A and C as well as their gradients

A : C =
n∑
j=1

A j · C j =
n∑

i, j=1

Ai jCi j , ∇A
... ∇C =

n∑
j=1

∂ jA : ∂ jC =
n∑
j=1

∇A j : ∇C j

(A.3)

The inner product of tensor fields on � ⊂ R
n is defined as follows:

( f , g)� =
∫

�

f g , (u, v)� =
∫

�

u · v , (A,C)� =
∫

�

A : C

The divergence operator is given by

div u = tr(∇u) , divA =
n∑
j=1

e j div (AT ) j , div (∇A) =
n∑
j=1

e j ⊗ div∇(AT ) j

(A.4)

and we want to stress that the vector divergence is applied to rows of a matrix, and the
divergence of the gradient of a matrix is defined accordingly.

The followingproposition summarizes some straightforwarduseful identitieswhich
are consistent with the adopted notation.

Proposition A.1 (product rules)For any scalar field f , vector fields u, v,q, andmatrix
field A, we have

∇( f u) = f ∇u + u ⊗ ∇ f , ∇(u · v) = (∇Tu)v + (∇T v)u,

∇( fA) = f ∇A + A ⊗ ∇ f , ∇(Av) =
n∑

i=1

vi∇Ai + A∇v,

∇(u ⊗ q)v = (∇u)v ⊗ q + u ⊗ (∇q)v , div ( f u) = f div u + u · ∇ f ,

div (u ⊗ v) = (div v)u + (∇u)v , div ( fA) = f divA + A∇ f ,

div (ATu) = divA · u + A : ∇u, div (u ⊗ A) = u ⊗ divA + (∇u)AT .

Again,∇Tu is a short notation for (∇u)T . The following proposition summarizes some
integration by parts rules which are consistent with the adopted notation.
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Proposition A.2 (integration by parts)For any scalar field f , vector field u, andmatrix
field A defined on a open domain � ⊂ R

n with boundary ∂� and outer unit normal
n, we have

(div u, f )� = ( f u,n)∂� − (u,∇ f )� , (divA,u)� = (ATu,n)∂� − (A,∇u)�.

B: Integration by Parts and Tangential Decomposition of Tensors On
Surfaces

In this appendix, we present some results concerning the external and covariant tensor
derivatives used in this paper. More specifically, we derive formulas that show the
connection between the integration by parts on surfaces and tangential decomposition
of tensors. Note that throughout the paper the integrals are taken component-wise,
with respect to the ambient space R

3.

Lemma B.1 (Gauss–Weingarten) Given a vector field u such that u(x) ·n(x) = const,
for all x ∈ �δ , the covariant and external derivatives are related by the shape operator
as follows:

∇Mu = ∇�u − n ⊗ Bu , x ∈ �δ . (B.1)

Proof For all j ∈ [1, n], we compute

0 = ∂ j (u · n) = ∂ ju · n + u · ∂ jn = (∇u) j · n + u · (∇n) j , ∀x ∈ �δ

which, due to the symmetry of B = ∇n = BT , implies

(∇Tu)n + Bu = 0 , x ∈ �δ (B.2)

From the definitions and the property B = PB = BP, we deduce

∇Mu − ∇�u = (I − P)∇Mu = N∇uP = nnT∇uP = n ⊗ (P(∇Tu)n) = −n ⊗ PBu .

This concludes the proof. 
�
The following corollary of Lemma B.1 is used in the development of the surface

model of liquid crystal flows.

Corollary B.2 (relation between spin tensors) For tangent vector fields, uN = 0, the
covariant and external spin tensors in (2.12) and (2.5) are related through

WM (u) = W�(u) + 1

2
(Bu ⊗ n − n ⊗ Bu). (B.3)
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B.1 Vector Fields

We decompose a vector field u on �δ into the tangent component uT and the normal
component uNn as follows:

u = uT + uNn , uT = Pu , uNn = Nu . (B.4)

Lemma B.3 (covariant divergence) For a vector field u = uT + uNn on �δ , we have

div�u = div�uT + uN trB .

Proof Using the definition (2.10), LemmaA.1, the cyclic property of traces, andPN =
0, we compute

div �u = div �(Pu + Nu) = div �(Pu) + tr(∇�(Nu)) = div �uT + tr(P∇(Nu)P)

= div �uT + trB(u · n)

where the last step is due to the following identity

P∇(Nu) =
n∑

i=1

uiP∇Ni + PN∇u =
n∑

i=1

uiP∇(nin) =
n∑

i=1

uiP(ni∇n + n ⊗ ∇ni )

=
n∑

i=1

uiP(ni∇n) = (u · n)B .

This gives the assertion. 
�
Lemma B.4 (normal flux) For a normally extended vector field u = ue, we have

lim
δ→0

1

2δ

(∫
�+

δ

u · n −
∫

�−
δ

u · n
)

=
∫

�

(trB)u · n .

Proof First consider a normally extended scalar f :

lim
δ→0

1

2δ

(∫
�+

δ

f e −
∫

�−
δ

f e
)

= d

dδ

(∫
�δ

f e
)

|δ=0 = d

dδ

(∫
�

det(1 + δBδ) f
e
)

|δ=0

=
(∫

�

d

dδ
det(1 + δBδ) f

e
)

|δ=0 =
∫

�

(trB) f .

The proof concludes by applying this formula to products uei ni of components of
a vector field ue and the normal n, and summation over i . 
�
Lemma B.5 (covariant integration by parts) For a vector field u and a scalar field f
on �δ , the integration by parts over a closed surface � reads

( div�u, f )� = (tr(B) f u,n)� − (u,∇� f )� .
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Proof Since div�u depends only on the values of u on �, we first restrict u to � and
then extend it normally obtaining ue. We use Lemmas A.4 and B.4 and take the limit
δ → 0 in

lim
δ→0

1

2δ
(div ue, f e)�δ

= lim
δ→0

1

2δ

(
( f eue,n)

�+
δ

− ( f eue, n)
�−

δ

)
− lim

δ→0

1

2δ
(ue, ∇ f e)�δ

to obtain

( div�u, f )� = −(u,∇� f )� + ( f (trB)u,n)�

because div�u = divMu = div ue and ∇� f = ∇M f = ∇ f e. 
�
In view of (2.9) and (2.11), Lemma B.5 extends to tangential derivatives.

B.2 Matrix Fields

We introduce a tangential decomposition of matrices. For an arbitrary matrix A, we
compute

PAP = (I − N)A(I − N) = A − PAN − NAP − NAN

which suggests the following tangential decomposition

A = A� + AN + AN� , A� = PAP , AN = NAN , AN� = NAP + PAN
(B.5)

Lemma B.6 (matrix decomposition) For a matrix fieldA on�δ , the vector field div�A
has the following tangential and normal components:

P div�A = P div�A� + tr(B)PAn + BAT n , N div�A = N div�A� + div�(AT n)n.

Proof In view of (2.8) and (2.10), we deduce div�A = div�(A� +AN+NA−NAN)

and treat each term separately. By definition (2.10), Lemma A.1, and the identity
div�( f n) = f div�n, we obtain

( div�(AN)) j = div�(NAT ) j = div�N(AT ) j

= div�(n · (AT ) j )n = (n · (AT ) j ) div�n = tr(B)(An) j

and ( div�(NAN)) j = tr(B)(NAn) j . We use the identity div�( f u) = f div�u + u ·
∇� f in

( div�(NA)) j = div�(ATN) j = div�n j (ATn) = n j div�(ATn) + ATn · ∇�n j ,

= div�(ATn)n j + ATn · B j = div�(ATn)n j + (BATn) j
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and put together all the components as follows

div�A = div�A� + tr(B)An + div�(ATn)n + BATn − tr(B)NAn

= div�A� + div�(ATn)n + tr(B)PAn + BATn .

The claim follows due to B = PB. 
�

Lemma B.7 (covariant integration by parts) For a vector u and a matrix A on �δ , we
have

( div�A,u)� = −(A,∇Mu)� + ((trB)An,u)�

Proof Since div�A depends only on the values of A on �, we first restrict A and u
to � and then extend them normally obtaining Ae and ue. We use Proposition A.2 to
obtain

(divAe,ue)�δ = −(Ae,∇ue)�δ + (ATue,n)�+
δ

− (ATue,n)�−
δ

We take the limits δ → 0:

lim
δ→0

1

2δ

(
divAe,ue

)
�δ

= (
divAe,u

)
�

, lim
δ→0

1

2δ
(Ae,∇ue)�δ = (A,∇ue)�

lim
δ→0

1

2δ

(
(ATue,n)�+

δ
− (ATue,n)�−

δ

)
= ((trB)ATu,n)� = ((trB)An,u)�

and conclude the proof by noticing divAe = divMA = div�A and ∇ue = ∇Mu �=
∇�u. 
�

Remark B.8 We point that for both vectors and matrices the decompositions in Lemma
B.3 and B.6 contain terms that have counterparts in Lemma B.5 and B.7. This fact is
used in the derivation of the model in Sect. 4.

Corollary B.9 (external integration by parts) For matrix fields A,C on �δ , we have

( divM∇MA,C)� = −(∇MA,∇MC)� .
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Proof The assertion follows from Lemma B.7 and (∇MAT )n = 0. In fact, we have

( divM∇MA,C)� =
( n∑

j=1

e j ⊗ divM∇M (AT ) j ,

n∑
j=1

e j ⊗ (CT ) j

)
�

=
n∑
j=1

( divM∇M (AT ) j , (CT ) j )�

= −
n∑
j=1

(∇M (AT ) j ,∇M (CT ) j )� + ((trB)(∇M (AT ) j )n,u)�

= −
n∑
j=1

(∇M (AT ) j ,∇M (CT ) j )�

= −
( n∑

j=1

e j ⊗ ∇M (AT ) j ,

n∑
j=1

e j ⊗ ∇M (CT ) j

)
�

= −(∇MA,∇MC)�.

This concludes the proof. 
�
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