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Abstract

We develop a Q-tensor model of nematic liquid crystals occupying a stationary surface
which represents a fluidic material film in space. In addition to the evolution due to
Landau—de Gennes energy, the model includes a tangent viscous incompressible flow
along the surface. A thermodynamically consistent coupling of a two-dimensional flow
and a three-dimensional Q-tensor dynamics is derived from the generalized Onsager
principle following the Beris—Edwards system known in the flat case. The main novelty
of the model is that it allows for a flow of an arbitrarily oriented liquid crystal so the
Q-tensor is not anchored to the tangent plane of the surface and also obeys an energy
law. Several numerical experiments explore kinematical and dynamical properties of
the novel model.
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1 Introduction

Modeling of materials with orientational order is a challenging task. There is a vari-
ety of approaches including particle theories as well as continuum director field and
Q-tensor theories which may be customized by specifying the energy landscape to
accommodate different types of phase transitions.

In this paper, we focus on the Q-tensor approach (Borthagaray and Walker 2021;
Mottram and Newton 2014). The main idea is to characterize the nematic liquid crystal
state by averaging the probability density p,, at a point p over the unit sphere S which
is the statistical distribution of the orientations of liquid crystal molecules at p. More

@ Springer



Journal of Nonlinear Science (2024) 34:5 Page3of63 5

specifically, a Q-tensor at p is a symmetric, traceless matrix

1
Q=f Pp(s)s @sds — =1
S2 3

defined as the difference between the second moments (the first moments are trivial
due to the so-called tail-to-head symmetry) and the isotropic state %I. The physically
relevant information derived from a Q-tensor simulation is the eigenframe of the matrix

Q=21(q1 ®q1) + 22092 ® q2) + 23(q3 ® q3) (L.1)

with the most significant orientations q; and corresponding eigenvalues A;. Then, the
Landau—de Gennes energy of a liquid crystal occupying a domain €2 combines the
elastic energy with a material constant L > 0 and the double-well potential F[Q]
with material constants ¢ > 0, a, b:

L
ELdG[Q]=/QE|VQ|2+/QF[Q], (12)
b
FIQ] = §|Q|2 —2Q:Q)+ §|Q|4, (1.3)

where the so-called one-constant approximation (Borthagaray and Walker 2021; De
Gennes and Prost 1993; Sonnet and Virga 2012) is considered for simplicity. At
the same time, Onsager reciprocity principle (Onsager 1931a,b) suggests that space
variations of the orientational order should be matched with a macroscopic flux of
momentum (Yang et al. 2016) to have an energy law provided by thermodynamics.
The coupling of the Q-tensor dynamics with the transport of the momentum is a
delicate matter due to possible non-conservative behavior of the total energy of the
system. A well-known thermodynamically consistent model is the Beris—Edwards sys-
tem (Beris and Edwards 1994; Zarnescu 2012) in which the transport of the Q-tensor
exerts Ericksen stress ¥ = QH — HQ and Leslie force H : VQ to the momentum
flow. Here, the molecular field H is the traceless and symmetric variation of E7 46[Q]
with respect to Q.

A surface Beris—Edwards model would help in understanding the dynamics of
thin nematic liquid crystals shells. Thin nematic liquid crystal shells are potential
candidates for self-assembling colloids due to the configuration of defects in a thin
LC shell (Nelson 2002), which can be tuned by varying the thickness of the LC shell
(Lopez-Leon et al. 2011).

The analytical properties of the Beris—Edwards system for flat domains in R? and
R has been studied extensively. A non-exhaustive list of references include works
on existence of weak solutions in R?, R? (Paicu and Zarnescu 2012), weak—strong
uniqueness and higher regularity in R? (Paicu and Zarnescu 2012), short time exis-
tence for strong solutions in bounded domains (Abels et al. 2015), existence of weak
solutions and short time well-posedness with mixed boundary conditions (Abels et al.
2014), and physical eigenvalue preservation of the Q-tensor in the corotational Beris—
Edwards system (Hao et al. 2019). To the best of our knowledge, many of these
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questions of existence, possible uniqueness, regularity, and eigenvalue preservation
remain open for hydrodynamical models of liquid crystals on curved surfaces.

Regarding numerical methods for the Landau—de Gennes dynamics and for the
Beris—Edwards model for flat domains, we refer to Zhao et al. (2017), Cai et al.
(2017), Gudibanda et al. (2020) and references therein. In addition, we refer to Sonnet
and Virga (2012) for modeling of dissipative ordered fluids.

We aim to extend the Beris—Edwards model to stationary curved surfaces. For an
example of a situation in which the model is relevant, one may think of a liquid crystal
material confined between two parallel surfaces which may be far enough apart to
fit normally oriented rod-like particles but are sufficiently close so Q-tensor states
are constant along the thickness. Yet tangent distortions of the orientational order
generate a tangent macroscopic flow of matter. The main challenge is thus to establish
a thermodynamically consistent energy law for a curved surface while still having a
generically oriented Q-tensor.

We start with a discussion of situations where a generically oriented Q-tensor
description of a liquid crystal may be desirable. In the case of long bulk cylinders
with homeotropic anchoring on the cylinder wall, experiments show that the liquid
crystal may experience what is called an escape to the third dimension (Crawford
et al. 1991; Meyer 1973; Williams et al. 1972). This behavior has also been shown
theoretically using director field models (Meyer 1973). For flat 2D disks, escape to
the third dimension has also been observed to be energetically favorable for Q-tensor
models due to the complex Landau—de Gennes energy landscape (Ignat et al. 2016,
2020). We point to Yucheng et al. (2016) for a numerical exploration of this landscape.
Moreover, in thin flat domains where tangential anchoring is present on the top and
bottom boundary, numerical experiments suggest that the liquid crystal orientation
may not stay planar (Chiccoli et al. 2002). For thin shells with varying thickness and
a bead inside, the numerics in Gharbi et al. (2013) provide a plausible explanation
of experiments of a metastable configuration with an escape to the third dimension
near defects. Numerical experiments of three-dimensional LC shells show the escape
to the third dimension near defects when the shell increases in thickness (Bates et al.
2010; Koning et al. 2013). Additionally, Koning et al. (2016) provides a plausible
explanation of the presence of two +1/2 defects and one +1 defect in experiments
(Lopez-Leon et al. 2011): the 41 defect is composed of two boojums on the confin-
ing surfaces and escape to the third dimension occurs in the thickness of the shell.
We finally point to the experiments in Murray et al. (2017) where escape to the third
dimension is observed near topological defects in a thin LC cell. This escape to the
third dimension depends on the strength of surface anchoring. All these situations do
not involve coupling with a fluid, but do suggest that a generically oriented Q-tensor
description may be warranted.

Existing models of liquid crystals films differ from each other in the assumed
structure of the Q-tensor eigenframe and its relation to the tangent plane of the surface.
For example, in the thin-film models of Kralj et al. (2011), Napoli and Vergori (2012)
the Q-tensor is assumed to be conforming and flat-degenerate with zero eigenvalue
in the normal direction. We define these concepts as follows for a general Q-tensor
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Q € R¥3 on a surface I':

Q is called conforming to T" at a point x € T if one of the eigenvectors equals
the unit normal vector n(x) to I'; (1.4)

Q is called flat-degenerate at a point x € U if one of the eigenvalues is zero(1.5)

Physically a conforming and flat-degenerate Q-tensor with zero eigenvalue in the
normal eigendirection corresponds to the case of liquid crystal molecules being located
strictly in the tangent plane essentially forming a two-dimensional liquid crystal state in
each tangent plane. The assumption that the Q-tensor is conforming and flat-degenerate
at each point requires the presence of an ad-hoc large interface force, e.g., a reaction
force from rigid walls surrounding the thin film from one or both sides, which dom-
inates all the other forces because otherwise the Q-tensor field would evolve to a
uniform, uniaxial state in R? violating the conformity assumption.

The conformity assumption reduces the number of independent coefficients for a
general traceless, symmetric Q-tensor (Nestler et al. 2020). In the conforming case,
when one eigenvector is normal to the surface, the tangent orientational order of
the liquid crystal state is described by a tangent director field and a scalar order
parameter. The normal orientational order, i.e., the eigenvalue corresponding to the
normal eigenvector, is described by a scalar field which often (e.g., Nitschke et al.
2019) has a prescribed constant value; see (Nestler et al. 2020) for a general discussion
of conforming models. Thus, the conformity assumption facilitates the reduction of
the number of Q-tensor unknowns from 5 to 3. The expression of the elastic energy
|[VQ|? from (1.2) in terms of a tangent director field contains several geometric terms
which complicate the numerical implementation. Note that strategies for dimension
reduction of the Landau—de Gennes energy other than Nestler et al. (2020) are possible,
e.g., Novack (2018).

In addition to conformity, the assumption of flat-degeneracy in the normal eigendi-
rection further reduces the number of independent variables of the Q-tensor field by
1 - from 3 to 2. It should be noted that such flat-degenerate Q-tensor fields are biaxial
from the perspective of R, while the minimizers of a double-well potential have to be
uniaxial; see Definition 5.2. Consequently, the assumption of flat-degeneracy means
that there exists a force with a special structure to prevent the evolution of a Q-tensor
toward a uniaxial state.

Besides (Kralj et al. 2011) and (Napoli and Vergori 2012), where conformity and
flat-degeneracy in the normal eigendirection are assumed, other models of liquid crys-
tal films may relax some of these assumption but not entirely. In Nitschke et al. (2018),
the eigenvalues of a Q-tensor may be general but the eigenframe is assumed to be
conforming to the surface. The normal eigenvalue and the tangent-order parameter
undergo interrelated L2 gradient flows which are formulated in the language of local
tensor calculus. In Golovaty et al. (2017), the Q-tensor does not have to be conforming
but no evolution laws are discussed. The bulk Landau—de Gennes energy of a thick film
is combined in Golovaty et al. (2017) with an anchoring energy of the film interfaces,
and the minimizers of the resulting landscape are studied via I"-convergence.
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The aforementioned references involve liquid crystal models with no hydrody-
namical properties. To the best of the authors’ knowledge, the only paper in which a
coupling of a Q-tensor and linear momentum is considered for curved liquid crystal
films is Nestler and Voigt (2022). In such a paper, the Q-tensor is assumed to be con-
forming but the evolution laws are not shown to have an energy structure. An important
conclusion of the present paper is the requirement of thermodynamical consistency,
namely the existence of a proper energy law, and strongly ties the kinematics and the
dynamics of curved liquid crystal films. Nevertheless, it is physically reasonable that
there are regimes for which the anchoring of Q-tensors can be justified if it is posed
weakly with an energy term that penalizes the non-conformity.

We also note that the model derived in this paper reduces to surface Navier—Stokes
equations when Q = 0. There has been extensive work on surface Navier—Stokes for
modeling and numerics. We point to Arroyo and DeSimone (2009), Reuther and Voigt
(2015), Koba et al. (2017), Jankuhn et al. (2018), Mietke et al. (2019) for works on
modeling and Reuther and Voigt (2015), Nitschke et al. (2012), Fries (2018), Fries
(2018), Reuther et al. (2020), Brandner et al. (2022), Pearce et al. (2019) for works on
numerics of surface fluid flows.

The goal of this paper is threefold. The first one is to derive a surface model of
the liquid crystal flow where the orientational order is not anchored to the surface or,
in other words, the Q-tensor is not conforming to the surface. This model is derived
via the generalized Onsager principle mainly following (Sonnet and Virga 2012; Yang
etal. 2016), [62] and a private communication with Qi Wang. A similar approach called
Lagrange—Rayleigh principle has been applied to Ericksen—Leslie theory involving a
director field tangent to the film (Napoli and Vergori 2016). The formalism of Onsager
is quite general, and it does not involve any assumptions on the relation between the
dimensions of the model and its environment, and, hence, is suitable for the modeling
of embedded surfaces. So, the applicability of the generalized Onsager principle as
a guiding physical principle of thin-film modeling is assumed in this paper. We refer
to Doi (2011) for the principle’s thermodynamical premises and to Doi (2015), Wang
etal. (2021) for further details of its application to the particular physical systems. The
second goal is to use the language of differential geometry in Cartesian coordinates
instead of the language of differential geometry that refers to local parametric coordi-
nate systems (Nestler and Voigt 2022), thus simplifying implementation of the model
in standard computational packages. The application of this approach to Q-tensors on
surfaces appears to be new. The third goal is to explore computationally the action of
three forces, one new to our surface model, and the consequences of non-conformity
for the dynamics of Q-tensors on surfaces.

The outline of the paper is as follows. In Sect. 2, following (Jankuhn et al. 2018), we
give the preliminaries of tangential calculus and introduce two tensor derivatives on
a surface I': The external surface derivative (2.1) and the covariant surface derivative
(2.9) - both will be used in our surface model; in Appendices A and B we provide
further discussion and proofs. Section 3 is devoted to the development of the kinemat-
ical properties of the surface Beris—Edwards system. We introduce the new notion of
passive transport of generically oriented Q-tensors along a surface flow; see Definition
3.7. This novel concept is based on Assumption 2 which possesses a clear physical
meaning. In Sect. 4, we apply systematically the generalized Onsager principle (Wang
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2021) to derive a thermodynamically consistent surface Beris—Edwards model based
on the kinematical properties defined in Sect. 3 and establish the underlying energy law.
In Sect. 5, we discuss the biaxiality parameter 8[Q] and the non-conformity param-
eter rr[Q] and study their properties. We conclude in Sect. 6 with several numerical
simulations of the surface Beris—Edwards model derived in Sect. 4 to demonstrate its
basic properties and investigate the action of the three induced forces and role of non-
conformity. We do observe non-conforming dynamics connecting conforming states
in Sect.6.3.1. The parameters S[Q] and rr[Q] are crucial to describe the numerical
experiments.

2 Preliminaries in Tangential Calculus

In this section, the surface and all the fields are assumed to be sufficiently smooth.
Although we are concerned with a surface model, we intentionally work with tensor
fields in R", the ambient space to the surface, to avoid the less practical parametric
approach. This section summarizes and clarifies two types of surface derivatives of
tensors of order up to two, see, e.g., Jankuhn et al. (2018), Nestler et al. (2019), which
are both relevant to the surface Beris—Edwards model to be derived in this paper. Some
preliminary notations are given in Appendix A. Integration by parts for the two types
of derivatives is discussed in Appendix B.

2.1 External surface Derivatives

Here, we introduce some standard operators of calculus on embedded surfaces. Intu-
itively, these operators replicate standard Cartesian operators with an assumption that
their tensor arguments are extended from the surface constantly along the normal
direction. Although the concept is certainly not novel, in this paper we will call such
operators external to highlight the difference from similar operators which are based
on the covariant derivative, see Sect.2.2.

Consider a closed surface I' C R” defined as the zero level set of its distance
function d € C%(S2s) where Q5 = {x € R" : |d(x)| < 8} is a tubular neighborhood
of I" of thickness § > 0. The boundary 025 consists of two parallel surfaces, F; =
{xeR":dx)=6land 'y, = {x € R" : d(x) = —§}. By means of the unit vector
field n = Vd € C'(5)", which is orthogonal to level sets of d(x), we define the
projectors N and P onto the normal and tangent subspaces to such level sets as well
as the shape operator B (or Weingarten map) to be

N=n®neC'(Q)"™", P=I—-n®neC (Qs)"",
B=Vne C(Q)"™", xeQy

where I is the identity operator.
Consider a tensor (scalar, vector, matrix) field T on Q5. The so-called external
derivative VT (see Definition 2.1) guarantees that
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(VuT)v=(VT)Pvy, VveR"  xeQs.

Essentially, this condition prescribes a non-standard Cartesian derivative in 25 which
disregards variations of the tensor field in the normal direction: If v = Pv, then V
and V), coincide. We stress that the external derivative VT evaluated on I" depends
only on the values of T on I'. The latter is straightforward for scalar tensor fields and,
therefore, holds for the external derivatives of a vector and a matrix fields as well since
they are based on the external derivatives of scalar components.

Definition 2.1 (external derivative) For a scalar field f, a vector field u, and a matrix
field A on s, the external surface derivative is given by

Vuf =PVf=Y (Pe)i;f.

Jj=1

n n
VMu:(vu)P:ZSju@)Pej=Zej®VMuj, 2.1
=1 j=1

n n
VMAzzaiA‘X’Pe.i ZZ‘?/’@VM(AT),/, X € Qs.
j=1 j=1

Therefore, the external surface directional derivative along a vector field v is then
given by

(Vi )v=N"fIPv=>"v-(Pe;)d; [,
j=1

(Vv = (Vu)Py =) "(v-Pej)dju =Y (Vyu; - vej, 2.2)
j=1 j=1

n n
(ViAWY =Y (v-Pej)djA =Y (VyAj)vee;.
j=1 j=1

Note that V,@ f is a short notation for (Vs ). We note that the surface directional
derivative (Vjsu)v of a vector field u may have nonzero normal components.

Remark 2.2 (normal extension) Consider a tensor field T with values on I" only. The
normal extension T¢ on €2 is defined by

T¢(x) := T(x — d(x)n(x)), X € Qs;

thus, n® = n. A key property of the normally extended tensor fields is the vanishing
of the derivative in the normal direction which can be expressed via (A.2) as:

(VT?(x))n(x) =0, x € Q5. 2.3)
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Consequently, the external derivative of the normal extensions T satisfies
(VuT)v=(VT)Pv=(VT)vy VveR", «xeTl, 2.4)

whence for a normally extended tensor field the directional derivatives due to V and
Vu coincide for any v (not just for v = Pv). Note that 2.4 could be seen as a way to
compute VT on I': Given a field on €23, restrict its values to I', extend it normally
to 25 and find its Cartesian gradient.

The surface divergence operator is defined in the same spirit: For normally extended
tensors, the result corresponds to the Cartesian divergence (A.4):

n
divyu = tr(Vyu),  divyA = Zej divy (AT);,
j=1

n
divy VA =) e; ® divy Vi (AT); .
j=1

Remark 2.3 (alternative definition of divergence) We note that the surface divergence
is the trace of the surface gradient. This definition coincides with those in differential
geometry and other works in finite element methods for surface PDEs. For instance,
we note that our definition of divy, is consistent with previous work on finite elements
for surface PDEs (Dziuk and Elliott 2007, Eq. (2.7)), and our definition of divr below
is consistent with the definition of surface divergence found in previous work on
modeling of elastic surfaces (Gurtin and Murdoch 1975, Eq. (2.8)). This definition of
surface divergence is not the L2-adjoint of V- for a vector field with nonzero normal
component as seen in Proposition B.5 (covariant integration by parts).

Definition 2.4 (external strain-rate and spin tensors) For a given velocity field von I,
we define the external strain-rate and external spin tensors, respectively, as follows:

1 1
Dy (v) = z(va +Viv), Wy = E(va —vliv). (2.5)

Again, VAT,IV is a short notation for (V;v)” . These rates correspond to symmetric and
antisymmetric parts of the Cartesian gradient of the vector field normally extended
from the surface I' to its neighborhood ;5. Using (A.3) and (2.2), we define the
contraction C : VA of a second-order tensor C and the surface gradient of a second-
order tensor A as a vector such that for all v.e R” we have

(C:VyA) - v=C: (VyA)V. 2.6)
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Since C : (VyA)v = Z'}:l(v -Pe;)C:0,A = (Z'}:l(c : 8jA)Pej) - v, we obtain

C: (VyA) = Z(c 1 9;A)Pe; (2.7
j=1

which shows that vector C : VA is tangent to I'.

2.2 Covariant Surface Derivatives

Here, we discuss covariant operators on the surface I', considered as an isometric
embedding of a C? Riemannian manifold, which are intrinsic in the sense that they
only depend on the Riemannian structure and the surface values of the argument if it
belongs to the tangent plane. Intuitively, the covariant derivative of a tangent object
measures the tangent part of the change of the object in a tangent direction.

For each xg € I, the subspace {x € R" : x — xg = P(x¢)(x — X)} is identified
with the tangent space of the manifold at xo. A linear operator A is called tangent if
the normal n is in its kernel and its range belongs to the tangent plane, or A = PAP.
Given a tangent vector v at Xg, consider a regular curve y : (a,b) — I, y(ty) = Xo,
to € (a, b) such that y'(¢9) = v. In the following, we assume that all tangent planes of
RR3 are identified with itself as usual so the addition of tensors from different points is
meaningful. The tangent component of the variation along the curve defines the action
of the covariant directional derivative:

1
(VEf o)V = lim —— (f(y (1)) = f (x0))
—to t — 1

1
r—1

(Vru(xp))v = P(xq) <[1er[10 (u(y (@) — u(Xo)))

1
(VrA(x0)v = P(x0) (tli_glo PR, Ay () — A(Xo))> P(x0)

which, by extending the tensor fields normally and applying (2.2), can be shown to be
equivalent to the following expressions for all x € T’

(VEfIv= (VL IV,  (Vrwv = P(Vyu)v

(VrA)V = P(Vy A)VP = Z(VFA]')V ® Pe;. 2:8)

j=1

Note that VFT f is a short notation for (Vr f )T, Finally, we give the definition of the
covariant surface derivative, which applies to fields that are not necessarily constant
along the normal direction:
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Definition 2.5 (covariant derivatives) For a scalar field f, a vector field u, and a matrix
field A on g, the covariant surface derivative is given by

Vrf=Vuf=) (Pei,f,
j=1

n n
Vru=PVyu=) Pjju®Pe; =) Pe;® Vyu,, (2.9
j=1 j=1

n
VrA =) P();A)P @ Pe;.
j=1

In fact, it can be shown (Jankuhn et al. 2018) that for points x € I" the covariant
derivatives (2.9) of tensors extended from I" are independent of the chosen extension.
The covariant divergence of a vector field u and a matrix field A is defined as:

. . . T . T . T r
divru = tr(Vru), divrA = (leI‘(A )1, divp(A”®);, divi(A )3) , X€Qs,
(2.10)

; namely, the divergence of A is computed by rows. However, because of the cyclic
property of traces we have

divru = tr(PVuP) = tr(VuP) = divyu, divrA = divy/A. (2.11)
Definition 2.6 (covariant strain-rate and spin tensors) For a given velocity field v on

I', we define the covariant strain-rate and covariant spin tensors, respectively, as
follows:

1 1
Dr(v) = 5 (Vrv+ viv), Wry) = 5 (Vrv = viv). (2.12)

These tensors correspond to symmetric and antisymmetric tangent parts of the instant
deformation of a tangent plane due to the flow v. Essentially, formulas in (2.12) as
well as the VI operator represent objects intrinsic to I' which one may compute using
the Riemannian structure only.

Finally, we note the relation of the external and covariant rates because of (2.1) and
(2.9):

Dr(v) =PDy (v)P, Wr(v) =PWy(v)P. (2.13)

3 Kinematics of Q-Tensors on Surfaces

In this section, we discuss kinematic properties of the model of surface flows of liquid
crystals developed in this paper. The kinematic properties are introduced by defining
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the dependence of the state variables, which are the momentum and the Q-tensor, on
the prescribed deformation of the domain, caused by a vector field v in the absence of
any forces. The resulting operators, if set equal to zero, are called passive transport
equations. For example, the passive transport of a scalar field f, e.g., the density, along
a tangent flow v on a surface I' is usually given by

f=af+OEHv=0f+ L Hv=0 (3.1)

which attaches scalar values to the flow v. Similarly, we will define a notion of surface
transport of the linear momentum and a notion of surface transport of generically
oriented Q-tensor fields based on the derivatives introduced in previous sections. While
the former is well-established in the literature (Jankuhn et al. 2018), the latter is
new. The definition of the Q-tensor passive transport will be motivated by kinematic
assumptions with a clear physical meaning: A tangent eigenvector is embedded into a
surface flow similar to the flat case in R?, and a normal eigenvector has to stay normal
along the flow.

3.1 Momentum Transport

We assume the density p is constant and often omitted it in this section for clarity.
To express the rate of change of the linear momentum field pu in the ambient space,
we need to use the Euclidean parallel transport equation (2.1) of a velocity field u
normally extended from I':

ou+ (Vyu)v =0,(ur +uyn) + (Vyur + unVym+nQ® Vyupy)v
= dur + (Vyrur)v +n@uy + (Viun)v) + uy (Vym)v
= [0rur + (Vrur)v] + N(Vyur)v + iyn + uyBv
= [d,ur + (Vrur)v] — (v - Bup)n + i yn 4+ uyByv,

(3.2)

where we split the velocity u into the normal and tangent components as in (B.4)
and used (B.2) and Proposition A.1. We consider films which are stationary in space,
whence the surface I' does not evolve in time and the velocity u = ur + uyn is
tangent to I, i.e., uy = 0. We express the transport of linear momentum by setting
v = ur in (3.2). What remains in (3.2) is the tangential material acceleration

orur + (Vruy)ur (3.3)

and the normal centripetal acceleration —uz - Bur. Since we require uy = 0, the
centripetal acceleration has to be balanced by the reaction forces which enforce the
constraint that the surface does not evolve. This suggests that the tangent part of the
rate of change, P(d,u + (Vyu)u) = d,ur + (Vrur)ur, should represent the passive
transport of momentum in a surface model. This idea is summarized in the following
assumption.
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Assumption 1 (kinematics of momentum) The passive transport of the linear momen-
tum field pu = pur along the velocity ur is the parallel transport (3.3), i.e.:

our + (Vrur)ur = 0.

Based on this kinematic assumption on how the momentum pu is transported in the
absence of any forces, we define the surface material derivative, which suits Assump-
tion 1, as follows:

Definition 3.1 The surface material derivative @ of a vector field u : I' — R3 along
a given tangent vector field v is a vector field with the following normal and tangent
components:

Nu =uyn, Pua=our+ (Vruy)v.

Remark 3.2 The passive transport t = 0 by the surface material derivative given in
Definition 3.1 has the following properties. The normal component u - n = uy of the
vector field u is transported by (3.1) as a scalar field. Consequently, if at the initial
moment of time the vector field u is tangent, then it remains tangent along the passive
flow by a vector field v. The tangent component ur = Pu satisfies the Riemannian
parallel transport equation d;ur + (Vrur)v = 0.

Finally, we would like to show that the passive transport of the velocity field along
itself has the property of preserving the kinetic energy and the linear momentum in
the ambient space R3. We start with a property of the convective term, which is well
known in flat domains.

Lemma 3.3 (vanishing of the convective term) Let ur, vy, Wt be tangent vector field
on a closed surface U. Then, trilinear convective form satisfies

((Vrvp)wr,ur)r + ((Vrup)wr, vr)r = —(vr - ur, divrwr)r.
and it vanishes provided divrwr = 0 and ur = vr, namely
((Vrup)wr,ur)r =0. (3.4)

Proof Using Lemma B.5 (covariant integration by parts) followed by (2.11) and Propo-
sition A.1 (product rules) for normally extended u,, v%., w%,, we deduce

0 = (divr((vr - ur)wr), 1) = ((v7 - ur) divywr +wr - Vyg(ur - vr), 1),
= ((vr -ur) divrwr +ur - (Vyvr)wr + vy - (Vyur)wr, 1)
Invoking (2.9), namely PVyu = Vru, and reordering yields the assertion. O

Corollary 3.4 (preservation of kinetic energy and linear momentum) Let uy be a tan-
gent and incompressible velocity field that is passively transported; namely, u satisfies
divrur = 0 and dsur + (Vrur)ur = 0, for sufficiently smooth initial condition on
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a closed surface . Then, the kinetic energy % fr ,ou% and the total linear momentum
[r- pur are preserved over time.

Proof Taking into account that density p is constant, we compute

d P 5
— —uy = p(our,u = —p((Vrup)ur,u =0,

ar ). 2'7T p(dur, ur)y p((Vrur)ur, ur).

according to (3.4). To treat the vector of total linear momentum, we consider its x-
component

d
o (/r pur -ex) = p(dur, €)= —p((Vrur)ur, e;)..

=—p(Vr(ur -e,),ur). =0

where used Lemma B.5 (covariant integration by parts) withu = ur and f = ur -e,
at the last step. Other components of ur are dealt with similarly. This completes the
proof. O

3.2 Q-Tensor Transport

Although many objective rates are available for modeling of Q-tensor flows even in
R3, we aim to choose one, the corotational derivative (3.5), and show how it should be
adapted for the case of a fixed surface I" resulting in Definition 3.7. Modeling flows
of liquid crystal material in R? often involves the following objective rates of change
(Sonnet and Virga 2012; Xiao et al. 1998)

(Vv —VTy) Vv—Vly vv-VTy
dq+ (Vq)v — — 4 Q+ (VQ)VvV+Q > - >

(3.5)

which are the corotational derivatives of a vector field q and of a matrix field Q along
the flow v. These corotational derivatives express the rate of change of tensors with
respect to the (Lagrangian) coordinate system embedded in the fluid, and sometimes
they should be chosen over the parallel Euclidean transport to model the physics
adequately. For example, one uses the parallel Euclidean transport d,u 4+ (Vu)v to
express the rate of change of the non-material momentum vector pu, while if one
works with the rate of change of the Q-tensor, which provides the statistical description
of the liquid crystal orientation, the objective rate (3.5) should be used. We refer to
Nitschke and Voigt (2022, Section 10) for discussion of different time derivatives for
vectors and Q-tensors on surfaces.

Remark 3.5 A zero corotational derivative (3.5) of a vector field q means that the vector
field is embedded in the flow v in the following kinematical sense (Sonnet and Virga
2012): It is transported parallelly in R3 by the flow v and, in addition, is rotated along
it by the spin tensor %(VV — VTv). To make this point concrete, we consider X(¢)
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to satisfy %X(t) = v(t, X(¢)). Computing the time derivative of q(¢) = q(¢, X(¢))
yields

_(Wv—VTly) (Vv — vTv)(1

d
—q=20 Vq)v =
24 q+ (VQ)v 5 q >

At the same time, a zero corotational derivative (3.5) of a Q-tensor field Q means that
its eigenframe is embedded in the flow v: The eigenvectors are transported and rotated
as vectors by (3.5) and the eigenvalues are transported as scalars by (3.1).

In this paper the flow v is two-dimensional and is tangent to a surface I', but the
Q-tensor is three-dimensional. This raises the question of what rate of change should
be utilized to model the passive motion of Q-tensors along the surface flow.

It is natural to try the following transport equation

MV — VAT,]V Vuv — VAT,IV

\%
Q+ (VuQV+Q > >

Q=0, (3.6)

where all the derivatives correspond to Cartesian derivatives of the normal extensions
of arguments. Unfortunately, the Q-tensor of typen ® n — %I is not in the kernel of
the operator (3.6). In fact, using (2.3), (2.2) and Lemma B.1 we compute

VMV i VAZV
2 2

0=(Vy(mn®mn)v+ (mn) (n ® n)

= Xn:(v -Pe;)0;(n ®n) + l <n® (VTV)n+ (VTV)n®n>
= 7)9j B M M
j=I

1
= (Vymyven+ (Vyn) @ Bv + 3 n® (—Bv) + (—Bv) ® n)
1
= 5(Bv®n~|—n®BV)

whence B = 0 or, equivalently, the surface has to be flat. We have just shown that
transport of a Q-tensor by (3.6) does not keep alignment with respect to the normal
direction. These considerations suggest that there are many ways to define the transport
of a Q-tensor field and that we need to choose one based on some kinematic assump-
tions similar to Assumption 1. In fact, to transport a three-dimensional tensor we need a
three dimensional spin tensor which cannot be provided by a two-dimensional surface
flow.

At a point x € I" consider an orthonormal basis ti, tp, n of R3 where the first two
vectors belong to the tangent plane of I". A general three-dimensional skew-symmetric
spin tensor W can be represented in this local basis with the help of a tangent vector
wr = (wat; — wity) and a tangent tensor W7 = w3(th, @ t; — t; @ to):

W=uw(t, @t —t; Qt)) +wo(t; ®n—n®t) +win®t, —t) ®n)
=PWP + (wat; —wit) ®n —n ® (wat; — wity) 3.7
=Wr+w7r ®n—-nQ@wr.
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Motivated by the three-dimensional corotational derivatives (3.6), we are in posi-
tion to determine the structure of the surface corotational derivatives of Q-tensors.
Consider a vector field v tangent to I", a matrix field Q, and its eigenvector field q. A
surface corotational derivative along the flow v can be expected to be given by

o o

q=0q+ (Vyav-Wq, Q=05Q+ (VyQv+QW-WQ), (3.8

where the spin tensor W is yet to be defined via wr and Wr in (3.7). For completeness,
we define the corotational derivative of a scalar field by its material derivative (3.1),

f=1r
We specify Wr and w7 in (3.7) by making the following assumption.

Assumption 2 (kinematics of Q-tensors) The tangent vector wr and the tangent spin
tensor Wr are such that the normal eigenvector q = n of a conforming Q-tensor is in
the kernel of the passive transport operator (3.8) along a tangent flow v = ur. Also,
the passive transport of a tangent eigenvector q = t of a conforming Q-tensor field is
a combination of the parallel transport (3.3) and the instant rotation by the covariant
spin tensor (2.12):

o o 1
n=0, t=t+ (Vrt)uy — E(vpuT — Viur)t.

o
In view of Remark 3.5, t = 0 means that the tangent vector field t is also embedded
in the flow uz but this time in the sense of the Riemannian structure on I'. This
o

rate of change t of a tangent vector field t is known as surface Jaumann derivative
(Nitschke and Voigt 2022). From this modeling assumption on how the eigenframe of
a conforming Q-tensor is transported, we immediately find what should w7 and Wr
be like.

Lemma 3.6 (characterization of spin tensor) In order to satisfy Assumption 2, the spin
tensor W in (3.8) should be given by (3.7) with

1
wr =Bur, Wr= E(VI‘UT — Viur) (3.9)

Proof Indeed, using the structure of (3.8) and the definition of the shape operator
B = Vj/n we compute

n= on+ (Vyn)ur — Wn = Buy — wr
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, and because n should vanish, we have to have wr = Bur in (3.7). Similarly, using
Definition 3.1, we compute

t=0,t+ (Vytyur — Wt = o,t + (Vrt)ur + N(Vt)ur — Wt
=t+N(Vhur — Wrt+ (wy -)n =t — Wrt — (n ® Bt)ur + (wr - t)n
=t— Wrt
which leads to the choice Wy = Wr(ur) to suit Assumption 2. Consequently, the
spin tensor (3.7) can be expressed in terms of the covariant spin tensor Wr from

(2.12) or of the external spin tensor from Wy, (2.5) as follows (using (B.3) in the last
equality)

W =Wr(ur) +Bur ® n —n® Bur = Wr(ur) + W.(ur)

1
=Wy (ur) + EW*(UT) (3.10)

where the star spin tensor W is defined for a given velocity ur by
W.(ur) :=Bur ® n —n® Buyr. (3.11)

This concludes the proof. O

Based on Assumption 2 (kinematics of Q-tensors) on how the eigenframe of a con-
forming Q-tensor is transported in the absence of any forces, we define the surface
corotational derivative of general Q-tensors in the following definition.

Definition 3.7 (external surface corotational derivative) The surface corotational

derivatives (ci of a vector field q : I' — R3 and Q of a matrix field Q : I' — R>*3
along a tangent vector field v are given by

q=03q+ (VuqQv— (Wr) + W.(v)q, (3.12)

Q=05Q+ (VuQV+QWr(™ +W.(v)) = (Wr(m) + W.(v)Q  (3.13)

Clearly, the structure of Cartesian corotational derivative (3.5) can be recognized in
Definition 3.7 but the special spin tensor (3.10) is used because the domain of definition
of all objects is a surface, and the flow v is two-dimensional, while the Q-tensor is
three-dimensional.

3.3 Properties of the Surface Corotational Derivative

In this section, we characterize the surface corotational derivative & of general vector
fields q using the sphttmg (B.4). We also explain the structure of the surface Corota-

tional derivative Q of a Q-tensor Q by relating the passive transport equation Q =0
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to the passive transport equations (oll- =0, ii = 0 of the eigenvectors and eigenvalues
of Q.

We first present some intuitive properties of the vector (3.12) and the matrix (3.13)
surface corotational derivatives. Itis shown that if a vector field q = gyn-+qr satisfies

the passive transport equation :i = 0, then the normal component ¢y is transported
by (3.1) as a scalar field, while the tangent component 7 undergoes a combination of
the parallel transport (3.3) and the instant rotation by the covariant spin tensor (2.12).
In other words, the tangent component is embedded in the tangent two-dimensional
flow in this case. At the same time, we recover the usual meaning of the corotational

o
derivative of matrices but for the case of a surface (see Remark 3.5): If Q = 0, then
the eigenvalues and the eigenvectors are embedded (in the sense described above) into
the flow along a surface.
We start with the basic properties of corotational derivatives in the next lemma.

Lemma 3.8 (properties of corotational derivatives) The surface corotational derivative
(3.12) along a tangent flow v has the following distributive properties for vector fields
a, b and matrix field A

@-b)=a-b+b-a, (FA)=fA+fA, @®b)=a®b+ad®b.

Proof The properties follow from Lemma A.1, (2.1), (3.10) and v = Pv:

@-b)=da-b+a-db+v-(Vya) b+ (Vyb) a)
= (0;a+ (Vya)v) -b+a- (3;b+ (Vyb)v)

—(@+Wa)-b+(b+Wb)-a=a-b+b-ata-(W+W)b
—3-b+b-a

(FA) = % (FA) + Vi (FAIV + (FAIW — W(FA)
— 0 fA+ fOA+ (fVUA+A® Vi f)V+ (AW — WA) = fA + fA

a@a®b)=0axb+a®db+Vy@albv+(axb)W -W@xb)
=(a+ (Vya)v) @b +b® (3;b+ (Vyb)v) —a®@ Wb —Wa®b

=a®b+a®b
This concludes the proof. O

Assumption 2 (kinematics of Q-tensors) dictates how the eigenframe of a conforming
Q-tensor field is transported by a tangent flow. In the following lemma, we characterize

the passive transport (Ci = 0 of an eigenvector which is neither normal nor tangent to
.
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. . . . . . o
Lemma 3.9 (corotational derivative of a vector) The surface corotational derivative q
of a vector field  : T — R3 is a vector field with the following normal and tangent
components:

Nq =gyn, Pq=qr — Wrqr

Proof We recall Definition 3.1 and (3.1). Since v = Pv, we compute

q = 3(ar +qvn) + (Vugr +n® Vrgy + gyB)v
—Wrqr — gyBv+ (Bv-qr)n
= (0 qr + P(Vmqr)v) + (3ign + (Vrgn) - V)n
+ (NVuqr)v — Wrqr + (Bv-qr)n
=P@r —Wrqr) + (gny +n-(Vuqr)v+Bv-qr)n
=P(qr — Wrqr) +N(gyn)

where we used symmetry of B, Wr = PWrP and (B.1) in the last step. O

Remark 3.10 The passive transport a = 0 of vector fields by the surface corotational
derivative given in Definition 3.7 has the following properties. If at the initial moment
of time a vector field q is tangent, then it remains to be tangent along the passive flow
by a vector field v. The tangent component qr is subjected to the parallel transport
(3.3) and the instant rotation by the covariant spin tensor (2.12) embedded in the flow
along v. Also, the normal component q - n of a non-tangent vector field q is transported
by (3.1) as a scalar field.

Finally, we characterize the corotational transport (3.13) of a general Q-tensor,
namely non-conforming to I', via its eigenframe: The eigenvectors and the eigenvalues
of a Q-tensor are embedded into the flow and are passively transported in the sense of
the o operator.

Theorem 3.11 (corotational derivative of a tensor) Given a symmetric matrix field Q €
CH(T x (0, T))3*3 consider a point x € T and its neighborhood U (x) C T such that
there exists a spectral decomposition (1.1) with eigenvalues »; € C'(U(x) x (0, T))
and the corresponding unit-length eigenvectors q; € ClUx)x (0, T)3,i=1,2,3.
IfinU(x) x (0,7T)

o all eigenvalues are distinct, then
o ° .
Q=0 << q;=0, 4=0, i=1,2,3;
e 1wo eigenvalues are equal but distinct from the third one with eigenvector q,, then

Q=0 <+ q,=0, =0, i=123;
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o all eigenvalues are equal, then

Q=0 <<= i=0, i=12,3.

Remark 3.12 Three cases appear in the statement because eigenvectors are not deter-
mined uniquely if some of the eigenvalues coincide. For example, in the case of
two equal eigenvalues, one can discuss the transport of the corresponding planar
eigenspace, but eigenvectors that form this eigenspace may undergo arbitrary defor-

o
mations without affecting Q = 0.

Proof We start with the case of distinct eigenvalues. The spectral decomposition

Q) = Yi—; M (X)(qe(x) ® qi (%)) holds for all x € U(x) and q;(x). q2(X), g3(x)
form an orthonormal basis. We take the corotational derivative and apply its properties
from Lemma 3.8:

3
Q=Z(Qk®%)ik+Xk<qok®(Ik+(Ik®(fk)
k=1

from where the sufficiency follows immediately. To show the necessity, we contract
the result with q; from the right and then with q; from the left:

3
Qqi = My +hidi + Y MG 4
k=1,k#i
3 3
q Qi =hiq; @ +higj @+ Y Mk q)(q) Q)
k=1,ki

where we used the identity (qo Jqi) + ((i)l- -q;) = 0. Consider the diagonal, i = j,
and off-diagonal, i # j, contractions separately:

q -Qq; =4, qj"qu'=()»i—?»j)Qj"cii

IfQ=0andA; # Aj, then %i = 0 and all the projections of (01,- on the basis vectors

q1, g2, q3 are zero.
The case of two equal eigenvalues A; = A; = A is similar. We rearrange the spectral
decomposition

Q=2n(@n ®qm) +2Mqi ®qi +q; ®q;) = A (qm & qm) + AT — g @ Q)
=AM+ An =g Q qn
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compute the corotational derivative, and contract it with q,, from the right and from
the left

inl‘i‘(}tm _)‘\)(qm®qm)+0¥m —A) (&m S qm + qm ®€lm)
Qqy, = im‘lm + Am — )\)(cim ) 9:Qqy = )\m
which shows the equivalence. The case of three equal eigenvalues is trivial. O

Remark 3.13 The preceding surface corotational derivatives a and (02 have a physically
intuitive explanation: They correspond to the three-dimensional, Cartesian corotational
derivatives (3.5) along the special rotational extension v" of a surface flow v from the
surface I to a bulk three-dimensional neighborhood of it. This rotational extension v”
is described below.

Consider the tangential projector P, the normal projector N, and the shape operator
B in the basis of principal directions t;, to, n of I':

P=t®t, N=n®n, B=Vrn=«t;®t;

where k; are principle curvature fields on I'. We may extend a tangent velocity field
v = v't; from I' to Q5 in the normal direction constantly or rotationally:

ve= ()%, vV = +dif) )t = v +dBV

where d is the signed distance to I". In other words, if a surface velocity v is aligned
with a principle direction, then its rotational extension v" changes linearly away from
the center of curvature; if the velocity has two nonzero components along the surface
principle directions, then the rotational extensions act on these components separately.
Using Proposition A.1 (product rules), the bulk gradient of v" evaluated on I" is

Vv = Vv + (BvY) @ Vd +dV(B°v®) = Vv + (Bv) ® n.

Hence, %(er —VIvyonTis %(er —VTv") = Wy + W, = W. Essentially, the
surface corotational derivatives (3.12) and (3.13) provide the same rate of change as
the bulk corotational derivatives (3.5) evaluated on I" in which v is set as the rotational
extension v'. Although the surface corotational derivatives (3.12) and (3.13) are
independent of the normal extension, the bulk corotational derivatives (3.5) do depend
on the extension, and v” is one particular choice of bulk extension such that (3.5)
coincides with (3.12) and (3.13). One reason it is called the rotational extension is
that this extension is more physical for rotational velocity fields. For example, if we
consider I" to be the unit circle with prescribed velocity v = (cos 6, sin ) on I', where
0 is the polar angle, then divv® # 0, while divv" = 0 in this special case in two
dimensions. Although divv" = 0 will not hold for more general surfaces, the above
reasoning explains why v” is called the rotational extension.
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4 Derivation of Surface Beris—-Edwards Model

We develop a model of fluidic liquid crystal films following (Yang et al. 2016, [62],
Yang et al. yyyy; Eck et al. 2009) and (Nochetto et al. 2014). The modeling approach
chosen in this paper is the so-called generalized Onsager principle (Wang 2021; Doi
2011) which is used as a tool. The principle is formulated without referring to dimen-
sions of the system and its environment, and it appears to be suitable for modeling
of embedded surfaces. We refer to Doi (2011) for the principle’s thermodynamical
premises and to Doi (2015), Wang et al. (2021) for further details of its application
to particular physical systems. The generalized Onsager principle is not an extremal
principle which only needs a constitutive relation to complete the model (e.g., of an
elastic body) but rather a sequence of predetermined steps which guide the creation
of a model with a thermodynamically consistent energy structure based on prede-
termined kinematic properties. We briefly outline these abstract steps (also see Wang
etal. 2021, Section 2.3) as they should be applied to adapt the classical Beris—Edwards
model (Beris and Edwards 1994) in flat domains to the case of curved surfaces I'.

Step 1: Kinematics. We choose the state variables of the forthcoming thermodynam-
ical system on I' to be the tangent momentum field pu and the Q-tensor
field Q; density p is constant. We postulate that the kinematics of the system
are dictated by the surface material derivative i and the surface corotational

derivative Q given by Definitions 3.1 and 3.7;
Step 2: Energy landscape. We define the total energy Eio of the system to be the
sum of the kinetic energy and the Landau—de Gennes energy and express its

o
time derivative in terms of the rates Q and u from Step 1;
Step 3: Evolution laws. We propose a suitable structure of the evolution laws involving

o
therates Q, i from Step 1 and several thermodynamical quantities (generalized
forces) yet-to-be-determined. We split the latter into reversible and dissipative
forces;

Step 4: Reversible quantities. The generalized reversible forces are responsible for the
Hamiltonian structure of the system, whence they do not change the energy
from Step 2 over time. Exploiting this fact, we determine these reversible
quantities;

Step 5: Dissipative quantities. The generalized dissipative forces are responsible for
the total energy decrease over time. We propose a non-equilibrium dissipative
process in terms of a suitable least action principle, which identifies these
dissipative quantities.

We apply in detail the five steps of the generalized Onsager principle in Sect.4.1

and summarize the resulting surface Beris—Edwards model in Sect. 4.2, which satisfies
a natural energy decay over time dictated by the dissipative quantities, namely

d
E Etotal =< 0.
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4.1 Generalized Onsager Principle

In this section, we apply the generalized Onsager principle following the steps outlined
above. After the last step, the resulting system is simplified using Lemma B.6.

Step 1: Kinematics. We start by assuming that a fluidic liquid crystal film is a non-
equilibrium thermodynamical system on a stationary surface I" described by two state
variables, namely the tangent incompressible velocity field u and the three-dimensional
symmetric and traceless Q-tensor field Q:

Q=0Qkx,1), u=u(x,1), xel.

Moreover, we describe the kinematical properties of u and Q via the surface material

o
derivative u (or acceleration) and the surface corotational derivative Q introduced in
Definitions 3.1 and 3.7. Such definitions are consistent with transport in the absence
]

of any forces (passive transport), in which case they reduce to Q = 0 and u = 0.

Step 2: Energy landscape. We postulate that the thermodynamical system possesses
a total energy Eiwotal = Erac + K, given by the following Landau—de Gennes energy
ErqclQ, VyQl, and kinetic energy K [u]:

L
E1461Q. VMQ]=f e[Q. V1 Q] :=f —|VMQ|2+f FIQI. K[u]=/ 2,
r r2 r r 2 @

where |Vy;Q|? is the surface Frank energy (Golovaty et al. 2017) and F[Q] is the
double-well potential (1.3). More complicated forms of elastic energy E G can be
postulated here, but we choose to consider the one-constant model of energy for the
ease of presentation. To compute the rate of change of the total energy, we use the fact
that I is a closed, time-independent surface and u is tangential. This can be viewed as
an application of Leibniz formula (Dziuk and Elliott 2007, Lemma 2.1). The resulting
change in total energy is

d 1 3(pu?
EEtotal[Q, VuQ,u] = /F <_[Q VuQl + — (/(;;1 )) .

We simply write fr ou - d:u for the second term, while for the first term we have

[ 0e 9Q de . d(VMQ)
/ [Q. VarQl = /8Q TRET

where we recall the notation (A.3) for the contraction “:”. Commuting 9; and Vyy,
because I is stationary, and using Corollary B.9 (external integration by parts) yield
for any matrix field C

de
— V) C = LV VyC=— | Ldi \Y :C
/F 3V Q) M /F MQ:Vy /1_ ivy (VmQ)
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This implies

d
/a—e[Q, vMQl=/ (—LdiVM(VMQ)+F’[Q]):atQ=—fH:a,Q,
r of r r
“4.2)

where the molecular field H is the traceless symmetric matrix

H= P(L divy Vi Q — F’[Q]) , 4.3)

and P is the projection operator on the subspace of symmetric and traceless matrices.
Note that H here is neither conforming nor flat-degenerate in the normal direction, in
the sense of definitions (1.4) and (1.5), because Q is general.

We next intend to express j—tEtmal in terms of the surface material derivative u

o
and surface corotational derivative Q, or equivalently to substitute d,u and 9,Q by

u and Q. To this end, we recall the kinematical properties from Definition 3.1 and
Definition 3.7,

ju=1i— (Vrwu, 3Q=0Q— (VyQu+S, @.4)

where (3.10) and (3.11) are used to split the tensor S = S[u, Q] = W(m)Q — QW (u)
as follows:

S:=8r+8Ss, Sr=Wr@Q-QWr), S;:=W,.)Q—-QW.(u).
(4.5)

This, together with the fact that (u, (Vru)u)r = 0 according to (3.4), yields the
following expression for the rate of change of total energy

d
EEtotal[Q, VuQ,u] = f (—H:3Q+ pu-du)
g 4.6)

S (H 6) + (pu, ﬁ) n <H (Vi Qu — S[u, Q]) .
T r I

Step 3: Evolution laws. Following the classical Beris—Edwards model in R3, we
postulate that the surface model is driven by abstract evolution equations on the surface
I" with the kinematics derived from Assumptions 1 (kinematics of momentum) and 2
(kinematics of Q-tensors). Note that only the structure is postulated, while the required
new quantities (a?, F9 a’, f;) are yet-to-be-determined. We formulate these abstract
evolution laws as follows.

Assumption 3 (evolution laws) The thermodynamics of the surface Beris—Edwards
model has both a dissipative and a Hamiltonian structure (Yang et al. 2016). The
dissipative structure is due to a symmetric tangent stress a‘% = Pa‘%P and a symmetric
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tensor F¢. The reversible Hamiltonian structure is due to a skew-symmetric stress a”
and a tangent force ;. = Pf}.. Motivated by the structure of the three-dimensional
Beris—Edwards model, we propose the kinematic equations

pu = Pdivr(ad +a") + 7,
. .7
Q=F;

the terms f7, and a? in the surface momentum equation are assumed to be tangent
to the surface I' because the model involves a two-dimensional viscous flow along I
which is expected to be recovered upon setting Q = 0 in (4.7); also, see Remark 4.6.

Remark 4.1 (alternative definition of surface divergence and evolution laws) As men-
tioned in Remark 2.3, our definition of divr follows that in differential geometry.
However, suppose we posit the evolution laws to be
pi = Pdivr(al +a’) + 1},
Q=F,
where a is defined as the L>(I") adjoint of V; as motivated by the integration-by-
parts formula in Lemma B.7 (covariant integration by parts). The procedure outlined

in Steps 4 and 5 would yield exactly the same surface Beris—Edwards system as (4.13)
and (4.14). The resulting 7. would be slightly simpler than £}, because of using the

L*(I") adjoint Ev\r, but the right-hand sides of the equations for u would be identical.

Our next task is to combine Assumption 3 with (4.6). We first invoke Lemma B.7,

ie.,
(u, ,ol'l) = —(VMu, a‘% + ar> + <(trB)(a‘% +a)n, u> + (u, f}) ,
r r r r

and take into account the symmetry and tangentiality of a‘} = Pa’%P to write
(ad, Vyu)p = (a, Dr(u)). because of (2.5) and (2.13), as well as the skew sym-
metry of a” and (2.5) to obtain

(u, pﬁ) = <u, £ + (trB)a’n) — (Dr(u), a?) — (WM(u), ar> .48
r r r r

Similarly, (4.7) yields
(H, Q> - (H’ Fd) ’
r r

and, in view of S = S[u, Q] = W(u)Q — QW (u), we see that

<H, (VuQ)u — S[u, Q])

r

= (u, H: VMQ> — <H, Wu)Q — QW(u)> .
r r
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We define the skew-symmetric Ericksen stress X and the Leslie force A to be
Y=QH-HQ, A=-H:VyQ; (4.9)

the latter is tangent to I" due to (2.7), whereas the former is unrelated to I". Conse-
quently,

(H, (Vi Q)u — S[u, Q]) = —<u, A) + (Z, W(u)) .
T r r

Using (3.10) for u = ur tangential to I', namely W(u) = Wy, (u) + %W* (u), we
deduce

Y. Wuw=X:Wy+BXn-u

because ¥ and W,.(u) = Bu ® n — n ® Bu being antisymmetric yield

1
5): :W,=X:Bu®n) =tr(nu’BY) = tr(u/ BXn) = BXn - u.

Hence, the rate of change of the total energy Eio1[Q, Vi Q, u] is given by

d
7 FoalQ. Vi Q ul = —(H, F") - (Dr(u), a‘;)
t r r

+<u, f; — A+ (rB)a"n + BZn)
r

— (WM(u), a — E) . (4.10)

r

where the dissipative and reversible terms are collected in separate lines.

Remark 4.2 Only the dissipative terms in the first line of (4.10) should contribute to
the energy rate :11_1 Eota1 as identified by Assumption 3. Two reversible terms from the
second line should cancel with each other for any possible dynamics of the system.
From the perspective of theory of constitutive modeling, this gives rise to a plethora
of possible models where the functional dependence of a” and £ on u and Q varies
even in the flat case. We will require in the Step 4 that each term in the second
line vanishes separately. This modeling choice is consistent with the classical Beris—
Edwards system in flat domains. One could try to attribute this choice to the principle
of frame indifference, but it is beyond the scope of this paper.

Step 4: Reversible quantities. To find the reversible quantities a” and £ we recall
that these terms should not contribute to the time derivative of the total energy (4.10).
Some of the reversible quantities in (4.10) are paired with the velocity u which rep-
resents a uniform motion of an infinitesimal material volume, while others are paired
with W, (u) which represents a rotation of an infinitesimal volume. As discussed in
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Remark 4.2, none of these conjugated pairs should produce mechanical work, whence
the last two terms in (4.10) vanish for any u:

a’=%Y f;=A—-B+ uBP)Zn. 4.11)

Consequently, the reversible quantities in (4.7) are fully determined.

Step 5: Dissipative quantities. To find the dissipative quantities a‘% and F¢, we make
an additional assumption regarding the non-equilibrium thermodynamics of the model
in the form of the least action principle (see Wang 2021 for details) First, we define
the dissipation functional

Fi2  jad|?
D[F?, af;] = / ¥~ + laz|”
r 2M 4/L

where the mobility M and the viscosity u are material constants. According to the least
action principle, dissipative quantities should minimize the expression %Etmal + @
at every time during the evolution to be thermodynamically consistent. Therefore, its
first variation must vanish

d
ag ) (EEtotal[Q, VuQ, ul + [F, a‘%]) =0.
In view of the first line of (4.10), we discover that the tensors a‘; and F? satisfy

1 1
-D —al =0, —-H+ —F=0. 4.12
r(u) + zuar + v ( )

Consequently, the dissipative quantities in (4.7) are fully determined.

We have just finished the five steps of the generalized Onsager principle and are
now ready to write the ensuing system of equations on I'. Inserting (4.11) and (4.12)
into (4.7) yields

pi = 2uP divrDr () + Pdivr = 4+ A — (B + (wB)P)En, 4.13)
Q=MH, (4.14)

which by construction enjoys the following energy structure.

Proposition 4.3 (energy law) The system of equations (4.13)-(4.14) on the surface T’
satisfies

d
7 EowlQ, Vi Q. ul = —2ulDr@)|IF — MI[H|IE . (4.15)
Proof Simply replace (4.11) and (4.12) into (4.10). O
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A further simplication of (4.13) is in order. We express the tangential force P divy X
due to the Ericksen stress X defined in (4.9) in terms of the fangent Ericksen stress
Y = PXP and a remainder. We resort to Lemma B.6 to relate divp X to divr X as
follows:

PdivrE = Pdivr 2t + tr(B)PZn + BX n. (4.16)

We observe that the term tr(B)PXn in (4.16) cancels with the last term in (4.13), while
the skew symmetry ¥ = —X7 of the Ericksen stress implies BXn—BX n = 2BXn.
We thus end up with the following reduced form of the momentum equation

pu =2uPdivpDr(u) +fr + A — £, , (4.17)
with the Ericksen force fg and star force £, defined by
fg :=PdivpXp, f,:=2BXn. (4.18)

Both forces are tangent to I, fr due to the projection P and f, because the range of
the shape operator B is contained in the tangent plane at each point of I'. It is worth
realizing that thermodynamics consistency requires the presence of the novel force
f, in (4.17). If the surface I' is flat, e.g., a domain in R2, then B = 0 and f, = 0.
Moreover, f, vanishes again provided Xn = 0 as it would happen if both Q and H are
assumed to be conforming and flat-degenerate. The relaxation of these assumptions is
the main contribution of this paper.

We further explore the extraction of the tangent part X from X in (4.16) that
leads to the Ericksen force fr of (4.18). In fact, we present a simple characterization
of f£, which is of independent interest and quite useful to understand simulations in
Sect.6.2.2.

Lemma 4.4 (characterization of the Ericksen force) There exists a scalar function 0
such that

fr =nx Vré. (4.19)

Proof Consider the right-handed basis of principal directions t;, t, natapointx € I'.
Any second-order tensor A may be represented in this basis via dyads as follows:

2 2
A= Z ajjti @t; + Z(Cmn ®t +ai3ti ®Nn) +azzn@n
ij=1 i=1

for some components a;;, 1 < i, j < 3. Since the surface Ericksen stress X = PXP
is tangent, its representation does not include any dyads involving n. Moreover, skew
symmetry X = —XL implies aj; = az» = 0 and az1 = —aj2 = 6, where 0 is the
only non-trivial component of X and is a function of x € I'. Consequently,

Sr=0tQt —t; ),
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and the second-order tensor £, := to ®t; —t; ®t, maps t to t; and t; to —t;. Itis thus
a rotation by 7 around the axis n or, simply, the cross-product operator 2,2 =n x a
according to the corkscrew rule. It turns out that 2, admits the following cross product
matrix representation in terms of the canonical Cartesian basis ey, ey, €,

0 —n; n,
Yr=602,=60| n, 0 —n,|. (4.20)
-n, n, O

Note that the function 6 and the normal n fully describe the surface Ericksen stress
Y r. Moreover, using (2.11), (2.3) together with Proposition A.1 (product rules), we
calculate

divpXp = divyy X = div Zi’: =div (Qeﬂfl) = 6°div Slfl + ﬂsvee .

We finally observe that div 2; = —curln® = 0, because n° = Vd, to obtain that
divpXr = n x Vr6 and that fz = Pdivp X is given by (4.19) as asserted. O

We point out that the orientation of n is not unique. If we change n to —n, then we
also have to exchange t| with t, to have a right-handed basis and this flips the sign of 6;
hence, the representation of (4.19) is well defined. Moreover, since divrXr = nx Vr6
isalready tangentto I', we deduce that the projection P in the definitionfy = P divp X
is superfluous.

4.2 Surface Beris—-Edwards Model

We are now in a position to present the novel model of fluidic liquid crystal films. Let a
closed surface I" represent the liquid crystal film. The liquid crystal may be generally
oriented in R>, but the material flows tangentially to I' so that I" does not change
over time. The incompressible flow is described by the tangential velocity u, which
is assumed to be divergence-free divru = 0. Therefore, the density p is constant and
the scalar pressure field p enforces divfu =0on .

The new model combines the equations 4.14 and (4.17) with the expressions (4.3)
and (4.4) and the constitutive relations (4.9) and (4.18). Given initial conditions ug
and Qo, the model reads: Find symmetric and traceless matrix fields H, Q as well
as tangent velocity u = Pu and scalar pressure p on I such that for all times the
following system of PDEs is satisfied on I

H+ PF'[Q] = L Pdivy VyQ,
Q+ (VuQ)u = MH + (Sr + S,),
p(du+ (Vru)u + Vrp) = 2uP divrDr(u) — (fr +£,),
divru = 0,

4.21)

where
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Spr =8r[Q,u] = Wr()Q - QWr(u), Sy = 84[Q,u] = W, ()Q — QWi (u),
Y =X[Q,H] = QH - HQ, Yr = Xr[Q, H] =PXP,
fr = fr[Q,H] = —Pdivr X + H: V,Q, f, = f,[Q, H] = 2BZn.

Here, Sr is the corotation (4.5) by the covariant spin tensor Wr in (2.12), S, is the
corotation (4.5) by the star spin tensor W, in (3.11), X is the Ericksen stress (4.9)
with the tangent part ¥ = PXP, fr is the tangent surface Beris—Edwards force
which consists of the Ericksen force fr = P divr X in (4.18) and the Leslie force
A =—-H:VyQin (4.9), and £, is the star force from

(4.18). The first variation of the double-well potential F[Q] in (1.3) is given by

PF'[Q] = aQ — bQ? + gtr(Q2)I + ctr(QHQ, (4.22)

where P is the projection onto the subspace of traceless and symmetric matrices.
The operator P acts likewise on the variation divy V,Q of the elastic energy. The
surface Beris—Edwards model (4.21) obeys the energy law (4.15) by construction.

Remark 4.5 We would like to stress that the star corotation tensor S, and the star
force f, distinguish our model from the model in Nestler and Voigt (2022) where Q is
assumed to be conforming to the surface with a prescribed eigenvalue in the normal
direction. These terms guarantee the thermodynamical consistency of our model for
a non-flat surface. We demonstrate the behavior of conforming and non-conforming
Q-tensors in our numerical experiments of Sect. 6.

Remark 4.6 1f we disregard the Q-tensor equations and the coupling force fr + £, we
will be left with the well-known surface Navier—Stokes system (Jankuhn et al. 2018)
which models an incompressible surface flow driven by inertia.

5 Representation of Q-Tensors on Surfaces

In this section, we define the notions of uniaxiality and flat-degeneracy, along with the
biaxiality parameter 8[Q] which relates them. We also introduce the non-conformity
parameter rr[Q]. These parameters will be instrumental in describing and visualizing
the numerical experiments in Sect. 6.

5.1 Biaxiality Parameter

We start with a simple definition: Unit vector fields q € R? will be called director
fields.

Definition 5.1 (flat-degeneracy) A Q-tensor Q € R3*3 is flur-degenerate if one of its
eigenvalues is zero, say Ao = 0 whence A1 = —A3. Therefore, if » := 2A1, then Q
reads
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1
Q=?»1(Q1®Q1—Q3®Q3)=V(Q1®Q1—§qu> ; (5.1

where Pq := 1 — q ® q is the projector onto the orthogonal plane to the director q.

This definition is consistent with (1.5). A flat-degenerate state of the form (5.1) is
essentially a two-dimensional Q-tensor state in the plane orthogonal to q2. Another
important class of three-dimensional Q-tensor states is given by the following defi-
nition (Mottram and Newton 2014; Borthagaray and Walker 2021; Sonnet and Virga
2012).

Definition 5.2 (uniaxiality) A Q-tensor Q € R3*3 is uniaxial if it may be represented
as

1
Q=s<q®q—§l) 5.2)

for some director q and order parameter s. Otherwise the Q-tensor is biaxial.

The following biaxiality parameter (Majumdar 2010) relates the notions of flat-
degeneracy and uniaxiality of Q-tensors and allows for a classification of Q-tensor
fields useful in simulations.

Definition 5.3 (biaxiality parameter) For a nonzero Q-tensor Q € R3*3, the biaxiality
parameter is the real number

(trQ?)?

ﬂ[Q]:1_6W'

(5.3)

It is well known that the vanishing of S[Q] indicates that Q is uniaxial (Majumdar
2010), but the opposite limit, when it is equal to one, indicates the flat-degeneracy of
liquid crystal state as shown in the following Lemma.

Lemma 5.4 (properties of biaxiality parameter) The biaxiality parameter satisfies

0<BIQI<1 VQeR¥™ Q#0. (5.4)

The minimal value, B[Q] = 0, corresponds to Q being uniaxial, whereas the maximal
value, B[Q] = 1, corresponds to Q being flat-degenerate.

Proof We exploit the spectral decomposition (1.1) to write Q/ = Zzzl )»,{ (9k ® qx)
for j € N, whence trQ/ = Y7 _, A/ In view of the definition (5.3), we have to prove

(rQ*)*

0<6
(rQ?)

<1
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The leftmost inequality is trivial. The rightmost one entails the following tedious
computation. Since trQ = 0, we let A, = —X| — A3 and rewrite the desired traces in
terms of o = )Lfl)@

rQ? =23 (1+ (1 +)? +a?) =223 +a +a?),
Q=23 (1 - (1 +0)® + &) = -3nje(l + o),

because Q # 0 implies either A1 # 0 or A3 # 0. Consequently, we obtain the asserted
inequality

(rQ?)? — 6(trQ%)* = 229(2 4 3a — 30? — 20%)* = 225(1 — )? 22 + D)* (@ +2)% > 0.

Moreover, this explicit expression reveals that S[Q] = O is equivalent to either
a =10 = —% or « = —2. This in turn corresponds to A1 = A3, A = —2A3
(i.e., A2 = A3) or A3 = —2X1 (i.e., A2 = A1). According to the characterization of a
uniaxial Q-tensor after Definition 5.2, we deduce that B[Q] = 0 is equivalent to Q
being uniaxial.

In contrast, B[Q] = 1 is equivalent to trQ> = 0 which reduces to either & = 0 or

a = —1. This in turn reads either A3 = 0 (or symmetrically A; = 0) or Az = —X
(i.e., A2 = 0). According to Definition 5.1, we infer that 8[Q] = 1 if and only if Q is
flat-degenerate. This completes the proof. O

Finally, the following result is proved in Majumdar (2010, Proposition 1, but we
state it as a lemma for further reference in Sect. 6.

Lemma 5.5 (minimizer of F) Let the parameters a, b, ¢ of the double-well potential
F in (1.3) satisfya < 0,b > 0,c > 0. Then, F[Q] is minimized by a uniaxial state
(5.2) with s given by

b+ /b —24ac

” (5.5)

S+ =

5.2 Non-Conformity Parameter

In this section, we turn to the representation of Q-tensors on surfaces and introduce
a scalar field which quantifies the notion of non-conformity of Q-tensors. In fact, we
extend the representation of conforming Q-tensors of Nestler et al. (2020, equation
(5)) to arbitrary Q € R3*3.

Strictly speaking, since we are concerned with general Q-tensors, there is no a priori
relation between the surface I" and the eigenframe of Q. Nevertheless, we would like
to split the general state of the Q-tensor into liquid crystal states related to the normal
and tangent subspaces to I.
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Given the unit normal n to I' and a tangent director field qr, i.e., qr - n = 0, we
consider sums N 4 Tr of arbitrary traceless matrices of the form

1 3 1 1
Nr:nr<n®n—§P)=§nr<n®n—§l), TI*:sF(qF@qF_EP),
(5.6)

where Nr is an uniaxial homeotropic Q-tensor (normal to I'), and T is a flat-
degenerate Q-tensor tangent to I'. Note that S[Nr] = 0 and B[Tr] = 1 and that
both Nr and Tr are always conforming. Clearly, an arbitrary Q-tensor Q € R cannot
be represented by such sums if its eigenframe does not include the normal vector.
Therefore, for Q € R3 we define its traceless conforming (normal and tangential)
components Nr[Q] and Tr[Q] by minimizing the residual with respect to nr and Tr:

min [Rr)?, Rr=Q-Nr —Tr. (5.7)
nr,Tr

Lemma 5.6 (homeotropic decomposition of Q on I') An arbitrary Q-tensor Q € R3>*3
admits the orthogonal decomposition Q = Nr[Q] + Tr[Q] + Rr[Q] into three
traceless symmetric tensors, where Nr[Q] is a uniaxial Q-tensor given by (5.6) with
nr = n?Qn, Tr[Q] is a flat-degenerate tangent Q-tensor, and Rr[Q] has minimal
Frobenius norm. Moreover, they satisfy |Q|> = INr[Q]|*> + |Tr[Q]|? + |IRr[Q]|? and
are given by the expressions

_ 1 _ nr
Nr[Q] =nr <n ®n— EP) , TrlQ] =PQP + 5 P, 5.8)
RrQl=@Q —nrDIn®n+nQ® (Q — nrDhn.

Proof We expand the residual

Rp” = QT —nron” — “ZP): Q= Tr —nrnn’ — “2P)
3
=Q:Q—2Q:Tp +Tr:Tr —2nr(Q—Tr) : nn’ —an:(Q—Tr)—i-En%,
and compute its first variations. Since nr is scalar, we readily have
_ 0 om0 s T B
0= IR = -2Q :nn' + tr(PQP — Tr) + 3nr .
anr
On the other hand, since Tt is traceless and tangent to I', a general variation of T

reads PCP — %tr (PCP)P for an arbitrary symmetric matrix C € R3*3. Consequently,
a tedious computation of % IRr|? : C using that trP = 2 yields

3
0= ﬁ|Rr|2 — —2PQP — tr(PQP)P + 2Ty .
r
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Exploiting that tr(Tr) = 0, these equations give the optimal values
2 1 1
Since
PQP =(I-n®n)Q(I-n®n) =Q—n®Qn—Qn®n+(nTQn)n®n,

and Q is traceless, we deduce tr(PQP) = —n”Qn whence np = n”Qn and the
expressions for T and Rr in (5.8) follow immediately. Moreover, N [Q] and Tr[Q]
are orthogonal because

1 n n
Nr[Q] : Tr[Q] = nr<n ®n— EP) : (PQP + %P) = (" Qn—nr) =0,
whence the minimization property (5.7) is equivalent to the orthogonality of Rr[Q]
and Nr[Q] + Tr[Q]. This concludes the proof. O

Now, we are in a position to introduce a quantitative measure of non-conformity
for an arbitrary Q-tensor Q € R3. Since both N [Q] and Tr[Q] are conforming to I,
possible non-conformity of Q is dictated by the solution Rr[Q] of the minimization
problem (5.7). The relation |Rr[Q]| < |Q| motivates the forthcoming definition.

Definition 5.7 (non-conformity parameter) The non-conformity parameter rr[Q] of
an arbitrary Q € R3*3 on I is the fraction 0 < rp[Q] < 1 defined by

IRr[QI]
QI

Remark 5.8 We see that rr[Q] = 0 if and only if Q = Np[Q]+ T [Q] or equivalently
Rr[Q] = 0. Incontrast, rr[Q] = 1ifand only if Nr[Q] = Tr[Q] = 0 or equivalently
nr = 0 and

rrlQ] := (5.9)

Q=Rr[Ql=Qn®n+nQ®Qn.

Therefore, if rr[Q] = 1, we infer that Qn is tangent to I" because nr = n’Qn =0
and Qq is perpendicular to I' for any tangent vector q because 0 = Tr[Q]q = PQq.

Remark 5.9 If Q is conforming to T', i.e., rr[Q] = 0, and its normal component
Nr[Q] = 0, then Q = Tr[Q] is flat-degenerate. Therefore, according to Lemma 5.4,
Q is biaxial and the biaxiality parameter 3[Q] = 1 is maximal.

5.3 Enforcing Conformity: The Hess-Osipov Energy

We consider enforcing conformity through penalization. Natural penalizations are the
following physically justified energies, which can be found in Nestler et al. (2020, Eq.
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(4)) and Golovaty et al. (2017, Eq. (8)), and are closely tied to the energies found in
Golovaty et al. (2015, Eq. (4)) and Osipov and Hess (1993, Eq. (7)):

EpenQ] := Vﬁ |PQn|21 Enorm[Q] := a/l“ |nTQn - 8|2~ (5.10)

The energy Ep.,[Q] with penalty parameter y weakly enforces that Qn be normal.
In fact, in the limit y — oo, the energy E ,.,[Q] is minimized provided PQn = 0 or
equivalently if Qn is normal. This is the strong form of conformity according to (1.4).

On the other hand, the energy E,,,,[Q] with penalty parameter « > 0 enforces a
value § of orientational order in the normal direction. For conforming Q-tensors, the
value nr = n’ Qnis the eigenvalue of Q in the normal direction n according to Lemma
5.6 (homeotropic decomposition of Q on I'). However, unless n is an eigenvector of
Q, the limit « — 0o only penalizes the deviation of n” Qn from §, which may vary
along I'.

The role of (5.10) will be computationally explored in Sect.6.3.1 and Sect. 6.3.2.

6 Exploration of the Surface Beris—-Edwards Model

In this section, we explore computationally basic properties of the surface Beris—
Edwards model presented in Sect.4.2. We resort to the biaxiality parameter S[Q] of
Sect.5.1 and the non-conformity parameter rr[Q] of Sect. 5.2 to interpret and display
our results. We start in Sect. 6.1 with the kinematics of the surface Landau—de Gennes
equation without transport of momentum. In Sect.6.2, we compute profiles of the
Leslie force (4.9) and the Ericksen and star forces (4.18) on some simple Q-tensor
configurations with a defect; this provides basic intuition on the thermodynamical
coupling of the Q-tensor and the momentum transport on surfaces. In Sect. 6.3, we
demonstrate computationally that the transition between two conforming states may
occur through non-conforming intermediate states. Finally, we show in Sect. 6.4 why
the relaxation of the conformity assumption (1.4) may be critical for the modeling
of liquid crystal films. We consider a homeotropic, radially symmetric Q-tensor on a
unit sphere and investigate the influence of the weak anchoring on the stability of this
Q-tensor configuration.

6.1 Landau-de Gennes Dynamics on a Sphere
In this section, we consider the surface Landau—de Gennes model from Sect.4.2
without the momentum equation and explore the main kinematical and dynamical
properties of this simplified model. For all experiments in this section, we set the
mobility M, the elastic constant L, and the parameters of the double-well potential
a,b,cin(4.22)to be

M=1, L=1, a=-5 b=1, c=10.

Consequently, the equilibrium value (5.5) of the order parameter is s ~ 0.60.
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t=0.25 t=0.5

Biaxiality

Fig. 1 Passive surface corotational transport of an initially uniaxial Q-tensor along a rotation of the unit
sphere I" given by the prescribed velocity field v = me; x (x, y, z) for (x, y, z) € I'; all pictures display the
(x, y)-plane so e; is perpendicular to it. a) largest eigenvalue of Q and corresponding oblique eigenvector
q. b) biaxiality parameter S[Q] of (5.3) and velocity field v. Since B[Q] stays close to zero, Q remains
uniaxial with respect to q. The uniaxial Q-tensor state (s, q) is uniform on the spherical cap and rotates
rigidly. Therefore, the entire Q-tensor eigenframe moves along the sphere as if the ambient space experiences
the rotation

6.1.1 Passive Corotational Transport of a Non-Conforming Q-Tensor

The first numerical simulation demonstrates the action of the corotational derivative
o

Q defined in (3.13). To this end, we consider the passive velocity v(x, y, z) = e, X
(x,y,z) for (x,y,z) € I" over the unit sphere I'; v is tangent to I" and corresponds
to arigid rotation of I' around the axis e,. We examine the passive transport equation

Q = O dictated by v over I where the initial condition Qg of Q is uniaxial

1
Qo(x, y, 2) == 50 <QO®q0—§I> . (y,» el (6.1)
and the order parameter sq and director g are given by

5006, ¥, 2) = 54 (14 exp(=20(y — 0.6))) "', qo(x, y,2) = (1, 1,0)//2.
(6.2)

We stress that g is neither normal nor tangent, and sq localizes Qq to a spherical cap
0.6 < y. We display the passive dynamics in Fig. 1.
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According to Theorem 3.11, and the property that a Q-tensor with two equal eigen-

values is uniaxial, the solution to Q with initial condition (6.1) is the uniaxial Q-tensor

1
Q(xsystt)=S<(I®q_§I>a (x9ysz)er’ (63)

where s = s(x, y, z,t) and q = q(x, y, z, t) satisfy the initial value problems on I

§=0, s(0)=s0, q=0, q(0)=qo. (6.4)

In view of Lemma 3.9, the director field q admits the decomposition q = qr + gyn
in terms of normal component ¢y and tangential component qr, which satisfy the
following initial value problems:

gn =0, gnvO)=@)n, dar +(Vrqr)v—=Wrqr =0, q7(0) = (qo)7,

Since v is a rotation of the sphere, the solution (s(¢), Q(#)) of the initial value problem
(6.4) is just the rigidly rotated initial condition (sg, qo). This solution of (6.4) for
t € [0, 0.5] is shown in Fig. 1: At the final time = 0.5, the solution (s(¢), Q(#)) has
rotated 7t /2 around e, and the biaxiality parameter B[Q] & 0. This corroborates that
Q(¢) remains uniaxial for all 7.

It is worth realizing that if one did not use the covariant spin tensor Wr defined in
(2.12) in the transport of the tangent component qr, then the parallel transport (3.3)
would not result in the rotated solution q(#) (and Q(#)). This numerical example high-
lights the importance of corotational derivatives (3.12) and (3.13) for the kinematics
of liquid crystal films.

6.1.2 Diffusion of a Uniaxial Q-Tensor.

In this example, we explore the so-called dry case of the surface Beris—Edwards model.
The Q-tensor changes are driven solely by the interaction of elastic energy and double-
well potential F' in the Landau—de Gennes energy (4.1) in the absence of momentum
transport. We thus set u = 0 (no fluid) in the system (4.21) from Sect.4.2, thereby
resulting in the gradient flow dynamics for the surface Landau—de Gennes energy

EraclQ, Vi Ql

H+ PF'[Q] = LPdiviyVyQ, 65)

an = MH? .
which is supplemented with the initial condition Q(0) = Qg from (6.1). The initial
value problem (6.5) is solved numerically on a unit sphere I', and the results are
displayed in Fig. 2. The numerical solution exhibits two crucial aspects of the Landau—
de Gennes dynamics. First, since the initial condition is localized approximately to the
spherical cap y > 0.6, the Q-tensor state diffuses due to the term L P divy; V3 Q in
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Fig. 2 Diffusion along the unit sphere I" of a Q-tensor Q with initial uniaxial condition Qg given by (6.1)
localized to a spherical cap. All pictures show the xy-plane view: a) the largest eigenvalue and corresponding
eigenvector of Q; b) the biaxiality parameter S[Q] & O for all times indicates that Q is always uniaxial
according to Lemma 5.4. The localized Q-tensor diffuses along I" while staying parallel to Qg to minimize

the elastic energy. At the same time, the double-well potential F[Q] drives the scalar order parameter s of
Q to the minimizer sy of F[Q] stated in (5.5)

(6.5). Second, the order parameter s is zero away from a spherical cap that expands
downwards (light blue in Fig. 2a). The nonlinear term P F'[Q] in (6.5), associated with
the double-well potential F[Q], drives the order parameter s everywhere to the value
s that minimizes F[Q] according to Lemma 5.5. In addition, the director field q stays
parallel to the initial value qp to minimize the elastic energy in (4.1). The solution is
thus uniaxial and given by (6.3). This is corroborated in Fig.2b, which depicts the
biaxiality parameter 8[Q] defined in (5.3). In fact, 8[Q] ~ O for all times in the entire
surface, which is only possible if Q is uniaxial according to Lemma 5.4. Therefore,
the uniaxial evolution of the Q-tensor field is preferable to avoid competition between
the elastic and potential energies that give rise to E746[Q, VyQ] in (4.1), provided
the initial director field qq is constant and the corresponding elastic energy vanishes.

6.1.3 Evolution of a Uniform Q-Tensor Under Passive Rotation.

This example couples the Landau—de Gennes dynamics on the unit sphere I" of
the previous example with a passive rotation. We prescribed the tangential veloc-
ity v(x,y,z) = mwe; x (x,y,z) for (x,y,z) € I' and replace the time derivative

9;Q in (6.5) with the corotational derivative Q of (3.13). We consider the initial
Qo = s0(qo ® qo — %I) in (6.1) with uniform director field qo given by (6.2) but
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Fig. 3 Evolution of a uniform Q-tensor under passive rotation around the z-axis with velocity field v =
me; x (x,y,z) for (x,y,z) € I'. All pictures show the xy-plane view: a) the largest eigenvalue and
corresponding eigenvector of Q; b) the biaxiality parameter of (5.3) satisfies B[Q] &~ O for all times.
Lemma 5.4 implies that the Q-tensor remains uniaxial for all times. In fact, Q is always uniform in space
and rotates rigidly with v, whence the elastic energy vanishes. The order parameter s evolves uniformly in
space from sg = 0.1 to the minimizer s of the potential energy F[Q] in (5.5)

with the non-equilibrium value so = 0.1 of the order parameter s. This results in the
following initial value problem

H+ PF[Q] = LPdivy VyQ,
o (6.6)
Q = MH.

with Q(0) = Q. Figure 3 documents the evolution for ¢ € [0, 1]. Since the prescribed
velocity v is a rotation around the z-axis, the solution consists of the concatenation
of diffusion without velocity with a rigid rotation. Since the initial condition Qy is
uniform, the elastic energy is zero and only the double-well potential F[Q] is active to
drive the order parameter s. This is precisely what Fig. 3a illustrates: The eigenframe
of Q at each point of I" rotates by an angle 7 in the plane orthogonal to e;, while
s evolves toward the minimizer s4 of the potential F[Q] given by (5.5). Moreover,
Q remains uniaxial for all time because the biaxiality parameter S[Q] =~ 0 in light
of Fig.3b, whence Lemma 5.4 applies. This example reveals the essential role of the
corotational derivative (3.13) in modeling liquid crystals on surfaces in that it does not
generate spurious biaxial states during a passive dynamics of the eigenframe of Q.
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6.2 Coupling Forces in the Momentum Equation of Surface Beris-Edwards Model

This set of experiments explores the action of the forces on the momentum equation
4.21)c

p(3u+ (Vrwu + Vpp) = 2uPdiveDr(u) + A + fg — £, 6.7)
namely the Leslie force A in (4.9), and the Ericksen f£ and star f, forces in (4.18)
A=-H:Vy,Q, fr =PdivprXr, f. =2BXn. (6.8)

We deal with the following configuration of Q lying in the xz-plane and described in
terms of polar coordinates (r, ¢), i.e., ¢ = atan2(x, z),7 = V/x2 + z2. Let w > 0 be
a parameter that controls the swirled director field q,, perpendicular to e, = (0, 1, 0)

qo = Qo (r, 9) = (cos(¢ + wr), 0, sin(¢ + a)r)), (6.9)

and let the order parameter sy ¢(r) vary between O and s; defined in (5.5) via a
regularized radial step function which is the logistic sigmoid with midpoint & and
width k

S+
1 +exp (—2k(r — §))°

Skg = Ske(r) =

The Q-tensor is uniaxial with eigenvector Pq,, tangential to I" and order parameter
Sk,&, namely

— 6.10
[Pq| [Pq| 3 ( %

Pq, Pq, 1
Q=Q[k;§;w]=sk,é< d a )

This is a regularized degree +1 defect because at the origin, where q, becomes
singular, the order parameter sy ¢ is about zero. The largest eigenvalue of Q is Aqx =
2/3s4 ~ 0.82 with s defined in (5.5). Moreover, the physical parameters of the fluid
are its density p = 0.1 and viscosity u = 0.1 in (6.7).

Remark 6.1 We point out that to generate nonzero Ericksen stresses £ we need a
configuration of the Q-tensor with a swirled and regularized director field q,. Figure 4
shows homeotropic and uniform Q-tensors on a spherical cap for which all coupling
forces in (6.8) are zero. Hence, no transport of momentum appears in such Q-tensor
configurations.

6.2.1 Leslie Force on a Flat Disk
We first examine A in (6.8). To this end, we consider a flat disk I" of radius 5 orthogonal

to (0, 1, 0) with Dirichlet boundary conditions for the Q-tensor Q and the velocity u.
We let o = 0 and Q be the radial uniaxial regularized defect Q[5; 2.5; 0] of degree
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AW, 227,

Fig.4 Q-tensors on spherical caps for which all the forces in (6.8) are zero. Left: a homeotropic Q-tensor
Q =5+ (m®n — 1/3), right: a uniform Q-tensor Q = s ((1, 1, H) ® (1,1,1) —I) /3
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Fig. 5 Leslie force A = —H : V;Q (left) for the Q-tensor Q[5; 2.5; 0] in (6.10) on a flat disk of radius
5; this is a regularized defect of degree +1 with order parameter s; ¢ about zero at the origin (right). The
gradient of sy ¢, which is radial and points outwards, is mostly responsible for the structure of A (left). In
fact, its concavity flips in the transition region near the circle of radius r = & = 2.5, thereby resulting in a
radial A that point outwards for r > & and inwards for r < &

+1 defined in (6.10) without a “swirl”. The order parameter s; ¢ of Q is almost flat
except near the circle of radius r = & = 2.5, whence its gradient is radial and points
outwards. Figure 5)b displays Q.

The molecular field H might be thought of approximately as the Laplacian of Q,
whence it changes sign around r = & where the convexity of s; ¢ flips to concavity.
Since Vj;Q must be radial, because of symmetry arguments, the Leslie force A =
—H : VQ is also radially symmetric and points inwards for » < & and outwards for
r > &. This is shown in Fig. 5)a.

Since the disk I" is flat, the shape operator B = V/n vanishes and so does the star
force f, = 2BXn in (6.7). In addition, computations reveal that the Ericksen tensor
Y = QH — HQ is zero and so is the Ericksen force fr = P divp X . Therefore, the
only active force is the Leslie force A, which is not divergence-free according to Fig. 5.
Computations also show that A does not produce fluid flow because the velocity is
u = 0, which in turn implies that A is a gradient equilibrated by the pressure term to
enforce the incompressibility condition divru = 0.

6.2.2 Ericksen Force on a Flat Annulus

We now examine the impact of the tangent Ericksen stress X1 = P(QH — HQ)P and
corresponding Ericksen force fr = P divp X on the momentum equation (6.7). We
consider the flat annulus I' of inner radius 1 and outer radius 5 which is orthogonal
to e, = (0, 1,0) = n. Note that removing the inner disk gets rid of the defect at the
origin. Throughout I', we take the order parameter s to be the constant s defined in
(5.5) and the swirl parameter @ = 0.1 in the definition (6.9) of the director q,,. We
consider the following uniaxial Q-tensor
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Fig.6 Velocity field u produced by the Ericksen force divp X onan annulus [1, 5]x § 1 (top left). Uniaxial
tensor Q given by (6.10) with swirl parameter @ = 0.1 and constant order parameter sy ¢ = s+ defined in
(5.5) (top right). The complex flow exhibits two regions of rotation, the outer one clockwise and the inner
one counterclockwise, separated by an stagnation layer of vanishing velocity. The parameter 6 from (4.19)
corresponds to the unit normal n = (0, 1, 0) of I" pointing upwards (bottom left). The vector V0 is radial
and points toward the stagnation layer in both the inner and outer annuli. Therefore, the Ericksen force
fr = n x V0 is rotational and mimics the velocity. The largest eigenvalue and corresponding eigenvector
of the tensor H (bottom right), which is also conforming with zero eigenvalue in the normal direction. The
eigenframes of Q and H do not coincide

1
Q=s+ <qa)®Qw_ 51) ; (6.11)

which is depicted in Fig. 6b. The value w # 0 is responsible for the Ericksen tensor
¥ = QH — HQ # 0, for otherwise radial symmetry forces H and Q to have the same
conforming, radial eigenframe at every X € I' and X = 0. On the other hand, s
minimizes the double-well potential, according to Lemma 5.5 (minimizer of F'), and
Qin (6.11) satisfies PF'[Q] = 0.

We impose Dirichlet boundary conditions to both the Q-tensor Q and the velocity
u and report the computational results in Fig. 6. It turns out that the Ericksen force fg
generates a rotational incompressible flow with two distinct regions of rotation sepa-
rated by a stagnation layer with zero velocity; this is displayed in Fig. 6a. In the inner
region, the flow rotates counterclockwise, while in the outer region the liquid crystal
material flows in the opposite direction. Since the Q-tensor, displayed in Fig. 6b, has
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a uniformly clockwise swirl on the entire annulus, one might wonder what originates
this complex flow.

First, we investigate analytically the structure of the molecular field H and surface
Ericksen stress X for Q in (6.11). If we consider the basis q; = q, 2 = n X q,, I,
which is an eigenframe for the uniaxial Q-tensor Q, then Q and the projector P may
be represented by

s, 00 100
Q=|0 iy 0 |, P=]|010
0 0 —gsp 000

On the other hand, the tensor H satisfies (6.6) with PF’[Q] = 0, whence
Hn = LPdivy;(VyQ)n=0

due to the flatness of I" and conformity of Q. Since H is traceless and symmetric, we
get

a b 0
H=|b—-aO], (6.12)
000

in the basis q1, (2, n for suitable functions @ and b. The Ericksen stress ¥ = QH—HQ
reads

0 S+b0
Y= |-ssb 00 (6.13)
0 00

in the same basis and shows that b # 0 is required for a non-trivial X. In other words,
the eigenframe of H should not coincide with that of Q for ¥ # 0, as alluded to earlier
in Sect. 6.2.2. Moreover, comparing ¥ = Xr in (6.13) with (4.20), the function 6 in
(4.19) satisfies

0 =—s4b, fr =PdivpXr = —syn x Vpb. (6.14)

Intuitively, the molecular field H enters the expression of 9,Q in (4.21b), and a
nonzero off-diagonal component, b # 0, in (6.12) means that the eigenframe of H
rotates relative to that of Q. In this sense, the surface Ericksen force fz in (6.14)
encodes the spatial rate of change of the eigenframe rotation: The linear momentum is
the thermodynamic counterpart of the relative rotation of the molecular field H from
(6.12) due to the swirl structure of Q in (6.11).

We next provide a computational justification for the intriguing flow in Fig. 6a. We
resort to the parameter 6 in (4.19), which provides the representation fr = n x Vré
of the Ericksen force according to Lemma 4.4. The scalar field 6 is displayed in
Fig. 6¢c, whence its gradient V0 is radially symmetric and pointing toward an annulus
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Fig. 7 a) Velocity field u (left) created by the swirled regularized defect Q[S5; 2.5; 0.1] defined in (6.10)
(right) on a flat disk I" of radius 5. b) Ericksen force f = divp X (left) and Leslie force A = —H : V,Q
(right) near the transition region near » = £ = 2.5 depicted by the green circle. Note that A exhibits a larger
magnitude than fz, but only the rotational part of A may generate incompressible flow. The rotational flow
is mostly due to fr

where 6 exhibits its largest value; hence, Vré changes orientation from an inner to
an outer annular region. Therefore, the Ericksen force f¢ is rotational and exhibits
the same structure as the velocity field in Fig.6a with inner and outer regions of
counterclockwise and clockwise orientation.

6.2.3 A Regularized Swirled Defect on a Flat Disk

We next combine the effects of the Ericksen force fr = divp X and the Leslie force
A = —H : VyQ in one single experiment. We consider the swirled regularized
Q-tensor Q[5; 2.5; 0.1] defined in (6.10) with swirl parameter @ = 0.1 and transition
parameter§ = 2.5onaflatdisk I" of radius 5 orthogonal to (0, 1, 0). The computational
results are shown in Fig.7. The parameter & characterizes the green layer in Fig.7b
where the incompressible flow changes the direction of rotation. For r < &, the fluid
rotation is counterclockwise according to Fig. 7a, which also depicts Q, namely both
the swirl director field q,, and order parameter sy ¢ in (6.10). Moreover, in Fig. 7b we
display the profiles of fr and A and realize that the fluid flow is consistent with the
rotational character of fz and the azimuthal component of A.
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Fig. 8 Star force f, = 2BXn (left) for a regularized radial defect Q[5, 0.5, 0] of degree +1 defined in
(6.10) on the unit sphere I" with ey, pointing upwards (right). The Leslie force A is similar to the flat disk
(Fig.5), and the Ericksen force fg is zero (neither is shown). The total force generates no flow

—041

I— 0.00

Fig. 9 Velocity field u (left) produced by the star force f, = 2BXn for a regularized swirled defect
QI[5, 0.5, 1.5] of degree +1 defined in (6.10) (right) on a unit sphere I'. The field u rotates clockwise near
the defect at the north pole and counterclockwise near the equator
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Notice that, in contrast to the experiment in Sect.6.2.1 where @ = 0, the Leslie
force A has a radial and an azimuthal component. The former is absorbed into the
pressure and does not create linear momentum as in Sect.6.2.1. However, the latter
adds to the Ericksen force fg to give rise to an inner region r < & with clockwise
rotational flow and an outer region r > & with opposite flow. We observe that the
velocity magnitude is much larger in the transition region » & £ than in the inner and
outer regions and that even though fr is smaller in magnitude than A, it is mostly
responsible for the counterclockwise flow.

6.2.4 The Star Force on a Unit Sphere

The star force f, = 2BXn is zero on flat geometries because the shape operator
B = Vjyn vanishes. In this experiment, we consider the unit sphere I', for which
B = P, to show the non-trivial behavior of f, even for a surface with a simple shape
operator. To demonstrate the action of f, on I', we choose regularized uniaxial Q-
tensors defined in (6.10): radial Q[5, 0.5, 0] withw = 0 and swirled Q[5, 0.5, 1.5] with
o = 1.5. Figures 8 and Fig. 9 show these configurations with unit vector e, = (0, 1, 0)
pointing upwards. The definition (6.10) of Q is relative the xz-plane perpendicular to
ey, so the transition region occurs at r = VX242 =£=05.
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It turns out that the “radial” tensor Q[5, 0.5, 0] generates no flow. This is because
the star force f, = 2PXn = 2X¥n has a radial structure and is localized near the
transition region r ~ &, where the Ericksen stress ¥ = QH — HQ is nonzero; hence,
f seems to be a corotational gradient that is compensated by Vr p in (6.7). Moreover,
the Leslie force A = —H : V3/Q (not shown in Fig.8) is also radial and similar to
that in Fig.5, whence it can also be absorbed into the pressure term. However, the
profiles of f, and A are quite different: The former has a direction pointing toward
the equator in both the upper and lower spherical caps of I" (see Fig. 8a), whereas the
latter flips its direction near the transition region as in Fig.5a. Finally, the Ericksen
force fr = P divp X appears to be zero, while Xn is clearly not.

In contrast, the swirled tensor Q[5, 0.5, 1.5], shown in Fig.9b, creates a force f,
that generates flow. Viewed from the north pole, such a flow develops an outer region
r > &, where the velocity rotates counterclockwise, as well as an inner region r < &,
where the velocity rotates clockwise but is much smaller in magnitude than the former
(see Fig.9a). On the other hand, Q swirls clockwise (see Fig. 9b).

6.3 Relaxation of a Flat-Degenerate State

In Sect. 1, we argued that assuming Q-tensors to be conforming, namely to obey (1.4),
may be inconsistent with their surface dynamics unless an additional (penalty) energy
enforces this configuration. We now explore such inconsistency computationally on
a simple configuration of the Q-tensor on the unit sphere I". The initial configuration
is a flat-degenerate Q-tensor field with zero normal eigenvalue (see Definition 5.1),
while the final configuration is uniaxial with nTQn = %s+ (see Definition 5.2) and
s+ = 1.5 given in (5.5). We will see that the intermediate states are generally non-
conforming even if we penalize the lack of conformity, unless the penalty parameters
are sufficiently large.

To describe Qo = Q(0) in Fig.10, let ey, = (0, 1, 0) point upwards and let the
director field m = Pe,/|e,| be tangent to the unit sphere I', where P = I — n ® n.
Then, let

Qo =54+ (m @m — %P) (6.15)

be a flat-degenerate Q-tensor with degree 4-1 defects at both north pole y = 1 and
south pole y = —1. Therefore, the biaxiality parameter 8[Qq] = 1 defined in (5.3)
attains the largest possible value, according to Lemma 5.4), at all points of I" except
for the defects. Since minimizers of the double-well potential F[Q] are uniaxial states
(Lemma 5.5) and Qg is far from uniform and carries large elastic energy at the
defects, we expect Qp to be far from a minimizer of the Landau—de Gennes energy
ErqclQ, VyQJin (4.1). In fact, the final configuration is a uniaxial state (5.2) with
director field q = n and orientational order s = s, whence

T 2
n’Qn = 35+ (6.16)

@ Springer



Journal of Nonlinear Science (2024) 34:5 Page 47 0f63 5

t = 0.023 t=0.03

A Ui ,’l i

\\‘!”n, ,

Y Heh ey

[ '|I$

max_oig
1
o
X

Biaxiality
Biaxiality

t =0.075 t=0.1

£ £
3 3
3 3
a a

Biaxiality

I

Fig. 10 Relaxation of the Q-tensor from the axisymmetric flat-degenerate state Qg in (6.15) to the uniaxial
state (5.2) with ¢ = n and s = s4. The interface parameters in the energy (6.17) are « = 10, § = %s+.

The Q-tensor relaxes fromn’ Qn = 0 ton” Qn = %s+ = 1 passing through non-conforming states. Top:
maximum eigenvalue and corresponding eigenvector of Q evolve from tangential to normal to I". Bottom:
biaxiality parameter S[Q] and velocity field u (scaled by 0.5); S[Q] varies from O to 1 with intermediate
alternating regions of biaxiality. Vertical direction corresponds to the director ey,

is the eigenvalue in the normal direction. Flat-degenerate Q-tensors are prototypical
for simulations in flat, two-dimensional domains. However, we stress that the evolution
of Qo involves non-conforming Q-tensors with three nonzero eigenvalues.

6.3.1 Normal Anchoring Penalization

As discussed in Sect. 5.3, the Landau—de Gennes energy (4.1) of a liquid crystal film
may include, in some applications (Golovaty et al. 2015, 2017; Nestler et al. 2020;
Osipov and Hess 1993), the energy E, .y, [Q] with penalty parameter « > 0 defined
in (5.10), which enforces a value § of orientational order in the normal direction
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Enorm[Q] = O(/ |ﬂTQﬂ — 5|2 . (6.17)
r

The dynamics of the Beris—Edwards system is dictated by the competition of sev-
eral energies: The double-well potential F[Q] promotes uniaxial states with order
parameter s., ; the elastic energy L|V;Q|?/2 promotes uniform states in R3; and the
energy E,orm[Q] promotes a certain degree of orientational order, but does not affect
the conformity. A rigid condition of the form nTQn = ¢, as discussed in Sect. 1,
is often a modeling assumption postulated along with the conformity assumption. If
this condition is relaxed but the conformity assumption is still applied, then n” Qn is
an additional scalar variable representing the normal orientational order. One could
model a transition from the conforming flat-degenerate state (6.15) with n”’ Qn = 0
to the conforming uniaxial state with n” Qn = § enforcing conformity of Q for all
intermediate times. However, our simulations show that our Beris—Edwards model
find non-conforming intermediate states more energetically favorable.

We simulate the full surface Beris—Edwards system (4.21) with initial conditions
u(0) = 0and Q(0) = Qg given by (6.15), as well as the augmented Landau—de Gennes
energy (4.1) by (6.17). This leads to the following variant of (4.21)a

H+ P(F'[Ql + E,,,,,[Q) = L Pdivy Vi Q, (6.18)

where E;l orm Q] 18 the variational derivative of E,,,r». We choose the parameters

a=—-1,b=1,c=1;, M=1,L=1,p=0.1, u=0.1;, a= 10,5:%54_: 1.0
in (1.3), (4.21) and (6.17), respectively. We report in Fig. 10 the numerical results for
time evolution of the augmented surface Beris—Edwards system (4.21)—(6.18). The
Q-tensor relaxes from the flat-degenerate state with n” Qn = 0 to the uniaxial state
with n” Qn = %5 passing through non-conforming states. The biaxiality parameter
BlQ] is uniform at the beginning and end of the simulation, with values S[Q] = 1
(biaxial) to B[Q] = O (uniaxial), respectively, and exhibits alternating and space-
dependent values in between. The energy landscape is complex with non-conforming
intermediate states.

6.3.2 Non-Conformity Penalization

To further check our claim of non-conformity on the transition from flat-degenerate
to uniaxial configurations, we develop a second experiment. To enforce that Qn be
normal, whence n be an eigenvector of Q, we incorporate the physically justified
anchoring energy (Golovaty et al. 2015, 2017; Nestler et al. 2020; Osipov and Hess
1993),

EpenlQl =y /F IPQn|*. (6.19)
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snapshots are taken for the time r = 0.023, which is far from the final steady state. Small-to-moderate values
of y give rise to intermediate non-conforming Q-tensor fields. Top: maximal eigenvalue and corresponding
eigenvector. Bottom: non-conformity parameter rp[Q] defined in (5.9). Note that, for y = le4, at each
point of the sphere one of the eigenvectors is almost exactly normal. What is shown on the figure is the
eigenvector with the largest eigenvalue so a discontinuity may appear where two eigenvalues are equal and
are largest
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already discussed in (5.10). Therefore, the limit y — oo imposes the strong conformity
condition Qn = An because (6.19) is minimized if Qn is normal.

We now repeat the preceding simulation of the augmented system (4.21)—(6.18)
but this time adding E ¢, [Q] + Eorm [Q] to the Landau—de Gennes energy (4.1). We
choose

y =0, y =100, y = 10000

in (6.19) and display in Fig. 11 (top) the maximal eigenvalue and corresponding eigen-
vector of Q at the fixed time + = 0.023 far from equilibrium. We also report the
non-conformity parameter r[Q] defined in (5.9) in Fig. 11 (bottom). The parameter
y = 0 corresponds to the simulations in Fig. 10. As expected, large values of y pro-
mote conformity of the Q-tensor for all times, while for small-to-moderate values of
y intermediate states are non-conforming.

6.3.3 Enforcing Conforming and Flat-Degenerate Q-Tensor Dynamics

Inspired by dynamic simulations of a conforming and flat-degenerate Q-tensor on a
unit sphere from Nestler and Voigt (2022), we explore the predictions of our model
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Fig. 12 Evolution toward a tetrahedral minimizer starting from a conforming, flat-degenerate Q-tensor field
(6.22) with defects in the X Z-plane (horizontal). The Q-tensor stays conforming and flat-degenerate for
all times via penalization (6.17) and (6.19). The maximal eigenvalue and corresponding eigenvector are
shown at times ¢ = 0.01, 0.1, 2, along with green segments connecting the center of the unit sphere with
the vertices of a fixed regular tetrahedron. Two of the four +1/2-defects are visible and move toward their
final positions at the vertices of the tetrahedron. The angles between the green segments are in the range of
109 =+ 3 degrees which is close to the angle of the regular tetrahedron. The vertical direction corresponds
to the Y -axis

and numerical approach in the same context. In fact, we show that enforcing the Q-
tensor dynamics to be conforming and flat-degenerate in the normal direction via
(6.17) and (6.19) leads to the so-called tetrahedral configuration. This minimizing
equilibrium configuration consists of four +1/2-defects located at the vertices of a
regular tetrahedron inscribed in the unit sphere, as depicted in Fig. 12.

We take the initial condition proposed in Nestler and Voigt (2022). It consists of
two tangent vector fields on the unit sphere I given by

P, y, )T P(x,y,0)7
«_ POy Z)T  gf= 20 )T, (6.20)
[P, y,2)"] [P(x,y,0)"]

which have +1-defects at (£1, 0, 0) and (0, 0, +1), respectively. Next a composite
vector field m** on I' is defined as follows,

m<=q", y>0, m< =q°, y<0, (6.21)

With the help of this composite vector field, we construct a conforming, flat-degenerate
Q-tensor,

1
QO =S4+ (m” ® m* — EP) . (622)

The advantage of this initial configuration is that Qg quickly transforms into a
planar configuration of four +1/2-defects located in the X Z-plane and resembling
tennis ball patches (Fig. 12 (left)). This planar configuration slowly evolves toward the
minimizing tetrahedral configuration depicted in Fig. 12 (right). In this simulation, we
set
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Fig. 13 Stability of a homeotropic Q-tensor anchored to the unit sphere by y = 10 in the Beris—Edwards
model. The order parameter of the initial condition minimizes the double-well potential. The competition
between the elastic energy and the double-well potential drives the configuration to a new homeotropic
state with a constant order parameter s close to 0.6 which is shown at the most right snapshot. The Q-tensor
stays conforming and uniaxial for all times. The vertical direction corresponds to the X axis

—10,b=1,¢c=10; M =1, L=0.1, p=0.1, u =0.1;
a =100, y =10000,6 = 0.

The choice of penalization parameters ¢, y, § ensures that the Q-tensor stays conform-
ing and flat-degenerate in the normal direction for all times.

We observe from Fig. 12 that the final equilibrium configuration is still conforming
and flat-degenerate and it corresponds to the expected tetrahedral arrangement of four
+1/2-defects that maximizes the distance between defects (Nestler and Voigt 2022).
This shows the flexibility of our model to accommodate Q-tensor conformity via the
Hess—Osipov energy described in Sect.5.3. However, this desirable consistency does
not mean that our model always reduces to that in Nestler and Voigt (2022) in the
limit &, y — oo without further structural assumptions on the molecular field H. This
crucial discovery is under current investigation.

6.4 Homeotropic State: Instability and Weak Anchoring of Q-Tensors

Although it should be clear that the general kinematics of Q-tensors introduced in
Sect. 3 is inconsistent with the conformity assumption, we would like to demonstrate
how this assumption affects the behavior of the Beris—Edwards model in a concrete
example which is of standalone interest. Consider an initial condition on a unit sphere
which is homeotropic (i.e., conforming and uniaxial with respect to the normal n):

Q=ys4 <n®n—%l>

with the constant order parameter s from (5.5) that minimizes the double-well poten-
tial. The configuration is rotationally symmetric, and it is interesting to check if it is
a stable one.

Assume the Q-tensor has to stay conforming for all times. Since the elastic energy
of such radial configuration is nonzero, the elastic part of Landau—de Gennes energy
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The initial condition Qy is the same as in Fig. 13 but y is much smaller. Since the anchoring is not sufficiently
strong, the Q-tensor loses stability through non-conforming configurations, starting with the formation of
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each other initially. They eventually coalesce to form the global minimizer—a uniaxial state, uniform in
R3, with s = s as the order parameter. Top: maximal eigenvalue and corresponding eigenvector. Bottom:
biaxiality parameter 8[Q] and velocity field u (scaled by 5)
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Fig.15 Velocity fields (scaled by 5) for specific timest = 12 (left) and t = 21 (right) of the same experiment
as in Fig. 14. Coloring corresponds to the biaxiality parameter (5.3): Two dark spots with low biaxiality,
corresponding to Q-tensor defects, are surrounded by annuli with high biaxiality. The velocity fields for
splitting (left) and merging (right) of defects are similar but opposite. This saddle-like pattern of velocity
is consistent with the splitting and merging of defects for flat domains

can be minimized by either evolving the order parameter s from s to a smaller value
or even by generating a biaxial state which would break the radial symmetry. We
choose

a=—-1,b=1,¢c=1;, L=1,M=1, p=0.1, u=0.1; y =10,

in the double-well potential (1.3), the Beris—Edwards system (4.21), and the anchoring
energy (6.19), respectively. The effect of (6.19) is to penalize the lack of conformity,
whence the Q-tensor field evolves according to the first scenario, which slightly reduces
the order parameter while keeping the Q-tensor radially symmetric and homeotropic
provided y is large. In fact, for y — oo we expect a strong imposition of conformity.
Figure 13 documents this claim for y = 10 and reveals that the final radially symmetric,
conforming, homeotropic Q-tensor configuration is stable for moderate values of y.
To trigger the onset of instability, we perturb the initial director as follows

n+0.2(1, 0, 0)

— = (6.23)
In+0.2(1,0,0)|

Qo = s+ (ﬁ®ﬁ— %1) , =
and examine the full surface Beris—Edwards model (4.21) augmented with (6.19) via
the small parameter value y = 0.1. The numerical results, displayed in Fig. 14, reveal
that the initial configuration Qg loses stability because the weak anchoring provided by
y is not strong enough. The ensuing dynamics is quite rich: The instability manifests
first via the formation of a biaxial ring with 41 defect in the north pole (r = 10),
which splits into two +1/2 defects (t = 12). The nature of these defects is apparent
in the display of the Q-tensor in the first row. These defects initially repel from each
other (f = 16), but later they coalesce (r = 21 and t = 23). Figure 15 displays the
velocity fields for these extreme stages of splitting and merging: They are similar but
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point in opposite directions and resemble saddle-like patterns already documented in
flat cases. The final Q-tensor state is uniaxial uniform in R3, and close to the global
minimizer Q = s, (e, ® e, — 1) of the double-well potential with ey = (0, 1, 0)
pointing vertically in Fig. 14. The final orientation is affected by the perturbation (6.23)
of the initial condition.

This experiment indicates that the stability and evolution of simple Q-tensor config-
urations depend on the penalization parameter y which controls the anchoring energy
E pen[Q]. Itis thus conceivable that the actual size of y coming from materials science
applications might not be sufficiently large to enforce the conformity assumption.

7 Conclusions

This paper derives and explores a novel model of liquid crystal films with general
orientational order. For a given smooth, stationary and closed surface I', the main
contributions are:

e Non-conforming Q-tensors: We develop a new notion of Q-tensor kinematics on
surfaces, which hinges in Assumption 1. We introduce the surface corotational
derivative of Q-tensors (3.13) to transport a generically oriented Q-tensor field.
This allows for transport of Q-tensors such that the unit normal vector n to I" is
not an eigenvector (non-conformity). In this vein, Assumption 2 dictates how the
eigenframe of a conforming Q-tensor is transported.

e Energylaw: We invoke the generalized Onsager principle to derive a model with an
energy structure that mimics the Beris—Edwards model in R3. We impose Assump-
tion 3 to define the structure of the evolution laws. The derivation employs extrinsic
calculus in R3, thereby avoiding surface parametrizations and making finite ele-
ment discretizations in R readily available. The surface model contains three
distinct forces: the Leslie force A and Ericksen force fg, which already exist in
flat domains, as well as the new star force f, which is responsible for thermody-
namics consistency for non-conforming Q-tensors.

e Simulations: We conduct a systematic computational study of the surface Beris—
Edwards model to unravel the role of several forces and mechanisms. This includes

— experiments with the “dry” surface Landau—de Gennes (gradient flow dynam-
ics without linear momentum) to examine the novel Q-tensor kinematics;

— experiments that illustrate the role of the three forces A, fg and f, and their
profiles for a Q-tensor configuration with a degree +1 defect;

— experiments of the dynamics connecting two conforming states which undergo
more energetically favorable non-conforming intermediate states;

— conforming dynamics of four +% defects enforced via penalization that lead
to a regular tetrahedral structure consistent with Nestler and Voigt (2022).

— simulations of the instability of a radially symmetric, homeotropic Q-tensor
on a unit sphere due to insufficient anchoring, which showcases the effect of
non-conformity.
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The relaxation of the conformity assumption, via a thermodynamically consistent
model, and computational exploration of its consequences are the main novelties
of our work.
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Appendix A: General Notation

In this appendix, preliminary definitions and notations are clearly presented for the
ease of further reading. We adopt the matrix notation where a vector x is represented by
the column of its components X; = (X) ; in the standard basis e; of R", j € {1, ..., n}.
A linear operator A is represented by the n x n matrix A;; = (A;); where the vector
A = Ae; is the image of e; under A. The gradient of a scalar function f is a column
of partial derivatives, (V f); = 9; f. The matrix of the gradient of a vector field u
consists of rows of transposed gradients of the field components, (Vu);; = 9;u;. We
denote d; A the matrix (vector) of k-th partial derivatives of a matrix (vector) A applied
component-wise.

We will often use dyads. The dyadic or tensor product of two vectors, u Q v, is a
linear operator with the matrix representation uv’ , while the inner product u- v denotes
the scalar u”'v. A linear operator A may be represented by dyads involving either its
column vectors, Z;Zl Aj ® e;, or its row vectors, Z’}:l e ® (AT)j. Higher-order
tensor products can be derived from the associativity of u® v® q, e.g., (A ® u)v =
(u-v)Aand (U@ A)v = u ® (Av).

The standard gradient operator in R” for a scalar field f, a vector field u, and a
matrix field A is defined in the language of vector algebra as follows (Jankuhn et al.
2018)

n n n
Vf:Zejajf, Vuzzaju@)ej:Zej@Vuj,
=1 =1 i=1 ~e

n n
VA = ZajA(X)ej = Zej ®V(AT)j
Jj=1 j=1

The associated directional derivative in R"” along a vector v is given by
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(VTf)V=ZVj8jf, (Vu)v:Zvjaju:Z(Vuj-v)ej,
j=1 j=1 j=1 (A2)

n n
(VA=) v;0jA=) (VA)v®e;
j=1 j=1

Here and later, V7 f is a short notation for (V f)7. We define the pointwise inner
product of two matrices A and C as well as their gradients

n n n n
A:C=) A;-Cj= > A;jCj. VAiVC=) 9;A:9;,C=) VA;:VC;
j=1 i j=1 j=1 j=1
(A3)

The inner product of tensor fields on 2 C R” is defined as follows:

(f,g)sz=/fg, (U,V)Q=/U-V, (A,C)Q=/A:C
Q Q Q

The divergence operator is given by

n n
divu =tr(Vu), divA =) e;div(AT);, div(VA) =) e; ®divV(AT),
j=l1 j=1
(A4)

and we want to stress that the vector divergence is applied to rows of a matrix, and the
divergence of the gradient of a matrix is defined accordingly.

The following proposition summarizes some straightforward useful identities which
are consistent with the adopted notation.

Proposition A.1 (product rules) For any scalar field f, vector fieldsu, v, q, and matrix
field A, we have

V(fu) = fVu4+u@Vf, Vu-v) = Vv + (Vivu,
V(fA)= fVA+AQVS, V(Av) = ZviVA,- +AVy,
i=1
Vau®qv=Voveq+u® (Vq)v, div(fu) = fdiva+u-Vf,
div(u ® v) = (divv)u + (Vu)v, div(fA) = fdivA+ AV f,
div(ATu) =divA -u+A : Vu, diviu®A) =u®divA + (Vu)AT.

Again, VT is a short notation for (Vu)” . The following proposition summarizes some
integration by parts rules which are consistent with the adopted notation.

@ Springer



Journal of Nonlinear Science (2024) 34:5 Page570f63 5

Proposition A.2 (integration by parts) For any scalar field f, vector field u, and matrix
field A defined on a open domain Q C R" with boundary 92 and outer unit normal
n, we have

divu, flo = (fu,mse — @, Ve, WivA we=(A"un)me — A, Vu)g.

B: Integration by Parts and Tangential Decomposition of Tensors On
Surfaces

In this appendix, we present some results concerning the external and covariant tensor
derivatives used in this paper. More specifically, we derive formulas that show the
connection between the integration by parts on surfaces and tangential decomposition

of tensors. Note that throughout the paper the integrals are taken component-wise,
with respect to the ambient space R3.

LemmaB.1 (Gauss—Weingarten) Given a vector field u such that u(x) -n(x) = const,
forallx € Qg, the covariant and external derivatives are related by the shape operator
as follows:

Vyu=Vru—n®Bu, xe Qs. (B.1)
Proof For all j € [1, n], we compute

0=0j(w-n)=0;u-n+u-9d;n=(Vu); -n+u-(Vn);, Vxe Qs
which, due to the symmetry of B = Vn = B”, implies
(Viu)yn+Bu=0, xe Qs (B.2)

From the definitions and the property B = PB = BP, we deduce

Vyu—Vru= I —P)Vyu=NVuP =nn’ VuP =n ® (P(V 'u)n) = —n ® PBu.

This concludes the proof. O

The following corollary of Lemma B.1 is used in the development of the surface
model of liquid crystal flows.

Corollary B.2 (relation between spin tensors) For tangent vector fields, uy = 0, the
covariant and external spin tensors in (2.12) and (2.5) are related through

Wy (u) = Wr(u) + %(Bu@n—n@Bu). (B.3)
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B.1 Vector Fields

We decompose a vector field u on 25 into the tangent component ur and the normal
component uyn as follows:

u=ur +uyn, ur =Pu, uyn=Nu. (B.4)
Lemma B.3 (covariant divergence) For a vector field u = ur + uyn on Qs, we have
divru = divruy + uy trB.

Proof Using the definition (2.10), Lemma A.1, the cyclic property of traces, and PN =
0, we compute

divru = divr (Pu + Nu) = divr(Pu) + tr(Vr(Nu)) = divrur + tr(PV(Nu)P)
=divrur 4+ trB(u - n)

where the last step is due to the following identity
n n n
PV(Nu) = Z u;PVN; + PNVu = ZuiPV(nin) = Z w;,P(n;Vn +n ® Vn;)
i=1 i=1 i=1

= ZuiP(niVn) = (u-n)B.

i=1
This gives the assertion. O

Lemma B.4 (normal flux) For a normally extended vector field u = u®, we have

1
lim — / u~n—/ u-n =/(trB)u-n.
5—>028 1“;' ry r

Proof First consider a normally extended scalar f:

1 . e d ¢ _d e
g%£<fr;f —/8f)—d(s(/Faf)Ia:o—d(s(/rdet(lJrSBa)f)Ia:o

- </ 4 el +8B3)f€) ls—0 = /(trB)f.
r dé r

The proof concludes by applying this formula to products u¢n; of components of
a vector field u¢ and the normal n, and summation over i. O

Lemma B.5 (covariant integration by parts) For a vector field w and a scalar field f
on 2, the integration by parts over a closed surface I reads

(divru, f)r = (r(B) fu,n)r — (u, Vr f)r.
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Proof Since divru depends only on the values of u on I', we first restrict u to I" and
then extend it normally obtaining u®. We use Lemmas A.4 and B.4 and take the limit
6 — 0in

a a H 1
(reutmpy = (Ffump) = fim 5@ V5O,

1 1
lim L divat. Oy = tim
gim 55 vt e, 520 28

5220 26
to obtain

(divru, f)r = —(u, Vr f)r + (f(rB)u, m)r
because divru = divyyu =divu®and Vpr f = Vy, f = V f°. O

In view of (2.9) and (2.11), Lemma B.5 extends to tangential derivatives.

B.2 Matrix Fields

We introduce a tangential decomposition of matrices. For an arbitrary matrix A, we
compute

PAP = (I - N)A(I— N) = A — PAN — NAP — NAN
which suggests the following tangential decomposition

A=Ar+Ay +Anr, Ar =PAP, Ay =NAN, Apyr =NAP + PAN
(B.5)

Lemma B.6 (matrix decomposition) For a matrix field A on 25, the vector field divr A
has the following tangential and normal components:

PdivrA = PdivpAr + tr(B)PAn + BATn,  NdivprA = NdivrAr + divp (AT n)n.
Proof In view of (2.8) and (2.10), we deduce divrA = divr (Ar + AN+NA —NAN)
and treat each term separately. By definition (2.10), Lemma A.1, and the identity

divr(fn) = f divrn, we obtain

(divr(AN)); = dive(NAT); = divpN(AT);
= divr(m- (AT)j))n = (n- (A7) ;) divrn = tr(B)(An);

and (divp(NAN)); = tr(B)(NAn) ;. We use the identity divr(fu) = fdivru+u-
Vr f in

(divr (NA))

divr (A"N); = divrn;(A"n) = n; divr(A"n) + ATn - Vrnj,
divr(A"n)n; + A’n-B; = divr(A"n)n; + (BA"n);
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and put together all the components as follows

divrA = divrAr + tr(B)An + divr (A n)n + BA"n — tr(B)NAn
= divrAr + divp(ATn)n + tr(B)PAn + BA'n.

The claim follows due to B = PB. O

Lemma B.7 (covariant integration by parts) For a vector u and a matrix A on Qs, we
have

(divrA,u)r = —(A, Vyuw)r + ((trB)An, u)r

Proof Since divrA depends only on the values of A on I', we first restrict A and u
to I and then extend them normally obtaining A¢ and u®. We use Proposition A.2 to
obtain

(divA®,u9)g, = —(A°, Vu)g, + AT’ mps — (ATu’, m)
We take the limits § — 0:

R
lim 55 (divA®, u)

§—0

. .1
Qs = (leAe, ll)l_, s SIE)I%) %(Ae, Vlle)Q{S = (A, Vlle)[‘

. 1 T, e T. e _ T _
lim — (Au’ mpy — AT ) ) = (CBA um)r = (tB)An, Wy

and conclude the proof by noticing div A® = divyyA = divrA and Vu® = Vyu #
Vru. O

Remark B.8 We point that for both vectors and matrices the decompositions in Lemma
B.3 and B.6 contain terms that have counterparts in Lemma B.5 and B.7. This fact is
used in the derivation of the model in Sect. 4.

Corollary B.9 (external integration by parts) For matrix fields A, C on Q25, we have

(divy VA, Or = = (VyA, VyO)r.
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Proof The assertion follows from Lemma B.7 and (Vj;AT)n = 0. In fact, we have

(divyy VA, C)p = (Ze,- ® divu Vi (A1), Y e ® (CT),-)r

j=1 j=1
= (divy Vi (AT);. (€T)j)r
j=1

==Y (VA ;. Vi (CT))r + (@B) (Vi (A7) n, w)r
j=1

==Y (Vu@AD);, V(€ )r
j=1

= —(Yer® V@A), Y e;® Vi (CT);) = ~(VuA. VuOr.
j=1 j=1

This concludes the proof. O
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