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Introduction: There is a critical need to develop innovative educational
strategies that engage youth in meaningful mathematics learning, particularly
students from groups that have been historically marginalized in science,
technology, engineering, and mathematics (STEM). In this study, we explore
youths’ participation in two collaborative projects from the Growing Mathletes
curriculum which combines baseball contexts and mathematics. Our goal was
to understand the potential of these projects to support youths' engagement
with mathematical ideas and practices, and the extent to which youth leveraged
a range of resources, including prior experiences and funds of knowledge, to
inform their decisions and understanding.

Methods: The Design a Stadium and Baseball Team Roster projects were
implemented in two afterschool setting sites and two summer program sites
with 102 youth of all genders in grades 3 to 8. Data sources included video
recordings of youth participation in the project, project artifacts, and youth
interviews.

Results: We found the projects contained specific features that supported
youths’ engagement in three specific mathematical practices: (1) make sense of
problems and persevere in solving them, (2) reason abstractly and quantitatively,
and (3) construct viable arguments and critique the reasoning of others.
Additionally, there is evidence that while engaging in these projects youth drew
on their own funds of knowledge to inform their decisions and understanding.

Conclusion: Our findings point to key implications for researchers, educators,
and curriculum developers in informal STEM learning spaces.

KEYWORDS

informal STEM learning, mathematics learning, mathematical practices, project-based
learning, sports activities

Introduction

There is a critical need to develop innovative educational strategies that engage youth from
diverse racial, cultural and linguistic backgrounds in meaningful mathematics learning
(Celedodn-Pattichis et al., 2018). The decontextualized and procedure-oriented nature of
traditional, school-based mathematics instruction often fails to capture the interest of students
(Boaler and Greeno, 20005 Ellis and Berry, 2005; Walkington, 2013). This is particularly true
for students from groups that have been historically marginalized in science, technology,
engineering, and mathematics (STEM; e.g., African American, Indigenous, and Latinx youth),
as even contextualized mathematics activities from traditional school curricula often fail to
reflect their identities, experiences, and perspectives (Ladson-Billings, 2009). This disconnect
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separates students’ cultural strengths and experiences from their
mathematics learning (Leonard, 2008; Celedon-Pattichis et al., 2018),
and for some youth, leads to disengagement and lower achievement
(Spencer, 2009), particular in comparison to settings that build on
students’ interests and identities (Clark et al., 2013; Walkington, 2013).

Informal learning spaces, such as after-school programs and
community centers, provide unique opportunities to support STEM
learning (McCombs et al., 2017), in part because they can offer flexible,
interest-based, collaborative activities (Afterschool Alliance, 2013).
Informal learning spaces are also often community-centered and can
provide more positive STEM experiences for youth who have had
negative experiences in school (McCreedy and Dierking, 2013; Bathgate
and Schunn, 2017). Project-Based Learning (PBL), an approach that
emphasizes real-world problem solving (Capraro et al., 2013), has been
shown to be effective in informal learning settings, particularly when
projects are grounded in culturally responsive, meaningful contexts
(Lipka et al., 2005; Enyedy et al., 2011). For example, PBL activities that
connect mathematics and sports such as baseball have the potential to
be high-interest, relevant contexts for engaging mathematical ideas (e.g.,
averages, data analysis) and practices (e.g., problem solving; Kirk and
Kinchin, 2003; Casey and Quennerstedt, 2015). Despite the promise of
such activities, there is a lack of curricular resources for PBL in informal
learning spaces (Pattison et al., 2017a). Moreover, given that most
research on informal STEM learning spaces focuses on science,
technology or engineering, rather than mathematics, there is a need to
better understand how youths’ participation in mathematics-focused
PBL supports their engagement with mathematical ideas and practices
(National Governors Association Center for Best Practices and Council
of Chief State School Officers, 2010). In the Growing Mathletes Project,
we aimed to address these research needs and challenges, through the
design, implementation and study of baseball and mathematics PBL
activities in informal learning environments that serve youth from
diverse backgrounds, including youth from groups historically
marginalized in STEM (Latinx, African-American youth). Our study
adds mathematics learning-focused findings to research on informal
STEM education, and provides insights for informal educators and
curriculum developers.

Focus of our study

In this study, we explore youths’ participation in two collaborative
project-based activities that were implemented in afterschool and
summer camp programs focused on connecting baseball and
mathematics. Our goal was to understand the potential of these
projects to support youths’ engagement with mathematical ideas and
practices, and the extent to which youth leveraged a range of resources,
including prior experiences and funds of knowledge, to inform their
decisions and understanding. Specifically, our study addressed the
following research questions:

RQ1: How do youth engage key mathematical practices (National
Governors Association Center for Best Practices and Council of
Chief State School Officers, 2010) as they participate in the
Baseball Team Roster and Design a Stadium project projects in
informal learning settings?

RQ2: What resources do youth draw upon to support their

decision making and understanding?
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Literature review

In the following sections, we discuss research on informal
environments and their potential for supporting mathematics
learning, and then introduce STEM focused PBL as a specific strategy
for informal spaces such as afterschool programs and summer camps.
We end by discussing the importance of grounding projects in
relevant, meaningful contexts, and propose that connections between
sports and mathematics hold promise for engaging youth typically
underserved and underrepresented in STEM fields.

Informal learning spaces and mathematics
learning

While most research in mathematics education focuses on formal,
classroom-based learning, there is growing interest in the diverse ways
that youth participate in mathematical practices and develop
mathematical understandings in contexts outside of school. Informal
learning spaces include more structured spaces such as afterschool
programs or summer camps, and more open-ended spaces such as
museum exhibits, nature centers, and playgrounds. Informal
mathematics learning environments are often designed with specific
goals in mind, such as supporting mathematical reasoning and
learning (National Research Council, 2009). Yet in comparison to
schools, these settings reflect a more relaxed and collaborative
atmosphere which can increase student engagement and motivation
(Vadeboncoeur and Padilla-Petry, 2017; Falk and Dierking, 2018). In
addition, informal learning spaces that promote engagement and
learning are typically characterized by interactive activities,
opportunities for collaboration (e.g., Werner et al., 2009) and open-
ended projects that include choice and creativity (e.g., Denner and
Werner, 2007; Tan et al., 2013; Sager et al., 2023).

Research suggests that informal learning environments support
youths’ curiosity toward STEM, their engagement in STEM-related
activities, and understandings about the relevance of STEM disciplines
in their lives (Noam et al., 2003; Afterschool Alliance, 2013), all of
which can buffer against potentially negative experiences with STEM
in school (McCreedy and Dierking, 2013; Bathgate and Schunn,
2017). Specific to mathematics, research on play in informal learning
spaces has shown that youth engage in mathematics strategically and
flexibly as a way to solve authentic problems that arise in the setting
(Fisch et al., 2009; Martin et al., 2009). For example, Nasir (2012)
found that youth set and pursued emergent goals as they played
basketball, many of which involved complex mathematical reasoning
such as calculating shooting averages and using those metrics to
improve their game. Notably, while youth engage with mathematical
ideas and strategies in informal spaces, via practices such as
visualization, estimation and analyzing outcomes (Nasir and Hand,
2008) they do not always view their practices as mathematical, because
of narrow, school-based conceptions of mathematics that privilege
computation (Kliman et al., 2013). This suggests that informal
learning settings designed to support mathematics learning need to
call attention to mathematical ideas and help youth to see their
practices as mathematical.

Another pressing challenge is ensuring that informal learning
spaces are accessible to youth from diverse backgrounds. Some
research suggests that community-based afterschool and summer
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camp programs may benefit youth who may not be well-served by
other informal settings (Dawson, 2016). For instance, while museums
are powerful levers to advance interest in STEM, they are less visited
by culturally and linguistically diverse families, potentially because of
fiscal barriers or feelings of not belonging (Falk, 1993; Melber, 2007;
Dawson, 2014). In contrast, community-based centers such as Major
League Baseball (MLB) Youth Academies, which host both afterschool
and summer camp programs, were built in under-resourced
neighborhoods with the explicit purpose of attracting African
American and Latinx youth, a goal that they have successfully met
(MLB.com, 2015; ESPN.com, 2017). Another example are Boys and
Girls Clubs which work with youth over sustained periods of time,
supporting multiple aspects of development (e.g., intellectual, socio-
emotional; National Research Council, 2009). While these types of
informal learning spaces are positioned to engage youth who have
been historically marginalized in STEM fields (Dawson, 2016), they
also face challenges, including a lack of high-quality curricula for
informal STEM learning, and a lack of preparation to support STEM
content (Afterschool Alliance, 2013). The next section describes one
strategy, PBL, to address these challenges.

Project-based learning in informal learning
spaces

Several strategies have been identified to enhance mathematics
learning in informal settings. Perhaps the most-cited approach is the
integration of project-based learning (PBL), in which youth develop
strategies and solutions to address broad, real-world questions
(Capraro et al., 2013). There are several critical components of PBL,
including activities that are guided by a driving question (Darling-
Hammond et al., 2008), opportunities for collaboration, discussion,
and reflection (Larmer et al.,, 2015), and the creation of a final artifact
or model to showcase learning (Krajcik et al., 2022). The openness,
choice and relevance of PBL projects allows youth to draw on prior
experiences and knowledge to generate unique strategies and solutions
(Darling-Hammond et al., 2008). Benefits of STEM-focused PBL in
informal learning settings include enhanced engagement and learning
(Capraro et al., 2017), and increased interest in STEM and STEM-
related careers (Tseng et al., 2013; Mohr-Schroeder et al., 2014; Kwon
etal, 2021). PBL also encourages the development of critical thinking
and problem-solving skills (Bevan et al., 2015; Schukajlow et al., 2018).

Despite strong consensus on the benefits of PBL in STEM-focused
informal learning settings, most studies have investigated science (e.g.,
Mateos-Nufiez et al., 2020), robotics (e.g., Newton et al., 2020), or
engineering-focused projects (e.g., Yilmaz et al., 2010), rather than
mathematics. Mathematics-focused PBL involves students in complex,
real-world projects, to promote a deeper understanding of
mathematical concepts and practices (Pattison et al., 2017a). For
example, Cross et al. (2012) described a statistics focused project in
which elementary age youth in an afterschool program collected and
analyzed data to explore school breakfast options that would both
encourage students to eat breakfast and also support their learning.
They found that the project was relevant and connected to students’
interests, while addressing important statistical ideas such as sampling,
distribution of data, and data representations. In related school-based
research, Ozdemir et al. (2015) found that middle school students
improved their mathematical understanding and their attitudes
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toward STEM following a project-based unit that included ratios,
proportions, and percentages. Similarly, Holmes and Hwang (2016),
documented the impact of mathematics PBL projects with racially and
economically diverse 8th and 9th graders; participating students
evidenced increased motivation, critical thinking, and understanding
of mathematics concepts.

To document the impact of STEM-focused PBL in informal
learning settings, researchers often focus on outcomes such as beliefs
or attitudes (Marshall et al., 2021; Bicer and Lee, 2023), or content
knowledge (Han et al., 2014). There is a need for more robust,
qualitative assessment tools that can capture the multifaceted impacts
of PBL (Thomas, 2000; Vadeboncoeur and Padilla-Petry, 2017),
including how PBL supports engagement in disciplinary practices.
While not specific to informal learning settings, various researchers
have suggested that rubrics may be particularly well suited to capture
the complex outcomes of PBL activities (Brodie and Gibbings, 2009;
Petrosino, 2023). Developing and investigating such tools is
particularly important for mathematics-focused PBL, given the
limited number of studies that have specifically examined
mathematics-related outcomes. Mathematics-focused PBL activities,
which include complex, real-world questions that allow for multiple
strategies and solutions, have the potential to support students’
engagement in the Standards for Mathematical Practice (National
Governors Association Center for Best Practices and Council of Chief
State School Officers, 2010), fostering skills such as problem-solving,
reasoning, and communication. For example, PBL creates
opportunities for youth to make sense of open-ended problems and
persevere in solving them (Mathematical Practice 1; Capraro et al.,
2013). Similarly, in mathematics-focused projects youth may draw on
data to develop mathematical arguments, and they may consider,
critique, and respond to the reasoning of others (Mathematical
Practice 3). Despite the promise of PBL for supporting students’
engagement in mathematical practices, research in this area is
extremely limited, particularly in informal learning spaces that serve
youth from diverse and underrepresented backgrounds. The next
section focuses specifically on the importance of grounding projects
in relevant contexts that draw on youths’ experiences and interests.

Relevant projects that connect
mathematics and sports

PBL activities that connect to youths interests and to relevant,
culturally responsive contexts have shown particular promise for
engaging youth who have been historically marginalized in STEM
(Nasir, 2012; Krajcik et al., 2022). When PBL activities are grounded
in familiar contexts, and to questions that relate to youths’ interests
and experiences, this encourages youth to draw on what they know,
including funds of knowledge from their communities and everyday
activities (Gonzalez et al., 2005; Simic-Muller et al., 2009; Turner et al.,
2009). One promising context for PBL in informal learning settings
are sports related activities, both because of the STEM connections
and the fact that many youth participate or express interest in sports
(Aspen Institute, 2018; Jones et al., 2020). For example, Marshall et al.
(2021) engaged underrepresented middle school youth (African
American, Latinx, multi-racial) interested in sports in a summer camp
that combined basketball, analysis of basketball performance data, and
biomechanics related activities. They found that youth demonstrated
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enhanced STEM-identities (i.e., familiarity, interest, perceived
importance) on post-camp surveys (see also Drazan et al., 2017).
Similarly, Jones et al. studied a sports and computing summer camp
for elementary grade Black and Latinx youth and found that youth
expressed strong interest in sports, and on post camp surveys,
evidenced increased understanding of the utility of technology
in athletics.

Baseball in particular provides rich contexts for the application of
mathematical concepts and practices (Casey and Quennerstedt, 2015).
As noted by Quinn (1996), baseball statistics such as batting averages,
earned run averages (ERAs), and on-base percentages provide
practical examples for teaching concepts like ratios, percentages, and
probability. Similarly, using baseball contexts in mathematics activities
creates opportunities for students to engage in mathematical practices
(National Governors Association Center for Best Practices and
Council of Chief State School Officers, 2010), such as problem solving,
and to develop critical analysis skills. For example, a study by Kirk and
Kinchin (2003) shows that analyzing baseball data requires students
to interpret statistical information, make predictions, and solve
complex problems. According to Wang et al. (2017) middle school
students who played a sports-related computer game about running
races demonstrated problem solving and quantitative reasoning skills
(i.e., reasoning about relationships between speed, time and distance),
and a willingness to accept challenges.

The use of sports contexts to explore mathematics can also foster
collaboration and a sense of community among youth. A study by Nasir
(2012) found that peer collaboration in sports-related activities helped
students develop a deeper understanding of mathematical concepts
through shared problem-solving and discussion. This is important,
because when learning settings support collaboration and risk-tasking,
engagement is enhanced (Boaler and Greeno, 2000; Boaler, 2002; Nasir,
2012). However, a key challenge in using sports contexts, such as baseball,
to teach mathematics is the availability of relevant resources. Informal
learning settings may lack access to relevant materials to effectively
integrate these contexts into their programming (Afterschool Alliance,
2013). Additionally, while connecting sports and mathematics can
enhance youth engagement, ensuring that the activities are educationally
valuable can be challenging. As McCombs et al. (2017) emphasize,
educators must carefully design activities to balance sports-related content
with mathematical learning objectives. Our work in the Growing
Mathletes program aims to address this challenge, through the design,
implementation and study of sports and mathematics PBL activities in
informal learning environments that serve youth from diverse
backgrounds. This study will contribute mathematics education focused
findings to the growing body of research on informal STEM education,
and provide research-based insights for informal educators and
program designers.

Methods
Growing Mathletes Program context

The Growing Mathletes program is an National Science Foundation-
funded research and design project aimed at broadening participation
in STEM for youth from underrepresented backgrounds. The
curriculum consists of 21 sessions for youth in grades 3 through 8, each
of which include activities that connect sports (primarily baseball and
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softball), mathematics concepts, and growth mindset concepts. For
example, in the Strike Zone session youth learn about the concept of
strike zones (the area above home plate that is used to determine
whether a pitch is a strike or a ball) in baseball. They measure the height
of their individual strike zones, create a representation on chart paper,
and calculate and plot the area. Next, they use their chart paper
representations to practice pitching balls toward their strike zone,
calculating the number of “strikes” and “balls” thrown in a set of 10
attempts. The session concludes with a discussion of mistakes, and how
reflection on mistakes can support learning and performance
improvements in sports, school and other areas of life. Other sessions
introduce youth to additional baseball performance statistics such as
batting average, earned run average, hits and home runs, and provide
youth with opportunities to generate, represent and analyze their own
data. Analysis of program outcomes across multiple implementations
has shown that youth demonstrate a small but statistically significant
increase in their growth mindset for mathematics on post program
surveys, and report increases in understanding of specific mathematics
concepts, such as fractions, decimals and percents, in post session
interviews (Baze et al., 2024).

The Growing Mathletes curriculum also includes two projects which
are the focus of this study: Baseball Team Roster, and Design a Baseball
Stadium. In both projects, youth work in small groups to plan, create, and
present a final product (see Appendices A,B). In the Baseball Team Roster
project (Roster project), the driving question is: How can we create a
9-player MLB baseball team roster that meets salary requirements and
maximizes performance? In the project, youth use various batting and
pitching statistics from a recent season (e.g., batting average, hits,
homeruns, earned run average, strike outs, wins) to select players for their
own 9-player roster, within a specified salary cap. As they plan their
rosters, youth interpret the relative importance of different player statistics
(i.e., which statistics are most important when selecting a pitcher, vs. a
position player), and they work collaboratively to optimize multiple
criteria (maximum performance among the players on their team, for
minimum cost). They present their rosters to the group, justifying their
selection of players and explaining the criteria they used to make
decisions. As a whole group, youth compare their rosters by analyzing the
batting averages of players on their teams, and comparing the total hits or
homeruns achieved by players on their roster to the salary dollars spent.

In the Design a Stadium project (Stadium project), the driving
question is: How can we design a MLB stadium that will attract fans,
including youth, and meet their needs? Youth research some of the 30
Major League Baseball stadiums and develop a proposal for their new
stadium. Their stadium plans must include the distances of the outfield
wall (which are different for every ballpark), unique stadium features
to attract fans (giant scoreboards, recreational areas, etc.), seating
capacity (overall and by section), and ticket prices. As part of their
design proposals, youth estimate how much it would cost for their
family (or a group of friends) to attend a game at their stadium. Youth
present their stadium plans to the group, justifying their decisions and
how they used different criteria and priorities to guide their designs.

Participants
The Growing Mathletes program has been implemented in various

informal learning settings, including Boys and Girls Club afterschool
programs, and sports and STEM related summer camps at MLB
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TABLE 1 Overview of youth participants at each informal learning site.

# Youth/# Facilitators

Gender/age of youth

10.3389/feduc.2024.1456653

Small groups included in analysis, by project

(50 youth for Roster, 23 for Stadium)

Southwest Afterschool Site 1 19/1 Ages 10-13, 9 girls, 10 boys Group A (Roster): 1 girl, 3 boys
Group B (Roster): 2 girls, 2 boys
Group C (Roster): 2 girls, 1 boy
Group D (Stadium): 4 girls
Group E (Stadium): 4 boys
Group F (Stadium): 3 girls, 1 boy
Southwest Afterschool Site 2 20/1 Ages 8-13, 14 girls, 4 boys, Group G (Roster): 3 girls, 2 boys
2 did not report Group H (Stadium): 4 girls
Group I (Stadium): 3 girls
Group J (Stadium): 4 girls
Southwest Summer Camp 1 18/2 Ages 8-13, 8 girls, 9 boys, 1 did Group K (Roster): 4 boys
not report Group L (Roster): 3 girls
Group M (Roster): 4 boys
Group N (Roster): 3 girls
Southwest Summer Camp 2 29/2 Ages 8-13, 10 girls, 18 boys, Group O (Roster): 3 girls, 1 boy
1 did not report Group P (Roster): 3 girls
Group Q (Roster): 4 boys
Group R (Roster): 2 girls, 2 boys
Central Summer Camp 16/2 Ages 8-13, 3 girls, 12 boys, Group S (Roster): 3 boys
1 did not report Group T (Roster): 2 boys

academies. For each implementation, our project team provided
professional learning support to adult facilitators (initial training,
opportunities to engage in sessions as learners, ongoing coaching during
implementation) at each of the sites. In this analysis, we draw on data
collected from two afterschool sites in the Southwest region of the
United States, and two summer camp sites in the Southwest and Central
regions of the United States. An overview of the youth participants
(total=102) from each site is provided in Table 1. Information about age
and gender was self-reported by youth on surveys.

At all sites, youth participants reflected the racial/ethnic
background of the surrounding schools and communities. At the two
Southwest afterschool sites, youth participants attended schools
within walking distance of the Boys and Girls Clubs. The schools
predominantly served students from minoritized backgrounds [Latinx
(45% Site 1, 57% Site 2), Black/African American (17% Site 1, 21% Site
2), White (24% Site 1, 14% Site 2), two or more races (7% Site 1, 3%
Site 2), American Indian (3% Site 1, 4% Site 2)]." The Southwest
summer camp site also drew youth from the surrounding community,
though some youth attended from other parts of the city. The
community population was 55% White, 31% Latinx, 6% 2 or more
races and 3% Black/African American, based on census tract data
(FRB Census Geocoder, 2024). The Central summer camp also drew
youth from the surrounding community, which was 48% Black/
African American, 43% Latinx, 5% White, and 2% two or more races
(FRB Census Geocoder, 2024). At the Boys and Girls club sites, some
youth participants had experiences with sports, including baseball, but

1 www.usnews.com/education/k12/
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for most, their primary source of knowledge was the Growing
Mathletes program. In contrast, the two summer camp sites drew
youth with interest in baseball; many camp participants played
baseball or softball in local leagues.

Data collection

The primary data sources for this study were (a) video recordings
of 20 small groups as they worked on the projects outlined above (14
Baseball Team Roster groups, and 6 Design a Stadium groups), and (b)
the artifacts they produced (i.e., planning notes, final project posters).
We selected these data sources given our research focus on how
program activities supported youths’ engagement in mathematical
practices; video recordings of youths’ interactions in extended projects
allowed detailed documentation of youths’ participation in these
practices, including evidence of youths’ actions, decisions, and
discussions. Members of our research team reviewed each video and
created detailed content logs that described the small groups’ activity
in 5min increments. Stopping the videos after each 5min increment
allowed research team members to capture the details of youths’
interactions, including exchanges with the facilitators, specific
examples of the reasoning youth used to make decisions, conversations
or debates among youth in the group, and descriptions of mathematical
concepts or practices employed. While the logs did not include a full
transcript of the interactions, we transcribed specific excerpts to
capture youths’ activity and reasoning related to key group decisions.
Secondary data sources included (a) detailed field notes taken by
project team members as they observed these sessions and (b)
transcripts of interviews with a subset of youth participants following
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each project session. This included interviews with 12 of the 50 youth
from small groups included in the analysis of the Roster project, and
8 of the 23 youth from small groups included in our analysis of the
Stadium project. Interviewed youth included 12 girls and 8 boys, and
all but 2 youth were from Latinx, African American or mixed-race
backgrounds. While the broader purpose of these interviews was to
elicit youths’ feedback to inform iterative revision of program
activities, for this analysis we used segments of the interviews that
included youths’ descriptions of their participation in the Roster or
Stadium projects to add additional context to the video recordings and
collected artifacts.

Analysis

Data analysis was organized around three phases. In Phase I,
we used the video recordings, detailed content logs, and group
artifacts to score each small group’s project work using an analysis
rubric. The analysis rubric included dimensions focused on use of
mathematics concepts including number sense and operations,
and mathematical practices such as MP 2: Reason abstractly and
quantitatively, and MP 3: Construct viable arguments and critique
the reasoning of others (see Table 2 for selected dimensions in the
analysis rubric). A final dimension of the analysis rubric focused
on the resources and supports youth drew upon to inform their
decision making including prior experiences and knowledge,
facilitator suggestions, and peer support. For each dimension of
the analysis rubric, we noted whether the small group interactions
reflected limited evidence (i.e., a single, isolated instance, or
evidence from a single youth in the group, or several instances
which were brief and lacking in depth), strong evidence (i.e.,
repeated, meaningful instances, evidence from multiple youth in
the group), or a lack of evidence. To ensure credibility of our
interpretations (Lincoln and Guba, 1985), two members of the
research team individually scored each small group using the
analysis rubric, and then met to compare their analyses.
Differences in scores were resolved via discussion. When
necessary, we consulted videos for additional information. In
Phase 2, we triangulated the evidence on each small group’s
analysis rubric against relevant secondary data sources including
segments of researcher field notes that focused on the interactions
of that specific group, or interviews with youth participants.
We noted instances when secondary data sources confirmed
evidence already recorded on the group’s rubric, and added
additional evidence (e.g., interview quotes) as appropriate. In
Phase 3, we analyzed the small group rubric evidence across
groups to identify themes related to our two research questions.
Following a process of thematic analysis (Creswell, 2009), we first
reviewed evidence for a given dimension (i.e., Making Sense of
Problems, Problem Solving) across groups and generated initial
codes to label different ways that groups evidenced that dimension,
including how they enacted mathematical practices and the
resources and supports that they drew upon to support decision
making. When multiple dimensions related to the same
mathematical practice (i.e., the dimensions Communicating
Reasoning and Mathematical Arguments and Considering,
Responding, Critiquing the Ideas of Peers both related to MP 3:
Construct viable arguments and critique the reasoning of others)
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TABLE 2 Description of selected dimensions from analysis rubric for
small group projects.

Dimensions (with connection to math practices)?

A. Making Sense of Problems, Problem Solving (MP 1): Persistence in solving
complex problems; Identifying different problem solving approaches; Monitoring
progress and making adjustments as needed.

B. Number Sense and Operations (MP 2): Making sense of quantities including
multi-digit numbers, fractions, decimals in problem situations; Reasonable
estimates; Decontextualizing situations and representing them symbolically;
Executing relevant operations flexibly and accurately; Interpreting the meaning of
quantities and operations.

C. Reasoning across multiple data sources (MP 2): Attending to the meaning and
relative importance of different quantities in relation to the real-world scenario to
inform decisions.

D. Communicate Reasoning and Mathematical Arguments (MP 3): Explaining and
justifying ideas, approaches and strategies; Explaining the reasoning behind
decisions; Constructing an argument to justify a decision.

E. Considering, Responding, Critiquing the Ideas of Peers (MP 3): Making sense of
peers’ ideas; Asking questions, responding to, or critiquing the ideas of others;
Revising one’s own thinking in response to ideas from others.

F. Use of Tools (MP 5): Strategic use of tools (calculators, rulers, tables or graphs) to
support problem solving.

G. Attention to Precision (MP 6): Attention to precision in selection of quantities,
calculations, and/or measurements; Attention to clarity in representations (clear
use of symbols and labels) and communication.

“Each dimension was scored as either Strong, Limited, or None based on the amount of
evidence found.

we reviewed the evidence across these dimensions to generate
initial codes. Next, we reviewed codes and associated evidence to
identify themes related to how small groups evidenced specific
mathematical practices, including similarities and differences
(RQ1), and related to the resources or supports youth drew upon
to inform their decision making (RQ2). This process involved
drafting themes, checking the theme against relevant evidence
across different small groups, and then creating a detailed memo
for each research question that described prominent themes and
illustrative examples. Our findings are organized around these
key themes.

Findings

Our findings are organized around our two research questions.
For research question 1, we highlight themes related to the
mathematical practices that were most prominent (MP 1, MP 2, and
MP 3) as youth worked on collaborative projects in the informal
learning environments. Of the 20 small groups, all but 1 or 2
demonstrated at least “limited evidence” of these mathematical
practices, and approximately half of the groups demonstrated
strong evidence. In comparison, other mathematical practices, such
as MP 5 and 6 were less evident; approximately one-third of groups
lacked evidence for these practices, while half demonstrated limited
evidence, and several groups had strong evidence. Our findings are
organized around themes related to the mathematical practices
most salient in our analysis (MP 1, 2, and 3), offering evidence for
the role of specific project features to promote meaningful
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engagement of these practices. For research question 2, we outline
the range of resources that youth leveraged to support their work,
and then highlight the varied ways that youth drew on knowledge
from other experiences and contexts to inform their work. All
youth names used are pseudonyms. We end with a discussion of our
findings, and implications for further research and curriculum
development for informal STEM learning environments.

Findings for RQ1: youths’ engagement with
specific mathematical practices

Our analysis of small group interactions on the Roster and
Stadium projects demonstrated that youth engaged in six of the
eight mathematical practices (National Governors Association
Center for Best Practices and Council of Chief State School
Officers, 2010). Before we turn to the three practices that were
most prominent (MP1, MP2, and MP3), we briefly describe
youths’ engagement with other practices. In both projects youth
evidenced MP 5: Use Appropriate Tools Strategically, and MP 6:
Attend to Precision in complementary ways as they used
calculators to execute, check or revise calculations, or used rulers
to sketch accurate models of their field design (e.g., using rulers
to ensure an equal distance between bases in the infield). MP 4:
Model with Mathematics was also evident in small groups’ work,
as youth used equations to model the total salary of their MLB
roster, or the cost of attending a game in their stadiums. Youth
also engaged in MP 4 as they identified and related important
quantities (e.g., size and location of seating sections, compared
to ticket prices in the Stadium project), and interpreted their
mathematical results in the context of the real-world situation.
These instances of modeling with mathematics typically involved
other mathematical practices, such as problem solving (MP1) or
quantitative reasoning (MP2), and thus are discussed in the
corresponding findings sections below. Two mathematical
practices related to the use of patterns and structures (MP7) and
the recognition of repeated reasoning (MP8) were less evident in
youth interactions, likely due to the lack of focus on mathematical
patterns and structures in the projects, and thus are not a focus
in the findings sections that follow.

MP1: make sense of problems and persevere in
solving them

As youth engaged with each of the project-based tasks
(Baseball Team Roster and Design a Stadium) they evidenced
specific practices related to MP1: Make sense of problems and
persevere in solving them. First, as youth made sense of the goals
of each project and considered possible problem solving
approaches, they made strategic decisions that facilitated
calculations and helped them to keep track of their progress. For
example, in the Roster project, multiple groups opted to select the
most important, and potentially most expensive players first,
such as the pitcher, and to track their spending along the way so
they were aware of how much money was left after each player
selection. Group P from the Southwest Summer Camp site started
by selecting the team pitcher and catcher (positions that they
deemed most important), and then calculated their remaining
salary funds.
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Sofia: (as she subtracts the two player salaries from 70,000,000), Hold on,
I'am trying to see how much money we have left. We have two
players, the pitcher and catcher. We have 53 million left. Now the first

baseman.

[Harper and Ya'Nai select the next player, who has a 5 million dollar salary.]

Sofia: Now we have 48 million left.
Harper: That’s pretty good.
Sofia: But [for our other players] noone that has 20 million salaries,

because we will not have enough. Anyone who has a 22 million salary

(looking at one of the player cards) is out of the competition.

They continued this process as they selected the remaining 6
players, calculating available funds after each selection to ensure that
they did not overspend the allotted salary budget.

In the Stadium project, youth made purposeful decisions about
quantities to facilitate calculations with larger numbers, which
supported efficient progress through the task. For instance, Group D
from a Southwest afterschool program site strategically used multiples
0f 5,000 or 10,000 as they planned the seating sections in their stadium
so that they could easily ensure that the capacity of their sections
equaled the total capacity of the stadium (100,000). Initially, they
designated 20,000 seats to each of 5 seating sections (because they
knew 5 times 20,000 is 100,000). Later, they revised this plan to allow
for more seats in the “cheaper sections,” but continued to use quantities
that facilitated efficient mental calculation. Another small group of
elementary grade students at the same Southwest site, Group F, used
a similar approach, explaining to the program facilitator that they used
“friendly numbers” for their seating capacity and ticket prices of each
section to make it easier to review and keep track of calculations.

Second, as youth worked on the projects, they evaluated their
progress, reflected on whether their approaches to the problem made
sense, and made adjustments as needed. In some instances, these
adjustments were based on the constraints of the project, and other
times based on their real-world reasoning about the situation. For
example, in the Roster project, some groups spent less than the allowed
salary dollars on their team roster, and decided to use the remaining
funds on additional players to strengthen the team. Group R at the
Southwest summer camp site decided to draft a second pitcher, given
the importance of this position. One youth in the group explained, “after
we picked and had all the [required] players. We had more extra salary
and thought that it would be helpful to have an extra pitcher just in case””

Josiah: Should we draft another pitcher, since we have extra money to spend,
should we get Lance Lynn?
He’s [with] in budget

Ariya: Wait, you want the pitcher to have the lowest salary?

Liam: This is a second pitcher.

Josiah: Lance Lynn from the White Sox is only $10 million.

In other cases, youth found that their selected players exceeded
the salary limit, and they had to make adjustments to their selections.
For example, Group K from the Southwest summer camp site totaled
their selected player salaries and discovered that their roster was $17
million over budget. They debated which player to “lose” in favor of
another, less expensive option.
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Levi: Ok, we are over budget.

Mateo: by how much?

Levi: $17 million.

Xavier: by $17 million? Were over budget by just $17 million!

Facilitator: Oh, that’s a lot. ... You have to sacrifice somewhere.

Mateo: I know, I'm doing it, 'm doing it.

Xavier: We're not sacrificing.

Levi: Yeah we are, but we are not sacrificing Mookie Betts. (who had
a salary of $18,658,692).

Xavier: ‘We have to keep Betts? (puts head down on table, covers with
hand).

Mateo: I'm taking out [Yadier] Molina. (a catcher, with a $9,000,000

salary).

Levi and Xavier: | NO!

Xavier: He’s the best catcher.

Levi: (looks over their roster to identify another high salary player).
Wait, $22 million, is Freddy [Freeman] (first baseman) really
worth $22 million?!

Mateo: Yes! Well not in real life.

Facilitator: Is there another first baseman you could find that is cheaper?

Levi: Matt Olsen. And we'll keep Betts.

Mateo: How does that make sense?

Xavier: Matt Olsen is way cheaper than Betts. (Matt Olsen has a salary

of $5,000,000).

The group tested out this plan and found that by removing
Freddy Freeman they had a little over 5 million salary dollars
remaining, enough to add in a different first baseman, Matt
Olsen. These adjustments allowed them to honor the budgetary
constraints of the task, while still retaining their favorite player,
Mookie Betts.

In the Stadium project, youth also tracked their progress and
made adjustments as needed, in some instances based on real-world
considerations related to the project context. For example, Group J
at a Southwest afterschool site initially planned to only offer 4-packs
packs of tickets for their exclusive VIP section, reasoning that
attendees would want to enjoy the special VIP offerings with family
and friends. But when asked by the facilitator whether she could
purchase a single ticket to join a group in the VIP section, the girls
decided that the 4-pack option was too limited and they added a per
person ticket pricing structure to their plan.

In both projects, multiple groups of youth engaged in making
sense of problems (MP1) as they generated and enacted problem
solving approaches, made purposeful decisions that supported
their progress, and strategic adjustments to their approach when
needed. The balance between the openness and choice built into the
project, combined with the requirements and constraints, seemed
to support these practices, a point which we return to in
the discussion.

MP2: reason abstractly and quantitatively

Across both projects, youth consistently attended to the meaning of
quantities in relation to the real-world scenario. As youth performed
operations, compared quantities, and selected values, they did so in ways
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that clearly evidenced understanding of how the quantities related to
specific components of the project context. For example, in the Stadium
project, youth performed multi-step calculations as they planned the
seating capacity and ticket prices for their stadium, and projected the
total cost for a group of family members or friends to attend a game. At
one of the Southwest afterschool sites, multiple groups (H, I, and J)
labeled their calculations in ways that evidenced understanding of
meaning of each quantity and solution in relation to the context (e.g.,
they labeled equations that represented the total cost of ticket prices,
food purchases and parking for a group of 4 people attending the game).
One group designed a very small, personal stadium that included only
1,100 seats. When they shared their design, they explained the meaning
of the quantities in each seating section (number of seats, and ticket
prices), and the meaning of their computations (i.e., Youth: “we put 100,
100, 300, 500 and then another 100.... for the number of seats in each
section. We added those together and we got 1,100 ...[which was] the
total number of seats in the stadium.”).

At the other Southwest afterschool site, Group E identified and
operated on quantities related to seating capacity and ticket
practices in ways that reflected understanding of the meaning of the
values in context. For example, they divided the 75,000 seats in their
stadium across three seating sections of varying sizes and ticket
prices to create accessible options for stadium attendees. One youth
explained the half/double ratios they used to set ticket prices for
each section:

Umar: It was really hard because we were only doing three sections. So
we had to figure out a way to balance 75,000 into three sections.
And we had a VIP section, I think it was 10,000 seats for the VIP,
which was $50 a ticket. Then 25,000 for the second section, which
was, $25 [for a ticket]. And then for the last section it was 40,000

seats for $12 [per ticket].

Facilitator: Why did you choose $25 for the middle section?

Umar: I think $25 was a pretty good price for section two. Cause it’s half
of 50, which is the [price for the] VIP. And 12 would’ve been good

for the other section because it would’ve been close to half of 25.

In other words, as these youth identified and operated on
quantities, they consistently attended to the meaning of the quantities
and operations in the real world situation.

Just as youth contextualized quantities throughout their work
on the Roster and Stadium projects, they also demonstrated the
ability to decontextualize—to represent and manipulate situations
symbolically, flexibly using properties of operations to support
their work. For example, in the Roster project, multiple groups of
youth reasoned that they could use two different mathematical
operations, addition or subtraction, to determine whether their
team roster exceeded the allowable salary budget. Some youth
opted to repeatedly subtract each player’s strategy from the
$70,000,000 budget, understanding that the result of each
operation represented the amount of salary dollars remaining.
Other
understanding that the result of each sum represented the number

youth successively added each players strategy,
of salary dollars spent. In some small groups, such as Group G at
a Southwest afterschool site, youth explored both approaches in
parallel, explaining how they each verified that the team roster met

the salary requirements.
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Facilitator: Ok, tell us what you did. What did you get?

Dominic: 64,670,286

Facilitator: Is this the total, for how much you spent? Write that on the board,
ok?

Facilitator: [To Camila] Did you get the same thing?

Camila: Yeah all the 9 player salaries and it is about $64 million (youth
rounded some of the salary figures). So we are under.

Dominic: [records total salary dollars on board].

Facilitator: [To Grace and Alexis] Did you get the same number?

Grace: We found the difference. I was finding out how much we spent on
each player and then subtracting it from what we had in the budget
[$70,000,000] and then from what we had left over.

Facilitator: | And you had about 5 and a half million left? [looking at written
work from Grace and Alexis].

Alexis: Yeah, it’s the same.

While the facilitator did not further probe the youths’
explanation, the youth concurred that each of their operations
“proved” that the team roster met the $70,000,000 salary limit
requirement, and seemed to understand how their addition and
subtraction calculations related to one another, each providing key
information about their situation.

Another way that youth reasoned abstractly and quantitatively
as they engaged in the projects was by reasoning across different
quantities to inform the decisions they made. This primarily
occurred in the Roster project as youth compared quantities
abstractly (i.e., comparing decimal values, whole numbers, or
percentages) and then contextualized the meaning of those
quantities and relationships in terms of baseball player statistics.
For example, Group N at the Southwest summer camp site used
multiple player statistics to compare players at each position as they
made their team roster. In the discussion excerpt below, the youth
debated which first baseman to select. Gemma shared the first
baseman statistics with the rest of the group, while Chloe compared
the first baseman statistics to those of the second baseman she
was reviewing.

Gemma: I think we are going with Matt Olson for first base.

Chloe: Does he have good stats, or is he just cheap?

Gemma: | His salary is $5 million, hits are 53, and home runs 30.

Chloe: What? Yours is only $5 million? My [second baseman] player is twice

as much as that, and he only has like 3 more hits! How many hits

does yours have?
Gemma: 153.

Chloe: Ok, mine has 5 more hits than yours, but he is double the price.

Gemma: Yeah, and he (Matt Olson) has like the same home runs as this guy

(Anthony Rizzo) but he is much more expensive ($16,000,000).

Once the group selected all field players, they proceeded to select
a pitcher, leaving the pitcher to the end so they could spend all
remaining salary funds on this position. In the discussion below, the
youth leading the pitcher selection (Ava) debated the relative
importance of different pitcher statistics, including ERA (Earned Run
Average), wins, and strikeouts.
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Ava: I am doing pitcher, ok, these are all the pitchers.

Ava: This guy is $35 million but he has a really good ERA (only 2.29). It is
really hard picking a pitcher because there are so many. I am mostly
looking at their ERA. The pitcher is the most important, but

strikeouts are also important. I am weeding some people that have

low scores.

Chloe: The pitcher is the most important, right?

Gemma: The pitcher makes the team.

Ava: Yeah I am weeding out the ones that have low scores.

Chloe: Are you doing wins? Or strike outs?

Ava: I say strike-outs.

Gemma: Yeah strikeouts are important.

Ava: All we still need is a pitcher so we can spend big money on a pitcher.

Chloe: We have to wait and see how much money we have left when she is
done (Gemma is adding the salaries of the players selected so far).

Ava: Part of me wants to just pick the best ERA, but then this one has
really good strikeouts and this other one has the most wins. This one
has the most strikeouts.

Gemma: I will tell you if we have enough money. So far I only have two more
that we need to add, so I think you can get the most expensive one.
... I calculated all of it and we spent $60 million. We have $10
million left (looking over the pitcher salaries, half of which are over
$10 million)

Ava: Thats actually really good. Ok, maybe this one (Robbie Ray). ... So

we can get this pitcher, he’s $8 million, so we are under budget.

I know his wins aren’t a lot, but his strikeouts are one of the most.

Throughout this discussion, the girls compared quantities
expressed as whole numbers (salaries, hits, homeruns) and as decimals
(ERA, batting average). They not only compared the quantities
abstractly, but reasoned about the relative importance of each quantity
for a particular player (i.e., they concluded that strikeouts were critical
for a pitcher, while hits and home runs were focal points for the first
baseman.) In addition, they correctly interpreted whether higher or
lower values for a given statistic indicated strong performance (e.g.,
with ERA, a lower value is better because it indicates that a pitcher gives
us fewer runs, while with strikeouts, a higher value is better). In other
words, as youth reasoned about different statistics they decontextualized
and recontextualized each value to inform their roster decisions.

Across both projects, though more prominent in the Roster project,
youth engaged in quantitative reasoning as they compared and found
relationships among values, debated the relative importance of different
player statistics, and reasoned about how different operations related to
the problem context. We suspect that the different kinds of quantitative
data included in the Roster project was particularly supportive of these
practices, a point which we elaborate in the discussion.

MP3: construct viable arguments and critique the
reasoning of others

As youth communicated their reasoning about the meaning of
quantities in the project, they also engaged in MP3: constructing and
critiquing augments. In the Roster project, this most often occurred as
youth argued for selecting a particular player. As evidenced in the
excerpts above, they often considered how a player’s statistics
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compared to those of others that played the same position. For
example, in the discussion below, two boys from Group R from the
Southwest summer camp site engaged in a lively debate about which
player they should select for pitcher. Their goal was to optimize
multiple criteria in their pitcher selection (maximum performance for
the minimum cost).

Josiah: We are doing pitchers. Who do you think we should do? Who is the

best and the cheapest?

Liam: Shohei Ohtani is the cheapest, he is like $3 million.

Josiah: But we need who is the best and the cheapest.

Liam: Oh, best but cheapest. Adam Wainwright, he’s $8 million and he’s

better than anyone. He has 17 wins and 174 strikeouts.

Josiah: I think Robby Ray. Robbie Ray is the same price, but he has more
strike outs (248), and better ERA (2.84, vs. 3.05), but less wins (13

wins, vs. Wainwright’s 17 wins).

Liam: ok, then Robbie Ray, Robbie Ray. ... But what about Brandon
Woodruff? Let us see Brandon. He is also cheap (3.275 million). But
Shohei Otani is cheaper, and wait, he has more strikeouts than

Brandon.

Josiah: But Robbie Ray has more. I still think we should do Robbie Ray,
he is the cheapest and he has more strikeouts and a better ERA but

less wins.

Liam: Yeah, yeah. Robbie Ray? Do you guys all agree on Robbie Ray?
[Hands the card to Youth 4 that she can examine the stats; Youth 3
and 4 were discussing other positions] He has good stats and he is

cheaper.

Mila: [after studying the stats for one minute] Yeah I think he’s good.

Following this session, Josiah reflected on the project with a
member of our team, and specifically described his group’s process for
communicating and critiquing arguments for specific players.

Project staff: So tell me more about how you selected players?

Josiah: [For pitcher], I was saying, who had the most strikeouts and ERA
and he was almost the cheapest one.

Project staff: So you took a rounded approach.

Josiah: Yeah, and for shortstop I chose Fernando Tatis Junior because

he had the most hits and he had one of the highest batting
averages. But he also had the most salary rate of all the shortstops.

Project staff: | And how did you decide as a group?

Josiah: We did like cooperation. We went through it as a team, and

we decided, like, who we thought would be the best and wed take
a vote or whatever. .... We did a lot of what we thought would

be the best, but then we also would say if one of us made a bad
pick then we told them why it was bad or if there was someone
better. ... And if they wanted to change or if we wanted to keep it,

wed all choose.

Notable in Josiah's reflection is how the project created
opportunities for students to present and justify their own arguments,
but also opportunities to consider other’s reasoning, and to revise their
arguments in response to critique.
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In the Stadium project, youth also engaged in communicating and
critiquing arguments, most often related to decisions about seating
capacity and ticket prices for different sections of their stadium. For
example, groups H, I and J each had spirited debates about which
seating section would be the most desirable, and therefore the most
expensive. Two groups presented conventional arguments for a small
section of expensive, exclusive, “close to the field” seats for “VIP”
attendees. But one group (Group I), argued that the lower seats were
less desirable, because they only provided a partial view of the field,
and included a higher risk of “getting hit” by a ball. Instead, they
argued that the VIP section should be located in the top rows of the
stadium, as those seats allowed a wide view of the entire field.

Midra: Let us make the top row more expensive, because let us have the
famous people that are going to come to the baseball game sit on top.

Zahara: Yeah.

Lorelei: So for them it would be more expensive, like VIP.

Zahara: Should we make it like $180 [per ticket]?

Lorelei: That's way too cheap.

Zahara: 300 dollars.

Midra: No, no, 320 dollars.

Zahara: $360.

Lorelei: Ok 360 dollars for VIP. Then the middle row [section] is going to
be like 100 or 200 dollars. And the bottom one [section] is going to
be like $60.

Zahara: I think $40.

Lorelei: The bottom row is going to be $40, the VIP $360 and the mid is

$100.

... [the facilitator approaches the group to ask about their plan].

Midra: [to the facilitator] This is the money and this is the seating
[capcity]. We made this like VIP that is why it is so expensive, and
this is where the famous baseball players and famous people sit, at
the top.

Facilitator: Why these numbers [prices]?

Zahara: Because the middle, we did not want to do too much, because not
that many people can pay that. So mid level is $100, you know, not
that expensive but not that cheap.

Facilitator: Wait, these are your cheap ones, right? (points to top level seats)

Midra: No, the bottom ones are the cheapest.

Facilitator: The closest ones are the cheapest?

Zahara: Yeah because you might get hit by the ball.

Facilitator: Ah, on this one [shows a sample seating chart from an actual
stadium] the closest ones are the most expensive, but you are
worried about getting hit by the ball, but most people want to
be close to the field. As close to the field as possible.

Lorelei: Yeah, this is VIP, [points to upper section] that is why it is the most
expensive.

Midra: And our stadium is going to be big, and the top is going to be really
high, so I think people will want to sit there, because first of all, less
chance of getting hit in the face and second you can see better.

Lorelei: And if you are looking for the restrooms or like the food area,

you can see everything.
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In summary, both projects created opportunities for youth to
communicate their reasoning and to construct, consider, and
respond to the ideas of others. Mathematical argumentation
was most evident in the Roster project, as youth strove to
optimize multiple criteria so that players had maximum
performance for minimal cost. When students constructed
arguments in the Stadium project, the focus was mostly on
youths’ reasoning for their choices and preferences in their
stadium design.

Findings for RQ2: youth leverage resources
to support their decision making and
understanding

This section focuses on the varied resources that youth drew
upon to support their understanding and decision making as they
completed the two projects. We found that almost all groups
evidenced use of social resources (peers and/or facilitators) to
support their decision making. In both projects, youth asked
group members for ideas and suggestions as they made decisions
about ticket prices, seating capacity, and player selection. Often,
discussions were collaborative where several youth introduced
and debated ideas, as shown in the excerpts from groups K and
I above. In other instances, a single youth drove the decision
making, often because this youth was older and positioned as a
group leader. While all groups collaborated, in some instances the
collaboration was less focused on considering peers’ ideas and
more focused on delegation of tasks (i.e., one youth selected
players, one youth added salaries to keep track of totals, and a
third youth recorded their selections on a team poster). We found
these cases to be less productive, as opportunities to
engage in mathematical practice were focused on a subset of
youth. While it was more common for youth to draw on ideas
from peers as they made decisions, groups also leveraged
their
Consistent with the norms of informal learning spaces

suggestions from facilitators to inform work.
(Vadeboncoeur and Padilla-Petry, 2017), facilitators allowed
youth to drive small group work, as they circulated among
groups, asking questions and offering tips as needed
(see groups G, K and I above). While use of social resources was
a prominent pattern across groups, we focus the remainder
of this findings section on how youth drew on their experiences
and funds of knowledge (Gonzilez et al, 2005) from
settings outside the informal learning space to inform

their decisions.

Youth draw on their own funds of knowledge to
inform their decisions and understanding

In both projects, but in particular the Baseball Team Roster
project, youth demonstrated and utilized knowledge of baseball
and of specific players that was beyond what was included in the
activity. For example, some groups drew on their understanding
of team rosters or “line-ups” to make sense of the goals of the
project. When a younger youth in Group S at the Central summer
camp site expressed confusion about the project, a peer in the
group
his understanding.

referenced an outside experience to support
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Javon: I think we should pick this guy [Robbie Ray, one of the pitcher
options], he is a little bit inexpensive, but compared to the 34 million
guy, he has pretty good stats. I say he is good for the price.

Ty: [looks at stats] I feel like he’s good too. His [earned run] average is 0.284.

Lucas: What are you all talking about? I do not understand what you are
talking about. I

Ty: We are picking out the players.

Lucas: For what?

Ty: We are making a roster, like you know when we went to an Astros
game, and they’ll tell us like who is up in the lineup. That’s what
we are doing.

Lucas: Ooooh, now I get it. You could have told me about that earlier.

Following this exchange, the younger youth leaned into the group
conversation, and even took the lead on the selection of a player for
one of the field positions.

In other cases, youth drew on their knowledge in ways that informed
how they interpreted provided player statistics. For example, as
highlighted in the extended example from Group N above (Section on
MP2), youth used their knowledge of baseball to debate the relative
importance of different statistics for a given position (i.e., ERA vs.
strikeouts for pitchers), or the importance of different positions (i.e.,
selecting a pitcher first, or spending the most salary dollars on a pitcher).
In these instances, youth used their knowledge of baseball as a resource
to correctly interpret whether “higher” or “lower” values for a given
statistic indicate better performance (i.e., a low ERA is optimal, while a
high value for strikeouts is preferred), which then guided their
player selection.

Sometimes, youths’ knowledge of players complemented the
provided statistics, providing additional data points to consider.
This included real time information about players (i.e., injuries),
or knowledge of players’ abilities from youths’ experience
watching baseball. For example, when Group P from the
Southwest summer camp site was comparing center fielders, they
considered how the player salaries compared to batting average
and home runs, and whether cheaper players actually had weaker
statistics. They initially settled on Mike Trout, who in the 2021
season had generally stronger statistics than the other options,
but then reconsidered when one youth in the group recalled that
Trout was injured.

Sofia: I know who a lot of these people are because my brother watches it
[baseball] all the time. ... [looking at cards for center field players] The
best batting [average] is Mike Trout. [But] Mike Trout is injured in real
life... It does not say he’s injured on the card but he is actually injured in
real life. These are the best batting averages [points to Trout and another
option, Reynolds], and these are the best homeruns [Trout and another
center fielder, Acuiia]. And he has the most hits [Reynolds].

Ya'Nai: | [examines card] In 2021 was he injured? (cards have statistics from the

2021 season).
Sofia: He’s injured now!

Sofia: I think we are going to choose this player [Reynolds], look he is the
cheapest. He is not even a million dollars, and he is [in terms of players

statistics] in the middle! ... This guy is injured [sets Trout card aside].
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Ultimately, this youth’s knowledge influenced the group decision and
they selected a different (non-injured) player for the center field position.

While youths’ use of their prior knowledge and experiences to
inform decisions was most common in the Roster project, some
groups leveraged outside experiences to inform their Design a Stadium
decisions, particularly related to ticket pricing. For example, in Group
E from a Southwest afterschool site, youth prioritized full attendance
at games in their stadium, and reasoned that if they made ticket prices
too high, people would opt to view the game on television instead of
attending in person. As these two youth explained during a post
project interview:

Umar: We want a lot of people to come [to our stadium]. It cannot just

be $200.

and $150 and then $100 [for the ticket]. Not a lot of people are going
to want to pay $100 to see a baseball game that they can just watch on

TV. So we try to make it just like normal price.

Dillon: ....So we put [the ticket prices as] $12, $25 to $50. So that way more
people would come instead of having to like. ...So that way we can

actually have a lot of people that could afford it come in.

Other groups had similar reasoning, arguing that considering
“their friends and family” helped them determine reasonable prices
for tickets and concessions in their stadium. As a youth from Group
D explained, “if we were to do it, then we were to invite our friends or
our family, [we thought about] would we want them to pay a lot? or,
do we want them to pay a little bit?”

Interestingly, in some instances youths’ use of their prior
knowledge about specific players to inform decisions meant that the
group only engaged minimally with the provided player statistics.
For example in Group K from the Southwest summer camp site,
youth were debating between two players for the right field position
(Aaron Judge and Mookie Betts). Rather than comparing their
statistics (hits, homeruns, batting average, salary, etc.), one youth
claimed that they knew Mookie Betts was “faster” and should
be selected.

Levi: Right field—either Aaron Judge or Mookie Betts.

Mateo: Yeah, I go with Aaron ]udge,

Levi: Yeah, let us go with Aaron Judge.

Mateo: But Mookie Betts is like faster than Aaron Judge...[so] are we going
with Mooke Betts?

Everyone: Yeah!

While Aaron Judge outperformed Mookie Betts on multiple
statistics (higher batting average, more hits and homeruns in 2022),
the group selected Mookie Betts because of one youth’s claim and they
knew he was “faster” As the group continued to select players, they
again relied on their prior knowledge of players, instead of player
statistics, to inform choices. For example, when selecting a second
baseman, Mateo referenced their experience watching one player on
television to justify the choice: “Let us take this guy [Adam Fraiser].
I've seen him play before. He hit a ball, and I do not even know how
[but] he hit a homerun” Without further discussion, the group
selected this player. Notably, youth could have used various player
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statistics to justify this choice (i.e., Adam Fraiser’s batting average was
comparable to that of other second baseman, and his salary was
considerably less), but their reliance on one group member’s
knowledge of the player backgrounded this information.

We noted similar patterns in other groups, wherein youth who
had more prior experience with baseball used this knowledge to
inform and justify their decisions, often with minimal use of the
provided player statistics. For example, Efran, a youth from Group A
explained that he led the selection process for his group, based on his
experience watching players on television. He noted:

I picked those baseball players because I watch baseball and
I picked the players I know. I know that they are good, but they
are cheap. So I just told the people sitting at the table to choose
those people. Because I've seen them play before and they are
pretty good when I watch them on TV.... So I'm like, “just get
him.” And there was a baseball player with 39 home runs so I said,
“choose him. He’s really good (post project interview).

Other youth used their knowledge of specific teams (but not the
statistics of particular players) to select or eliminate players from their
roster. For example, a youth in Group L at the Southwest summer
camp site selected a pitcher because he played for the Angels (the
youth’s favorite team), and other groups at this site eliminated players
from the Dodgers, and selected players from the Blue Jays, primarily
based on their team affiliations.

In summary, youth leveraged social resources (peers and
facilitators), in addition to their own knowledge and experiences from
settings outside of the informal learning space to inform their
understanding and decisions, particularly during the Roster project.
While in most instances these connections to outside funds of
knowledge enhanced youth’s engagement with the provided statistics,
in some cases, youth leveraged outside knowledge in ways that limited
opportunities to engage in mathematical reasoning. We revisit this
potential challenge in the discussion.

Discussion

Overall, we found that both of the projects implemented in
informal learning sites contained specific features that supported
youths’ engagement in mathematical practices including problem
solving (MP1), quantitative reasoning (MP2) and argumentation
(MP3). First, the openness and choice built into the projects not only
encouraged creativity but also required youth to generate problem
solving approaches (MP1), and to build arguments to support their
choices and decisions (MP3). At the same time, the given constraints
(i-e., salary limit), required youth to monitor their overall progress
and make adjustments to ensure compliance. This monitoring and
revision of approach led to further engagement in key problem
solving practices (MP1). In other words, the balance of choice and
constraints in the projects seemed particularly generative for
supporting youth engagement in key mathematical practices. This was
most apparent in the Roster project, as youth were able to choose
criteria and processes for selecting players, but were constrained by
the parameters of a salary limit and the need to construct (at a
minimum) a 9-player roster. These constraints led to a more
challenging problem, which prompted youth to iteratively review and
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reflect on their choices until they completed the task. In contrast, in
the Stadium project, youth were able to make choices about the overall
size of their stadium, the capacity and ticket prices of different seating
sections, and unique stadium features. While the project emphasized
choice, few constraints were provided. For example, youth had to
include different seating sections but could design stadiums of any
size. Similarly, youth were asked to include features that they thought
would attract fans, but without consideration of budgetary limits.
Given the relative lack of constraints in the Stadium project, youth
were not prompted to monitor or adjust their approaches (MP 1), or
to mathematically justify their design decisions (MP 3) in the way that
was evident in the Roster project. This finding related to the
importance of balancing choice and constraint in mathematics-
focused PBL activities is in part consistent with prior research which
has highlighted youth voice and choice as essential design elements
for PBL (Tan et al., 2013; Larmer et al., 2015). Yet our findings about
the role of constraints extends this prior work, by showing that a key
component of designing challenging and authentic questions (Larmer
et al,, 2015) is ensuring that those questions include sufficient, real-
world constraints.

Another project feature that supported youth engagement in
mathematical practices was the included quantitative data about
player performance (in the Roster project) and the contextual
information about sample stadiums (in the Stadium project). In the
Roster project in particular we found that the player statistics
supported youths” engagement in quantitative reasoning (MP 2) and
their opportunities to develop, communicate and critique
mathematical arguments (MP 3), as they used the various sources of
data to defend their player selections. In the Stadium project, while
youth occasionally used the sample stadium information to justify
their choices about stadium capacity or outfield distances, the lack of
constraints limited youths’ need for this information. If the project
had included budget limits along with information about potential
costs of different stadium features, youth may have drawn on this
information as engaged in quantitative reasoning (MP 2) or
communicated mathematical arguments (MP 3). While PBL activities
often include sustained inquiries where youth generate information
on their own (Cross et al., 2012; Larmer et al., 2015), we found that
including authentic player statistics in the project materials allowed
youth to focus their attention on comparing the values and
interpreting the relative importance of different statistics. Given the
fluidity of activity in informal learning settings and the fact that time
for sustained inquiries may be limited, providing youth with a diverse
set of authentic data seemed like a productive way to maximize
opportunities to engage in mathematical practices.

Finally, we found that both projects created opportunities for
youth to draw on outside knowledge and experiences, including
knowledge of baseball and understanding about the needs and
interests of potential baseball fans to support their project decisions.
In the Roster project, youth leveraged knowledge of player positions
and the importance of specific statistics as they selected players for
their team roster. This was particularly true for youth in the summer
camp implementations, as those settings drew more youth with prior
baseball experiences (e.g., Groups P and S above). In the Stadium
project, there were fewer instances when youth drew on baseball-
related knowledge to inform their decisions, which may reflect a lack
of experience attending live sporting events in stadiums, particularly
among youth who did not play team sports. When youth did leverage
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outside knowledge, they often considered what they knew about the
interests and needs of friends, family, and other potential fans while
designing unique stadium features, determining reasonable ticket
prices, and arranging seating sections (e.g., Group E). Notably, in the
Roster project there were several instances when youths’ use of their
knowledge about specific players to inform roster selections meant
that the group only engaged minimally with the provided player
statistics (e.g., Groups A and K), which then limited their opportunities
to engage in mathematical reasoning. While youths” engagement in
the projects invited connections to their experiences and funds of
knowledge, a practice which has been shown to enhance STEM
learning (Simic-Muller et al., 2009; Turner et al., 2009; Nasir, 2012;
Krajcik et al., 2022), our findings also suggest that informal learning
educators may need to support youth to use their real world
knowledge to complement and enhance their engagement in
mathematical reasoning, rather than limiting such opportunities.

Our work answers a call for additional research on the impact of
informal learning settings and PBL activities on youths’ mathematics
engagement and learning, particularly for youth from groups
underserved and underrepresented in STEM fields (Condliffe et al.,
2017; Pattison et al., 2017b). Additionally, by documenting the
potential of PBL activities that integrate sports and mathematics to
support youths’ engagement in mathematical practices (National
Governors Association Center for Best Practices and Council of Chief
State School Officers, 2010), we address additional calls that research
on PBL (Thomas, 2000), and in STEM informal learning spaces to
attend to a range of outcomes.

Implications and conclusion

Our study has important implications for educators, curriculum
developers, and researchers who work in informal STEM learning spaces.
First, there is the need for additional informal learning curricula that
integrate sports and mathematics, given the positive outcomes
demonstrated in our findings (i.e., engagement in mathematical practices,
connections to outside knowledge and experiences). Additionally, our
findings suggest that curriculum developers attend to the complementary
roles of choice and creativity alongside constraints to support youths’
engagement in problem solving and mathematical reasoning and to
encourage reflection and discussion.

Second, our findings have implications for professional learning and
support for informal STEM learning facilitators. Youth in informal
afterschool and summer settings have varied backgrounds and interests,
and facilitators need to seek connections to youth who may have limited
prior experiences with project contexts. Our findings also suggest that
professional learning programs for informal STEM educators should
include strategies for supporting youths’ sustained focus on mathematical
learning goals, such as reminding youth of project guidelines or
supporting youth to use data to support decisions and arguments. This is
consistent with other research that has highlighted the professional
learning needs of informal STEM facilitators (Hladik, 2022).

An important limitation of our research is that our team offered
professional learning support (i.e., initial training, ongoing coaching)
for facilitators who implemented the program. While materials from
our professional learning sessions will be broadly disseminated via our
project website, future research should explore the effectiveness of the
Growing Mathletes program, including how the culminating projects
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support youths engagement in mathematical practices, when
implemented by facilitators who do not participate in sessions with
our team, but are instead supported by our online materials and/or by
other professional learning supports in their contexts. An added
limitation is that our research focused on informal learning spaces
that offered a more structured learning program (i.e., a week long
summer camp, or designated time for Growing Mathletes during an
afterschool program). Future research should explore the applicability
of Growing Mathletes activities, and particularly their potential to
engage youth in mathematical practices, in less structured informal
learning spaces such as community centers or museums.

Finally, our findings raise key questions and topics for future
research on mathematics learning in informal settings. Specifically,
studies should explore additional aspects of integrating sports and
mathematics to better understand the learning impacts for youth with
varying levels of interest and prior knowledge about sports. Research
should also continue to investigate how specific features of
activities mathematical

mathematics-focused PBL support

understanding, and the application of different mathematical practices.
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