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CONVERGENT FEM FOR A MEMBRANE MODEL OF LIQUID
CRYSTAL POLYMER NETWORKS\ast 

LUCAS BOUCK\dagger , RICARDO H. NOCHETTO\ddagger , AND SHUO YANG\S 

Abstract. We design a finite element method for a membrane model of liquid crystal polymer
networks. This model consists of a minimization problem of a nonconvex stretching energy. We
discuss properties of this energy functional such as lack of weak lower semicontinuity. We devise a
discretization with regularization, propose a novel iterative scheme to solve the nonconvex discrete
minimization problem, and prove stability of the scheme and convergence of discrete minimizers. We
present numerical simulations to illustrate convergence properties of our algorithm and features of
the model.
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1. Introduction. Liquid crystal polymer networks (LCNs) are materials that
can deform spontaneously upon temperature or optical actuation. In such materi-
als, mesogens (compounds that display liquid crystal properties) are cross-linked to
elastomeric polymer networks so that the nematic director (mesogen's orientation)
influences the network deformation under actuation. In other words, these materials
combine the features of rubber and nematic liquid crystals. This actuation prop-
erty can be widely exploited in the design of materials, such as microrobots [38] and
biomedical devices [24, 25], to achieve nontrivial and useful shapes.

We are concerned with thin films of LCNs, which are slender materials usually
mathematically modeled as 3D hyper-elastic bodies \scrB := \Omega \times ( - t/2, t/2), with \Omega \subset R2

being a bounded Lipschitz domain and t being a small thickness parameter. Classical
approaches in elasticity exploit dimension reduction techniques to derive 2D models
for the midplane deformation y(\Omega ).

1.1. Nematic director fields and order parameters. Due to the nematic-
elastic coupling in LCNs, director (unit length vector) fields characterize orientations
of liquid crystal molecules and play a crucial role in material deformations.

The director field m : \Omega \rightarrow S1, the so-called blueprinted director field, is prede-
termined and encodes the anisotropy of mesogens on the reference midplane \Omega . On
the reference 3D elastic body, \widehat m : \scrB \rightarrow S2 defines an extended blueprinted director

\ast Received by the editors September 12, 2022; accepted for publication (in revised form) June 9,
2023; published electronically November 28, 2023.

https://doi.org/10.1137/22M1521584
Funding: The work of the first author was supported by National Science Foundation (NSF)

grant DGE-1840340. The work of the second and third authors was partially supported by NSF
grant DMS-1908267.

\dagger Department of Mathematics, University of Maryland, College Park, MD 20742 USA (lbouck@
umd.edu).

\ddagger Department of Mathematics and Institute for Physical Science and Technology, University of
Maryland, College Park, MD 20742 USA (rhn@umd.edu).

\S Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China,
and Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China (shuoyang@
bimsa.cn).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2887

D
ow

nl
oa

de
d 

08
/2

2/
24

 to
 1

29
.2

.1
9.

10
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/22M1521584
mailto:lbouck@umd.edu
mailto:lbouck@umd.edu
mailto:rhn@umd.edu
mailto:shuoyang@bimsa.cn
mailto:shuoyang@bimsa.cn


2888 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

field, and we assume it takes the form \widehat m := (m,0)T . Similarly, n : \scrB \rightarrow S2 denotes
the director field on the deformed configuration.

Depending on the strength of cross-linkings between nematic components and
rubber-like polymer chains, such materials can be further classified as LCNs (some-
times also called liquid crystal glasses) or liquid crystal elastomers (LCEs): the former
has moderate to dense cross-links, while in the latter the density of cross-links is low
[37]. In this paper, we focus on LCNs and leave a numerical study of LCEs for future
research. Mathematically, the strong coupling in LCNs is reflected in terms of director
fields via a kinematic constraint [30]:

n :=
(\nabla u) \widehat m
| (\nabla u) \widehat m| ,(1.1)

where u : \scrB \rightarrow R3 is the 3D deformation. This implies that, in contrast to LCEs
[36, 8], here n is not a free variable, and is also called a frozen director [16].

Moreover, s0, s\in L\infty (\Omega ) are nematic order parameters that refer to the reference
configuration and deformed configuration, respectively. These parameters are typi-
cally constant in time and depend on temperature, but may vary in \Omega if the liquid
crystal polymers are actuated nonuniformly. Their physical range is s0, s >  - 1 and
s0, s are bounded away from  - 1, i.e.,

essinf
x\in \Omega 

s0(x)> - 1, essinf
x\in \Omega 

s(x)> - 1 .(1.2)

The actuation parameter of the model is

\lambda = \lambda s,s0 =
3

\sqrt{} 
s+ 1

s0 + 1
.(1.3)

If the material is heated, then \lambda < 1. Likewise, if it is cooled, then \lambda > 1. For s, s0
nonconstant, the assumption on s, s0 in (1.2) implies that there is a constant cs,s0
such that \lambda : \Omega \rightarrow R satisfies

0< cs,s0 \leq essinf
x\in \Omega 

\lambda (x)\leq esssup
x\in \Omega 

\lambda (x)<\infty .(1.4)

Therefore, equilibrium deformations of LCNs can be programmed by design of m, s,
and s0 [1, 31, 32, 33]. We explore this feature in this and our companion paper [13].

1.2. 3D elastic energy: Neoclassical energy. In the context of LCNs, the
starting point is the neoclassical energy density of incompressible nematic elastomers
derived by Bladon, Warner and Terentjev [10, 36, 35]. For u :\scrB \rightarrow R3, the 3D energy
evaluated at u is

E3D,t[u] =

\int t/2

 - t/2

\int 
\Omega 

W3D

\bigl( 
(x, z),\nabla u

\bigr) 
dxdz,(1.5)

where the 3D energy density, known as the trace formula, is defined by

W3D

\bigl( 
(x, z),F

\bigr) 
=
\bigm| \bigm| L - 1/2

n FL1/2
m | 2  - 3,(1.6)

where F\in R3\times 3 satisfies

detF= 1(1.7)
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2889

due to the assumption of incompressibility. The step length tensors in the reference
and deformed configurations, denoted by Lm,Ln, are defined as follows:

Lm := (s0 + 1) - 1/3
\bigl( 
I3 + s0 \widehat m\otimes \widehat m\bigr) , Ln := (s+ 1) - 1/3

\bigl( 
I3 + sn\otimes n

\bigr) 
,(1.8)

with I3 the identity matrix in R3. Note that Ln,Lm are symmetric positive definite
(SPD) due to (1.2), so L

 - 1/2
n ,L

1/2
m are well defined. These tensors reflect mathe-

matically the influence of liquid crystal molecules on the network deformations when
they are multiplied to deformation gradients F=\nabla u in (1.6). Since m, s, s0 may not
be constant in \Omega , then the energy density in (1.6) has a dependence on coordinates
(x, z) \in \scrB . The presence of the constant  - 3 in (1.6) ensures nonnegativity of W3D.
Its role will be explained in section 2.

Moreover, in the specific case where s= s0 = 0, the material becomes isotropic and
the step length tensors in (1.8) reduce to the identity I3: Lm =Ln = I3. Consequently,
the trace formula simplifies to the classical incompressible neo-Hookean energy density
WH

3D(F) = | F| 2  - 3 for rubber elasticity.
A 2D membrane model can be derived via formal asymptotics of limt\rightarrow 0

1
tE3D,t

after incorporating the kinematic constraint (1.1). We omit such derivation and refer
to our accompanying work [13] for a detailed discussion. The derivation is inspired
by asymptotics in [30], where the additional inextensibility constraint is imposed for
y = u(\cdot ,0) and a blend of stretching and bending energy is obtained with different
scaling of t. Moreover, [16] derives a 2D energy density by taking an infimum of W3D

over the third column of F under the incompressibility constraint.
Next, we present the 2D membrane model of LCNs under consideration and state

the main mathematical problem of this work.

1.3. Problem statement: a membrane model. The 2D membrane model
consists of the following formal minimization problem: find y\ast \in H1(\Omega ;R3) such that

y\ast \in argminy\in H1(\Omega ;R3)E[y], E[y] :=

\int 
\Omega 

W (x,\nabla y)dx,(1.9)

where the stretching energy density W is only a function of x \in \Omega and the first
fundamental form I[y] :=\nabla yT\nabla y of the surface y(\Omega ) and is given by

W (x,\nabla y) =

\bigm| \bigm| \bigm| \bigm| L - 1/2
n[y]

\bigl[ 
\nabla y, b[y]

\bigr] 
L1/2
m

\bigm| \bigm| \bigm| \bigm| 2  - 3 ,(1.10)

where

n[y] :=
\nabla ym

| \nabla ym| , J [y] := det I[y], b[y] :=
\partial 1y\times \partial 2y

J [y]
.(1.11)

Note that if J [y], | \nabla ym| are bounded away from 0, then
\int 
\Omega 
W (x,\nabla y)dx is finite.

We also point out that (1.10) is consistent with the stretching energy in [30] after
additionally assuming an inextensibility constraint J [y] = 1 and incorporating the
multiplicative parameter \lambda and the constant  - 3.

An important warning about (1.9) is in order: the energy density (1.10) is not
convex, which raises the question of well-posedness of (1.9). In fact, we construct an
explicit example in section 2 that shows that E is not weakly lower semicontinuous
in H1(\Omega ;R3). Therefore a direct minimization of E may create or produce wrinkling
and creasing, thereby leading to microstructure that we do not study in this paper.
Instead, we propose a numerical regularization mechanism inspired by a bending
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2890 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

energy that suppresses such oscillations and allows the stretching energy to drive the
LCN membrane toward a preferred heterogeneous metric---the so-called target metric.
For deformations y \in H1(\Omega ;R3), this target metric condition is equivalent to E[y] = 0;
see Corollary 2.6. We also prove that if there is a deformation y \in H2(\Omega ;R3) such
that E[y] = 0, then our algorithm computes asymptotically a (possibly different) y\ast \in 
H2(\Omega ;R3) such that E[y\ast ] = 0. This admits an important physical interpretation:
y \in H2(\Omega ;R3) with E[y] = 0 is a configuration with zero membrane energy and finite
bending energy. However, our algorithm is able to compute situations that fail to
satisfy this regularity assumption, and yet are physically relevant. We refer to the
degree 3/2 defect later in section 5.2 and to our companion paper [13] for a discussion
of numerous such situations.

Throughout this work, we do not impose any boundary condition so that the
materials under consideration have free boundary conditions (with some abuse of
language). If necessary, one can take Dirichlet boundary conditions into account with
a simple modification on theories and simulations.

1.4. Discretizations and our contributions. There are some works in the
literature about numerical analysis of methods for LCNs/LCEs. FEMs are utilized
for computations of 3D models in [17, 15], and in [16] for a membrane model of nematic
glasses but without a numerical analysis. In [26, 8], mixed FEMs (for deformations
and directors) are designed for various 2D models of LCEs.

In this work, we propose an FEM discretization to (1.9). To the best of our
knowledge, this is the first numerical method with a convergence analysis for this
model. We consider a continuous \scrP 1 Lagrange finite element approximation yh of the
deformation. To define a discrete energy, we replace y in (1.9) by yh and then add a
regularization term that mimics a higher order bending energy

Rh[yh] := crh
2
\sum 
e\in \scrE h

1

h

\int 
e

\bigm| \bigm| [\nabla yh]
\bigm| \bigm| 2

to deal with the nonconvexity of E. This regularization term is a scaled L2-norm of
jumps [\nabla yh] along all the edges e \in \scrE h of shape-regular meshes \scrT h, and it is critical
for the proof convergence of minimizers of the discrete energy

Eh[yh] :=E[yh] +Rh[yh](1.12)

in section 4. This proof requires the construction of a recovery sequence yh for y \in 
H2(\Omega ;R3) with the desired energy scaling Eh[yh] \lesssim h2, as well as a compactness
result; the energy scaling is confirmed computationally. We also extend our theory
to piecewise H2-deformations y that corresponds to nonisometric origami structures.
Moreover, in order to solve the discrete minimization problem, we design a nonlinear
gradient flow scheme that embeds a Newton subiteration solving the nonlinear discrete
equation at each step of the flow. This scheme is energy decreasing, and efficient under
mild conditions on the pseudo time step \tau .

The rest of this article is organized as follows. In section 2, we discuss properties
of the 2D model, in particular the nondegeneracy of (1.10), and their related conse-
quences. We also construct an explicit example illustrating the lack of weak lower
semicontinuity of the stretching energy and discuss our strategy to deal with it. In
section 3, we introduce the discrete version of (1.9) and the nonlinear gradient flow
scheme to solve it. In section 4, we present a convergence analysis of discrete minimiz-
ers, our main contribution, and in turn show useful technical tools, the construction
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2891

of a recovery sequence, a compactness argument, and an extension to piecewise H2-
deformations. The main technical difficulty in proving the desired energy scaling is
that W (x,\nabla y(x)) \rightarrow \infty as J [y(x)] \rightarrow 0. To avoid the singularity, we need a point-
wise lower bound of det\nabla yT

h\nabla yh uniform in h. Since the space H2(\Omega ) has the same
Sobolev number as W 1,\infty (\Omega ) for \Omega \subset R2, whence it does not embed compactly, and
y \mapsto \rightarrow J [y] is not concave, interpolating directly or after convolution may be problem-
atic. To overcome this challenge in section 4.1.1, we employ a Lusin truncation of
Sobolev functions, motivated by [23], which provides both the desired lower bound of
J [yh] and first order convergence in H1(\Omega ). This approach may be useful for other
critical nonlinear problems. We note that a Lusin truncation of W 1,1

0 (\Omega )-functions
has been used in numerical analysis for incompressible fluids with an implicit constitu-
tive law [22]. Finally, we conclude in section 5 with numerical simulations, including
experiments with origami shapes, a quantitative study for the convergence of the pro-
posed method, and an example with a stable defect of degree 3/2 that goes beyond
the theory.

2. Properties of the stretching energy. This section is dedicated to proving
some properties of the stretching energy (1.9), which will be useful later in section 4.
In view of definition (1.8) for step length tensors, we first observe that Lm can be
equivalently expressed as follows in the orthonormal basis \{ \^m, \^m\bot ,e3\} :

Lm = (s0 + 1)2/3 \widehat m\otimes \widehat m+ (s0 + 1) - 1/3 \widehat m\bot \otimes \widehat m\bot + (s0 + 1) - 1/3e3 \otimes e3.(2.1)

Likewise Ln may be expressed in the basis \{ n,v1,v2\} for orthonormal vectors (v1,v2)
spanning the space orthogonal to n:

Ln = (s+ 1)2/3n\otimes n+ (s+ 1) - 1/3v1 \otimes v1 + (s+ 1) - 1/3v2 \otimes v2.(2.2)

The assumptions (1.2) together with s0, s\in L\infty (\Omega ) imply that the eigenvalues of Lm

and Ln are bounded away from 0 and \infty , and Lm,Ln are thus invertible. Moreover,
(2.2) provides an explicit inverse for Ln,

L - 1
n = (s+ 1) - 2/3n\otimes n+ (s+ 1)1/3v1 \otimes v1 + (s+ 1)1/3v2 \otimes v2 ,

or equivalently

L - 1
n = (s+ 1)1/3

\biggl( 
I3  - 

s

s+ 1
n\otimes n

\biggr) 
.(2.3)

2.1. Coercivity. In this subsection we show coercivity of the stretching energy.

Proposition 2.1 (coercivity). There exists C(s, s0)> 0 such that the stretching
energy E defined in (1.9) satisfies

C(s, s0)
\Bigl( 
\| \nabla y\| 2L2(\Omega ;R3\times 2) + \| J [y] - 1/2\| 2L2(\Omega )

\Bigr) 
 - 3| \Omega | \leq E[y] \forall y \in H1(\Omega ;R3).(2.4)

Proof. Recalling the expressions (1.9) and (1.10),

E[y] =

\int 
\Omega 

\biggl( \bigm| \bigm| \bigm| L - 1/2
n [\nabla y,b]L1/2

m

\bigm| \bigm| \bigm| 2  - 3

\biggr) 
dx,

where n = n[y] and b = b[y] as in (1.11). We now invoke an elementary result for
any matrix A \in Rd\times d and an SPD matrix B \in Rd\times d: | AB| 2 \geq \lambda min(B)2| A| 2 and
| BA| 2 \geq \lambda min(B)2| A| 2, where \lambda min(B) =min1\leq j\leq d\{ \lambda j(B)\} > 0.
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2892 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

These properties allow us to write the lower bound

E[y]\geq 
\int 
\Omega 

\biggl( 
\lambda min(Lm)

\lambda max(Ln)
| [\nabla y,b]| 2  - 3

\biggr) 
dx.

In view of the forms of Lm,Ln in (2.1) and (2.2), their eigenvalues are explicit,
namely (s0 + 1)2/3, (s0 + 1)1/3 and (s + 1)2/3, (s + 1)2/3, respectively. Recalling the
assumptions on s, s0 in (1.2), we have that there is a constant C(s, s0)> 0 such that
\lambda min(L\bfm )
\lambda max(L\bfn )

\geq C(s, s0) for a.e. x\in \Omega . Thus,

E[y]\geq C(s, s0)

\int 
\Omega 

| [\nabla y,b]| 2 dx - 3| \Omega | .

We observe that

J [y] = | \partial 1y| 2| \partial 2y| 2  - (\partial 1y \cdot \partial 2y)2 = | \partial 1y\times \partial 2y| 2(2.5)

due to the cross-product identity | a\times b| 2 = | a| 2| b| 2  - (a \cdot b)2 for vectors a,b \in R3.
As a consequence of the above formula with the definition of b[y] in (1.11), we have
that | b| 2 = J [y] - 1. Realizing this fact completes the proof.

2.2. Nondegeneracy and global minimizers. Throughout this subsection,
we prove some properties of W that involve matrix properties. If the second argument
of W is a generic matrix F \in R3\times 2 instead of \nabla y, we then follow (1.11) and define
b(F), J(F),n(F) as

n(F) :=
Fm

| Fm| , J(F) := det(FTF), b(F) :=
F1 \times F2

J(F)
,(2.6)

where F1,F2 denote the first and second columns of F, respectively.
We recall that the energy density in (1.10) can be rewritten as a neo-Hookean

energy density:

WH
3D(F) = | F| 2  - 3,(2.7)

where F\in R3\times 3 (with a slight abuse of notation). In particular, we want to exploit the
relation between the neo-Hookean structure of the 2D stretching energy (1.9) to derive
the nondegeneracy and properties of global minimizers. We also stress the importance
of (2.7) because it is critical for the energy scaling argument in Proposition 4.12. To
see the nonnegativity of (2.7), we first observe that a basic linear algebra argument
exploiting the eigenvalues of FTF yields WH

3D(F) = | F| 2  - 3\geq 0 provided detF= 1.
More precisely, WH

3D(F) is nondegenerate in the sense that it is bounded from
below by dist(F, SO(3))2 := infR\in SO(3) | F - R| 2. We now state and prove lower and
upper bounds for WH

3D(F). The former can also be found in [33, Proposition A.3].
The latter will be used in the numerical analysis in Lemma 4.3.

Proposition 2.2 (bounds for WH
3D(F)). Let F\in R3\times 3 satisfy detF= 1. Then,

dist
\bigl( 
F, SO(3)

\bigr) 2 \leq | F| 2  - 3\leq 3 dist
\bigl( 
F, SO(3)

\bigr) 2
.(2.8)

Proof. Let F\in R3\times 3 be such that detF= 1. We first use the polar decomposition,
F=RU for U (SPD) and R \in SO(3), to write | F| 2  - 3 = | RU| 2  - 3 = | U| 2  - 3, and
dist(RU, SO(3))2 =dist(U, SO(3))2.
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2893

1. Lower bound: It is thus sufficient to prove

| U| 2  - 3\geq dist(U, SO(3))2.

Since U is SPD, there exists Q \in SO(3) such that U = QT\Lambda Q with \Lambda a diagonal
matrix with the eigenvalues \lambda 1, \lambda 2, \lambda 3 > 0 of U. Moreover, detU= 1 yields \lambda 3 =

1
\lambda 1\lambda 2

,
and | U| = | \Lambda | implies

| U| 2  - 3 = \lambda 2
1 + \lambda 2

2 +
1

\lambda 2
1\lambda 

2
2

 - 3.

On the other hand, dist(U, SO(3)) = | U - I3| because | U - R| = | \Lambda  - QRQT | with
R\in SO(3) is minimized by QRQT = I3, whence R= I3. Consequently,

dist(U, SO(3))2 = (\lambda 1  - 1)2 + (\lambda 2  - 1)2 +

\biggl( 
1

\lambda 1\lambda 2
 - 1

\biggr) 2

(2.9)

= | U| 2  - 3 + 2

\biggl( 
3 - \lambda 1  - \lambda 2  - 

1

\lambda 1\lambda 2

\biggr) 
.(2.10)

A basic calculus argument gives sup\lambda 1,\lambda 2>0(3 - \lambda 1  - \lambda 2  - 1
\lambda 1\lambda 2

)\leq 0, whence

dist(U, SO(3))2 \leq | U| 2  - 3,

and the lower bound is proved.
2. Upper bound: In view of (2.9) and (2.10) it suffices to prove

(\lambda 1  - 1)2 + (\lambda 2  - 1)2 +

\biggl( 
1

\lambda 1\lambda 2
 - 1

\biggr) 2

\geq \lambda 1 + \lambda 2 +
1

\lambda 1\lambda 2
 - 3.

Without loss of generality, let us assume \lambda 3 =
1

\lambda 1\lambda 2
\geq 1 and write

\lambda 1 + \lambda 2 +
1

\lambda 1\lambda 2
 - 3 =

\biggl( 
1

\lambda 1\lambda 2
 - 1

\biggr) 
 - (1 - \lambda 1\lambda 2) + \lambda 1 + \lambda 2  - \lambda 1\lambda 2  - 1.

The first two terms satisfy the relation\biggl( 
1

\lambda 1\lambda 2
 - 1

\biggr) 
 - (1 - \lambda 1\lambda 2) = \lambda 1\lambda 2

\biggl( 
1

\lambda 1\lambda 2
 - 1

\biggr) 2

\leq 
\biggl( 

1

\lambda 1\lambda 2
 - 1

\biggr) 2

because \lambda 1\lambda 2 \leq 1. The remaining terms, instead, obey the relation

\lambda 1 + \lambda 2  - \lambda 1\lambda 2  - 1 = - (\lambda 1  - 1)(\lambda 2  - 1)\leq (\lambda 1  - 1)2 + (\lambda 2  - 1)2

by virtue of Young's inequality. This proves the desired upper bound.

The next nondegeneracy estimate will be useful for the subsequent discussion.

Corollary 2.3 (nondegeneracy of stretching energy). The stretching energy

density W (x,F) = | L - 1/2
n [F, b]L

1/2
m | 2  - 3 satisfies

W (x,F)\geq dist
\Bigl( 
L - 1/2
n [F, b]L1/2

m , SO(3)
\Bigr) 2

,(2.11)

for all F\in R3\times 2 such that rank(F) = 2, n= n(F), and b= b(F) as defined in (2.6).
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2894 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

Proof. Arguing similarly to the derivation (2.5) in the proof of Proposition 2.1
(coercivity), we use the cross-product identity | a\times b| 2 = | a| 2| b| 2  - (a \cdot b)2 for vectors
a,b\in R3 to deduce

J(F) = | F1| 2| F2| 2  - (F1 \cdot F2)
2 = | F1 \times F2| 2.

According to (2.6) and the above equality, we have b(F) = F1\times F2

| F1\times F2| 2 . With this form

of b(F), we observe

det[F, b] = det[F1, F2, b] = (F1 \times F2) \cdot b= 1.

Since detLm =detL - 1
n = 1 in view of (2.1) and (2.2), we can simply apply Proposition

2.2 (bounds for WH
3D(F)).

Remark 2.4 (special rotations). An important by-product of Corollary 2.3 is that
any solution y \in H1(\Omega ;R3) of E[y] = 0 must satisfy the pointwise relation

L - 1/2
n [\nabla y, b]L1/2

m \in SO(3)

a.e. in \Omega where b = \partial 1y\times \partial 2y
| \partial 1y\times \partial 2y| 2 is a scaled normal. This observation will turn out to

be useful later in the proof of Proposition 4.12.

The next proposition states a known fact in the physics literature [28, 36], namely
that minimizing the stretching energy pointwise is equivalent to satisfying a metric
condition; we prove and discuss this result in [13]. We refer to [33, Appendix A] for a
similar result, but for a related 3D model. We also refer the reader to [33, Theorem
1.13] for results showing that the metric condition arises from a vanishing thickness
limit of a 3D energy at the bending energy scaling.

Proposition 2.5 (target metric). The stretching energy density W (x,F) = 0 if
and only if I(F) satisfies the metric condition I(F) = g, with g \in R2\times 2 given by

g= \lambda 2m\otimes m+ \lambda  - 1m\bot \otimes m\bot ,(2.12)

and \lambda defined as in (1.3).

A deformation y \in H1(\Omega ;R3) is an H1-isometric immersion of g provided I(y) = g
a.e. in \Omega . Therefore, Proposition 2.5 establishes an equivalence between isometric
immersions and minimizers of E. We make this explicit next.

Corollary 2.6 (immersions of g are minimizers with vanishing energy). A
deformation y \in H1(\Omega ;R3) satisfies I[y] = \nabla yT\nabla y = g a.e. in \Omega if and only if y
minimizes E over H1(\Omega ;R3) with E[y] = 0.

Therefore, if the given data m, s, s0 are such that g admits an H1-isometric im-
mersion, global minimizers of E[y] over H1(\Omega ;R3) are guaranteed to exist; otherwise,
E[y] may not vanish over H1(\Omega ;R3). On the other hand, minimizers of E[y] might
not be unique, because g could have many isometric immersions in general. From
another point of view, this issue is also related to lack of convexity for E[y].

2.3. Lack of weak lower semicontinuity in \bfitH 1. The lack of convexity of
the stretching energy (1.10) translates into lack of weak lower semicontinuity of (1.9)
and prevents one from using the direct method of calculus of variations to prove the
existence of minimizers, and is also responsible for serious computational challenges.
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2895

To stress the importance of convexity or lack thereof, we present a modification
of a classical 1D example known as the Bolza example [20, Example 4.8]; see also
[3, Example 2.1]. We next extend this situation to two dimensions.

Example 2.7. We consider the double well energy defined on W 1,4
0 ((0,1)),

E1D[u] =

\int 1

0

\bigl( 
(u\prime )2  - 1

\bigr) 2
+ cu2dx,(2.13)

with some nonnegative c, and define a sequence of sawtooth functions starting with

u1(x) =

\Biggl\{ 
x, x < 1

2 ,

1 - x, x\geq 1
2 .

To construct u2, we subdivide the intervals [0, 1/2] and [1/2,1] into [0,1/4], [1/4,1/2]
and [1/2,3/4], [3/4,1] and then alternate the derivative between \pm 1 on the four subin-
tervals. The function u2 is a sawtooth with derivative of \pm 1 and maximum height 1

4 .
Given un, we do the same subdividing procedure to get a un+1 to get a sawtooth of
height 1

2n+1 . The resulting sequence consists of un that satisfy | u\prime 
n(x)| = 1. The first

few elements are plotted in Figure 2.1. The sequence un \rightharpoonup 0 in W 1,4((0,1)), but

0 = lim
n\rightarrow \infty 

E1D[un]<E1D[0] = 1.

Thus, the energy E1D is not weakly lower semicontinuous on W 1,4, and if c > 0, the
direct method of the calculus of variations would fail to provide the existence of a
minimizer. If c= 0, then any un is a minimizer to E1D over W 1,4.

On the discrete level, the above example is also important because the lack of
convexity means that a standard weak compactness result in H1 will not be enough
to prove convergence of minimizers. We shall see that E is not weakly lower semi-
continuous in H1(\Omega ;R3). To illustrate this point, we present an example of some
minimizers to E that extends Example 2.7 to two dimensions. The first element of
the sequence of minimizers is a pyramid from [29]. We later display several pyramid
configurations in section 5.1 computed with our FEM.

Example 2.8. Let \Omega = [ - 1,1]2 and let m be the blueprinted director field depicted
in Figure 2.2(a), and let y1 be the solution in Figure 2.2(b) with \lambda < 1. The sur-
face y1(\Omega ) is a square pyramid with base width 2\lambda and height

\surd 
\lambda  - 1  - \lambda 2, and first

fundamental form I[y] = g with target metric g given by (2.12). We can mimic the
subdivision procedure of Example 2.7 to produce a sequence yn such that I[yn] = g
and yn \rightharpoonup y\ast inH1(\Omega ;R3), where y\ast (x) = (\lambda x1, \lambda x2,0). The first three elements of the
sequence are displayed in Figures 2.2(b)--(d). Since I[yn] = g, we deduce E[yn] = 0

Fig. 2.1. Example 2.7: First four elements un of the minimizing sequence of (2.13).
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(a) (b) (c) (d)

Fig. 2.2. Example 2.8: Blueprinted director field m and first three elements yn(\Omega ) of a mini-
mizing sequence with foldings on dyadic squares concentric with \Omega .

for all n, according to Corollary 2.6 (immersions of g are minimizers). Moreover,
I[y\ast ] = \lambda 2I2 \not = g a.e. in \Omega because \lambda \not = 1. Inserting \nabla y\ast into W yields W (x,\nabla y\ast )> 0
a.e. in \Omega due to Proposition 2.5 (target metric), whence

lim inf
n\rightarrow \infty 

E[yn] = 0<E[y\ast ].

We thus conclude that E is not weakly lower semicontinuous in H1(\Omega ;R3).

Additionally, we note that the relevant convexity notion for W (x, \cdot ) is quasicon-
vexity. We refer the reader to the book [20] for background on this topic.

There are numerous strategies to treat nonconvexity in numerical methods for
nonconvex energies. For an introduction on discretizations for nonconvex variational
problems, we refer the reader to [4, Chapter 9]. For this paper, we choose to regularize
the stretching energy with the expectation that regularization provides a stronger
compactness result to get around the issue of lack of weak lower semicontinuity. We
note that this strategy has been used before in the study of LCEs/LCNs [16]. The
model of [16] utilizes the regularized energy\int 

\Omega 

W (x,\nabla y) + \varepsilon | div\nabla y| 2,

where \varepsilon > 0 is a positive fixed constant. This is a dimensionally reduced model from
the 3D model of [9], which incorporates a Hessian term to the energy.

We are interested in the membrane model and would like to recover the target
metric in the limit. We consider the regularized energy

E\varepsilon [y] =E[y] + \varepsilon 

\int 
\Omega 

\bigm| \bigm| D2y
\bigm| \bigm| 2,(2.14)

where \varepsilon scales likes h2. One may view this as analogous to a higher order bending term.
This kind of energy blending is studied by [30]. The perspective of the regularization
acting like a higher order bending term motivates the choice of \varepsilon \approx h2. In fact, the
best energy scaling one can expect of E is h2 due to the H2 regularity of zero energy
states of E under Assumption 4.1 (regularity), and the regularization term balances
with the stretching energy scaling. One may also consider a more physical bending
energy. A recent example of a bending theory for LCEs is [8].

Another approach would be to compute minimizers of an effective energy, whose
energy density is the quasiconvex envelope of Wstr. In LCNs/LCEs, the authors
of [14] explicitly compute a quasiconvex energy density for a membrane energy of
LCEs, and the authors of [21] compute minimizers of a relaxed 3D energy for LCEs
where the effective energy is known. If the quasiconvex envelope is unknown, then
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2897

one can approximate the envelope, as done for LCNs/LCEs in [19]. Computing the
quasiconvex envelope of Wstr is outside the scope of this paper.

3. The discrete minimization problem. This section introduces the discrete
minimization and proposes a discrete gradient flow as a solver.

3.1. Discrete energies. Let \scrT h be a shape-regular sequence of meshes with
maximum meshsize h. We denote by \scrE h the set of interior edges to the mesh, and
by \scrN h the set of nodes of the mesh. The space for discrete deformations consists of
continuous piecewise linear functions:

Vh := \{ yh \in C0(\Omega ;R3) : yh| T \in \scrP 1 \forall T \in \scrT h\} .(3.1)

We propose the regularized discrete energy Eh :Vh \rightarrow R defined by

Eh[yh] =

\int 
\Omega 

W (x,\nabla yh)dx+Rh[yh],(3.2)

where the regularization term Rh[yh] := crh
2| yh| 2H2

h(\Omega ;R3)
is a rescaling of the DG

discrete H2-seminorm for continuous piecewise linear functions,

| yh| 2H2
h(\Omega ;R3) :=

\sum 
e\in \scrE h

1

h

\int 
e

| [\nabla yh]| 2,(3.3)

and cr : \Omega \rightarrow R+ is a nonnegative regularization parameter of our choice. The notation
[\nabla yh] denotes the jump of \nabla yh across edges e\in \scrE h:

[\nabla yh]
\bigm| \bigm| 
e
=\nabla y+

h  - \nabla y - 
h ,(3.4)

where \nabla y\pm 
h (x) := lims\rightarrow 0+ \nabla yh(x \pm sne) and ne is a unit normal vector to e (the

choice of its direction is arbitrary but fixed). To justify that (3.3) is indeed a discrete
H2-seminorm, we argue heuristically as follows. Since yh is elementwise affine, we
view Hh[yh]| e := [\nabla yh]| e

h as a finite difference Hessian of yh across e. If one extends
the definition of Hh[yh]| e to elements T \in \scrT h as a constant, namely, Hh[yh]

2| T =\sum 
e\subset \partial T

1
h

\int 
e
| [\nabla yh]| 2

h2 , it satisfies the natural scaling
\int 
T
| Hh[yh]| 2 \approx h

\int 
e
| Hh[yh]| 2 and

results in

| yh| 2H2
h(\Omega ;R3) =

\sum 
e\in \scrE h

1

h

\int 
e

| [\nabla yh]| 2 =
\sum 
e\in \scrE h

h

\int 
e

\bigm| \bigm| Hh[yh]
\bigm| \bigm| 2

\approx 
\sum 
T\in \scrT h

\int 
T

\bigm| \bigm| Hh[yh]
\bigm| \bigm| 2 = \int 

\Omega 

\bigm| \bigm| Hh[yh]
\bigm| \bigm| 2.

The regularization term h2
\int 
\Omega 

\bigm| \bigm| Hh[yh]
\bigm| \bigm| 2 thus mimics a higher order bending en-

ergy (2.14) where h is proportional to the thickness of a thin 3D body.
Our next task is to solve the discrete counterpart of (1.9), namely

y\ast 
h = argminyh\in Vh

Eh[yh].(3.5)

According to the discussions in section 2.3, we can also expect lack of convexity and
weak lower semicontinuity in the first term of Eh[yh] in (3.2). These features account
for the main difficulty in solving the discrete minimization problem (3.5) and in ana-
lyzing convergence of y\ast 

h toward a minimizer y\ast of (1.9). These topics are discussed
in sections 3.2 and 4.
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2898 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

3.2. Minimizing the discrete energy: Nonlinear gradient flow. We design
a nonlinear discrete gradient flow to find a solution to (3.5) in this subsection. Given
yi
h \in Vh for any i \geq 0, at each step of the iterative scheme we find yi+1

h \in Vh that
solves the minimization problem for the augmented functional Li

h:

yi+1
h = argminyh\in Vh

Li
h[yh], Li

h[yh] :=
1

2\tau 
\| yh  - yi

h\| 2H1(\Omega ;R3) +Eh[yh].(3.6)

The first term in Li dictates the flow metric and penalizes the deviation of yi+1
h from

yi
h provided the pseudo time-step \tau > 0 is small. Therefore, (3.6) is a mechanism to

minimize Eh[yh] within an H1-neighborhood of yi
h. The choice of H1(\Omega ;R3)-metric

is made for convenience, but it has important consequences for the stability of (3.6).
Calculating the first order variation \delta Li

h[yh](vh) of L
i
h[yh] in the direction vh \in 

Vh, we obtain the weak form of the Euler--Lagrange equation for Li
h[yh]:

\delta Li
h[yh](vh) =

1

\tau 
(yh,vh)H1(\Omega ;R3) + \delta Eh[yh](vh) - Fi(vh) = 0 \forall vh \in Vh,(3.7)

where Fi \in V\ast 
h is the linear functional

Fi(vh) :=
1

\tau 
(yi

h,vh)H1(\Omega ;R3),

and \delta Eh[yh](vh) is the first variation of Eh[yh] in the direction vh \in Vh. The latter
turns out to be nonlinear in yh due to the nonlinear structure of (3.2). The explicit
expression of \delta Eh[yh](vh) is tedious to compute and is omitted in this paper, but is
given in the first version of our companion arXiv preprint [13] along with the second
variation needed for a Newton method. In fact, we propose a Newton-type algorithm
to solve (3.7) at each step i of the gradient flow. Choosing yi,0

h := yi
h \in Vh and

assuming yi,n
h \in Vh is known for n\geq 0, we compute the increment \delta yi,n

h \in Vh from

\delta 2Li
h[y

i,n
h ](\delta yi,n

h ,vh) = - \delta Li
h[y

i,n
h ](vh) \forall vh \in Vh(3.8)

and update yi,n+1
h = yi,n

h + \delta yi,n
h . We point out that

\delta 2Li
h[yh](vh,wh) =

1

\tau 

\bigl( 
vh,wh

\bigr) 
H1(\Omega ;R3)

+ \delta 2Eh[yh](vh,wh) \forall yh,vh,wh \in Vh,

(3.9)

and \delta 2Eh[yh](vh,wh) is accessible by straightforward but lengthy calculations [13].
The Newton subiteration (3.8) is linear in \delta yi,n

h \in Vh and is stopped once:\bigm| \bigm| \bigm| \delta Li
\Bigl[ 
yi,M
h

\Bigr] \Bigl( 
\delta yi,M

h

\Bigr) \bigm| \bigm| \bigm| 1/2 \leq tol1

for some integer M > 0 and a predetermined tolerance parameter tol1.
We choose the next iterate of the gradient flow to be the output of the Newton

subiteration, i.e, yi+1
h := yi,M

h . We stop the nonlinear gradient flow provided that

1

\tau 

\bigm| \bigm| Eh

\bigl[ 
yN
h

\bigr] 
 - Eh

\bigl[ 
yN - 1
h

\bigr] \bigm| \bigm| \leq tol2

is valid for some N > 0 and fixed tolerance tol2, and declare yN
h to be the output.

Energy stability of the gradient flow is guaranteed if the minimization problem
(3.6) is solved exactly. This is an intrinsic property of implicit gradient flows.
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2899

Proposition 3.1 (energy decrease property). Given yi
h \in Vh for i\geq 0, suppose

yi+1
h \in Vh solves the minimization problem (3.6). Then Eh[y

i+1
h ]\leq Eh[y

i
h] with strict

inequality if yi+1
h \not = yi

h. Moreover, for any N \geq 1, there holds

Eh[y
N
h ] +

1

2\tau 

N - 1\sum 
i=0

\| yi+1
h  - yi

h\| 2H1(\Omega ;R3) \leq Eh[y
0
h].(3.10)

Proof. Since yh = yi
h is an admissible function in (3.6), we deduce

1

2\tau 
\| yi+1

h  - yi
h\| 2H1(\Omega ;R3) +Eh[y

i+1
h ] =Li

h[y
i+1
h ]\leq Li

h[y
i
h] =Eh[y

i
h].(3.11)

This proves that the energy Eh[y
i
h] is strictly decreasing provided that yi+1

h \not = yi
h,

and, upon summation from i= 0 to N  - 1, also yields (3.10).

We note that the energy decrease property is also valid for flow metrics other than
H1(\Omega ;R3). However, the choice of H1(\Omega ;R3) allows for better control of the Newton
subiterations solving (3.7), which we now address. We base our comments below on
our numerical experiments of section 5 and the companion paper [13].

\bullet Initialization. When yi
h \in Vh is given in the gradient flow outer iteration, it

is natural to choose yi,0
h := yi

h as initial guess for the Newton inner iterations
that is designed to compute yi+1

h . If yi,\ast 
h is a local minimizer of (3.6) and

Eh[y
0
h]\leq \alpha , then (3.11) implies

1

2\tau 
\| yi,\ast 

h  - yi
h\| 2H1(\Omega ;R3) \leq Eh[y

i
h]\leq Eh[y

0
h]\leq \alpha ,

whence the H1-distance between yi,0
h and the minimizer yi,\ast 

h is proportional
to \tau 1/2. This not only reveals the crucial role of \tau but also of the H1-metric
for the discrete flow (3.6), which is the norm governing the stretching energy
(1.9).

\bullet Well-posedness and convergence. In view of (3.9), the quadratic structure
of the flow metric term \tau  - 1(\cdot , \cdot )H1(\Omega ;R3) may compensate for the lack of el-
lipticity of \delta 2Eh[yh](\cdot , \cdot ) due to the lack of convexity of Eh, provided \tau is
sufficiently small. Therefore, we expect well-posedness and superlinear con-
vergence of the proposed Newton method when \tau is small.

\bullet Moderate condition on \tau . Our simulations of section 5, and those in [13],
confirm solvability and convergence of the Newton subiterations (3.8) with
moderate values of \tau relative to the meshsize h. Consequently, the restriction
on \tau is mild for current simulations and yet prevents the use of backtracking
techniques.

4. Convergence of discrete minimizers. This section is dedicated to proving
convergence of discrete minimizers under the following regularity assumption.

Assumption 4.1 (regularity). The metric g defined in (2.12) admits an H2-
isometric immersion: there exists a y \in H2(\Omega ;R3) such that \nabla yT\nabla y = g a.e. in
\Omega or equivalently E[y] = 0.

Under regularity Assumption 4.1, the main result can be stated as follows.

Theorem 4.2 (convergence of minimizers). Let Assumption 4.1 hold and let
yh be a minimizer of Eh with mean value yh := | \Omega |  - 1

\int 
\Omega 
yh dx. Then there is a
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2900 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

subsequence (not relabeled) of yh - yh that converges in H1(\Omega ,R3) strongly to a func-
tion y\ast \in H2(\Omega ;R3) that satisfies E[y\ast ] = 0, i.e., y\ast is an isometric immersion
I[y\ast ] =\nabla y\ast T\nabla y\ast = g.

We start with a roadmap to the proof of convergence of discrete minimizers, which
is inspired by the seminal work [23]. The first step is to build a recovery sequence
yh for the isometric immersion y \in H2(\Omega ;R3)\cap W 1,\infty (\Omega ;R3) in Assumption 4.1 that
exhibits the desired energy scaling Eh[yh] \lesssim h2 (see Proposition 4.12). For such a y
we know that J [y] = \lambda \geq cs,s0 > 0 due to (1.4). The challenge is to show a similar lower
bound for J [yh] = det\nabla yT

h\nabla yh. This is trickier than interpolating directly or after
convolution because this procedure would not lend itself to a lower bound for J [yh]
for y merely in W 1,\infty (\Omega ;R3). Moreover, the regularity y \in H2(\Omega ;R3) is borderline for
\Omega \subset R2 and does not yield further pointwise regularity of \nabla y. Therefore, we instead
resort to a Lusin approximation argument for Sobolev functions similar to that used
in [23]. To achieve the desired energy scaling of Eh[yh] \lesssim h2, we exploit both frame
indifference and the neo-Hookean structure of the stretching energy in (1.10).\int 

\Omega 

W (x,\nabla yh)dx=

\int 
\Omega 

\Bigl( \bigm| \bigm| L - 1/2
nh

[\nabla yh, bh]L
1/2
m

\bigm| \bigm| 2  - 3
\Bigr) 

dx,

where nh = \nabla yhm
| \nabla yhm| and bh = \partial 1yh\times \partial 2yh

| \partial 1yh\times \partial 2yh| 2 . We next recall that Remark 2.4 (special

rotations) implies that R = L
 - 1/2
n [\nabla y, b]L

1/2
m \in SO(3), because E[y] = 0 according

to Proposition 2.5 (target metric). This enables us to use the rotation R to rewrite
the integrand as\bigm| \bigm| L - 1/2

nh
[\nabla yh, bh]L

1/2
m

\bigm| \bigm| = \bigm| \bigm| R+Ah| , Ah :=L - 1/2
nh

[\nabla yh, bh]L
1/2
m  - R,

and invoke frame indifference. Multiplying by RT does not change the energy, i.e.,\int 
\Omega 

W (x,\nabla yh)dx=

\int 
\Omega 

\Bigl( \bigm| \bigm| RTR+RTAh

\bigm| \bigm| 2  - 3
\Bigr) 

dx=

\int 
\Omega 

\Bigl( \bigm| \bigm| I3 +RTAh

\bigm| \bigm| 2  - 3
\Bigr) 

dx.

Lemma 4.3 and an L\infty -bound on R lead to a quadratic expansion around I3:\int 
\Omega 

W (x,\nabla yh)dx=

\int 
\Omega 

\Bigl( \bigm| \bigm| I3 +RTAh

\bigm| \bigm| 2  - 3
\Bigr) 
dx\lesssim \| Ah\| 2L2(\Omega ;R3\times 3).

Finally, an error estimate on y - yh and properties of yh in Lemma 4.9 further imply
that \| Ah\| 2L2(\Omega ;R3\times 3) \lesssim h2 and | yh| 2H2

h(\Omega ;R3)
\lesssim 1, whence Eh[yh] \lesssim h2 according to

(3.2).
Existence of a recovery sequence yh so that Eh[yh] \lesssim h2 implies that global

discrete minimizers y\ast 
h are uniformly bounded in the H2

h-seminorm. The uniform
bound means that a subsequence of y\ast 

h converges strongly in H1(\Omega ), which bypasses
the convexity issues of W . The tools that transfer a discrete H2-bound to additional
compactness have been developed for bending problems [12]. We go over the relevant
results in Lemmas 4.10 and 4.11.

We now connect our work with the existing literature. As in [23], energy scaling
brings additional compactness, but the mechanism in this paper is H2-regularity of
isometric immersions rather than the geometric rigidity result in [23]. We refer to [33]
for a geometric rigidity result in the context of LCEs. Moreover, we learned from [33]
that R is a suitable rotation to exploit frame indifference and perform a quadratic
expansion of

\bigm| \bigm| I3 +RTAh

\bigm| \bigm| 2 around the identity.
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2901

4.1. Preliminaries. This section covers preliminaries to lay the groundwork for
the main results later. Subsection 4.1.1 contains preliminaries on how to approximate
an H2-isometric immersion of g. The key question is as follows:

Given y \in H2(\Omega ;R3) that satisfies\nabla yT\nabla y= g,how does one construct

yh \in Vh such that \| y - yh\| H1(\Omega ;R3) \lesssim h and J [yh]> 0 a.e. in\Omega ?
(4.1)

This kind of approximation requires some control in W 1,\infty (\Omega ). To achieve control
over J [yh] in L\infty , we regularize y with a y\mu \in W 2,\infty (\Omega ;R3) such that J [y\mu ]\geq c. We
note that there are works on approximating maps by smooth maps with well-defined
normals. We refer the reader to [18, Proposition 4.1], where the approximation is in
the L\infty -norm rather than H1. In our context, however, we deal with functions that
have higher regularity than [18]. Hence, we are able to take advantage of Lusin trun-
cation of Sobolev functions and ideas used in the construction of a recovery sequence
in [23].

Subsection 4.1.2 discusses the regularization of a piecewise constant matrix field
by an H1-matrix field. This regularization provides additional compactness and relies
on a quasi-interpolant that has been used in previous works on DG methods for
bending problems [12]. Our presentation is brief but self-contained.

4.1.1. Preliminaries for energy scaling. We first establish a quadratic ex-
pansion of the neo-Hookean formula around the identity, thereby slightly improving
on [33, Proposition A.2].

Lemma 4.3 (scaling of neo-Hookean formula near identity). If A\in R3\times 3 satisfies
det(I3 +A) = 1, then \bigm| \bigm| I3 +A

\bigm| \bigm| 2  - 3\leq 3
\bigm| \bigm| A\bigm| \bigm| 2.

Proof. Since det(I3 +A) = 1, we may apply Proposition 2.2 to bound

| I3 +A| 2  - 3\leq 3dist
\bigl( 
I3 +A, SO(3)

\bigr) 2 \leq 3
\bigm| \bigm| I3 +A - I3

\bigm| \bigm| 2 = 3
\bigm| \bigm| A\bigm| \bigm| 2,

which is the desired result.

We next introduce, without proof, a truncation argument for Sobolev functions
from [23, Proposition A.2]; this is a suitable form of Lusin theorem. The result in
[23, Proposition A.2] is stated with boundary conditions but it is still valid without
them. We also point to a similar result in [39, Theorem 3.11.6] as well as a Lipschitz
truncation of-W 1,1

0 (\Omega ) functions [22, Theorem 13].

Lemma 4.4 (truncation of H2-functions). Let y \in H2(\Omega ;R3). There exists y\mu \in 
W 2,\infty (\Omega ;R3) such that

\| y\mu \| W 2,\infty (\Omega ;R3) \leq C\mu ,(4.2)

and for S\mu := \{ x\in \Omega : y(x) \not = y\mu (x) or \nabla y(x) \not =\nabla y\mu (x)\} we have the estimate

| S\mu | \leq C
\omega (\mu )

\mu 2
(4.3)

on the measure, | S\mu | , of S\mu , where

\omega (\mu ) =

\int 
\{ | y| +| \nabla y| +| D2y| \geq \mu 

2 \} 

\bigl( 
| y| + | \nabla y| + | D2y| 

\bigr) 2
dx

satisfies \omega (\mu )\rightarrow 0 as \mu \rightarrow \infty .
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2902 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

Motivated by the proof of [23, Theorem 6.1(ii)], we refine Lemma 4.4 for our
purposes. In our case, the isometric immersion y given by Assumption 4.1 satisfies
y \in H2(\Omega ;R3)\cap W 1,\infty (\Omega ,R3) and J [y]\geq cs,s0 > 0 by virtue of I[y] = g.

Lemma 4.5 (truncation of H2-functions with Lipschitz control). If y \in H2(\Omega ;R3)
\cap W 1,\infty (\Omega ;R3) and J [y] \geq c > 0, then the function y\mu \in W 2,\infty (\Omega ;R3) given by
Lemma 4.4 satisfies the following bounds for \mu sufficiently large:

\| y\mu \| W 2,\infty (\Omega ;R3) \leq C\mu ,(4.4)

\| y\mu \| H2(\Omega ;R3) \leq C\| y\| H2(\Omega ;R3),(4.5)

\| y\mu \| W 1,\infty (\Omega ;R3) \leq C
\bigl( 
1 + \| y\| W 1,\infty (\Omega ;R3)

\bigr) 
,(4.6)

J [y\mu ]\geq c

2
,(4.7)

\| y\mu  - y\| H1(\Omega ;R3) \leq C
\bigl( 
1 + \| y\| W 1,\infty (\Omega ;R3)

\bigr) \sqrt{} \omega (\mu )

\mu 
,(4.8)

where C are generic constants independent of the truncation parameter \mu .

Proof. We first invoke Lemma 4.4 (truncation of H2-functions). For all \mu > 0,
there exists a y\mu \in W 2,\infty (\Omega ;R3) such that y\mu = y and \nabla y\mu = \nabla y on a set \Omega \setminus S\mu ,
where | S\mu | \leq C\omega (\mu )/\mu 2 and lim\mu \rightarrow \infty \omega (\mu ) = 0. Additionally, \| y\mu \| W 2,\infty (\Omega ;R3) \leq C\mu ,
which is (4.4).

We shall now prove that y\mu satisfies the asserted properties starting with (4.5).
Using properties of y\mu on the good and bad sets yields

\| y\mu \| 2H2(\Omega ;R3) =

\int 
S\mu 

| y\mu | 2 + | \nabla y\mu | 2 + | D2y\mu | 2 dx+

\int 
\Omega \setminus S\mu 

| y\mu | 2 + | \nabla y\mu | 2 + | D2y\mu | 2 dx

\leq C| S\mu | \mu 2 +

\int 
\Omega \setminus S\mu 

| y| 2 + | \nabla y| 2 + | D2y| 2 dx\leq C| S\mu | \mu 2 + \| y\| 2H2(\Omega ;R3).

Since C| S\mu | \mu 2 \leq C\omega (\mu )\leq C\| y\| 2H2(\Omega ;R3), (4.5) follows immediately.
In order to show (4.6) and (4.7), we first note that J [y\mu (x)]\geq c and | \nabla y\mu (x)| \leq C

clearly hold for a.e.x\in \Omega \setminus S\mu . We now focus on x\in S\mu . First, we proceed similarly to
the proof of [23, Theorem 6.1(ii)] to show that there exists \delta > 0 such that B(x,R)\cap \Omega \setminus 
S\mu \not = \emptyset for R := \delta 

\sqrt{} 
C\omega (\mu )\mu  - 1 and all x\in S\mu . Otherwise, B(x,R)\cap \Omega =B(x,R)\cap S\mu 

and, since \Omega is Lipschitz, there exists A> 0 such that

AR2 \leq | B(x,R)\cap \Omega | = | B(x,R)\cap S\mu | \leq | S\mu | \leq 
C\omega (\mu )

\mu 2
.

Setting \delta =
\sqrt{} 
(2/A) produces a contradiction. Returning to x\in S\mu , we pick a z\in \Omega \setminus S\mu 

such that | x - z| \leq R and employ (4.2) to write

| \nabla y\mu (x) - \nabla y\mu (z)| \leq C\mu R=C\mu \delta 
\sqrt{} 
\omega (\mu )\mu  - 1 =C\delta 

\sqrt{} 
\omega (\mu ).(4.9)

Therefore,

| \nabla y\mu (x)| \leq | \nabla y\mu (x) - \nabla y\mu (z)| + | \nabla y\mu (z)| 
\leq C(\delta 

\sqrt{} 
\omega (\mu ) + \| \nabla y\| L\infty (\Omega ;R3\times 2))\leq C(1 + \| \nabla y\| L\infty (\Omega ;R3\times 2))

for \mu sufficiently large; this shows (4.6). Moreover,

J [y\mu (x)] = J [y\mu (z)] - 
\bigl( 
J [y\mu (z)] - J [y\mu (x)]

\bigr) 
\geq c - 

\bigm| \bigm| J [y\mu (z)] - J [y\mu (x)]
\bigm| \bigm| .(4.10)
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2903

Exploiting the Lipschitz continuity of y \mapsto \rightarrow J [y] in W 1,\infty within a ball of radius
proportional to (1 + \| y\| W 1,\infty (\Omega ;R3)), and combining the estimates (4.6) and (4.9) for
y\mu yields \bigm| \bigm| J [y\mu (z)] - J [y\mu (x)]

\bigm| \bigm| \leq C
\bigl( 
1 + \| \nabla y\| L\infty (\Omega ;R3\times 2)

\bigr) 
\delta 
\sqrt{} 

\omega (\mu ),

whence the right-hand side is smaller than c/2, provided that \mu is sufficiently large.
Inserting this back into (4.10) gives J [y\mu (x)]\geq c

2 , which is (4.7).
It remains to prove (4.8). We first write the error \| y\mu  - y\| 2H1(\Omega ;R3) as

\| y\mu  - y\| 2H1(\Omega ;R3) =

\int 
S\mu 

| y\mu  - y| 2 + | \nabla y\mu  - \nabla y| 2dx,

according to the definition of S\mu in Lemma 4.4 (truncation of H2-functions). The
W 1,\infty -bound (4.6) on y\mu in conjunction with the estimate (4.3) on the measure of S\mu 

produces the bound

\| y\mu  - y\| 2H1(\Omega ;R3) \leq C
\bigl( 
1 + \| y\| W 1,\infty (\Omega ;R3)

\bigr) 2| S\mu | \leq C
\bigl( 
1 + \| y\| W 1,\infty (\Omega ;R3)

\bigr) 2 \omega (\mu )
\mu 2

.

Taking the square root of both sides yields the desired estimate.

Remark 4.6. The argument in the proof of Lemma 4.5 is similar to that in the
proof of [23, Theorem 6.1(ii)], while the key difference is the object of interest. We
want control over \| \nabla y\mu \| L\infty (\Omega ;R3\times 2) and J [y\mu ], while [23] needs the gradient of the
recovery sequence to be in an L\infty -neighborhood of SO(3).

Remark 4.7. We stress that the significance of (4.8) is to provide a rate of conver-
gence in H1 relative to the blowup of the parameter \mu that controls the W 2,\infty -norm,
for which it is crucial that y \in W 1,\infty (\Omega ;R3). If y \in H2(\Omega ;R3) but not in W 1,\infty (\Omega ;R3),
then Sobolev embedding combined with (4.5) gives the reduced rate, for all 2< p<\infty ,

\| y\mu  - y\| H1(\Omega ;R3) \leq \| y\mu  - y\| W 1,p(\Omega ;R3)

\bigm| \bigm| S\mu 

\bigm| \bigm| p - 2
2p \leq C\| y\| H2(\Omega ;R3)\mu 

 - 1+2/p.

The next few results deal with numerical preliminaries that are important for en-
ergy scaling. The next result says that interpolating an H2-function gives a discrete
function that has a uniform discrete H2-bound. We present the proof for complete-
ness, but the argument can be found in the proof of [12, Proposition 5.3].

Lemma 4.8 (Lagrange interpolation stability in H2). Let y \in H2(\Omega ;R3). Then
the Lagrange interpolant Ihy \in Vh satisfies | Ihy| H2

h(\Omega ;R3) \lesssim | y| H2(\Omega ;R3).

Proof. Consider an arbitrary edge e\in \scrE h and its neighboring elements T1, T2 \in \scrT h,
and set \omega e = T1 \cup T2. Since y \in H2(\Omega ;R3), the jump of \nabla y across e is zero. Then,
by a trace inequality, interpolation estimate, and the fact that Ihy is linear on each
element, we obtain for any component y of y

\| [\nabla Ihy]\| L2(e;R2) = \| [\nabla Ihy - \nabla y]\| L2(e;R2)

\leq h - 1/2\| \nabla Ihy - \nabla y\| L2(\omega e;R2) + h1/2\| D2Ihy - D2y\| L2(\omega e;R2\times 2)

\lesssim h1/2\| D2y\| L2(\omega e;R2\times 2).

Dividing both sides by h1/2, squaring, and summing over edges gives the assertion in
view of the definition (3.3).

We next establish other approximation properties of the Lagrange interpolant.
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2904 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

Lemma 4.9 (discrete approximation of H2-maps). Let y \in H2(\Omega ;R3) satisfy
y \in W 1,\infty (\Omega ;R3) and J [y]\geq c a.e. in \Omega . For all h > 0 sufficiently small, there exists
yh \in Vh such that \| yh\| W 1,\infty (\Omega ;R3) \lesssim 1 + \| y\| W 1,\infty (\Omega ;R3) and the following estimates
are valid:

J [yh]\geq 
c

4
,(4.11)

\| yh  - y\| H1(\Omega ;R3) \lesssim h
\bigl( 
1 + \| y\| W 1,\infty (\Omega ;R3) + \| y\| H2(\Omega ;R3)

\bigr) 
,(4.12)

| yh| H2
h(\Omega ;R3) \lesssim 1 + \| y\| H2(\Omega ;R3).(4.13)

Proof. We first invoke Lemma 4.5 (truncation of H2-functions with Lipschitz
control) with \mu h = \delta h - 1 to regularize y with a y\mu h ; the constant \delta > 0 will be
determined soon. We choose yh = Ihy

\mu h to be the Lagrange interpolant of y\mu h . Since
| y\mu h | W 2,\infty (\Omega ) \leq C\mu h, in light of (4.4), a standard error estimate for the Lagrange
interpolant gives the W 1,\infty -error estimate

\| \nabla yh  - \nabla y\mu h\| L\infty (\Omega ;R3\times 2) \lesssim h| y\mu h | W 2,\infty (\Omega ;R3) \lesssim h\mu h = \delta .

This, together with (4.6), implies uniform W 1,\infty -bounds for yh,y
\mu h , which in turn

yield the following error estimate for J [yh] because of the Lipschitz continuity of
y \mapsto \rightarrow J [y] in W 1,\infty within balls of radius proportional to (1 + \| y\| W 1,\infty (\Omega ;R3))

\| J [yh] - J [y\mu h ]\| L\infty (\Omega ) \leq C\delta .

We choose \delta sufficiently small, so that C\delta < c
4 . Hence, for this choice of \delta , we have

J [yh]\geq J [y\mu h ] - \| J [yh] - J [y\mu h ]\| L\infty (\Omega ) \geq J [y\mu h ] - C\delta \geq c

2
 - c

4
=

c

4
,

provided h is sufficiently small, and correspondingly \mu h = \delta h - 1 is sufficiently large for
(4.7) to be valid. This proves the first assertion (4.11).

For the second assertion (4.12), we apply the triangle inequality

\| y - yh\| H1(\Omega ;R3) \leq \| y - y\mu h\| H1(\Omega ;R3) + \| y\mu h  - yh\| H1(\Omega ;R3)

and observe that (4.8) from Lemma 4.5 implies

\| y - y\mu h\| H1(\Omega ;R3) \leq C\mu  - 1
h

\bigl( 
1 + \| y\| W 1,\infty (\Omega ;R3)

\bigr) 
.

For the remaining term we utilize a standard error estimate for the Lagrange inter-
polant, in conjunction with (4.5) from Lemma 4.5, to arrive at

\| y\mu h  - Ihy
\mu h\| H1(\Omega ;R3) \lesssim h| y\mu h | H2(\Omega ;R3) \lesssim h\| y\| H2(\Omega ;R3).

Combining the last two bounds with \mu  - 1
h = h\delta  - 1 \lesssim h yields the desired estimate

\| y - yh\| H1(\Omega ;R3) \lesssim h
\bigl( 
1 + \| y\| W 1,\infty (\Omega ;R3) + \| y\| H2(\Omega ;R3)

\bigr) 
because \delta has already been fixed. Finally, the uniform H2

h-bound (4.13) follows from
Lemma 4.8 (Lagrange interpolant stability in H2) and the H2-bound (4.5) on y\mu in
Lemma 4.5. This completes the proof.
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4.1.2. Preliminaries for compactness. We show now how to extract H1-
compactness for sequences of continuous piecewise linear functions which are not
naturally in H2(\Omega ). We proceed by discrete regularization via Cl\'ement interpolation
as in [12].

Suppose first that we have a function v \in L1(\Omega ). Given a generic node z \in \scrN h,
with corresponding star (or patch) \omega z, let Vh(\omega z) be the space of continuous piecewise
linear functions over \omega z. We define the local L2-projection over Vh(\omega z) as follows:

vz \in Vh(\omega z) :

\int 
\omega z

(vz  - v)vh = 0 \forall vh \in Vh(\omega z);(4.14)

note that vz = v if v \in Vh(\omega z). We define the Cl\'ement interpolant \scrI hv \in Vh to be

\scrI hv :=
\sum 
z\in \scrN h

vz(z)\phi z,(4.15)

where \{ \phi z\} z\in \scrN h
denotes the nodal basis of Vh associated with z \in \scrN h.

Lemma 4.10 (regularization of piecewise constant functions). If v : \Omega \rightarrow R is a
piecewise constant function over \scrT h, then its piecewise linear quasi-interpolant \scrI hv \in 
C0(\Omega ) defined in (4.14) and (4.15) satisfies the error estimates

\| v - \scrI hv\| L2(\Omega ) + h\| \nabla \scrI hv\| L2(\Omega ;R2) \lesssim h

\sqrt{} \sum 
e\in \scrE h

1

h

\int 
e

[v]2.(4.16)

Proof. This is a corollary of [12, Lemma 2.1].

This lemma is instrumental in deriving compactness properties from sequences of
functions with uniform H2

h-bounds. This is what we establish next. The proof follows
the proof of [12, Proposition 5.1], but we sketch it for completeness.

Lemma 4.11 (compactness properties). Let yh \in Vh satisfy the uniform bounds
\| \nabla yh\| L2(\Omega ;R3\times 2) \lesssim 1 and | yh| H2

h(\Omega ;R3) \lesssim 1. Then there exists y \in H2(\Omega ;R3) such that
a subsequence (not relabeled) of yh  - yh converges strongly:

(yh  - yh)\rightarrow y

in H1(\Omega ;R3) as h\rightarrow 0, where yh := | \Omega |  - 1
\int 
\Omega 
yh is the mean value of yh.

Proof. Since yh satisfies the uniform bound \| \nabla yh\| L2(\Omega ;R3\times 2) \lesssim 1, Poincar\'e in-
equality further implies the uniform bound \| yh - yh\| H1(\Omega ;R3) \lesssim 1. Therefore, there are
y \in H1(\Omega ;R3) and a subsequence (not relabeled) of (yh - yh) such that (yh - yh)\rightarrow y
strongly in L2(\Omega ;R3) and weakly in H1(\Omega ;R3).

To extract additional regularity of y, we considerwh = \scrI h(\nabla yh)\in [Vh]
3\times 2 with \scrI h

defined in (4.15). In view of the uniform bound | yh| H2
h(\Omega ;R3) \lesssim 1, (4.16) of Lemma 4.10

implies that wh is uniformly bounded in H1(\Omega ;R3\times 2) and wh  - \nabla yh \rightarrow 0 strongly
in L2(\Omega ;R3\times 2), whence wh \rightarrow \nabla y weakly in L2(\Omega ;R3\times 2). The uniform H1-bound of
wh means that a subsequence (not relabeled) of wh \rightarrow \nabla y strongly in L2(\Omega ;R3\times 2)
and \nabla y \in H1(\Omega ;R3\times 2). Consequently, a subsequence (not relabeled) of \nabla yh \rightarrow \nabla y
strongly in L2(\Omega ;R3\times 2) and completes the proof.

4.2. Energy scaling and compactness. Our next result is a crucial discrete
energy scaling estimate. It states that if there is an H2-deformation y that satisfies
the target metric (i.e., an H2-isometric immersion), then the discrete energy Eh[yh]
associated with the discrete approximation yh of Lemma 4.9 (discrete approximation
of H2 maps) scales like Eh[yh] \lesssim h2. In the language of \Gamma -convergence, this is a
recovery sequence result.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

2/
24

 to
 1

29
.2

.1
9.

10
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



2906 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

Proposition 4.12 (recovery sequence). If y \in H2(\Omega ;R3) \cap W 1,\infty (\Omega ;R3) is the
deformation of Assumption 4.1 (regularity), then for any h sufficiently small there
exists yh \in Vh such that

Eh[yh]\lesssim h2
\bigl( 
1 + \| y\| W 1,\infty (\Omega ;R3) + \| y\| H2(\Omega ;R3)

\bigr) 2
.(4.17)

Proof. By Assumption 4.1, we know that y \in H2(\Omega ;R3) satisfies \nabla yT\nabla y = g,
whence E[y] = 0 by Proposition 2.5 (target metric), as well as J [y] = \lambda \geq cs,s0 > 0
by (1.4). By Lemma 4.9, for h sufficiently small, there exists yh \in Vh such that
J [yh(x)]\geq cs,s0

4 and | yh| H2
h(\Omega ;R3) \lesssim 1+ \| y\| H2(\Omega ;R3). The latter implies that Rh[yh] =

crh
2| yh| 2H2

h(\Omega ;R3)
\lesssim h2(1+\| y\| H2(\Omega ;R3))

2 in (3.2). It thus remains to show that
\int 
\Omega 
W (x,

\nabla yh)dx\lesssim h2, for which we resort to (1.10)

W (x,\nabla yh) =
\bigm| \bigm| L - 1/2

nh
[\nabla yh,bh]L

1/2
m

\bigm| \bigm| 2  - 3,(4.18)

where the kinematic constraint nh = n[yh] and scaled normal bh = b[yh] are defined
in (1.11). We split the proof into three steps.

Step 1. Error estimate of scaled normal vectors. We recall that these vectors are

b=
\partial 1y\times \partial 2y

J [y]
, bh =

\partial 1yh \times \partial 2yh

J [yh]
,

with J [y] = | \partial 1y \times \partial 2y| 2 and J [yh] = | \partial 1yh \times \partial 2yh| 2. We claim that | b  - bh| \lesssim 
| \nabla y - \nabla yh| pointwise for which we write\bigm| \bigm| b - bh

\bigm| \bigm| \leq \bigm| \bigm| \partial 1y\times \partial 2y
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1

J [y]
 - 1

J [yh]

\bigm| \bigm| \bigm| \bigm| + 1

J [yh]

\bigm| \bigm| \partial 1y\times \partial 2y - \partial 1yh \times \partial 2yh

\bigm| \bigm| .
Since J [yh]\geq cs,s0

4 , according to (4.11), the Lipschitz bound on y yields

\bigm| \bigm| b - bh

\bigm| \bigm| \lesssim \bigm| \bigm| \bigm| \bigm| 1

J [y]
 - 1

J [yh]

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \partial 1y\times \partial 2y - \partial 1yh \times \partial 2yh

\bigm| \bigm| .
We now add and subtract \partial 1y \times \partial 2yh and apply the triangle inequality along with
the bound \| yh\| W 1,\infty (\Omega ;R3) \lesssim 1 + \| y\| W 1,\infty (\Omega ;R3) from Lemma 4.9 to further estimate

\bigm| \bigm| b - bh

\bigm| \bigm| \lesssim \bigm| \bigm| \bigm| \bigm| 1

J [y]
 - 1

J [yh]

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \nabla y - \nabla yh

\bigm| \bigm| .
Since x \mapsto \rightarrow 1

x is Lipschitz on [
cs,s0
4 ,\infty ), we deduce\bigm| \bigm| \bigm| \bigm| 1

J [y]
 - 1

J [yh]

\bigm| \bigm| \bigm| \bigm| \lesssim \bigm| \bigm| J [y] - J [yh]
\bigm| \bigm| .

Likewise, on bounded subsets of R3\times 2, the map F \mapsto \rightarrow J(F) is Lipschitz. Hence, we
again use the uniform W 1,\infty -bound of yh from Lemma 4.9 to obtain

| J [y] - J [yh]| \lesssim 
\bigm| \bigm| \nabla y - \nabla yh

\bigm| \bigm| .
Combining these bounds gives the desired pointwise error estimate for the scaled
normals with hidden constant proportional to (1 + \| y\| W 1,\infty (\Omega ;R3))

| b - bh| \lesssim | \nabla y - \nabla yh| .
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2907

Step 2. Estimate on the kinematic constraint. Since J [yh] = det I[yh] \geq cs,s0
4 ,

according to (4.11), we deduce that I[yh] is uniformly positive definite and\bigm| \bigm| \nabla yhm
\bigm| \bigm| 2 =mT\nabla yT

h\nabla yhm=mT I[yh]m\geq c\prime 

for a constant c\prime > 0 depending on cs,s0 ; a similar estimate is valid for
\bigm| \bigm| \nabla ym

\bigm| \bigm| . Since
yh \in W 1,\infty (\Omega ;R3) is uniformly bounded, in view of Lemma 4.9, and the map x \mapsto \rightarrow x/| x| 
is Lipschitz on bounded subsets of \{ x \in R2 : | x| \geq 

\surd 
c\prime \} , we obtain the following

pointwise bound with hidden constant proportional to (1 + \| y\| W 1,\infty (\Omega ;R3)):

| n - nh| =
\bigm| \bigm| \bigm| \bigm| \nabla ym

| \nabla ym|  - 
\nabla yhm

| \nabla yhm| 

\bigm| \bigm| \bigm| \bigm| \lesssim | \nabla ym - \nabla yhm| \leq | \nabla y - \nabla yh| .

Step 3. Energy scaling. We now rewrite the neo-Hookean relation (4.18) of

W (x,\nabla yh) as follows after adding and subtracting R :=L
 - 1/2
n [\nabla y, b]L

1/2
m \in SO(3):

W (x,\nabla yh) =
\bigm| \bigm| R+Ah

\bigm| \bigm| 2  - 3, Ah :=L - 1/2
nh

[\nabla yh, bh]L
1/2
m  - L - 1/2

n [\nabla y, b]L1/2
m .

The fact that R\in SO(3) is a consequence of Remark 2.4 (special rotations), provided
I[y] = g or equivalently W (x,\nabla y) = 0. We exploit frame indifference to multiply by
RT without changing the energy density

W (x,\nabla yh) = | RTR+RTAh| 2  - 3 = | I3 +RTAh| 2  - 3.

Arguing as in the proof of Corollary 2.3, we see that detLnh
= detLm = det[\nabla yh,

bh] = 1 and deduce det
\bigl( 
I3 +RTAh

\bigr) 
= det(RTL

 - 1/2
nh [\nabla yh, bh]L

1/2
m ) = 1. Applying

Lemma 4.3 (scaling of neo-Hookean formula near identity), we obtain\int 
\Omega 

W (x,\nabla yh)dx=

\int 
\Omega 

| I3 +RTAh| 2  - 3 dx\leq 3

\int 
\Omega 

| RTAh| 2 \leq 3

\int 
\Omega 

| Ah| 2.

It thus suffices to show
\int 
\Omega 
| Ah| 2dx \lesssim h2. Adding and subtracting L

 - 1/2
nh [\nabla y,b]L

1/2
m ,

and using the triangle and Young inequalities, yields

| Ah| 2 \lesssim 
\bigm| \bigm| L - 1/2

nh
([\nabla yh, bh] - [\nabla y, b])L1/2

m

\bigm| \bigm| 2 + \bigm| \bigm| (L - 1/2
n  - L - 1/2

nh
)[\nabla y, b]L1/2

m

\bigm| \bigm| 2
\lesssim 
\bigm| \bigm| [\nabla yh, bh] - [\nabla y, b]

\bigm| \bigm| 2 + \bigm| \bigm| L - 1/2
n  - L - 1/2

nh

\bigm| \bigm| 2 \lesssim \bigm| \bigm| \nabla y - \nabla yh

\bigm| \bigm| 2,
where the last inequality follows from the preceding steps. In fact, Step 1 implies\bigm| \bigm| [\nabla yh, bh] - [\nabla y, b]

\bigm| \bigm| \lesssim \bigm| \bigm| \nabla yh  - \nabla y
\bigm| \bigm| ,

while Step 2, together with (2.3), the assumptions on s in (1.2), and s\in L\infty (\Omega ), gives\bigm| \bigm| L - 1/2
n  - L - 1/2

nh

\bigm| \bigm| \lesssim \bigm| \bigm| n - nh

\bigm| \bigm| \lesssim \bigm| \bigm| \nabla y - \nabla yh

\bigm| \bigm| ,
with hidden constant proportional to (1+ \| y\| W 1,\infty (\Omega ;R3)). Finally, applying (4.12) of
Lemma 4.9 (discrete approximation of H2-maps) yields\int 

\Omega 

| Ah| 2dx\lesssim 
\int 
\Omega 

| \nabla y - \nabla yh| 2dx\leq \| y - yh\| 2H1(\Omega ;R3) \lesssim h2,(4.19)

with hidden constant proportional to
\bigl( 
1+\| y\| W 1,\infty (\Omega ;R3)+ \| y\| H2(\Omega ;R3)

\bigr) 2
. This is the

desired estimate.
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2908 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

Remark 4.13 (regularity of m). It is worth realizing that the proof of Proposition
4.12 only requires regularity on y, but not ofm beyond L\infty (\Omega ;S1). We stress, however,
that y \in H2(\Omega ;R3)\cap W 1,\infty (\Omega ;R3) implies g=\nabla yT\nabla y \in H1(\Omega ;R2\times 2)\cap L\infty (\Omega ;R2\times 2)
with g given in (2.12) in terms of m. This regularity is borderline and does not
guarantee continuity of g (or m) in \Omega .

The next proposition establishes compactness: if a discrete deformation yh satis-
fies an appropriate energy scaling, then a subsequence converges to a minimizer of E.

Proposition 4.14 (compactness). Let yh \in Vh satisfy Eh[yh] \leq Ch2 for a
positive constant C, and let yh := | \Omega |  - 1

\int 
\Omega 
yh dx be its mean value. Then there is a

subsequence (not relabeled) of yh - yh that converges in H1(\Omega ;R3) strongly to a limit
y\ast \in H2(\Omega ;R3) and E[y\ast ] = 0.

Proof. Proposition 2.1 (coercivity) implies that \| \nabla yh\| 2L2(\Omega ;R3\times 2) \lesssim 1, whereas

h2| yh| 2H2
h(\Omega ;R3) \lesssim crh

2| yh| 2H2
h(\Omega ;R3) +

\int 
\Omega 

W (x,\nabla yh) =Eh[yh]\lesssim h2

yields | yh| 2H2
h(\Omega ;R3)

\lesssim 1. Therefore, Lemma 4.11 (compactness properties) guarantees

the existence of y\ast \in H2(\Omega ;R3) such that a subsequence (not relabeled) (yh - yh)\rightarrow y\ast 

converges strongly in H1(\Omega ;R3). It remains to show that E[y\ast ] = 0.
We can choose a further subsequence yh such that \nabla yh \rightarrow \nabla y\ast a.e. in \Omega , whence

J [yh]\rightarrow J [y\ast ], \nabla yhm\rightarrow \nabla y\ast m, a.e. in \Omega .

Our goal is to show that
\int 
\Omega 
W (x,\nabla yh)dx \rightarrow 

\int 
\Omega 
W (x,\nabla y\ast )dx, for which we observe

that

W (x,\nabla yh) + 3=
\bigm| \bigm| \bigm| L - 1/2

nh
[\nabla yh,bh]L

1/2
m

\bigm| \bigm| \bigm| 2 \geq C(s, s0)

J [yh]
,

which is a by-product of the proof of Proposition 2.1 (coercivity), where C(s, s0) is
the constant in (2.4). We first show that J [yh] does not vanish and the singular term

1
J[yh]

is well defined. If Bh,\eta := \{ x\in \Omega : J [yh]<
1
\eta \} , then we obtain

W (x,\nabla yh)\geq 
C(s, s0)

J [yh]
 - 3\geq \eta C(s, s0) - 3 \forall x\in Bh,\eta ,

where \eta > 3C(s, s0)
 - 1 is to be determined. This implies that

| Bh,\eta | \leq 
1

\eta C(s, s0) - 3

\int 
Bh,\eta 

W (x,\nabla yh) dx\leq Eh[yh]

\eta C(s, s0) - 3
\leq Ch2

\eta C(s, s0) - 3
.

Since \nabla yh is piecewise constant, Bh,\eta is a collection of N\eta elements of the mesh \scrT h.
By the shape-regularity of \scrT h, there is \gamma > 0 such that | Bh,\eta | \geq N\eta \gamma h

2. Hence,

N\eta \gamma h
2 \leq Ch2

\eta C(s, s0) - 3
.

Taking \eta > 0 sufficiently large implies that N\eta = 0 and J [yh] \geq 1
\eta a.e. in \Omega , whence

we infer that J [y\ast ] \geq 1
\eta a.e. in \Omega . Note that since the matrix [m,m\bot ] \in SO(2), we

may rewrite J [y] as

J [y] = det
\bigl( 
[m,m\bot ]

T\nabla yT\nabla y[m,m\bot ]
\bigr) 
= | \nabla ym| 2| \nabla ym\bot | 2  - (m \cdot I[y]m\bot )

2.
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2909

As a result, we have 0< 1
\eta \leq J [y\ast ]\leq | \nabla yhm| 2| \nabla yhm\bot | 2, and | \nabla yhm| 2 > 0 a.e. in \Omega .

Combined with continuity of x \mapsto \rightarrow 1/x for positive x, we have 1
J[yh]

\rightarrow 1
J[y\ast ] and

nh = \nabla yhm
| \nabla yhm| \rightarrow 

\nabla y\ast m
| \nabla y\ast m| = n\ast pointwise a.e. in \Omega . Thus, both

L - 1/2
nh

[\nabla yh,bh]L
1/2
m \rightarrow L

 - 1/2
n\ast [\nabla y\ast ,b\ast ]L1/2

m

and

W (x,\nabla yh)\rightarrow W (x,\nabla y\ast )

pointwise a.e. in \Omega .
Since W (x,\nabla yh) \geq 0, by virtue of Corollary 2.3 (nondegeneracy of stretching

energy), we apply Fatou's lemma to deduce the desired result

E[y\ast ] =

\int 
\Omega 

W (x,\nabla y\ast )dx\leq lim inf
h\rightarrow 0

\int 
\Omega 

W (x,\nabla yh)dx\leq lim
h\rightarrow 0

Eh[yh] = 0.

This concludes the proof.

We are now ready to prove the convergence of discrete minimizers.

Proof of Theorem 4.2. The existence of a deformation y satisfying Assumption 4.1
(regularity) yields a quadratic energy scaling according to Proposition 4.12 (recovery
sequence). Since yh is a global minimizer of Eh, Eh[yh]\leq Ch2, and Proposition 4.14
(compactness) applies. Therefore, the limit y\ast \in H2(\Omega ;R3) satisfies E[y\ast ] = 0 and
Proposition 2.5 (target metric) implies that y\ast is an isometric immersion of g, i.e.,
I[y\ast ] = g.

4.3. Piecewise \bfitH 2-deformations. This section is dedicated to the analysis of
piecewise H2-deformations rather than globally H2-deformations. The inspiration for
this extension comes from [5] and [7]. For physical applications, the motivation comes
from nonisometric origami [32, 31, 33].

Let \Omega = \cup n
i=1\Omega i be a disjoint partition of \Omega , where each \Omega i is polygonal. We

denote by \Gamma the boundaries of all \Omega i's, which is the set of creases or folding set. We
then define the space of piecewise H2-functions to be

V\Gamma = \{ y \in W 1,\infty (\Omega ;R3) : y| \Omega i
\in H2(\Omega i;R3) \forall i= 1, . . . , n\} .(4.20)

We shall approximate minimizers y\ast \in V\Gamma of (1.9) with folding across \Gamma . To this end,
we make the geometric assumption

\Gamma \subset 
\bigcup 

e\in \scrE h

e,(4.21)

i.e., the mesh is fitted to \Gamma . We denote by \scrE i
h the interior skeleton to each \Omega i (so that

edges on \Gamma are excluded) and define the new discrete energy with folds as

Eh,\Gamma [yh] :=

\int 
\Omega 

Wh(x,\nabla yh)dx+Rh,\Gamma [yh],(4.22)

where the regularization term is given by Rh,\Gamma [yh] := crh
2| yh| 2H2

h(\Omega \setminus \Gamma ;R3)
and

| yh| 2H2
h(\Omega \setminus \Gamma ;R3) :=

n\sum 
i=1

\sum 
e\in \scrE i

h

1

h

\int 
e

\bigm| \bigm| [\nabla yh]
\bigm| \bigm| 2.(4.23)
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2910 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

We point out that (4.23) does not include jumps across \Gamma , which in turn allows for
folds across \Gamma without penalty on the energy. This modeling feature is responsible for
the formation of nonisometric origami within this setting.

We next adjust the regularity Assumption 4.1 to the new framework.

Assumption 4.15 (regularity with creases). There exists a y \in W 1,\infty (\Omega ;R3) such
that I[y] = g a.e. in \Omega and y| \Omega i \in H2(\Omega i;R3)\cap C1(\Omega i;R3) for all i= 1, . . . , n.

We relax the H2-regularity but observe that y| \Omega i
\in C1(\Omega i;R3) implies that g| \Omega i

\in 
C(\Omega i;R2\times 2) is slightly stronger than the mere L\infty \cap H1-regularity of g as discussed
in Remark 4.13 (regularity of m). We point out that Assumption 4.15 might not be
always satisfied. It is possible that such a piecewise H2-isometric immersion does not
exist if one of \Omega i has reentrant corners.

We now state the new recovery sequence result.

Proposition 4.16 (recovery sequence). If y \in V\Gamma is the deformation of
Assumption 4.15, then for h sufficiently small the Lagrange interpolant yh = Ihy \in Vh

satisfies

Eh,\Gamma [yh]\lesssim h2

\Biggl( 
1 +

n\sum 
i=1

\Bigl( 
\| y\| C1(\Omega i;R3) + \| y\| H2(\Omega i;R3)

\Bigr) 2\Biggr) 
.

Proof. In view of (4.21) and y| \Omega i \in H2(\Omega i;R3) from Assumption 4.15, Lemma 4.8
(Lagrange interpolation stability in H2) applied to each \Omega i gives | yh| H2

h(\Omega i;R3) \lesssim 
| y| H2(\Omega i;R3). Moreover, we also have the standard error estimate \| y - yh\| H1(\Omega i;R3) \lesssim 
h| y| H2(\Omega i;R3).

To derive the energy scaling, we first show that J [yh]\geq cs,s0/2 a.e. for sufficiently
small h, provided that J [y] = detg= \lambda \geq cs,s0 > 0. Since y \in C1(\Omega i;R3), the function
\nabla y is uniformly continuous in \Omega i with modulus of continuity \sigma i(t) (i.e., \sigma i(t)\rightarrow 0 as
t \rightarrow 0). Therefore, \| \nabla y  - \nabla yh\| L\infty (\Omega ;R3\times 2) \lesssim \sigma i(h) and, for h sufficiently small, we
obtain

J [yh]\geq J [y] - 
\bigm| \bigm| J [yh] - J [y]

\bigm| \bigm| \geq cs,s0  - C\sigma i(h)\geq 
cs,s0
2

in \Omega i

because J is Lipschitz continuous in W 1,\infty (\Omega ;R3) on bounded balls. Applying the
arguments in Proposition 4.12 (recovery sequence), we deduce\int 

\Omega i

W (x,\nabla yh)dx+ crh
2| yh| 2H2

h(\Omega i;R3) \lesssim h2
\Bigl( 
1 + \| y\| C1(\Omega i;R3) + \| y\| H2(\Omega i;R3)

\Bigr) 2
on each \Omega i. Summing over \Omega i yields the desired result.

The compactness result in the previous section carries over to the case with jumps,
but with a small modification. The analogue to Theorem 4.2 reads as follows.

Theorem 4.17 (convergence of minimizers with creases). Let Assumption 4.15
hold, and let yh be a global minimizer of Eh,\Gamma with yh = | \Omega |  - 1

\int 
\Omega 
yh. Then, as

h\rightarrow 0, yh - yh has a strongly convergent subsequence (not relabeled) yh - yh \rightarrow y\ast in
H1(\Omega ;R3) to a function y\ast \in V\Gamma that satisfies E[y\ast ] = 0 and I[y\ast ] = g a.e. in \Omega .

Proof. We first apply Proposition 4.16 (recovery sequence) to deduce that Eh,\Gamma [yh]
\leq Eh,\Gamma [Ihy]\lesssim h2 because yh is a global minimizer of Eh,\Gamma . Moreover, since E[yh]\leq 
E\Gamma ,h[yh] \lesssim h2 by definition (4.22), Proposition 2.1 (coercivity) implies the uniform
bound \| \nabla yh\| L2(\Omega ;R3\times 2) \lesssim 1 and, hence, the weak convergence of a subsequence (not
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2911

relabeled) of yh - yh to a function y\ast \in H1(\Omega ;R3). We need to prove further regularity
of y\ast .

Proceeding now as in Lemma 4.11 (compactness properties) and Proposition 4.14
(compactness) over each subdomain \Omega i, we can show that up to a subsequence
\nabla yh| \Omega i

\rightarrow \nabla y\ast | \Omega i
converges strongly in L2(\Omega i;R3\times 2) and that \nabla y\ast | \Omega i

\in H1(\Omega i;R3\times 2)
and I[y\ast | \Omega i

] = g a.e. in \Omega i for each i = 1, . . . , n. In view of Proposition 2.5 (target
metric) we also obtain that W (x,\nabla y\ast | \Omega i) = 0 for each i= 1, . . . , n, whence E[y\ast ] = 0.

It remains to show that y\ast is globally Lipschitz, i.e., y\ast \in W 1,\infty (\Omega ;R3). We note
that y\ast | \Omega i

\in W 1,\infty (\Omega i;R3) for each i = 1, . . . , n because I[y\ast | \Omega i
] = g \in L\infty (\Omega i;R2\times 2),

which in turn implies that the trace of y\ast | \Omega i
on \partial \Omega i is continuous. Since y\ast \in 

H1(\Omega ;R3), we infer that the jumps [y\ast ]| \Gamma = 0 must vanish, thereby showing that
y\ast \in C0(\Omega ;R3) is uniformly continuous in \Omega . This, in addition to being piecewise
Lipschitz, proves that y\ast is globally Lipschitz, whence y\ast \in V\Gamma as asserted.

5. Numerical simulations. We implement the proposed method within the
multiphysics finite element software Netgen/NGSolve [34], and the visualization re-
lies on ParaView [2]. In this section, we present several tests to illustrate properties
of the LCN model (1.9)--(1.10), as well as effectiveness and efficiency of our algo-
rithm. A derivation of (1.9)--(1.10) and more extensive computational investigation
are contained in [13].

5.1. Nonisometric origami: pyramids. In this subsection, we study an ex-
ample of nonisometric origami, whose structure is made of folding thin sheets and
complies with Assumption 4.15 (regularity with creases). We refer the reader to
[32, 33, 31] for a more detailed introduction of nonisometric origami.

First, we divide the domain \Omega into several subdomains \Omega i by ``folding lines"" or
``creases"" \Gamma and consider meshes fitted to the folding lines. We take the regularization
parameter cr = 0 along \Gamma and cr = 100 in the rest of \Omega . In fact, vanishing regularization
models a weakened (or damaged) material on creases [5], and mathematically this
allows for the formation of kinks.

We consider piecewise constant blueprinted director fields m and set-up creases \Gamma 
and subdomains \Omega i as depicted in Figure 5.1. In this experiment, we take \Omega = [0, 1]2,

h= 1/64, s= 0.1, s0 = 1, tol1 = 10 - 10, tol2 = 10 - 6.

The ensuing configurations are all compatible in the sense of [31, formula (6.3)]: the
magnitudes of the tangential components of m and \lambda are continuous across \Gamma . We
also discuss incompatible origami in [13].

Case 1. We first consider the set-up on the left of Figure 5.1, \tau = 1, and use
initialization y0

h = Ihy
0 with

y0(x1, x2) =

\biggl( 
x1, x2,0.8x1(1 - x1)x2(1 - x2)

\biggr) 
.(5.1)

Fig. 5.1. This is the set-up for experiments in subsection 5.1. Solid lines inside the square
represent the locations of the creases, and arrows show the piecewise constant director field m in
each subdomain. In this case, m= (0, - 1), ( - 1,0), (0,1), (1,0) in different subdomains.
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2912 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

Fig. 5.2. Nonisometric origami: First column, pyramid-like final configurations for Cases 1
and 2. Second column, different views of final configuration for Case 3 exhibiting multiple folds.
Third column, different views of final configuration for Case 4, thereby confirming that the pyramid-
like configuration is not a mesh effect.

Case 2. We then consider the set-up on the right of Figure 5.1, \tau = 0.4, and use
the same initialization as (5.1),

Case 3. We also apply another initialization,

y0(x1, x2) =

\biggl( 
x1, x2,0.2cos

\bigl( 
7\pi (x1  - 0.5)

\bigr) 
x2(x2  - 1)

\biggr) 
,(5.2)

to the set-up on the right of Figure 5.1 and take \tau = 0.5.
The computed solutions for all three cases are shown in Figure 5.2. We get

pyramid-like final configuration for Case 1, which is consistent with the prediction in
[29]. For Cases 2 and 3, we obtain different equilibria starting from different initial
states, but the difference in final energies is about 10 - 6. They are indeed global
minimizers, because computed metric deviations

eh[y
\infty 
h ] := \| I[y\infty 

h ] - g\| L1(\Omega )(5.3)

are 1.6 \times 10 - 3,2.5 \times 10 - 3,2.4 \times 10 - 3 for Cases 1, 2, 3 respectively. Therefore, this
gives an example where global minimizers to (3.5) are nonunique, and computed
equilibrium shapes depend on initializations. This verifies the heuristic discussion in
Example 2.8, confirms the lack of convexity of this model, and illustrates capability
and accuracy of our numerical method for computing origami structures.

Case 4. To confirm that the pyramid-like origami structure is not a mesh effect,
we generate a mesh with h = 1/64 unfitted to the two diagonals \Gamma of the square.
We consider the same set-up as in Case 1 except that the regularization parameter
cr(x) = 0 if x \in \Gamma 0.02 and cr(x) = 100 otherwise, where \Gamma d := \{ x \in \Omega : dist(x,\Gamma )< d\} 
is a strip surrounding the crease \Gamma .

The computed solution for Case 4 is also displayed in Figure 5.2. We still get the
pyramid-like configuration, but with tiny wrinkling appearing in the strips \Gamma 0.02, due
to the lack of regularization in this region. We present a thorough discussion of the
computational effect of regularization in [13].

5.2. Liquid crystal defects. In this section, we simulate a configuration arising
from a liquid crystal defect, which is inspired by experimental results in [27, 37] and
numerical simulations in [15]. We take m in polar coordinates (r, \theta ) to be

m(r, \theta ) =
\bigl( 
cos(1.5 \theta ), sin(1.5 \theta )

\bigr) 
.(5.4)
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2913

This rotationally symmetric blueprinted director field is discontinuous at the origin
where it exhibits a stable defect of degree 3/2. We consider h= 1/128 and \tau to be the
largest admissible \tau so that the Newton subiteration is well-posed, an issue explored
later in section 5.3. The other parameters for the model are taken to be

s= 0.1, s0 = 1, cr = 1, tol1 = 10 - 10, tol2 = 10 - 9.(5.5)

The computed solution is displayed in Figure 5.3. Moreover, Figure 5.4 (with cr =
0) reveals that the energy Eh[y

\infty 
h ] decays subquadratically in h, which indicates

that the limiting deformation y\ast is not in H2(\Omega ;R3), whence it does not satisfy
Assumption 4.1 (regularity). Other configurations arising from liquid crystal defects
have been computed in [15], though to the best of our knowledge our simulation seems
to be the first one of a defect of degree 3/2. In [13], we present several configurations
beyond theory, including higher order defects, which are computationally accessible
by our algorithm.

5.3. Quantitative properties. In this subsection, we investigate computation-
ally some quantitative properties of the proposed method, and in particular the role
of meshsize h and pseudo time-step \tau . Our goals are as follows.

\bullet Convergence of metric deviation. We measure the metric deviation eh[y
\infty 
h ]

defined in (5.3) as an error between computed solutions y\infty 
h and global

Fig. 5.3. Blueprinted director field m with a stable defect of degree 3/2: Two views of the
computed deformation y\infty 

h . We observe a ``bird's beak"" structure around the defect location, which
matches the experimental picture shown in [27, 37].

10 - 2 10 - 1.8 10 - 1.6 10 - 1.4 10 - 1.2

10 - 6

10 - 5

10 - 4

10 - 3

10 - 2

10 - 1

1
1

1

2

1

2

h

error

Experiment 1: eh[\bfy 
\infty 
h ]

Experiment 2: eh[\bfy 
\infty 
h ]

Experiment 3: eh[\bfy 
\infty 
h ]

Experiment 1: | Eh[\bfy 
\infty 
h ]| 

Experiment 2: | Eh[\bfy 
\infty 
h ]| 

Experiment 3: | Eh[\bfy 
\infty 
h ]| 

Fig. 5.4. Convergence of errors for Experiments 1--3. We can see that the regularization has
almost no influence on convergence rates, while it results in a slightly larger value of errors. For
Experiment 3 with discontinuous m the errors are significantly larger. In all cases we observe that
eh[y

\infty 
h ] is linear in h, while | Eh[y

\infty 
h ]| is quadratic in h for Experiments 1 and 2 and has a rate

slightly worse than quadratic (it is approximately \scrO (h\mathrm{l}\mathrm{o}\mathrm{g}2 3)) for Experiment 3.
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2914 LUCAS BOUCK, RICARDO H. NOCHETTO, AND SHUO YANG

minimizers, and recall that g is given by (2.12). We expect convergence
of eh[y

\infty 
h ] as h\rightarrow 0.

\bullet Convergence of energy. We can see that the exact minimum energy is 0 from
discussions of section 2. Therefore, we also expect convergence of the energy
error | Eh[y

\infty 
h ]| := | Eh[y

\infty 
h ] - 0| as h\rightarrow 0.

\bullet Role of pseudo time-step \tau . We expect that the well-posedness and conver-
gence of Newton method (3.8) depend on \tau . We thus disclose the influence
of \tau on the final energy Eh[y

\infty 
h ], metric deviation eh[y

\infty 
h ], and the number N

of gradient flow iterations.
We consider three experiments to explore these issues computationally.
Experiment 1: Smooth m. Let \Omega be the unit square \Omega = [ - 0.5, 0.5]2 and

m= (x1 + 1, x2 + 1)/
\sqrt{} 

(x1 + 1)2 + (x2 + 1)2.(5.6)

We take parameters

s= 0.1, s0 = 1, cr = 0, tol1 = 10 - 10, tol2 = 10 - 9

and the initialization y0
h = Ihy

0 with

y0(x1, x2) =
\bigl( 
x1, x2,0.8(x1  - 0.5)(x1 + 0.5)(x2  - 0.5)(x2 + 0.5)

\bigr) 
.(5.7)

Tables 5.1 and 5.2 display the results. We see that in Table 5.1 both eh[y
\infty 
h ] and

| Eh[yh]| are rather insensitive to \tau , but N decreases with increasing \tau . The fact that
performance does not improve for smaller \tau motivates us to explore the largest admis-
sible time-step \tau max with various h in Table 5.2, which also reveals the convergence
of our method.

Experiment 2: Effect of regularization. We consider the same set-up as in Exper-
iment 1 but instead of cr = 0 we take cr = 1.

Experiment 3: m with defects. We consider the set-up in section 5.2. The director
field m is the degree 3/2 defect given in (5.4). The parameters are those in (5.5), but
we take cr = 0 instead of cr = 1.

Table 5.1
Experiment 1 with the blueprinted director field (5.6). This reveals the influence of \tau on errors

and the number of gradient flow iterations N with fixed h= 1/32.

\tau eh[y
\infty 
h ] | Eh[y

\infty 
h ]| N

0.2 4.66909E-3 2.3484E-5 2304

0.4 4.66909E-3 2.3484E-5 1151
0.8 4.66910E-3 2.3484E-5 574

1.6 4.66918E-3 2.3482E-5 286

3.2 diverge diverge diverge

Table 5.2
Experiment 1 with the blueprinted director field (5.6). This gives the largest admissible time-

step \tau max that guarantees the well-posedness and convergence of theNewton step for various h.
Convergence of errors as h\rightarrow 0 is observed with corresponding \tau max.

h \tau max eh[y
\infty 
h ] | Eh[y

\infty 
h ]| N

1/16 2.23 9.45213E-3 8.7909E-5 267

1/32 2.11 4.66924E-3 2.3482E-5 216
1/64 2.10 2.30916E-3 5.7742E-6 130

1/128 2.09 1.22053E-3 1.5746E-6 129
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FEM FOR LIQUID CRYSTAL POLYMER NETWORK MEMBRANES 2915

Errors for Experiments 1--3 are plotted in Figure 5.4 for meshsizes h= 1/16,1/32,
1/64,1/128. We discuss them next.

5.4. Conclusions. We conclude with a summary of quantitative observations.
\bullet The metric deviation eh[y

\infty 
h ] converges as \scrO (h). The energy error | Eh[y

\infty 
h ]| 

converges as \scrO (h2) or subquadratically, depending on the regularity of m.
-- | Eh[y

\infty 
h ]| converges as \scrO (h2) in Experiments 1 and 2, when m is smooth

and g is likely to admit an H2-isometric immersion. This computational
result corroborates the validity of Assumption 4.1 and the energy scaling
in Proposition 4.12.

-- | Eh[y
\infty 
h ]| converges subquadratically in Experiment 3, when m has a de-

gree 3/2 defect. It is plausible that g does not admit an H2-isometric
immersion, and if so, the validity of Assumption 4.1 is questionable. It
is worth realizing that this assumption is responsible for the quadratic
energy scaling in Proposition 4.12.

\bullet The Newton subiteration is well-posed and convergent when \tau is small enough.
The influence of h on \tau max is negligible.

\bullet Once \tau is chosen so that the Newton method is well-posed and convergent,
further decreasing of \tau has only a negligible influence on errors.

\bullet For fixed h, the number of gradient flow iterations N =\scrO (\tau  - 1), and so does
the computational time.

These conclusions indicate the convergence of the method and the fact that an ideal
choice of \tau is its largest admissible value \tau max for various problems. We do not need
to take \tau \rightarrow 0 as meshes refine, and \tau max provides a moderate upper bound for \tau .
This is an advantage compared to a linearized gradient flow (e.g., [11]) and a fixed
point subiteration scheme (e.g., [6]) in that both require \tau depending on h.
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