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Abstract. We design a finite element method for a membrane model of liquid crystal polymer
networks. This model consists of a minimization problem of a nonconvex stretching energy. We
discuss properties of this energy functional such as lack of weak lower semicontinuity. We devise a
discretization with regularization, propose a novel iterative scheme to solve the nonconvex discrete
minimization problem, and prove stability of the scheme and convergence of discrete minimizers. We
present numerical simulations to illustrate convergence properties of our algorithm and features of
the model.
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1. Introduction. Liquid crystal polymer networks (LCNs) are materials that
can deform spontaneously upon temperature or optical actuation. In such materi-
als, mesogens (compounds that display liquid crystal properties) are cross-linked to
elastomeric polymer networks so that the nematic director (mesogen’s orientation)
influences the network deformation under actuation. In other words, these materials
combine the features of rubber and nematic liquid crystals. This actuation prop-
erty can be widely exploited in the design of materials, such as microrobots [38] and
biomedical devices [24, 25], to achieve nontrivial and useful shapes.

We are concerned with thin films of LCNs, which are slender materials usually
mathematically modeled as 3D hyper-elastic bodies B:=Q x (—t/2,t/2), with Q C R?
being a bounded Lipschitz domain and ¢ being a small thickness parameter. Classical
approaches in elasticity exploit dimension reduction techniques to derive 2D models
for the midplane deformation y(€2).

1.1. Nematic director fields and order parameters. Due to the nematic-
elastic coupling in LCNs, director (unit length vector) fields characterize orientations
of liquid crystal molecules and play a crucial role in material deformations.

The director field m : Q — S', the so-called blueprinted director field, is prede-
termined and encodes the anisotropy of mesogens on the reference midplane 2. On
the reference 3D elastic body, m : B — S? defines an extended blueprinted director
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field, and we assume it takes the form m := (m,0)?. Similarly, n: B — S? denotes
the director field on the deformed configuration.

Depending on the strength of cross-linkings between nematic components and
rubber-like polymer chains, such materials can be further classified as LCNs (some-
times also called liquid crystal glasses) or liquid crystal elastomers (LCEs): the former
has moderate to dense cross-links, while in the latter the density of cross-links is low
[37]. In this paper, we focus on LCNs and leave a numerical study of LCEs for future
research. Mathematically, the strong coupling in LCNs is reflected in terms of director
fields via a kinematic constraint [30]:

(Vu)m

(1.1) n:= Vu)m]’

where u : B — R3 is the 3D deformation. This implies that, in contrast to LCEs
[36, 8], here n is not a free variable, and is also called a frozen director [16].

Moreover, sg,s € L (£2) are nematic order parameters that refer to the reference
configuration and deformed configuration, respectively. These parameters are typi-
cally constant in time and depend on temperature, but may vary in € if the liquid
crystal polymers are actuated nonuniformly. Their physical range is sg,s > —1 and
S0, s are bounded away from —1, i.e.,

1.2 ssinf -1 ssinf —1.
(1.2) essin so(x) > —1, essin s(x) >

The actuation parameter of the model is

[s+1
1.3 A=Xs50 =1 .
( ) 150 $0+1

If the material is heated, then A < 1. Likewise, if it is cooled, then A > 1. For s,sq
nonconstant, the assumption on s,so in (1.2) implies that there is a constant ¢ s,
such that A: Q2 — R satisfies

(1.4) 0 < ¢s,5, < essinf A(x) <esssup A(x) < 0.
xeQ x€EQ

Therefore, equilibrium deformations of LCNs can be programmed by design of m, s,
and sg [1, 31, 32, 33]. We explore this feature in this and our companion paper [13].

1.2. 3D elastic energy: Neoclassical energy. In the context of LCNs, the
starting point is the neoclassical energy density of incompressible nematic elastomers
derived by Bladon, Warner and Terentjev [10, 36, 35]. For u: B — R?, the 3D energy
evaluated at u is

/2
(1.5) E3D7t[u]:/ /QWgD((X,z),Vu)dxdz,

—t/2

where the 3D energy density, known as the trace formula, is defined by
(1.6) Wip((x,2),F) = |Ly/?FL?* - 3,
where F € R3%3 satisfies

(1.7) detF=1
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due to the assumption of incompressibility. The step length tensors in the reference
and deformed configurations, denoted by Ly, Ly, are defined as follows:

(1.8)  Lpm:=(so+1)"3(I3 +som®@m), Lyp:=(s+1)"*(I3+sn@n),

with I the identity matrix in R3. Note that Ly, Ly, are symmetric positive definite
(SPD) due to (1.2), so Ly /2 LY? are well defined. These tensors reflect mathe-
matically the influence of liquid crystal molecules on the network deformations when
they are multiplied to deformation gradients F = Vu in (1.6). Since m, s, sy may not
be constant in €2, then the energy density in (1.6) has a dependence on coordinates
(x,%) € B. The presence of the constant —3 in (1.6) ensures nonnegativity of Wsp.
Its role will be explained in section 2.

Moreover, in the specific case where s = sg = 0, the material becomes isotropic and
the step length tensors in (1.8) reduce to the identity I3: Ly, = Ly, = I3. Consequently,
the trace formula simplifies to the classical incompressible neo-Hookean energy density
WH (F) = |F|? — 3 for rubber elasticity.

A 2D membrane model can be derived via formal asymptotics of lim; %Eg Dt
after incorporating the kinematic constraint (1.1). We omit such derivation and refer
to our accompanying work [13] for a detailed discussion. The derivation is inspired
by asymptotics in [30], where the additional inextensibility constraint is imposed for
y = u(-,0) and a blend of stretching and bending energy is obtained with different
scaling of t. Moreover, [16] derives a 2D energy density by taking an infimum of W3p
over the third column of F under the incompressibility constraint.

Next, we present the 2D membrane model of LCNs under consideration and state
the main mathematical problem of this work.

1.3. Problem statement: a membrane model. The 2D membrane model
consists of the following formal minimization problem: find y* € H'(Q;R3) such that

(1.9) y'e argminyeHl(Q;W)E[yL Ely] ::/QW(X, Vy)dx,

where the stretching energy density W is only a function of x € @ and the first
fundamental form I[y] := Vy? Vy of the surface y(Q2) and is given by

2

(1.10) W (x, Vy) = Ly, * [Vy, bly[JLi?| -3,
where
Vym O1y X Oay
1.11 nlyl:= —=———, Jly]:=detlly], bly]:=——""
(1.11) ly] Vyml ly] [yl, bly] T

Note that if J[y],|Vym| are bounded away from 0, then fQ W(x,Vy)dx is finite.
We also point out that (1.10) is consistent with the stretching energy in [30] after
additionally assuming an inextensibility constraint J[y] = 1 and incorporating the
multiplicative parameter A and the constant —3.

An important warning about (1.9) is in order: the energy density (1.10) is not
convex, which raises the question of well-posedness of (1.9). In fact, we construct an
explicit example in section 2 that shows that E is not weakly lower semicontinuous
in H'(Q;R3). Therefore a direct minimization of E may create or produce wrinkling
and creasing, thereby leading to microstructure that we do not study in this paper.
Instead, we propose a numerical regularization mechanism inspired by a bending
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energy that suppresses such oscillations and allows the stretching energy to drive the
LCN membrane toward a preferred heterogeneous metric—the so-called target metric.
For deformations y € H'(£2;R?), this target metric condition is equivalent to E[y] = 0;
see Corollary 2.6. We also prove that if there is a deformation y € H?(£;R?) such
that E[y] =0, then our algorithm computes asymptotically a (possibly different) y* €
H?(Q;R3) such that E[y*] = 0. This admits an important physical interpretation:
y € H?(;R?) with E[y] =0 is a configuration with zero membrane energy and finite
bending energy. However, our algorithm is able to compute situations that fail to
satisfy this regularity assumption, and yet are physically relevant. We refer to the
degree 3/2 defect later in section 5.2 and to our companion paper [13] for a discussion
of numerous such situations.

Throughout this work, we do not impose any boundary condition so that the
materials under consideration have free boundary conditions (with some abuse of
language). If necessary, one can take Dirichlet boundary conditions into account with
a simple modification on theories and simulations.

1.4. Discretizations and our contributions. There are some works in the
literature about numerical analysis of methods for LCNs/LCEs. FEMs are utilized
for computations of 3D models in [17, 15], and in [16] for a membrane model of nematic
glasses but without a numerical analysis. In [26, 8], mixed FEMs (for deformations
and directors) are designed for various 2D models of LCEs.

In this work, we propose an FEM discretization to (1.9). To the best of our
knowledge, this is the first numerical method with a convergence analysis for this
model. We consider a continuous P; Lagrange finite element approximation yy of the
deformation. To define a discrete energy, we replace y in (1.9) by y;, and then add a
regularization term that mimics a higher order bending energy

Rp[yn) := c.h? Z %/‘[Vyh]f

ec&y €

to deal with the nonconvexity of E. This regularization term is a scaled L2-norm of
jumps [Vyp] along all the edges e € &, of shape-regular meshes Ty, and it is critical
for the proof convergence of minimizers of the discrete energy

(1.12) En[yn]:== Elyn| + Rp[ys]

in section 4. This proof requires the construction of a recovery sequence yy for y €
H?(Q;R?) with the desired energy scaling En[yn] < h?, as well as a compactness
result; the energy scaling is confirmed computationally. We also extend our theory
to piecewise H?-deformations y that corresponds to nonisometric origami structures.
Moreover, in order to solve the discrete minimization problem, we design a nonlinear
gradient flow scheme that embeds a Newton subiteration solving the nonlinear discrete
equation at each step of the flow. This scheme is energy decreasing, and efficient under
mild conditions on the pseudo time step 7.

The rest of this article is organized as follows. In section 2, we discuss properties
of the 2D model, in particular the nondegeneracy of (1.10), and their related conse-
quences. We also construct an explicit example illustrating the lack of weak lower
semicontinuity of the stretching energy and discuss our strategy to deal with it. In
section 3, we introduce the discrete version of (1.9) and the nonlinear gradient flow
scheme to solve it. In section 4, we present a convergence analysis of discrete minimiz-
ers, our main contribution, and in turn show useful technical tools, the construction
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of a recovery sequence, a compactness argument, and an extension to piecewise H?2-
deformations. The main technical difficulty in proving the desired energy scaling is
that W(x, Vy(x)) = oo as J[y(x)] — 0. To avoid the singularity, we need a point-
wise lower bound of det Vy} Vy), uniform in h. Since the space H?(f2) has the same
Sobolev number as W (Q) for 2 C R?, whence it does not embed compactly, and
y — J[y] is not concave, interpolating directly or after convolution may be problem-
atic. To overcome this challenge in section 4.1.1, we employ a Lusin truncation of
Sobolev functions, motivated by [23], which provides both the desired lower bound of
J[yn] and first order convergence in H'(Q). This approach may be useful for other
critical nonlinear problems. We note that a Lusin truncation of WO1 ’I(Q)—functions
has been used in numerical analysis for incompressible fluids with an implicit constitu-
tive law [22]. Finally, we conclude in section 5 with numerical simulations, including
experiments with origami shapes, a quantitative study for the convergence of the pro-
posed method, and an example with a stable defect of degree 3/2 that goes beyond
the theory.

2. Properties of the stretching energy. This section is dedicated to proving
some properties of the stretching energy (1.9), which will be useful later in section 4.
In view of definition (1.8) for step length tensors, we first observe that Ly, can be
equivalently expressed as follows in the orthonormal basis {rh,m | ,es3}:

(2.1) L = (s0+1)??m@m+ (so4+1)"3m, @m, + (so+1) " 3es @ es.

Likewise L, may be expressed in the basis {n, vy, vy} for orthonormal vectors (vi,vs)
spanning the space orthogonal to n:

(2.2) Lo=(s+1)?non+(s+ 1) Y3vi@vi+ (s + 1) vy @ va.

The assumptions (1.2) together with sg,s € L () imply that the eigenvalues of Ly,
and L, are bounded away from 0 and oo, and Ly,, L, are thus invertible. Moreover,
(2.2) provides an explicit inverse for Ly,

Li'=(s+1)?n@n+(s+D)Y3vi@vi+ (s + 1) Pva @ va,

or equivalently

-1_ 1/3 __S
(2.3) L, =(s+1) <Ig 8+1n®n>.

2.1. Coercivity. In this subsection we show coercivity of the stretching energy.

PROPOSITION 2.1 (coercivity). There exists C(s,s0) >0 such that the stretching
energy E defined in (1.9) satisfies

(24) C(s,50) (195 3a(amons) + 1730y ) ~ 300 < Bly] Vy € HU QR

Proof. Recalling the expressions (1.9) and (1.10),

2
Byl = | (\L;W[Vy,b}L}r{z\ —3) dx,

where n = nfy] and b = b[y] as in (1.11). We now invoke an elementary result for
any matrix A € R%? and an SPD matrix B € R4*%: [AB|* > Apin(B)2|A[? and
IBA|? > Ain(B)2A[?, where Apin(B) = mini<j<q{\;(B)} > 0.
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These properties allow us to write the lower bound

Bz [ (MI[W,MIQ—?») dx.

In view of the forms of Ly,,Ly, in (2.1) and (2.2), their eigenvalues are explicit,
namely (so + 1)%/3,(so +1)'/3 and (s + 1)%/3, (s + 1)?/3] respectively. Recalling the
assumptions on s, sg in (1.2), we have that there is a constant C(s,sp) > 0 such that
Aminllm) > (5 50) for a.c. x € Q. Thus,

mazx n)
Ely] > C(s,so)/ [Vy.bll? dx — 3]0,
Q
‘We observe that

(2.5) Jly] = |81y|2|82y|2 — (O1y - 32}’)2 =|0iy X 62y|2

due to the cross-product identity |a x b|?> = |a|?|b|?> — (a- b)? for vectors a,b € R3.
As a consequence of the above formula with the definition of b[y] in (1.11), we have
that |b|? = J[y]~!. Realizing this fact completes the proof. 0

2.2. Nondegeneracy and global minimizers. Throughout this subsection,
we prove some properties of W that involve matrix properties. If the second argument
of W is a generic matrix F € R3*? instead of Vy, we then follow (1.11) and define
b(F), J(F),n(F) as

_F1XF2

(2.6) n(F): Fm J(F) :=det(F'F), b(F):_W,

= Fml
where F1,F5 denote the first and second columns of F, respectively.

We recall that the energy density in (1.10) can be rewritten as a neo-Hookean
energy density:

(2.7) Wih(F) = [F|* -3,

where F € R3*3 (with a slight abuse of notation). In particular, we want to exploit the
relation between the neo-Hookean structure of the 2D stretching energy (1.9) to derive
the nondegeneracy and properties of global minimizers. We also stress the importance
of (2.7) because it is critical for the energy scaling argument in Proposition 4.12. To
see the nonnegativity of (2.7), we first observe that a basic linear algebra argument
exploiting the eigenvalues of FTF yields WL (F) = |F|> — 3 > 0 provided det F = 1.

More precisely, W/ (F) is nondegenerate in the sense that it is bounded from
below by dist(F,SO(3))? := infresos) |F — R[?. We now state and prove lower and
upper bounds for W/ (F). The former can also be found in [33, Proposition A.3].
The latter will be used in the numerical analysis in Lemma 4.3.

PROPOSITION 2.2 (bounds for W/ (F)). Let F € R®*3 satisfy det F =1. Then,
(2.8) dist (F, SO(3))” < |F|* — 3 < 3dist(F, SO(3))”.
Proof. Let F € R3*3 be such that det F = 1. We first use the polar decomposition,

F =RU for U (SPD) and R € SO(3), to write |[F|? —3=|RU|?> -3 =|U|* - 3, and
dist(RU, SO(3))? = dist(U, SO(3))?.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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1. Lower bound: It is thus sufficient to prove
|U|? — 3 > dist(U, SO(3))2.

Since U is SPD, there exists Q € SO(3) such that U = QT AQ with A a diagonal
matrix with the eigenvalues A1, Ao, A3 > 0 of U. Moreover, det U =1 yields A3 = ﬁ,
and |U| = |A| implies

UP—3=X+X3+ - 3.

ATAS

On the other hand, dist(U,SO(3)) = |U — I3| because |U — R| = |A — QRQT| with
R € SO(3) is minimized by QRQ” = I3, whence R =I3. Consequently,

(29 dist(U, SO(3))* = (M = 1)* + (o = 1)+ (xf& - 1)

1
2.1 =|U|? - 2(3 =X — Xy — )
(2.10) [UI* -3+ (3 AL — Ao /\1)\2>

A basic calculus argument gives supy, y,~0(3 — A1 — A2 — ﬁ) <0, whence

dist(U,S0O(3))* < |U|* -3,

and the lower bound is proved.
2. Upper bound: In view of (2.9) and (2.10) it suffices to prove

3.

2
()\11)2+()\21)2+< 1> > A+ Ao+

)\1 )\2 )\1 )\2 a

Without loss of generality, let us assume A3 = ﬁ > 1 and write

1 1
>\1+)\2+)\1)\2—3—<)\1)\2—1>—(1—/\1)\2)+/\1+>\2—)\1)\2—1.

The first two terms satisfy the relation

L RPN R Y A N
A1z R U VPV T\ A2

because A\; A2 < 1. The remaining terms, instead, obey the relation

MAA—AA—1=—A —1D)A—1) <A —1)2+ (A —1)2

by virtue of Young’s inequality. This proves the desired upper bound. ]
The next nondegeneracy estimate will be useful for the subsequent discussion.

COROLLARY 2.3 (nondegeneracy of stretching energy). The stretching energy
density W(x,F) = \L;l/Q[F, b]L%,{2\2 — 3 satisfies

2
(2.11) W (x,F) > dist (L;W[F, b]L},42,50(3)) ,

for all F € R3*2 such that rank(F) =2, n=n(F), and b=b(F) as defined in (2.6).
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Proof. Arguing similarly to the derivation (2.5) in the proof of Proposition 2.1
(coercivity), we use the cross-product identity |a x b|? = |a|?|b|?> — (a-b)? for vectors
a,b € R? to deduce

J(F)=|F1*|F2|* — (F1 - F2)? =|F; x Fa|2.

According to (2.6) and the above equality, we have b(F) = % With this form
of b(F), we observe

det[F, b] = det[Fl, FQ, b] = (F1 X FQ) -b=1.

Since det Ly, = det L;! = 1 in view of (2.1) and (2.2), we can simply apply Proposition
2.2 (bounds for WL (F)). d

Remark 2.4 (special rotations). An important by-product of Corollary 2.3 is that
any solution y € H(Q;R3) of E[y] =0 must satisfy the pointwise relation

L.2[Vy, b]Ly® € SO(3)
a.e. in ) where b = % is a scaled normal. This observation will turn out to
be useful later in the proof o% Proposition 4.12.

The next proposition states a known fact in the physics literature [28, 36], namely
that minimizing the stretching energy pointwise is equivalent to satisfying a metric
condition; we prove and discuss this result in [13]. We refer to [33, Appendix A] for a
similar result, but for a related 3D model. We also refer the reader to [33, Theorem
1.13] for results showing that the metric condition arises from a vanishing thickness
limit of a 3D energy at the bending energy scaling.

PROPOSITION 2.5 (target metric). The stretching energy density W(x,F) =0 if
and only if I(F) satisfies the metric condition I(F) = g, with g € R?*? given by

(2.12) g=Xmem+\'m; @m,,

and A defined as in (1.3).

A deformation y € H'(Q;R3) is an H!-isometric immersion of g provided I(y) =g
a.e. in ). Therefore, Proposition 2.5 establishes an equivalence between isometric
immersions and minimizers of £. We make this explicit next.

COROLLARY 2.6 (immersions of g are minimizers with vanishing energy). A
deformation y € HY(Q;R®) satisfies I[y] = VyTVy = g a.e. in Q if and only if y
minimizes E over H'(Q;R?) with E[y]=0.

Therefore, if the given data m, s, sy are such that g admits an H'-isometric im-
mersion, global minimizers of Ely] over H!(Q;R3) are guaranteed to exist; otherwise,
Ely] may not vanish over H(€2;R?). On the other hand, minimizers of E[y] might
not be unique, because g could have many isometric immersions in general. From
another point of view, this issue is also related to lack of convexity for E[y].

2.3. Lack of weak lower semicontinuity in H?'. The lack of convexity of
the stretching energy (1.10) translates into lack of weak lower semicontinuity of (1.9)
and prevents one from using the direct method of calculus of variations to prove the
existence of minimizers, and is also responsible for serious computational challenges.
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To stress the importance of convexity or lack thereof, we present a modification
of a classical 1D example known as the Bolza example [20, Example 4.8]; see also
[3, Example 2.1]. We next extend this situation to two dimensions.

Ezample 2.7. We consider the double well energy defined on W, *((0,1)),

(2.13) E1pu] :/0 ((u)? - 1)2 + cu?d,

with some nonnegative ¢, and define a sequence of sawtooth functions starting with

x, T <
w (@)= 11—z x>

To construct ug, we subdivide the intervals [0,1/2] and [1/2,1] into [0,1/4], [1/4,1/2]
and [1/2,3/4], [3/4,1] and then alternate the derivative between +1 on the four subin-
tervals. The function us is a sawtooth with derivative of +£1 and maximum height i.
Given u,, we do the same subdividing procedure to get a u,4+1 to get a sawtooth of
height 5. The resulting sequence consists of u, that satisfy |u, ()| = 1. The first
few elements are plotted in Figure 2.1. The sequence u,, — 0 in W14((0,1)), but

0= lim E1plu,] < FE1pl0]=1.
n—oo
Thus, the energy E1p is not weakly lower semicontinuous on W4, and if ¢ > 0, the
direct method of the calculus of variations would fail to provide the existence of a
minimizer. If ¢ =0, then any u,, is a minimizer to E1p over W4,

On the discrete level, the above example is also important because the lack of
convexity means that a standard weak compactness result in H! will not be enough
to prove convergence of minimizers. We shall see that E is not weakly lower semi-
continuous in H'(Q;R3). To illustrate this point, we present an example of some
minimizers to E that extends Example 2.7 to two dimensions. The first element of
the sequence of minimizers is a pyramid from [29]. We later display several pyramid
configurations in section 5.1 computed with our FEM.

Example 2.8. Let Q = [~1,1]2 and let m be the blueprinted director field depicted
in Figure 2.2(a), and let y; be the solution in Figure 2.2(b) with A < 1. The sur-
face y1(2) is a square pyramid with base width 2A and height v A~1 — A2, and first
fundamental form I[y] = g with target metric g given by (2.12). We can mimic the
subdivision procedure of Example 2.7 to produce a sequence y, such that I[y,] =g
and y,, —y* in H'(;R?), where y*(x) = (Ax1, Ar2,0). The first three elements of the
sequence are displayed in Figures 2.2(b)—(d). Since I[y,] = g, we deduce E[y,] =0

0s
04 Uz
0.3
02

00

00 0z 04 06 03 10

Fic. 2.1. Ezample 2.7: First four elements uy of the minimizing sequence of (2.13).
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F1G. 2.2. Ezample 2.8: Blueprinted director field m and first three elements yn(Q2) of a mins-
mizing sequence with foldings on dyadic squares concentric with €.

for all n, according to Corollary 2.6 (immersions of g are minimizers). Moreover,
I[y*] = M1 # g a.e. in Q because \ # 1. Inserting Vy* into W yields W (x, Vy*) >0
a.e. in  due to Proposition 2.5 (target metric), whence

liminf Ely,]=0< E[y"].

n—oo
We thus conclude that E is not weakly lower semicontinuous in H'(;R?).

Additionally, we note that the relevant convexity notion for W(x,-) is quasicon-
vexity. We refer the reader to the book [20] for background on this topic.

There are numerous strategies to treat nonconvexity in numerical methods for
nonconvex energies. For an introduction on discretizations for nonconvex variational
problems, we refer the reader to [4, Chapter 9]. For this paper, we choose to regularize
the stretching energy with the expectation that regularization provides a stronger
compactness result to get around the issue of lack of weak lower semicontinuity. We
note that this strategy has been used before in the study of LCEs/LCNs [16]. The
model of [16] utilizes the regularized energy

/ W (x, Vy) + e|divVy |,
Q

where € > 0 is a positive fixed constant. This is a dimensionally reduced model from
the 3D model of [9], which incorporates a Hessian term to the energy.

We are interested in the membrane model and would like to recover the target
metric in the limit. We consider the regularized energy

(2.14) E.[y]=Ely] +€/Q D%y,

where ¢ scales likes h2. One may view this as analogous to a higher order bending term.
This kind of energy blending is studied by [30]. The perspective of the regularization
acting like a higher order bending term motivates the choice of € ~ h2. In fact, the
best energy scaling one can expect of E is h? due to the H? regularity of zero energy
states of E under Assumption 4.1 (regularity), and the regularization term balances
with the stretching energy scaling. One may also consider a more physical bending
energy. A recent example of a bending theory for LCEs is [8].

Another approach would be to compute minimizers of an effective energy, whose
energy density is the quasiconvex envelope of Wy,.. In LCNs/LCEs, the authors
of [14] explicitly compute a quasiconvex energy density for a membrane energy of
LCEs, and the authors of [21] compute minimizers of a relaxed 3D energy for LCEs
where the effective energy is known. If the quasiconvex envelope is unknown, then
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one can approximate the envelope, as done for LCNs/LCEs in [19]. Computing the
quasiconvex envelope of Wy, is outside the scope of this paper.

3. The discrete minimization problem. This section introduces the discrete
minimization and proposes a discrete gradient flow as a solver.

3.1. Discrete energies. Let 7; be a shape-regular sequence of meshes with
maximum meshsize h. We denote by &, the set of interior edges to the mesh, and
by N}, the set of nodes of the mesh. The space for discrete deformations consists of
continuous piecewise linear functions:

(3.1) Vy = {thCO(Q;RS): yh|T€P1 VTE'];,,}.

We propose the regularized discrete energy Ej, : Vy, — R defined by

(3.2) Enlynl= | W(x,Vyn)dx+ Rplys],

Q
where the regularization term Ry [yy] := CTh2‘Yh|%I§(Q;R3) is a rescaling of the DG
discrete H?-seminorm for continuous piecewise linear functions,

1
(3.3) iz = 3 5 [ 19wl

ecly

and ¢, : Q2 — R7T is a nonnegative regularization parameter of our choice. The notation
[Vyr] denotes the jump of Vy,, across edges e € &y:

(3.4) [Vynl|, = Vyir — Vyg,

where Vyi (x) := lim, o+ Vyn(x £ sn.) and n. is a unit normal vector to e (the
choice of its direction is arbitrary but fixed). To justify that (3.3) is indeed a discrete
H?-seminorm, we argue heuristically as follows. Since yj, is elementwise affine, we
view Hplyn]le := L}L’L“e as a finite difference Hessian of y; across e. If one extends
the definition of Hp[ys]|e to elements T € T, as a constant, namely, Hy[ys]?|r =
Secort [, \[Vg;}lz, it satisfies the natural scaling [.|Hnlys]|* = h [, |Hu[ys]|* and
results in

1
ilipann = 3 5 [ 19w = 3 0 [ [l

ecly, ecEp €
<> [l = [ il
TeT, T Q

The regularization term h? fQ |Hh [yn] |2 thus mimics a higher order bending en-
ergy (2.14) where h is proportional to the thickness of a thin 3D body.
Our next task is to solve the discrete counterpart of (1.9), namely

(3.5) i = argminyhewEh[yh].

According to the discussions in section 2.3, we can also expect lack of convexity and
weak lower semicontinuity in the first term of Ep[yp] in (3.2). These features account
for the main difficulty in solving the discrete minimization problem (3.5) and in ana-
lyzing convergence of y; toward a minimizer y* of (1.9). These topics are discussed
in sections 3.2 and 4.
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3.2. Minimizing the discrete energy: Nonlinear gradient flow. We design
a nonlinear discrete gradient flow to find a solution to (3.5) in this subsection. Given
yi €V, for any i > 0, at each step of the iterative scheme we find yHrl € Vy, that
solves the minimization problem for the augmented functional Ll :

i . i i 1 i
(3.6) th = argmmyhethh [ynl,  Lilyn] = §||Yh - Yh”%{l(Q;RS) + Enlyn]-

The first term in L? dictates the flow metric and penalizes the deviation of y;fl from
yfb provided the pseudo time-step 7 > 0 is small. Therefore, (3.6) is a mechanism to
minimize Ej[ys] within an H'-neighborhood of y%. The choice of H'(£2;R3)-metric
is made for convenience, but it has important consequences for the stability of (3.6).

Calculating the first order variation §Lj [ys](vs) of Lj,[ys] in the direction vy, €
Vi, we obtain the weak form of the Euler-Lagrange equation for L} [y3]:

. 1
(3.7)  OLylynl(vr)= ;(Yh,Vh)Hl(Q;Rz) +O0E[yn|(vi) — Fi(vi) =0 Vvi €Vy,

where F; € V7§ is the linear functional

1 .
Fi(vy) = ;(%,Vh)Hl(Q;RS),

and dEy[yn](vy) is the first variation of Ep[yp] in the direction vy, € Vj,. The latter
turns out to be nonlinear in y, due to the nonlinear structure of (3.2). The explicit
expression of 0 E,[yr](vy) is tedious to compute and is omitted in this paper, but is
given in the first version of our companion arXiv preprint [13] along with the second
variation needed for a Newton method. In fact, we propose a Newton type algorithm
to solve (3. 7) at each step ¢ of the gradient ﬂow Choosing yh =1y, €V, and
assuming y;" € V}, is known for n >0, we compute the increment dy;" € V; from

(3.8) S Lylyy"1(6y;" va) = =0Lily,"1(va) Vi€V,

P =y 4 §y™. We point out that

and update y;’
(3.9)
, 1
62L,;L[yh}(Vh,Wh) = ; (Vh7 wh)Hl(Q;R3) + §2Eh [yh](V}n Wh) V}’h; Vh, Wp € Vha

and 62E[ys](va, wp) is accessible by straightforward but lengthy calculations [13].
The Newton subiteration (3.8) is linear in dy)" € V}, and is stopped once:

o ] (o) <o

for some integer M > 0 and a predetermined tolerance parameter tol;.
We choose the next iterate of the gradient flow to be the output of the Newton
subiteration, i.e, y;;rl = y;;M. We stop the nonlinear gradient flow provided that

1
;‘Eh [yh] Eh[ ”<t012
is valid for some N > 0 and fixed tolerance tols, and declare th to be the output.

Energy stability of the gradient flow is guaranteed if the minimization problem
(3.6) is solved exactly. This is an intrinsic property of implicit gradient flows.
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~ ProposiTiON 3.1 (energy decrease property). Given yfl‘e Vy, fori >0, suppose
y}j‘l €V}, solves the minimization problem (3.6). Then Ej, [y}j‘l} < Ely}] with strict

inequality if yZ‘H £yt . Moreover, for any N > 1, there holds

N-1
1 ; ,
(3.10) Enlyn ]+ o Z Iyt = villF msy < Enlynl:
i=0
Proof. Since y;, =Yy} is an admissible function in (3.6), we deduce

Lo i i i i i
(3.11) ;HYI«LH - Yh”%{l(Q;RS) + Eh[}’hﬂ} = Lh[yh+1} < Lp[yp] = Enlys]-

This proves that the energy Ej[y}] is strictly decreasing provided that yj™ # yi,
and, upon summation from ¢ =0 to N — 1, also yields (3.10). d

We note that the energy decrease property is also valid for flow metrics other than
H(Q;R3). However, the choice of H*(£2;R?) allows for better control of the Newton
subiterations solving (3.7), which we now address. We base our comments below on
our numerical experiments of section 5 and the companion paper [13].

o Initialization. When yé €V}, is given in the gradient flow outer iteration, it
is natural to choose y;" := yz as initial guess for the Newton inner iterations
that is designed to compute y."'. If y;* is a local minimizer of (3.6) and
EplyY] <a, then (3.11) implies

1. , .
o Ivh" = Yillh sy < Bulyh] < Enlyil <o,

whence the H'-distance between yfl’o and the minimizer yf{* is proportional
to 71/2. This not only reveals the crucial role of 7 but also of the H'-metric
for the discrete flow (3.6), which is the norm governing the stretching energy
(1.9).

o Well-posedness and convergence. In view of (3.9), the quadratic structure
of the flow metric term 771(:, )1 (o;r3) may compensate for the lack of el-
lipticity of 6?Ep[yn](-,-) due to the lack of convexity of Ej, provided 7 is
sufficiently small. Therefore, we expect well-posedness and superlinear con-
vergence of the proposed Newton method when 7 is small.

e Moderate condition on 7. Our simulations of section 5, and those in [13],
confirm solvability and convergence of the Newton subiterations (3.8) with
moderate values of 7 relative to the meshsize h. Consequently, the restriction
on 7 is mild for current simulations and yet prevents the use of backtracking
techniques.

4. Convergence of discrete minimizers. This section is dedicated to proving
convergence of discrete minimizers under the following regularity assumption.

Assumption 4.1 (regularity). The metric g defined in (2.12) admits an H?-
isometric immersion: there exists a y € H?(;R3) such that Vy!Vy = g a.e. in
Q or equivalently E[y]=0.

Under regularity Assumption 4.1, the main result can be stated as follows.

THEOREM 4.2 (convergence of minimizers). Let Assumption 4.1 hold and let
yn be a minimizer of Ej with mean value y, = |Q|_1fg2 yrndx. Then there is a
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subsequence (not relabeled) of yn —¥,, that converges in H*(Q,R3) strongly to a func-
tion y* € H?*(Q;R3) that satisfies E[y*] = 0, i.e., y* is an isometric immersion
Iy*]=Vy*'Vy* =g.

We start with a roadmap to the proof of convergence of discrete minimizers, which
is inspired by the seminal work [23]. The first step is to build a recovery sequence
y for the isometric immersion y € H2(Q;R3) N W1 (Q;R3) in Assumption 4.1 that
exhibits the desired energy scaling Ej,[yx] < h? (see Proposition 4.12). For such a y
we know that J[y] =X > ¢, s, > 0 due to (1.4). The challenge is to show a similar lower
bound for J[y;] = det Vy;nyh. This is trickier than interpolating directly or after
convolution because this procedure would not lend itself to a lower bound for Jyj]
for y merely in W1°°(Q;R?). Moreover, the regularity y € H?(2; R3) is borderline for
Q Cc R? and does not yield further pointwise regularity of Vy. Therefore, we instead
resort to a Lusin approximation argument for Sobolev functions similar to that used
in [23]. To achieve the desired energy scaling of Ep[yn] < h?, we exploit both frame
indifference and the neo-Hookean structure of the stretching energy in (1.10).

/W(XaVyh)dX:/ <|L;,}/2[VYh, bh]Liy42’2—3) dx,
Q Q

_ Vyym _ _O1ynXO2yhn ;
where nj = Vyrm] and by = BrynxOayn?: We next recall that Remark 2.4 (special

rotations) implies that R = L;1/2[Vy, b]L%,é2 € S0(3), because E[y| =0 according
to Proposition 2.5 (target metric). This enables us to use the rotation R to rewrite
the integrand as

1L 2 Vyn, bp]Li?| = |R+ Ayl Ap =L, %[Vys, by]JLY? — R,

h

and invoke frame indifference. Multiplying by R” does not change the energy, i.e.,
/ W(x,Vyh)dx:/ (JR™R+RTAL-3) dx:/ (115 + R7 A ~3) ax.
Q Q Q
Lemma 4.3 and an L*°-bound on R lead to a quadratic expansion around Is:

2
/W(X,Vyh)dx:/ (|I3+RTAhy —3) dx S| ARl|7 2 upsxs)-
Q Q

Finally, an error estimate on y —y; and properties of y; in Lemma 4.9 further imply
that [|Anll72qpsxsy S h* and ‘yhﬁ'—li(Q;RS) < 1, whence Ej[yn] < h? according to
(3.2).

Existence of a recovery sequence yj, so that Ejlys] < h? implies that global
discrete minimizers y; are uniformly bounded in the H7-seminorm. The uniform
bound means that a subsequence of y; converges strongly in H'(£2), which bypasses
the convexity issues of W. The tools that transfer a discrete H?-bound to additional
compactness have been developed for bending problems [12]. We go over the relevant
results in Lemmas 4.10 and 4.11.

We now connect our work with the existing literature. As in [23], energy scaling
brings additional compactness, but the mechanism in this paper is H?-regularity of
isometric immersions rather than the geometric rigidity result in [23]. We refer to [33]
for a geometric rigidity result in the context of LCEs. Moreover, we learned from [33]
that R is a suitable rotation to exploit frame indifference and perform a quadratic
expansion of |Is + RT Ay, |2 around the identity.
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4.1. Preliminaries. This section covers preliminaries to lay the groundwork for
the main results later. Subsection 4.1.1 contains preliminaries on how to approximate
an H?-isometric immersion of g. The key question is as follows:

Given'y € H*(;R?) that satisfies VylVy = g, how does one construct

4.1
(4.1) yn € Vy suchthat ||y — yn|laors) S hand Jlys] > 0a.e. in Q7

This kind of approximation requires some control in W1>°(). To achieve control
over Jlyy] in L™, we regularize y with a y* € W2°°(Q;R3) such that J[y*] >c. We
note that there are works on approximating maps by smooth maps with well-defined
normals. We refer the reader to [18, Proposition 4.1], where the approximation is in
the L>-norm rather than H'. In our context, however, we deal with functions that
have higher regularity than [18]. Hence, we are able to take advantage of Lusin trun-
cation of Sobolev functions and ideas used in the construction of a recovery sequence
in [23].

Subsection 4.1.2 discusses the regularization of a piecewise constant matrix field
by an H'-matrix field. This regularization provides additional compactness and relies
on a quasi-interpolant that has been used in previous works on DG methods for
bending problems [12]. Our presentation is brief but self-contained.

4.1.1. Preliminaries for energy scaling. We first establish a quadratic ex-
pansion of the neo-Hookean formula around the identity, thereby slightly improving
on [33, Proposition A.2].

LEMMA 4.3 (scaling of neo-Hookean formula near identity). If A € R3*? satisfies
det(Is + A) =1, then
1+ A]” —3<3|A]%
Proof. Since det(I3 4+ A) =1, we may apply Proposition 2.2 to bound
T3+ A[> — 3 < 3dist (Is + A, SO(3))* < 3|Ts + A — I;|* = 3|A [,
which is the desired result. a

We next introduce, without proof, a truncation argument for Sobolev functions
from [23, Proposition A.2]; this is a suitable form of Lusin theorem. The result in
[23, Proposition A.2] is stated with boundary conditions but it is still valid without
them. We also point to a similar result in [39, Theorem 3.11.6] as well as a Lipschitz
truncation of-W,"' (Q) functions [22, Theorem 13].

LEMMA 4.4 (truncation of H?-functions). Let y € H*(Q;R?). There exists y" €
W2°(Q;R3) such that

(4.2) 1y* w2 02y < C,

and for S, :={x€Q:y(x) #y"(x) or Vy(x) # Vy*(x)} we have the estimate
w(p

(43) 5,1 <02

on the measure, |S,|, of S,, where

2
w(p) = / (Iyl+ Vy| + D)) dx
{ly|+IVy|+|D2y|> 5}

satisfies w(p) — 0 as p— oo.
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Motivated by the proof of [23, Theorem 6.1(ii)], we refine Lemma 4.4 for our
purposes. In our case, the isometric immersion y given by Assumption 4.1 satisfies
y € H2(Q;R3) N WhH*(Q,R3) and J[y] > cs.5, > 0 by virtue of I[y] =g.

LEMMA 4.5 (truncation of H2-functions with Lipschitz control). Ify € H?({;R?)
NWL(;R3) and J[y] > ¢ > 0, then the function y* € W>(Q;R3) given by
Lemma 4.4 satisfies the following bounds for p sufficiently large:

(4.4) ly* w2 (;rs) < Cp,

(4.5) ly* 2 irs) < Clly a2 08,

(4.6) [y*lwoe sy < C(1+ |y lwoe ().

(4.7) Ty = 5,

(4.8) Iv" = ¥l @rs) < C(1+ [lyllwrrs)) \/QF,

where C' are generic constants independent of the truncation parameter p.

Proof. We first invoke Lemma 4.4 (truncation of H?2-functions). For all u > 0,
there exists a y* € W2°°(;R?) such that y* =y and Vy* = Vy on a set 2\ S,,,
where |S,,| < Cw(p)/p? and lim,_,o w(p) = 0. Additionally, ||y*|wz2.e@;rs) < Cp,
which is (4.4).

We shall now prove that y* satisfies the asserted properties starting with (4.5).
Using properties of y* on the good and bad sets yields

Iy 132 e =/ Iy P+ [Vy P+ |D2y“\2dx+/ iy PP+ [Vy* | + |D*y*|? dx
OIS+ [ IR+ VP + D2y dx < IS, + I s o
“w
Since C|S,|p? < Cw(p) < Clly||%: aps) (4-5) follows immediately.

In order to show (4.6) and (4.78, we first note that Jy*(x)] > c and |Vy*(x)| < C
clearly hold for a.e.x € Q\ S,,. We now focus on x € S,,. First, we proceed similarly to
the proof of [23, Theorem 6.1(ii)] to show that there exists § > 0 such that B(x, R)N§\
S, #0 for R:=3/Cw(u)p~! and all x € S,,. Otherwise, B(x,R) N Q= B(x,R)NS,
and, since {2 is Lipschitz, there exists A > 0 such that

Cuw(p)

12
Setting 6 = 4/(2/A) produces a contradiction. Returning to x € S,,, we pickaz € Q\S,
such that |x —z| < R and employ (4.2) to write

(4.9) [Vy*(x) = Vy*(2)] < CuR=Cud/w(p)p™" = Cov/w(p).

Therefore,

AR? <|B(x,R)NQ|=|B(x,R)NS,| <|S,| <

IVy*(x)| < [Vy*(x) — Vy*(z)| + [Vy"(2)]|
<COVw() + VYl oo (rsx2)) <CA+ || VY| Lo (orax2))

for u sufficiently large; this shows (4.6). Moreover,

(4.10)  Jy*x)]=Jly"(2)] - (Jy"(2)] - Jly"(x)]) = c— |T[y"(2)] = J[y" (x)]].
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Exploiting the Lipschitz continuity of y + J[y] in W1 within a ball of radius
proportional to (1 + [|y|lw1.(o;rs)), and combining the estimates (4.6) and (4.9) for
y# yields

| Tly*(2)] = Jly" (x)]] < C(1+[|Vyll L= (@rsx2)) 63/ w(p),

whence the right-hand side is smaller than ¢/2, provided that p is sufficiently large.
Inserting this back into (4.10) gives J[y*(x)] > ¢, which is (4.7).
It remains to prove (4.8). We first write the error ||y* — yHiIl(Q_Rg) as

1" = ¥l ) = / ¥ — 32 + |Vy* - VyPdx,
S

©

according to the definition of S, in Lemma 4.4 (truncation of H?-functions). The
W bound (4.6) on y* in conjunction with the estimate (4.3) on the measure of S,
produces the bound

2 w(p)
o

Taking the square root of both sides yields the desired estimate. 0

2
1" = ¥l @mey < C(L+ Iy llwr o @ire)) [Sul < C(1+ 1yl ime) )

Remark 4.6. The argument in the proof of Lemma 4.5 is similar to that in the
proof of [23, Theorem 6.1(ii)], while the key difference is the object of interest. We
want control over ||[Vy"||fe(qrsx2) and J[y*], while [23] needs the gradient of the
recovery sequence to be in an L*°-neighborhood of SO(3).

Remark 4.7. We stress that the significance of (4.8) is to provide a rate of conver-
gence in H' relative to the blowup of the parameter ; that controls the W2 -norm,
for which it is crucial that y € W5 (Q;R?). If y € H?(Q;R?) but not in W1 (Q;R?),
then Sobolev embedding combined with (4.5) gives the reduced rate, for all 2 < p < oo,

b= _
Iy* = yllar@me) < IIy" = ylwio@zn | Sul ™ < Cllyllazmsyn 277

The next few results deal with numerical preliminaries that are important for en-
ergy scaling. The next result says that interpolating an H2-function gives a discrete
function that has a uniform discrete H2?-bound. We present the proof for complete-
ness, but the argument can be found in the proof of [12, Proposition 5.3].

LEMMA 4.8 (Lagrange interpolation stability in H?). Let y € H?(2;R?). Then
the Lagrange interpolant Iy € Vy, satisfies \Ihy|H}zL(Q;R3) Sy a2 (ors)-

Proof. Consider an arbitrary edge e € £, and its neighboring elements 17,75 € Tj,
and set w, = Ty UTy. Since y € H?(Q;R3), the jump of Vy across e is zero. Then,
by a trace inequality, interpolation estimate, and the fact that I,y is linear on each
element, we obtain for any component y of y

IV Iyl 2 esmz) = IV Iy = Vol 2w
<h YRV Iy - Vyllr2(w.re) + W2 DIy — Dyl 12 (w, max2)
5 h1/2HD2y||L2(wC;R2><2)-

Dividing both sides by h!/2, squaring, and summing over edges gives the assertion in
view of the definition (3.3). |

We next establish other approximation properties of the Lagrange interpolant.
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LEMMA 4.9 (discrete approximation of H2-maps). Let y € H?(S;R3) satisfy
y € WL (Q;R3) and J[y] > ¢ a.e. in Q. For all h >0 sufficiently small, there exists
Yn € Vi such that [|ynllwie@mrs) S 1+ [[yllwiemrs) and the following estimates
are valid:

(4.11) Jyal > 7.
(4.12) llyn — Y||H1(Q;R3) N h(l + ||Y||W1v°°(Q;R3) + ||YHH2(Q;R3))a
(4.13) Yalazoms) ST+ Iyl a2or).-

Proof. We first invoke Lemma 4.5 (truncation of H2-functions with Lipschitz
control) with p, = 6h™! to regularize y with a y*#; the constant § > 0 will be
determined soon. We choose y;, = I,y*" to be the Lagrange interpolant of y*". Since
[y"" w200 () < Cpp, in light of (4.4), a standard error estimate for the Lagrange
interpolant gives the W1 >-error estimate

[Vyr, — VyH*

Lo (rex2) S AYH " e ire) S hiun = 0.

This, together with (4.6), implies uniform W!1*-bounds for y,y**, which in turn
yield the following error estimate for J[yp] because of the Lipschitz continuity of
y — Jly] in W within balls of radius proportional to (1 + ||yl (;rs))

ISyl = Jy"" I (@) < C6.
We choose 4 sufficiently small, so that C'6 < §. Hence, for this choice of §, we have

Jynl = Jly"" ] = | Ilyn] = Jly""]llLo @) = J[y*"] = Cé >

oo
>~ 0
=~

provided h is sufficiently small, and correspondingly pj, = 6h~! is sufficiently large for
(4.7) to be valid. This proves the first assertion (4.11).
For the second assertion (4.12), we apply the triangle inequality

ly = yullaors) <y = y"" |l ar@rsy + 1y =yl g rs)

and observe that (4.8) from Lemma 4.5 implies
Iy = y*" |1 ms) < Cpz (14 [y llwroe ;) ) -

For the remaining term we utilize a standard error estimate for the Lagrange inter-
polant, in conjunction with (4.5) from Lemma 4.5, to arrive at

ly*" = Iy | g1 irsy S PV |2 (0rs) S PIY I H2 (QR3)-

Combining the last two bounds with ugl = hd~! < h yields the desired estimate
1y =yl @rs) S A+ Y wrs@ze) + Y]l #2(0m9))
because ¢ has already been fixed. Finally, the uniform H?-bound (4.13) follows from

Lemma 4.8 (Lagrange interpolant stability in H?) and the H?-bound (4.5) on y* in
Lemma 4.5. This completes the proof. ]
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4.1.2. Preliminaries for compactness. We show now how to extract H'-
compactness for sequences of continuous piecewise linear functions which are not
naturally in H2(2). We proceed by discrete regularization via Clément interpolation
as in [12].

Suppose first that we have a function v € L*(2). Given a generic node z € N},
with corresponding star (or patch) w,, let V(w,) be the space of continuous piecewise
linear functions over w,. We define the local L?-projection over Vj(w.) as follows:

(4.14) v, € Vi (w,): / (v, —v)vp =0 VYo, € Vi(w,);

note that v, =v if v € Vj,(w.). We define the Clément interpolant Z,v € V), to be
(4.15) Tho = Z v.(2) 0z,

ZGNh
where {¢.}.cn, denotes the nodal basis of V}, associated with z € Nj.

LEMMA 4.10 (regularization of piecewise constant functions). If v: Q2 — R is a
piecewise constant function over Ty, then its piecewise linear quasi-interpolant Zpv €
C°(Q) defined in (4.14) and (4.15) satisfies the error estimates

/ 1
(416) HU - Ihv”Lz(Q) + h”VIhUHLz(Q;]RZ) 5 h Z E /[v]z.
ecty, €

Proof. This is a corollary of [12, Lemma 2.1]. O

This lemma is instrumental in deriving compactness properties from sequences of
functions with uniform H?-bounds. This is what we establish next. The proof follows
the proof of [12, Proposition 5.1], but we sketch it for completeness.

LEMMA 4.11 (compactness properties). Let yp, € Vy, satisfy the uniform bounds
IVynllLzrexzy S1 and [ynlgzmrsy) S 1. Then there exists y € H?%(;R3) such that
a subsequence (not relabeled) of yn — ¥, converges strongly:

(Yn=¥r) 2y
in H*(;R?) as h— 0, where y;, :=|Q|~" [, yn is the mean value of yp.

Proof. Since yj, satisfies the uniform bound [|Vyp||z2(qrsx2) S 1, Poincaré in-
equality further implies the uniform bound ||y —¥}, || m1(ors) S 1. Therefore, there are
y € H'(;R3) and a subsequence (not relabeled) of (y;, —¥},) such that (y,—¥y,) =y
strongly in L?(Q;R3) and weakly in H*({;R3).

To extract additional regularity of y, we consider wj, =Z,(Vyy,) € [V5]2*2 with Z,,
defined in (4.15). In view of the uniform bound [yx| g2 rs) <1, (4.16) of Lemma 4.10
implies that wy, is uniformly bounded in H'(Q;R3*?) and wj, — Vy;, — 0 strongly
in L2(Q;R3*?), whence wj, — Vy weakly in L?(€;R3*2). The uniform H!'-bound of
wy, means that a subsequence (not relabeled) of w;, — Vy strongly in L?(Q;R3*?)
and Vy € H(Q;R3*2). Consequently, a subsequence (not relabeled) of Vy; — Vy
strongly in L?(Q;R3*?) and completes the proof. |

4.2. Energy scaling and compactness. Our next result is a crucial discrete
energy scaling estimate. It states that if there is an H?-deformation y that satisfies
the target metric (i.e., an H>-isometric immersion), then the discrete energy Ej[yr]
associated with the discrete approximation yj of Lemma 4.9 (discrete approximation
of H? maps) scales like Ey[ys] < A% In the language of I-convergence, this is a
recovery sequence result.
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PROPOSITION 4.12 (recovery sequence). If y € H?(Q;R3) N WL (Q;R3) is the
deformation of Assumption 4.1 (regularity), then for any h sufficiently small there
exists yn € Vy, such that

2
(4.17) Enyn] Sh*(1+ lyllwroms) + ¥l a2 0ms))

Proof. By Assumption 4.1, we know that y € H?(Q;R?) satisfies Vy? Vy = g,
whence E[y] = 0 by Proposition 2.5 (target metric), as well as J[y] = A > ¢5,5, > 0
by (1.4). By Lemma 4.9, for h sufficiently small, there exists y; € Vj such that
Jlyn(x)] > =52 and Yrlm2ms) S 1+ |yll#2(re). The latter implies that Rplys] =
crh2|yh|§{%(Q;R3) ShA(1+ |yl a2 (o;r#))? in (3.2). It thus remains to show that [, W(x,
Vyn)dx < h?, for which we resort to (1.10)

(4.18) W (x, Vyn) = L2 [Vyn, br L2 3,

where the kinematic constraint n, = n[yy] and scaled normal by, = bly},] are defined
in (1.11). We split the proof into three steps.
Step 1. Error estimate of scaled normal vectors. We recall that these vectors are

b Oy x by _ O1yn X Ooyn
= R h=— " 7. 71
Jly] Jlyn]

with J[y] = |01y x doy|? and J[yn] = |01yn x O2yn|?>. We claim that |b — by| <
|[Vy — Vyp| pointwise for which we write

1
Jlynl

Since J[yp] > CSIO , according to (4.11), the Lipschitz bound on y yields

1 1
b —by| < |01y x day]| ’J[y] - - |01y X oy — Dryn X Oayn|-

—I-J[

1 1
b — by, §“+ Oy X Ooy — O1yp X Oayh|-
bt S5 T | |
We now add and subtract 01y x d2yn and apply the triangle inequality along with
the bound |y [[w1.~rs) S 1+ [|y|lw1.(o;rs) from Lemma 4.9 to further estimate

1 1
b—by| < |——=— ——| +|Vy = Vyaul.
| h|’“‘J[yJ J[yh}‘ vy = Vil

Since z + L is Lipschitz on | ,00), we deduce
T 4

m Jlyn]

Likewise, on bounded subsets of R3*2 the map F ~ J(F) is Lipschitz. Hence, we
again use the uniform W1 *-bound of y; from Lemma 4.9 to obtain

‘ ! - S|Ily] = Jlyal|-

Iyl = Jlynll S|Vy = Vyal.

Combining these bounds gives the desired pointwise error estimate for the scaled
normals with hidden constant proportional to (14 ||y |10 (;r3))

[b—bu| S [Vy = Vynl.
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Cs,50

Step 2. Estimate on the kinematic constraint. Since J[yn] = detI[y,] > =52,
according to (4.11), we deduce that I[y}] is uniformly positive definite and

!Vyhm} =m’Vy! Vy,m=m"I[y,|m>¢

for a constant ¢’ > 0 depending on c¢; s,; a similar estimate is valid for |Vym|. Since
yr € W1°(Q;R?) is uniformly bounded, in view of Lemma 4.9, and the map x ~ x/|x|
is Lipschitz on bounded subsets of {x € R? : x| > v/}, we obtain the following
pointwise bound with hidden constant proportional to (1 + [y ||w1.(o;rs)):

Vym _ Vyrm
[Vym| |[Vy,m|

S |Vym — Vy,m| <[Vy — Vyy|.
Step 3. Energy scaling. We now rewrite the neo-Hookean relation (4.18) of
W (x,Vyy) as follows after adding and subtracting R := Lr_ll/Z[Vy7 b]L%2 € 50(3):
W(x,Vyn) = R+ An|* =3, Aj:=L;2[Vys, by]LY? - L;/?[Vy, b]LL>.

The fact that R € SO(3) is a consequence of Remark 2.4 (special rotations), provided
I[y] = g or equivalently W(z,Vy) = 0. We exploit frame indifference to multiply by
R without changing the energy density

W(x,Vy,) = RTR+RTA,? -3=|I3+RTA,|? -

Arguing as in the proof of Corollary 2.3, we see that det L,, = detLy, = det[Vy,
b;] =1 and deduce det (I3 + RTA;,) = det(RTL 1/2[Vyh, bh]L},{Q) = 1. Applying
Lemma 4.3 (scaling of neo-Hookean formula near identity), we obtain

/W(X,Vyh)dx:/ |Ig+RTAh|2—3dx§3/ |RTAh|2§3/ |AL)?.
Q Q Q Q

It thus suffices to show [, [Ap|?dx < h?. Adding and subtracting th ’|Vy,b|L L2,

and using the triangle and Young inequalities, yields

_ 2
AL S L2 ([Vyn, ba] — [Vy, B)LY?[* + (L2 — Ly /) [Vy, bILY?|
S|IVyn, bal = [Vy, b ’ + L2 - n;3/2| N‘Vy—VYh‘Q,

where the last inequality follows from the preceding steps. In fact, Step 1 implies
|[Vyh, bu] — [Vy, b]| < |Vys — Vy],
while Step 2, together with (2.3), the assumptions on s in (1.2), and s € L>°(2), gives

L2 = Lo 2 S ln—mf 3

with hidden constant proportional to (14 [|y|[w1.(q;r3)). Finally, applying (4.12) of
Lemma 4.9 (discrete approximation of H2-maps) yields

(4.19) /Q IAhIQdXS/QIVy—VYh\QdXS Iy = yallE @re) Sh%

with hidden constant proportional to (14 [y |w1.e(qr) + Hy||H2(Q;R3))2. This is the
desired estimate. |
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Remark 4.13 (regularity of m). It is worth realizing that the proof of Proposition
4.12 only requires regularity on y, but not of m beyond L>°(Q;S!). We stress, however,
that y € H2(Q;R?) N W22 (Q;R3) implies g = VyT Vy € HL(Q;R?*2) 0 L>(Q; R?*?2)
with g given in (2.12) in terms of m. This regularity is borderline and does not
guarantee continuity of g (or m) in .

The next proposition establishes compactness: if a discrete deformation yy satis-
fies an appropriate energy scaling, then a subsequence converges to a minimizer of E.

PROPOSITION 4.14 (compactness). Let y, € Vy, satisfy En[yn] < Ch? for a
positive constant C, and let ¥, := |Q| 7} Jo¥ndx be its mean value. Then there is a
subsequence (not relabeled) of yi, —Y), that converges in H'(Q;R3) strongly to a limit
y* € H*(;R3) and Efy*] =0.

Proof. Proposition 2.1 (coercivity) implies that HVth%Z(Q_RSXQ) <1, whereas

h2|yh‘%{§(g;ﬂg3) S crh2|yh|?{§(Q;R3) + /Q W (x,Vyn) = Eplyn] S h?

yields |yh|§I}% (Q:R3) < 1. Therefore, Lemma 4.11 (compactness properties) guarantees

the existence of y* € H?(2; R3) such that a subsequence (not relabeled) (y,—y,) = y*
converges strongly in H*(£;R?). It remains to show that E[y*] =0.
We can choose a further subsequence yj such that Vy, — Vy™ a.e. in €, whence

Jlyr] = JIy*], Vyrm—Vy*m, ae. inQ.

Our goal is to show that [, W(x,Vy)dx — [, W (x,Vy*)dx, for which we observe
that

‘2 > C (5780)7
Iyl
which is a by-product of the proof of Proposition 2.1 (coercivity), where C(s,sg) is

the constant in (2.4). We first show that J[y,] does not vanish and the singular term

Jry;] 18 well defined. If By, :={z € Q: Jlys] < ; }, then we obtain

W (x, Vya) +3= L/ 2[Vyn, bi L2

C(s,80)
Jlyn]

where 7> 3C(s,s0) ! is to be determined. This implies that

1 Enlyn) Ch?
W dx < = '
(X7V}’h) X 7]0(5’50) -3~ 770(8750)73

W(vab’h) > _32770(5780)_3 vxEBh,’r]a

Byl < ———
Bl < G50 3 .

Since Vyy, is piecewise constant, By, , is a collection of IV, elements of the mesh 7j.
By the shape-regularity of 7y, there is v > 0 such that | By, ,| > Nn’yhz. Hence,

Ch?

NAh?< ———
Kl ~nC(s,s0) — 3

Taking n > 0 sufficiently large implies that N, =0 and J[yx] > % a.e. in €2, whence
we infer that J[y*] > % a.e. in 2. Note that since the matrix [m,m ] € SO(2), we
may rewrite J[y] as

Jly] =det (jm,m.]"Vy" Vy[m,m,]) = [Vym*|Vym_ > — (m-I[yjm_)*.
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As a result, we have 0 < % <Jly*] <|Vymm|?*|Vy,m/ |, and |Vy,m|? >0 a.e. in Q.

Combined with continuity of z + 1/z for positive x, we have —— — ﬁ

Tyl and

n, = Igz’;a — ;g:a =n* pointwise a.e. in . Thus, both
L, /2[Vyn, ba]LY? = L% [Vy* b*|LL2
and
W(x,Vyr) = W(x,Vy™)

pointwise a.e. in €.
Since W (x,Vyp) > 0, by virtue of Corollary 2.3 (nondegeneracy of stretching
energy), we apply Fatou’s lemma to deduce the desired result

Ely*] :/ W(x,Vy*)dx < liminf/ W(x,Vyp)dx < lim Ep[y] =0.
O h—0 Q h—0

This concludes the proof. 0
We are now ready to prove the convergence of discrete minimizers.

Proof of Theorem 4.2. The existence of a deformation y satisfying Assumption 4.1
(regularity) yields a quadratic energy scaling according to Proposition 4.12 (recovery
sequence). Since yj, is a global minimizer of Ey,, Ex[ys] < Ch?, and Proposition 4.14
(compactness) applies. Therefore, the limit y* € H?(Q;R3) satisfies E[y*] = 0 and
Proposition 2.5 (target metric) implies that y* is an isometric immersion of g, i.e.,
Ily*]=g. 0

4.3. Piecewise H?-deformations. This section is dedicated to the analysis of
piecewise H2-deformations rather than globally H2-deformations. The inspiration for
this extension comes from [5] and [7]. For physical applications, the motivation comes
from nonisometric origami [32, 31, 33].

Let Q = U} ,Q; be a disjoint partition of (2, where each ; is polygonal. We
denote by I" the boundaries of all €;’s, which is the set of creases or folding set. We
then define the space of piecewise H2-functions to be

(4.20) Vr={y e Wh*(Q;R?) : y|g, € H*(Q;R?) Vi=1,...,n}.

We shall approximate minimizers y* € Vr of (1.9) with folding across I'. To this end,
we make the geometric assumption

(4.21) rclJe

ecéy

i.e., the mesh is fitted to I'. We denote by £} the interior skeleton to each 2; (so that
edges on T are excluded) and define the new discrete energy with folds as

(4.22) Eh,p[yh] :=/ Wh(x,Vyh)dx—th,p[th
Q

where the regularization term is given by Ry r[ys]:= crh2|yh|§qz(Q\PR3) and
h '

. 1
(4.23) |Yh|%rg(9\r;ﬂ§3) ::Z Z E/HV}’hHQ-

i=1lecg}
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We point out that (4.23) does not include jumps across I', which in turn allows for
folds across I' without penalty on the energy. This modeling feature is responsible for
the formation of nonisometric origami within this setting.

We next adjust the regularity Assumption 4.1 to the new framework.

Assumption 4.15 (regularity with creases). There exists a y € WH>(Q;R?) such
that I[y] = g a.e. in Q and y|q, € H2(2;R3) N CH(Q4;R3) for all i=1,...,n.

We relax the H?-regularity but observe that y|q, € C1(Q;;R?) implies that g|o, €
C(£2;;R?*?) is slightly stronger than the mere L° N H!-regularity of g as discussed
in Remark 4.13 (regularity of m). We point out that Assumption 4.15 might not be
always satisfied. It is possible that such a piecewise H2-isometric immersion does not
exist if one of ; has reentrant corners.

We now state the new recovery sequence result.

PROPOSITION 4.16 (recovery sequence). If y € Vr is the deformation of
Assumption 4.15, then for h sufficiently small the Lagrange interpolant yp = Ipy € Vj,
satisfies

n 2
Eprlyn] Sh? (1 + Z (H}’Hcl(ﬁi;ma) + ||Y“H2(Qi;R3)) > .

=1

Proof. In view of (4.21) and y|q, € H?(Q;;R?) from Assumption 4.15, Lemma 4.8
(Lagrange interpolation stability in H?) applied to each €2; gives |yp| H2(QR9) <
|y | r2(,;r3). Moreover, we also have the standard error estimate ||y —yn||g1(o,rs) S
h|Y‘H2(Qi;R3)-

To derive the energy scaling, we first show that J[y;] > ¢s s, /2 a.e. for sufficiently
small h, provided that Jy] =detg=\>c, 5, >0. Since y € C*(Q;;R?), the function
Vy is uniformly continuous in €2; with modulus of continuity o;(t) (i.e., o;(t) — 0 as
t — 0). Therefore, ||[Vy — Vyn| r=@mrsx2) S 0i(h) and, for h sufficiently small, we
obtain

Cs,sq .
Jlynl = JIy] = [y = Y]] = o = Coi(h) > =52 in O

because J is Lipschitz continuous in W1°°(£;R?) on bounded balls. Applying the
arguments in Proposition 4.12 (recovery sequence), we deduce

2
/Q W(x, Vyp)dx + Cth‘Yhﬁ[g(Qi;R-?) Sh? (1 + HYIlcl@;Rq + ||YHH2(Q71;R3)>

on each ;. Summing over €2; yields the desired result. ]

The compactness result in the previous section carries over to the case with jumps,
but with a small modification. The analogue to Theorem 4.2 reads as follows.

THEOREM 4.17 (convergence of minimizers with creases). Let Assumption 4.15
hold, and let y, be a global minimizer of Enr with ¥, = |Q|~1 fQ Yn. Then, as
h—0, yn =¥, has a strongly convergent subsequence (not relabeled) y, —y, = y* in
HY(Q;R3) to a function y* € Vr that satisfies E[y*] =0 and I[y*] =g a.e. in Q.

Proof. We first apply Proposition 4.16 (recovery sequence) to deduce that Ep, r[ys]
< Ep r[Iny] < h? because yy, is a global minimizer of Ej . Moreover, since Ely,] <
Ernlyn] S h? by definition (4.22), Proposition 2.1 (coercivity) implies the uniform
bound [|[Vyp||L2(rsx2y S 1 and, hence, the weak convergence of a subsequence (not
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relabeled) of yj, —¥, to a function y* € H'(Q;R?). We need to prove further regularity
of y*.

Proceeding now as in Lemma 4.11 (compactness properties) and Proposition 4.14
(compactness) over each subdomain 2;, we can show that up to a subsequence
Vyula, = Vy*|q, converges strongly in L?(£2;;R3*2?) and that Vy*|q, € H!(Q;; R3*?)
and I[y*|g,] = ¢ a.e. in ©; for each ¢ = 1,...,n. In view of Proposition 2.5 (target
metric) we also obtain that W (x,Vy*|q,) =0 for each i =1,...,n, whence E[y*] =0.

It remains to show that y* is globally Lipschitz, i.e., y* € W1 (Q;R3). We note
that y*|q, € W1 (Q;;R3) for each i = 1,...,n because I[y*|q,] = g € L>=(Q;; R?*2),
which in turn implies that the trace of y*|q, on 09; is continuous. Since y* €
H'(Q;R?), we infer that the jumps [y*]|r = 0 must vanish, thereby showing that
y* € C°(Q;R?) is uniformly continuous in . This, in addition to being piecewise
Lipschitz, proves that y* is globally Lipschitz, whence y* € Vr as asserted. ]

5. Numerical simulations. We implement the proposed method within the
multiphysics finite element software Netgen/NGSolve [34], and the visualization re-
lies on ParaView [2]. In this section, we present several tests to illustrate properties
of the LCN model (1.9)—(1.10), as well as effectiveness and efficiency of our algo-
rithm. A derivation of (1.9)-(1.10) and more extensive computational investigation
are contained in [13].

5.1. Nonisometric origami: pyramids. In this subsection, we study an ex-
ample of nonisometric origami, whose structure is made of folding thin sheets and
complies with Assumption 4.15 (regularity with creases). We refer the reader to
[32, 33, 31] for a more detailed introduction of nonisometric origami.

First, we divide the domain 2 into several subdomains €2; by “folding lines” or
“creases” I" and consider meshes fitted to the folding lines. We take the regularization
parameter ¢, = 0 along I" and ¢, = 100 in the rest of 2. In fact, vanishing regularization
models a weakened (or damaged) material on creases [5], and mathematically this
allows for the formation of kinks.

We consider piecewise constant blueprinted director fields m and set-up creases I'
and subdomains €; as depicted in Figure 5.1. In this experiment, we take = [0, 1],

h=1/64, s=0.1, so=1, tol;=10"1" toly=1075.

The ensuing configurations are all compatible in the sense of [31, formula (6.3)]: the
magnitudes of the tangential components of m and A are continuous across I'. We
also discuss incompatible origami in [13].

Case 1. We first consider the set-up on the left of Figure 5.1, 7 = 1, and use
initialization y?L = I,y° with

(5.1) yO (21, 20) = (ml,xg,O.le(l —x1)xa(l — x2)>

HlEHT

Fic. 5.1. This is the set-up for experiments in subsection 5.1. Solid lines inside the square
represent the locations of the creases, and arrows show the piecewise constant director field m in
each subdomain. In this case, m = (0,—1),(—1,0),(0,1),(1,0) in different subdomains.
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Fic. 5.2. Nonisometric origami: First column, pyramid-like final configurations for Cases 1
and 2. Second column, different views of final configuration for Case 3 exhibiting multiple folds.
Third column, different views of final configuration for Case 4, thereby confirming that the pyramid-
like configuration is not a mesh effect.

Case 2. We then consider the set-up on the right of Figure 5.1, 7 =0.4, and use
the same initialization as (5.1),
Case 3. We also apply another initialization,

(5.2) yo(z1,20) = (xl,m2,0.2 cos (Tm(z1 — 0.5)) w2 (22 — 1))7

to the set-up on the right of Figure 5.1 and take 7=0.5.

The computed solutions for all three cases are shown in Figure 5.2. We get
pyramid-like final configuration for Case 1, which is consistent with the prediction in
[29]. For Cases 2 and 3, we obtain different equilibria starting from different initial
states, but the difference in final energies is about 1076. They are indeed global
minimizers, because computed metric deviations

(5.3) enlyn ] :=IMyr] = gllr @)

are 1.6 x 1072,2.5 x 1073,2.4 x 103 for Cases 1, 2, 3 respectively. Therefore, this
gives an example where global minimizers to (3.5) are nonunique, and computed
equilibrium shapes depend on initializations. This verifies the heuristic discussion in
Example 2.8, confirms the lack of convexity of this model, and illustrates capability
and accuracy of our numerical method for computing origami structures.

Case 4. To confirm that the pyramid-like origami structure is not a mesh effect,
we generate a mesh with h = 1/64 unfitted to the two diagonals I' of the square.
We consider the same set-up as in Case 1 except that the regularization parameter
cr(x) =0 if x € Tg.02 and ¢, (x) = 100 otherwise, where I'y := {x € Q : dist(x,T') < d}
is a strip surrounding the crease I'.

The computed solution for Case 4 is also displayed in Figure 5.2. We still get the
pyramid-like configuration, but with tiny wrinkling appearing in the strips I'g g2, due
to the lack of regularization in this region. We present a thorough discussion of the
computational effect of regularization in [13].

5.2. Liquid crystal defects. In this section, we simulate a configuration arising
from a liquid crystal defect, which is inspired by experimental results in [27, 37] and
numerical simulations in [15]. We take m in polar coordinates (r,6) to be

(5.4) m(r,0) = (cos(1.56),sin(1.56)).
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This rotationally symmetric blueprinted director field is discontinuous at the origin
where it exhibits a stable defect of degree 3/2. We consider h =1/128 and 7 to be the
largest admissible 7 so that the Newton subiteration is well-posed, an issue explored
later in section 5.3. The other parameters for the model are taken to be

(5.5) s=0.1, so=1, ¢ =1, tol; =107 tol,=1077.

The computed solution is displayed in Figure 5.3. Moreover, Figure 5.4 (with ¢, =
0) reveals that the energy FEj[y°] decays subquadratically in h, which indicates
that the limiting deformation y* is not in H?(£2;R?®), whence it does not satisfy
Assumption 4.1 (regularity). Other configurations arising from liquid crystal defects
have been computed in [15], though to the best of our knowledge our simulation seems
to be the first one of a defect of degree 3/2. In [13], we present several configurations
beyond theory, including higher order defects, which are computationally accessible
by our algorithm.

5.3. Quantitative properties. In this subsection, we investigate computation-
ally some quantitative properties of the proposed method, and in particular the role
of meshsize h and pseudo time-step 7. Our goals are as follows.

e Convergence of metric deviation. We measure the metric deviation ey [ys°]
defined in (5.3) as an error between computed solutions yy° and global

"

F1G. 5.3. Blueprinted director field m with a stable defect of degree 3/2: Two views of the
computed deformation yp°. We observe a “bird’s beak” structure around the defect location, which
matches the experimental picture shown in [27, 37].

[= T T T T T 9
101 | - —e—Experiment 1: ep[y;°]
r | —=— Experiment 2: e [y;°]
10-2 B | —e— Experiment 3: ej,[y;°]
% % —— Experiment 1: |Ep[y;°]|
10-3 i | —+— Experiment 2: |Ej[y°]|
error E 1--e-Experiment 3: |Ejp[y;°]
1074 E
107° 1 E
1070 ‘ §

| | | |
10—2 10—1,8 10—1,6 10—1,4 10—1,2
h

F1c. 5.4. Convergence of errors for Experiments 1-3. We can see that the regularization has
almost no influence on convergence rates, while it results in a slightly larger value of errors. For
Ezperiment 3 with discontinuous m the errors are significantly larger. In all cases we observe that
enly?] is linear in h, while |Ex[ys°]| is quadratic in h for Experiments 1 and 2 and has a rate
slightly worse than quadratic (it is approzimately O(h'°823)) for Experiment 3.
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minimizers, and recall that g is given by (2.12). We expect convergence
of epy°] as h— 0.

e Convergence of energy. We can see that the exact minimum energy is 0 from
discussions of section 2. Therefore, we also expect convergence of the energy
error |Ep[y°]| := |Enly;°] — 0] as h — 0.

e Role of pseudo time-step 7. We expect that the well-posedness and conver-
gence of Newton method (3.8) depend on 7. We thus disclose the influence
of 7 on the final energy E},[y°], metric deviation e, [y;°], and the number N
of gradient flow iterations.

We consider three experiments to explore these issues computationally.
Experiment 1: Smooth m. Let Q be the unit square = [—0.5,0.5]? and

(5.6) m=(z;+ 1,20 +1)/y/(x1 + 1)2 + (2o + 1)2.

We take parameters
s=0.1, sp=1, ¢ =0, tol; =107 toly=10"°
and the initialization y) = I,y° with
(5.7) ¥’ (21, 22) = (21,22,0.8(z1 — 0.5)(21 + 0.5)(z2 — 0.5)(z2 + 0.5)).

Tables 5.1 and 5.2 display the results. We see that in Table 5.1 both ep[y°] and
|Ey[yn]| are rather insensitive to 7, but N decreases with increasing 7. The fact that
performance does not improve for smaller 7 motivates us to explore the largest admis-
sible time-step T,nq: With various h in Table 5.2, which also reveals the convergence
of our method.

Experiment 2: Effect of reqularization. We consider the same set-up as in Exper-
iment 1 but instead of ¢, =0 we take ¢, = 1.

Experiment 3: m with defects. We consider the set-up in section 5.2. The director
field m is the degree 3/2 defect given in (5.4). The parameters are those in (5.5), but
we take ¢, =0 instead of ¢, = 1.

TABLE 5.1
Ezperiment 1 with the blueprinted director field (5.6). This reveals the influence of T on errors
and the number of gradient flow iterations N with fized h=1/32.

T enlyi?] | Enlyy”]l N

0.2 4.66909E-3 2.3484E-5 2304

0.4 4.66909E-3 2.3484E-5 1151

0.8 4.66910E-3 2.3484E-5 574

1.6 4.66918E-3 2.3482E-5 286

3.2 diverge diverge diverge
TABLE 5.2

Experiment 1 with the blueprinted director field (5.6). This gives the largest admissible time-
step Tmaz that guarantees the well-posedness and convergence of theNewton step for wvarious h.
Convergence of errors as h — 0 is observed with corresponding Tmaz -

h Tmazx €h [yzo] |Eh [y}?o” N
1/16 2.23 9.45213E-3 8.7909E-5 267
1/32 2.11 4.66924E-3 2.3482E-5 216
1/64 2.10 2.30916E-3 5.7742E-6 130
1/128 2.09 1.22053E-3 1.5746E-6 129
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Errors for Experiments 1-3 are plotted in Figure 5.4 for meshsizes h =1/16,1/32,
1/64,1/128. We discuss them next.

5.

4. Conclusions. We conclude with a summary of quantitative observations.
e The metric deviation ep[y°] converges as O(h). The energy error |Ep[y°]|
converges as O(h?) or subquadratically, depending on the regularity of m.
|En[ys°]| converges as O(h?) in Experiments 1 and 2, when m is smooth
and g is likely to admit an H2-isometric immersion. This computational
result corroborates the validity of Assumption 4.1 and the energy scaling

in Proposition 4.12.

— |Enlys?]| converges subquadratically in Experiment 3, when m has a de-
gree 3/2 defect. It is plausible that g does not admit an H?2-isometric
immersion, and if so, the validity of Assumption 4.1 is questionable. It
is worth realizing that this assumption is responsible for the quadratic
energy scaling in Proposition 4.12.

e The Newton subiteration is well-posed and convergent when 7 is small enough.

The influence of h on 7,4, is negligible.

e Once 7 is chosen so that the Newton method is well-posed and convergent,
further decreasing of T has only a negligible influence on errors.

e For fixed h, the number of gradient flow iterations N = O(7~1), and so does
the computational time.

These conclusions indicate the convergence of the method and the fact that an ideal
choice of 7 is its largest admissible value 7,,4, for various problems. We do not need
to take 7 — 0 as meshes refine, and 7,,,, provides a moderate upper bound for .
This is an advantage compared to a linearized gradient flow (e.g., [11]) and a fixed
point subiteration scheme (e.g., [6]) in that both require 7 depending on h.
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