
Geom. Funct. Anal. Vol. 34 (2024) 798–867
https://doi.org/10.1007/s00039-024-00673-y
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

AUGMENTATIONS, FILLINGS, AND CLUSTERS

Honghao Gao, Linhui Shen, and Daping Weng

Abstract. We investigate positive braid Legendrian links via a Floer-theoretic ap-
proach and prove that their augmentation varieties are cluster K2 (aka. A-) vari-
eties. Using the exact Lagrangian cobordisms of Legendrian links in Ekholm et al.
(J. Eur. Math. Soc. 18(11):2627–2689, 2016), we prove that a large family of exact
Lagrangian fillings of positive braid Legendrian links correspond to cluster seeds of
their augmentation varieties. We solve the infinite-filling problem for positive braid
Legendrian links; i.e., whenever a positive braid Legendrian link is not of type ADE,
it admits infinitely many exact Lagrangian fillings up to Hamiltonian isotopy.
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1 Introduction

This paper is the first attempt to relate Floer theory and cluster algebras in the
context of contact manifolds and Legendrian knots. Starting from [S+19], and to-
gether with subsequent [SW19, CZ20], the relations between microlocal sheaf theory
and cluster Poisson (aka X )-varieties have been studied for several classes of Legen-
drian links. It is natural to ask whether the cluster structure exists on the celebrated
Floer-theoretic invariant, namely the Chekanov-Eliashberg dga and its augmenta-
tions [Che02]. Despite the famous augmentation-sheaf correspondence for Legendrian
links [L+15], which suggests a similar cluster structure on the augmentation moduli,
it is to our surprise that we obtain an intrinsic cluster K2 (aka A)-structure on the
augmentation variety of any positive braid Legendrian link. This paper further uti-
lizes this new cluster K2 structure to build invariants for exact Lagrangian fillings.
As an application, we prove that positive braids that do not underline finite type
quivers admit infinitely many Lagrangian fillings. To our knowledge, this is by far
the largest family of Legendrian links satisfying the infinite filling properties.

1.1 Context. In the standard contact three-space (R3, ξst = kerα) with α =
dz − ydx, a Legendrian link Λ is a smooth one-dimensional submanifold where
α|Λ = 0. The Chekanov-Eliashberg differential graded algebra (CE dga) is the first
non-classical algebraic invariant for Legendrian links [Che02]. An exact Lagrangian
cobordism between Legendrian links functorially induces an algebraic map between
the dgas [EHK16]. Following this functoriality, each exact Lagrangian filling L gives
rise to an embedding of the decorated GL1-character variety1 on L into the augmen-
tation variety. The images of these morphisms are invariants that distinguish exact
Lagrangian fillings.

Cluster algebras are a class of commutative algebras introduced by Fomin and
Zelevinsky [FZ02]. Since its inception, the theory of cluster algebras has found
tremendous applications in diverse areas of mathematics and physics. Fock and Gon-
charov [FG09] introduce a pair (X ,A ) of log Calabi-Yau varieties, which are a ge-
ometric enrichment of the cluster algebras. The variety X carries a natural Poisson
structure and is referred to as a cluster Poisson variety. The variety A carries a
canonical class in the Milnor K2 group of its function field and is referred to as a
cluster K2 variety. See Sect. 6.2 of loc.cit. for the construction of such a canonical
class. The duality between A and X , conjectured by Fock and Goncharov, has been
realized by Gross, Hacking, Keel, and Kontsevich [G+18] under the framework of
scattering diagrams and mirror symmetry. Despite such a duality, the geometries

1 Here the decoration means a specific trivialization of the line bundle near the boundary of the
surface. See Definition 3.6 for a precise description.
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of X and A are rather different. For the convenience of the reader, we recall the
definition of cluster varieties in Appendix A.

This paper focuses on certain representatives of positive braid Legendrian links
with maximum Thurston-Bennequin (tb) numbers. It follows from [EV18, Theorem
3.4] that a positive braid has a unique Legendrian representative with maximal tb.
We include a construction of these Legendrian representatives in Sect. 2.1. We prove
that their augmentation varieties carry natural cluster K2 structures. We consider a
large family of exact Lagrangian fillings and prove that each filling induces a cluster
seed of the augmentation variety. As an application, we prove that all positive braid
Legendrian links, except those underlying ADE Dynkin-type quivers, admit infinitely
many non-Hamiltonian isotopic exact Lagrangian fillings.

The classification of exact Lagrangian fillings is a central but rather difficult
problem. Except for the unique filling for unknot [EP96], most subsequent works
focus on giving a lower bound on the number of distinct fillings. The existence of
infinitely many exact Lagrangian fillings was not known until the year 2020. Within
the year, several methods emerged concurrently and each successfully solved this
problem for a certain class. Two proceeding results are:

– Casals-Gao [CG20] proved that any positive torus (n,m)-link, (n,m) �= (2,m),
(3,3), (3,4), and (3,5), admits infinitely many fillings. The proof uses Legen-
drian loops, microlocal sheaves, and cluster structures on Grassmannians.

– Casals-Zaslow [CZ20] proved that the rainbow closure of a class of 3-strand
positive braids admit infinitely many fillings. The proof uses Legendrian weaves
and cluster Poisson structures on moduli space of microlocal sheaves.

The present paper investigates the infinite-filling problem for all positive braid clo-
sures, covering all examples of [CG20, CZ20] as special cases.

This paper is based on a Floer theoretical approach. In particular, our proof
uses the Ekholm-Honda-Kálmán (EHK) functor [EHK16] instead of the microlocal
sheaves in [CG20, CZ20]. In this paper, we show for the first time that the aug-
mentation varieties are cluster K2 varieties. It is an interesting direction for future
research to compare with cluster structures arising from sheaves.

We would like to remark that, shortly after our result, Casals-Ng [CN21] proved
the existence of infinitely many fillings for certain Legendrian links that are not
positive braid closures. They use holomorphic curves but without cluster theory.

1.2 Cluster K2 structures on augmentation varieties. For any positive braid
word β, we construct a quiver Qβ via the following three-step procedure:

Step 1 Plot β on R
2 horizontally. Put a vertex in each region of the diagram

sandwiched by strands (including the leftmost and the rightmost “half-
open” regions).
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Figure 1: An E9 quiver with two frozen vertices.

Step 2 At each crossing, draw the following arrow pattern among neighboring
vertices (dashed arrows are of weight 1/2):

• •
•

•

.

Step 3 Sum up the arrows between each pair of vertices. Freeze the vertices in the
rightmost regions. Delete the leftmost vertices and their incident arrows.

Example 1.1. Fig. 1 is a positive braid word β = s6
1s2s

3
1s2 and its quiver Qβ .

Let Λβ be the positive braid Legendrian link associated to β as in Sect. 2.1. Let
Aug (Λβ) be the augmentation variety of Λβ defined over an algebraically closed field
F of characteristic 2 as in Definition 2.4. Our first main result is as follows.

Theorem 1.2 (Theorem 2.12, Corollary 3.21, and Proposition 3.24). The augmenta-

tion variety Aug(Λβ) is a cluster K2 variety associated to the quiver Qβ . The degree

zero Reeb chords of Λβ are cluster variables that generate the coordinate ring of

Aug(Λβ).

Remark 1.3. As defined in Definition A.1, a cluster K2 variety is the spectrum of
an upper cluster algebra. Up to codimension 2, each cluster K2 variety is obtained by
gluing a collection of algebraic tori. The transition maps between different algebraic
tori are given by particular relations called cluster mutations.

Remark 1.4. Associated with each quiver is a cluster algebra A generated by cluster
variables, and an upper cluster algebra U that is the intersection of the ring of
Laurent polynomials for each seed [BFZ05]. The Laurent phenomenon of cluster
variables implies that A ⊂ U , but in general A �= U . The problem when A = U is
a fundamental question in cluster theory. See [GLS11] for its application on the
quantization of cluster algebras. As an application of Theorem 1.2, the upper cluster
algebra U associated to the quiver Qβ coincides the coordinate ring O(Aug(Λβ)).
Meanwhile, the O(Aug(Λβ)) is generated by the Reeb chords as cluster variables.
Therefore we get A = U for the quiver Qβ .

1.3 From fillings to cluster seeds. Our second main result establishes a nat-
ural correspondence between a large family of exact Lagrangian fillings, which we
call “admissible fillings”, of positive braid closures and the seeds of the cluster K2
structure on their augmentation varieties.
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Definition 1.5. An exact Lagrangian cobordism L between positive braid Legen-
drian links is admissible if it is a concatenation of the following exact Lagrangian
cobordisms:

(1) saddle cobordism, which resolves a crossing inside the positive braid;
(2) braid move, also known as a Legendrian Reidemeister III move;
(3) cyclic rotation, which changes Λδsi ↔ Λsiδ for any positive braid δ and any

elementary braid si;
(4) minimum cobordism, which is the unique filling of a maximal tb unknot.

An admissible filling of Λβ is an admissible cobordism from the empty set to Λβ .

We refer readers to Sect. 3.1 for the definition of exact Lagrangian cobordisms
and fillings. A notable property of exact Lagrangian cobordisms is that they are
directed. While a smooth cobordism surface can be reversed to interchange the two
end, the same operation does not apply to the exact Lagrangian setting due to
the directionality of the Liouville vector field, which is ∂t in the symplectization
(Rt ×R

3
xyz, d(etα)). For instance, a Lagrangian cobordism L : Λ− → Λ+ must satisfy

tb(Λ+) − tb(Λ−) = −χ(L), where tb(Λ) is the Thurston-Bennequin number of the
Legendrian Λ and χ(L) is the Euler characteristic of the surface L [Bap10]. Even in
the case of Lagrangian concordance, which means the cobordism surface is smoothly
a union of cylinders, the relation is still not symmetric [Bap15].

Let L be an exact Lagrangian filling of Λ with a collection T of marked points
on Λ. Following Fock and Goncharov [FG06], we consider the moduli space A (L,T )
of decorated GL1-local systems (See Definition 3.6). Applying the Ekholm-Honda-
Kálmán functor, we obtain an open embedding

αL : A (L,T )−→Aug(Λβ).

where A (L,T ) is isomorphic to an algebraic torus.

Theorem 1.6 (Theorem 3.20 and Corollary 3.22). For any admissible filling L of

Λβ , the image of αL is an open torus which determines a cluster seed of Aug(Λβ).
Admissible fillings determining distinct cluster seeds are non-Hamiltonian isotopic.

Theorem 1.6 gives a new method to distinguish non-Hamiltonian isotopic ad-
missible fillings of positive braid closures via computing their corresponding cluster
seeds. This theorem generalizes the methods in [EHK16, Pan17], which use the set
of augmentations induced from a filling as an invariant and discovered a Catalan
number worth of fillings for torus (2, n) links. A different approach using sheaves
can be found in [S+19]. The set of augmentations is the chart in the corresponding
cluster seed.

The machinery of cluster theory allows us to develop an efficient method to com-
pute the induced toric chart of augmentations from an admissible filling. Instead
of keeping track of holomorphic curves bounded by the filling (following the recipe
of [EHK16]), one can compute the sequence of cluster mutations, find the induced
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cluster variables, and their non-vanishing loci give the desired result. We summa-
rize the algorithm in Sect. 3.4 and build a program to implement the computation.
Every cluster seed admits a complete combinatorial invariant called the g-matrix.
Our algorithm presents an efficient method to explicitly compute the g-matrix as an
invariant for admissible fillings.

Remark 1.7. The CE dga is defined over Z2 with contributions from marked points.
Theorems 1.2 and 1.6 can be enhanced to characteristic 0 by including the spin struc-
ture as suggested by [ENS02, Kar20]. Nevertheless, by Proposition A.3, the cluster
structure in characteristic 0 will not distinguish more fillings than characteristic 2.
For the purpose of building an invariant for Lagrangian fillings from cluster theory,
it is enough to consider characteristic 2. Meanwhile, for Proposition A.3 to apply,
augmentations must be defined over an algebraically closed field.

1.4 Finite type classifications. Recall that an ADE quiver is a directed graph
whose underlying graph is one of the ADE Dynkin diagrams. The quivers Qβ for
different words β of [β] are mutation equivalent, leading us to the following definition.

Definition 1.8. A positive braid [β] is of finite type if the unfrozen part of Qβ is
mutation equivalent to a disjoint union of ADE quivers for one (equivalently any)
word β of [β]. Otherwise, [β] is of infinite type.

Definition 1.9. The Legendrian links Λβ associated with the positive braid words
β in the following table are called the standard ADE links.

Br+2 Br+3
Ar Dr E6 E7 E8

sr+1
1 sr−2

1 s2s
2
1s2 s3

1s2s
3
1s2 s4

1s2s
3
1s2 s5

1s2s
3
1s2

Remark 1.10. The underlying smooth links of the above standard Legendrian ADE
links are the same as links of certain plane curves singularities as in [Arn76]. Namely,
they coincide with the intersections Bε(0,0)∩ Vf , where Vf is the vanishing locus of
f(x, y) :C2 →C given by

Ar : xr+1 + y2, Dr : x2y + yr−1, E6 : x3 + y4, E7 : x3 + xy3, E8 : x3 + y5.

Another topological description of this class is prime positive braid links with
positive-definite symmetric Seifert forms [Baa13].

The next result provides several characterizations of positive braids of finite type.

Theorem 1.11. Let Λβ be the Legendrian link associated with a positive braid β. The

following statements are equivalent.

(1) [β] is of finite type.

(2) Aug(Λβ) has a finite number of cluster seeds.
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(3) Λβ is Legendrian isotopic to a split union of unknots and connect sums of

standard ADE links.

(4) The symmetric Seifert form of Λβ is positive definite.

Proof. The equivalence “(1) ⇔ (2)” follows from the finite classification of cluster
algebras [FZ03] and Theorem 1.2. The implications “(3) ⇒ (4) ⇒ (1)” are a result
of [Baa13]. We prove “(1) ⇒ (3)” in Theorem 4.25. �

1.5 Infinitely many exact Lagrangian fillings. Our last main result is as follows.

Theorem 1.12 (Theorem 4.8). If [β] is of infinite type, then Λβ admits infinitely

many non-Hamiltonian isotopic exact Lagrangian fillings.

The proof of Theorem 1.12 uses the aperiodicity of some cluster Donaldson-
Thomas transformations [SW19] and a trichotomy of the frieze variety [L+20]. The
DT transformation is not generally aperiodic (Remark 4.4), and we employ sophis-
ticated combinatorial arguments to solve the problem.

As a topological consequence, this theorem yields that most positive braid links
admit infinitely many non-Hamiltonian isotopic Lagrangian fillings. Hence it is rea-
sonable to conjecture that Legendrian links with infinitely many fillings exist more
broadly than those with finitely many fillings, whenever fillings are unobstructed.
This theorem also motivates and proves a major class in the conjecture of ADE clas-
sification of Lagrangian fillings proposed in a later paper by Casals [Cas20]. It also
provides interesting examples of concordance monoids, group of Legendrian loops,
and Weinstein manifolds, following the framework of [CG20].

2 Cluster K2 structure on augmentation varieties

2.1 Positive braid Legendrian links. Artin’s braid group on n strands is

Brn = 〈s±1
1 , . . . , s±1

n−1 | sisi+1si = si+1sisi+1, and sjsk = sksj if |j − k| ≥ 2〉.

The positive braid semigroup Br+n is the sub-semigroup inside Brn generated by the
si’s. The positive braid w0 = (s1 · · ·sn−1)(s1 · · ·sn−2) · · · (s1s2)(s1) is called the half
twist, and its square w2

0 is the full twist. Under the quotient map from Brn to the
symmetric group Sn, w0 becomes the element of the longest Coxeter length.

We denote a word of a positive braid by β, and its equivalence class by [β].
Every positive braid word β uniquely determines a Legendrian link Λβ with maximal
Thurston-Bennequin number in its smooth isotopy class [EV18, Theorem 3.4]. The
Legendrian Λβ can be obtained via a satellite construction, that is, the braid closure
of w0βw0 satellited along the standard unknot, |w0βw0| ⊂ J1(S1)⊂R

3, produces the
Legendrian embedding Λβ . Alternatively, the front projection of Λβ is given via the
rainbow closure construction [STZ17]. We apply Ng’s resolution [Ng03, Proposition
2.2] to obtain its Lagrangian projection πL(Λβ) as follows, where the left cusps are
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Figure 2: � . Ng’s resolution.

smoothed out and the right cusps are resolved to a crossing attaching a teardrop
loop. Note that the Lagrangian projection is not drawn in scale – the teardrop loop
should be drawn much larger, so that the signed area on the left of a resolved crossing
equals to the area of the teardrop.

2.2 Augmentation varieties for positive braid Legendrian links. In this section
we compute the CE dga A (Λβ) and the augmentation variety Aug(Λβ) for a positive
braid word β = si1 · · ·sil with n strands. We refer the readers to [EN18] for the
definition of CE dga for general Legendrians. For postive braids, Kálmán [Kal05] had
explicitly computed the dga with Z2-coefficient. We recover the computation with a
different method using the boarded dga in [Siv11]. The coefficients are enhanced to
include contributions from marked points.

Let πL(Λβ) be the Lagrangian projection of Λβ as in Fig. 2. The Reeb chords of
Λβ correspond to crossings in πL(Λβ). We equip Λβ with a binary Maslov potential
{0,1}, which determines degrees for the Reeb chords. The crossings in the braid have
degree 0 and are denoted by b1, . . . , bl. The crossings located at resolved right cusps
have degree 1 and are denoted by a1, . . . , an. We decorate Λβ by placing a marked
point ti next to each crossing ai, located on the resolved teardrop loop. Let T be
the set of marked points. The dga A (Λβ) is generated by the Reeb chords and the
formal variables t±1

i . The non-trivial differentials of A (Λβ) are the ∂ak’s, which we
shall describe.

For any noncommutative formal variable b and 1 ≤ i < n, we define an n × n

matrix

Zi(b) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

b 1
1 0

. . .
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.1)

where the 2 × 2 sub-matrix sits at the ith and (i + 1)st rows and columns. For
reference, this matrix is called the path matrix in [Kal06]. For β = si1 . . . sil , let us set
M (1) := Zi1 (b1) · · ·Zil (bl). Define the matrices M (k) =

(
M

(k+1)
ij

)
k≤i,j≤n

recursively by

M
(k+1)
ij =M

(k)
ij +M

(k)
ik tkM

(k)
kj . (2.2)
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Proposition 2.1. The differential of the CE-dga A(Λβ) has the following compact

form:

∂ak =M
(k)
kk + t−1

k , ∀1≤ k ≤ n.

Proof. Borrowing the idea of the bordered dga [Siv11], we consider the diagram

β

· · ·· · ·

...

1st2nd
nth

...

1st2nd

nth ...

M (1) M (k)

.

Let us label a dashed line between the braid region and the right cusps so that each
disk contributing to the differential can be divided into two parts. On the left, each
disk boundary will travel along a strand on the top, making many or no turns in the
braid region, and then hit the dashed line. In general, the disk configuration near a
resolved right cusp can be one of the following:

.

In our setup, only the first and the last configurations occur.
Let us start with the left part. Suppose the (i, j)-th entry of M counts disks

that are bounded by top level i and bottom level j near the dashed line. It can be
computed inductively on crossings from left to right. Before the braiding region, there
is a unique pairing between the strands, giving the identity matrix. For an arbitrary
crossing ik, let N (resp. N ′) be the disk counting matrix before (resp. after) scanning
across ik. Then

– N ′
ik+1,j =Nik,j due to (a); and N ′

ik,j
=Nik,jbk +Nik+1,j due to (b) and (c).

jth

(ik + 1)st
ikth

bk
N N ′

(a)

jth

(ik + 1)st
ikth

bk
N N ′

(b)

jth

(ik + 1)st
ikth

bk
N N ′

(c)

In other words, N ′ =NZik (bk). By induction, we have M =M (1) = Zi1 (b1) · · ·Zil (bl).
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Similarly, we place a dashed line between each pair of right cusps. Let M (k) be the
matrix associated to the dashed line between ak−1 and ak. There is no disk between
any two top strands or between any two bottom strands near M (1) dashed line, and
will be inductively true for any other dashed lines.

jth
kth

kth
ith

ak ∗ tk

jth
kth

kth
ith

ak ∗ tk

Enumerating the two local situations above, we have

M
(k+1)
ij =M

(k)
ij +M

(k)
ik tkM

(k)
kj .

We are ready to compute ∂ak. It counts two types of disks. One consists of
those disks that hit the dashed line labeled by M (k), and the other one consists
of only one disk given by the teardrop loop with no negative punctures. Hence,
∂ak =M

(k)
kk + t−1

k . �

Gelfand and Retakh [GR91] introduced the quasi-determinant as a replacement
for the determinant for matrices with noncommutative entries. Let M1,2,...,k−1,j

1,2,...,k−1,i be
the k × k submatrix of M = M (1) consisting of rows 1,2, . . . , k − 1, i and columns
1,2, . . . , k − 1, j. The next proposition establishes a connection between M

(k)
ij and

the quasi-determinants.

Proposition 2.2. If ∂ak = 0 for 1 ≤ k ≤ n, then M
(k)
ij is the quasi-determinant∣∣∣M1,2,...,k−1,j

1,2,...,k−1,i

∣∣∣
ij
.

Proof. The assumption ∂ak = 0 implies that tk =−
(
M

(k)
kk

)−1
. Then (2.2) becomes

M
(k+1)
ij =M

(k)
ij −M

(k)
ik

(
M

(k)
kk

)−1
M

(k)
kj .

Inductively, the RHS equals
∣∣∣M1,...,k−1,j

1,...,k−1,i

∣∣∣
ij

−
∣∣∣M1,...,k−1,k

1,...,k−1,i

∣∣∣
ik

∣∣∣M1,...,k−1,k
1,...,k−1,k

∣∣∣−1

kk
×

∣∣∣M1,...,k−1,j
1,...,k−1,k

∣∣∣
kj

, which yields
∣∣∣M1,...,k,j

1,...,k,i

∣∣∣
ij

by the Sylvester’s identity for quasi-
determinants (Proposition 1.5 of [GR91]). �

The dga A(Λβ) is concentrated at non-negative degrees. Its homology H0 (A (Λβ))
is a non-commutative algebra. Let us write Mk :=M

(k)
kk for short. The following result

is a direct consequence of Propositions 2.1 and 2.2.

Corollary 2.3. As non-commutative algebras over Z2, we have

H0 (A (Λβ)) ∼=
Z2

〈
b1, . . . , bl, t

±1
1 , . . . , t±1

n

〉
(
Mk = t−1

k

) .
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Now let us fix an algebraic closed field F of characteristic 2.

Definition 2.4. An augmentation of A(Λβ) is a unital dga homomorphism

ε : (A(Λβ), ∂)→ (F,0).

The augmentation variety Aug (Λβ) is the moduli space of augmentations of A (Λβ).

Remark 2.5. The augmentation variety is different from the moduli stack of ob-
jects in the unital augmentation category introduced in [L+15]. Therefore it is not
isomorphic to the moduli space of microlocal rank one sheaves associated to Λ in
general.

Lemma 2.6. For any positive braid word β, let A(Λβ)c be the abelianization of A(Λβ).
Then Aug(A(Λβ)) is an affine variety whose coordinate ring is H0 (A(Λβ)c,F).

Proof. By definition, the augmentations ε preserve the degree. In particular, ε(a) = 0
for any generator a of non-zero degree. Hence, ε is uniquely determined by its evalu-
ations at the degree zero Reeb chords and the formal variables, and the evaluations
are subject to the conditions ε ◦ ∂(a) = 0 for any degree 1 Reeb chord a. As a con-
sequence, the augmentation varieties are affine varieties.

The field F is commutative. Thus, the augmentations for A(Λβ) and A(Λβ)c
coincide. Let ∂i be the i-th degree of ∂. Since A(Λβ)c is concentrated in non-
negative degrees, ker∂0 is the free algebra generated by the formal variables and
the degree 0 Reeb chords, and im∂1 is an ideal generated by (∂a) for all degree
1 Reeb chords a. Hence, H0(A(Λβ)c,F) = ker∂0/im∂1 is the coordinate ring of
Aug(A(Λβ)). �

Definition 2.7. Let N be an n×n matrix over F. The mth principal minor of N ,
denoted by Δm(N), is the determinant of the m×m submatrix of N formed by the
first m rows and columns.

Proposition 2.8. The coordinate ring of Aug(Λβ) is

F

[
b1, . . . , bl, t

±1
1 , . . . , t±1

n

]/
I,

where the ideal I is generated by

Δm (Zi1(b1) . . .Zil(bl)) =
m∏
k=1

t−1
k , 1≤m≤ n. (2.3)

The Aug (Λβ) is the non-vanishing locus of the polynomial
∏n

m=1 Δm

(
Zi1(b1) . . .

Zil(bl)
)
inside the ambient affine space F

l
b1,...,bl

.

Remark 2.9. Note that the Reeb chords bi can be regarded as coordinate functions
on Aug (Λβ). We call them the Reeb coordinates.
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Proof. By Lemma 2.6, we have Aug (Λβ) = Spec H0(A (Λβ)c ,F), where

H0 (A (Λβ)c ,F) = F

[
bi, t

±1
j

]/
(∂c(ak) = 0) .

Therefore the defining equations of Aug (Λβ) are ∂c(ak) = 0 for k = 1, . . . , n.
In the commutative setting, the quasi-determinant reduces to ratio of determi-

nants

|N |ij = (−1)i+j detN
detN ij

, (2.4)

where N ij is the minor that results from deleting row i and column j from N .
We ignore the signs in the setting of characteristic 2. Using Lemma 2.2 and (2.4)
inductively, ∂c(ak) = 0 is equivalent to (2.3), which concludes the proof of the first
part.

Note that t±1
j are invertible. Using (2.3) recursively, each tk is can be expressed

in terms of principal minors, and hence in terms of the coordinates b1, . . . , bl. After
eliminating all the formal variables t±1

k , we end up with the desired equation. �
Corollary 2.10. The augmentation variety Aug (Λβ) is smooth.

Proof. By Proposition 2.8, it is the non-vanishing locus of a polynomial function. �
Corollary 2.11. Any augmentation ε on A (Λβ) satisfies

∏n
k=1 ε (tk) = 1.

Proof. Take m= n in (2.3). Then
∏n

k=1 t
−1
k = Δn(M) = det(M). Since each commu-

tative Zik (bk) has determinant 1, we have det(M) = 1. Therefore
∏n

k=1 tk = 1. �

2.3 Cluster K2 structures on augmentation varieties. A double Bott-Samelson
cell Confeβ(C) is a cluster K2 variety introduced in [SW19]. We recall its definition and
cluster structure in Appendix B. In this section, we construct a natural isomorphism
between Aug (Λβ) and Confeβ(C), which endows Aug (Λβ) with a cluster K2 structure.

By Proposition B.5, Confeβ(C) is a scheme over Z. We have

Theorem 2.12. Let G = SLn and let β be a positive braid word of n strands. After a

base-change of Confeβ(C) to F, there is a natural isomorphism as F-varieties:

Aug (Λβ)
γ−→Confeβ(C).

The pull-back of the cluster K2 structure on Confeβ(C) equips Aug(Λβ) with a cluster

K2 structure.

Proof. Let (b1, . . . , bl) be the Reeb coordinates of Aug (Λβ) and let (q1, . . . , ql) be
the affine coordinates of Confeβ(C) as in Proposition B.5. Let γ be the isomorphism
of the ambient affine spaces F

l
b1,...,bl

and F
l
q1,...,ql

such that qk = bk for 1 ≤ k ≤ l.
Since F is of characteristic 2, the matrix Zik (bk) in (2.1) equals Rik (qk) in (B.1).
Hence the non-vanishing locus of

∏
1≤i≤n Δi (Ri1 (q1) · · ·Ril (ql)) coincides with that of∏

1≤i≤n Δi (Zi1 (b1) · · ·Zil (bl)). By Propositions B.5 and 2.8, these two non-vanishing
loci are Confeβ(C) and Aug (Λβ) respectively. Therefore γ restricts to an isomorphism
between the two F-varieties. �



810 H. GAO ET AL. GAFA

3 From fillings to clusters

3.1 Exact Lagrangian cobordisms and enhanced EHK functors. Ekholm,
Honda, and Kálmán [EHK16] introduced a contravariant functor from the exact
Lagrangian cobordism category of Legendrian links to the category of dga’s. In this
section, we discuss an enhancement of the EHK functor that includes decorations on
exact Lagrangian cobordisms.

Recall the standard contact R
3
xyz with the contact 1-form α = dz − ydx. Let

R
4
txyz :=Rt ×R

3
xyz be its symplectization with the symplectic form ω = d (etα).

Definition 3.1. Let Λ+ and Λ− be two Legendrian links in R
3
xyz . An exact La-

grangian cobordism L : Λ− → Λ+ is an embedded oriented Lagrangian submanifold
L of R4

txyz such that for some N > 0,

(1) L∩
(
(−∞,−N ]×R

3)= (−∞,−N ]×Λ− and L∩
(
[N,∞)×R

3)= [N,∞)×Λ+;
(2) there is a function f of L, constant on (−∞,−N ]×Λ− and [N,∞)×Λ+, such

that df = ω|L.

An exact Lagrangian filling of Λ is an exact Lagrangian cobordism from ∅ to Λ. An
exact Lagrangian concordance is an exact Lagrangian cobordism that is topologically
a cylinder.

Exact Lagrangian fillings are central objects in contact and symplectic topology
[NZ12, Nad09, Syl19, GPS18, EL17]. These fillings induce augmentations [EGH00,
EN18]. Many, but not all, augmentations can be obtained from fillings. Note that
the exact fillings of a Legendrian link have the same genus [Bap10]. It is expected
that their induced charts of augmentations have the same dimension.

A t-minimum on an exact Lagrangian cobordism L is a point which achieves a
local minimum for the coordinate function t restricted on L. Denote by Tmin the set
of t-minima. Up to a Morse type perturbation, we will always assume that L has
finitely many isolated t-minima in the rest of this paper.

Definition 3.2. Let (Λ+,T+) and (Λ−,T−) be two decorated Legendrian links.
A decorated exact Lagrangian cobordism

(L,P) : (Λ−,T−) → (Λ+,T+)

is an exact Lagrangian cobordism L : Λ− → Λ+, together with a decoration P , that
is, a set of generic oriented marked curves P = {p1, . . . , pm} on L, such that

(1) each pi is either a closed 1-cycle or an oriented curve that begins and ends at
T+ ∪ T− ∪ Tmin;

(2) intersections between these marked curves are transverse and isolated;
(3) each marked point in T+ ∪ T− is the restriction of a unique marked curve pi

to Λ− �Λ+.

Recall that the dga A (Λ) of a decorated Legendrian (Λ,T ) is a non-commutative
Z2-algebra freely generated by the set of Reeb chords R and formal variables T ±1.
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Given a decorated exact Lagrangian cobordism (L,P) : (Λ−,T−) → (Λ+,T+), we de-
fine a pair of non-commutative Z2-algebras A (Λ±,P), each of which is generated
by the respective set of Reeb chords R± and the formal variables P±1, modulo the
following relations:

(1) pipj = pjpi if pi and pj intersect;
(2) near each t-minimum τ of L, let γ be a small oriented loop around τ , inter-

secting a collection of oriented marked curves cyclically, say pi1 , pi2 , . . . , pil ;
then

p

〈
γ,pi1

〉
i1

p

〈
γ,pi2

〉
i2

· · ·p
〈
γ,pil

〉
il

= 1 (3.1)

where 〈·, ·〉 denotes the intersection number with respect to the orientation of
L.

The degrees of the Reeb chord generators of A (Λ±,P) are the same as those of
A (Λ±). The degree of p±1

i is set to be 0. It makes A (Λ±,P) graded Z2-algebras.
We further define a pair of graded algebra homomorphisms

φ∗
± : A (Λ±) →A (Λ±,P) ,

each of which sends the Reeb chord generators to themselves and sends the marked
points t to

φ∗
±(t) =

{
p±1 if p starts from t,

p∓1 if p ends at t.

Let ∂± be the differentials on A (Λ±). By defining the differentials on A (Λ±,P) to
be φ∗

± ◦ ∂±, we make A (Λ±,P) into a pair of dga’s over Z2.

Definition 3.3. We call A (Λ±,P) the enhanced CE dga’s for Λ± with respect to
the decorated exact Lagrangian cobordism (L,P).

Remark 3.4. For an exact Lagrangian concordance L : Λ− → Λ+ coming from a
Legendrian isotopy, with a decoration P coming from the trace of marked points,
the dga homomorphisms φ∗

± are isomorphisms between A (Λ±) and A (Λ±,P).

Two decorations P and P ′ on the same exact Lagrangian cobordism L are equiv-
alent if the two sets of oriented marked curves can be related by a sequence of path
homotopy and orientation reversing. Note that if p ∈ P and p′ ∈ P ′ have the same
underlying path but opposite orientation, the change of variable p↔ p′−1 gives rise
to a natural dga isomorphism A (Λ±,P)∼= A (Λ±,P ′). Therefore, for the rest of this
paper, we no longer distinguish equivalent decorations on the same exact Lagrangian
cobordism.

Given two decorated exact Lagrangian cobordisms

(Λ0,T0)
(L01,P01)−−−−−−→ (Λ1,T1)

(L12,P12)−−−−−−→ (Λ2,T2) ,
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we can compose them by concatenation (possibly with orientation reversing on some
elements of the decorations) and get a decorated exact Lagrangian cobordism

(L,P) : (Λ0,T0)→ (Λ2,T2) .

In particular, the resulting decoration P is unique up to equivalence of decorations.
Let us now describe the enhancement of the EHK functor for the enhanced CE

dga.
Let (L,P) : (Λ−,T−)→ (Λ+,T+) be a decorated exact Lagrangian cobordism. Let

J be a generic compatible tame almost complex structure on the symplectization
R

4
txyz . For a ∈R+ and b1, . . . , bn ∈R−, we define the moduli space M (a; b1, . . . , bn)

to be the set of bi-holomorphic equivalence classes of J -holomorphic curves, each
with a positive puncture asymptotic to the strip over the Reeb chord a at +∞ and
a negative puncture asymptotic to the strip over the Reeb chord bi at −∞ for each
bi, appearing in the counterclockwise order along the boundary of the curve. For
generic J , the moduli space M (a, b1, . . . , bn) is a manifold of dimension |a| −∑

i |bi|
(see [EHK16, Lemma 3.7]).

For any u ∈M (a; b1, . . . , bn), the image of the disk boundary ∂u is the disjoint
union of n + 1 oriented paths η0, . . . , ηn in the Lagrangian surface L. Suppose the
path ηi crosses oriented marked curves pj1 , pj2 , . . . , pjl in this particular order. We
define

p (ηi) := p

〈
ηi,pj1

〉
j1

p

〈
ηi,pj2

〉
j2

· · ·p
〈
ηi,pjl

〉
jl

and

w(u) := p (η0) b1p (η1) b2 · · · bnp (ηn) .
(3.2)

Following [EHK16], we define the dga homomorphism Φ∗
L : A (Λ+,P) → A (Λ−,P)

such that

Φ∗
L(a) =

∑
b1,...,bn∈R−

dimM(a;b1,...,bn)=0

∑
u∈M(a;b1,...,bn)

w(u) ∀a ∈R+,

and

Φ∗
L(p) = p ∀p ∈ P

If (L,P) : (Λ0,T0)→ (Λ2,T2) is the composition of (L01,P01) : (Λ0,T0) → (Λ1,T1) and
(L12,P12) : (Λ1,T1)→ (Λ2,T2), then the functorial homomorphisms can be composed
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via the following commutative diagram:

A (Λ2) A (Λ1) A (Λ2)

A (Λ2,P12)
Φ∗

L12
A (Λ1,P12) A (Λ1,P01)

Φ∗
L01

A (Λ0,P01)

A (Λ2,P)
Φ∗

L12

Φ∗
L

A (Λ1,P)
Φ∗

L01

A (Λ0,P)

The dga homomorphism Φ∗
L satisfies the following important property.

Theorem 3.5 ([EHK16, Lemma 3.13]). Suppose L and L′ are Hamiltonian isotopic

exact Lagrangian cobordisms from (Λ−,T−) to (Λ+,T+) and their decorations can be

identified via the underlying isotopy (up to equivalence of decorations). Denote both

decorations by P . Then the Hamiltonian isotopy induces a dga homotopy Φ∗
L
∼= Φ∗

L′ .

Let (L,P) be a decorated exact Lagrangian filling of Λ. Dualizing the homomor-
phism

A (Λ)
φ∗
+−−→A (Λ,P)

Φ∗
L−−→A (∅,P) ,

we obtain a morphism of algebraic varieties

αL,P = φ+ ◦ΦL : Aug (∅,P) ΦL−−→ Aug (Λ,P) φ+−−→ Aug (Λ) . (3.3)

A decoration P is sufficient if its complement L−P is a disjoint union of simply-
connected regions. If each component of Λ contains at least one marked point, then
such a sufficient decoration P exists. We study the image of αL,P for sufficient P .

Definition 3.6. Let L be a compact oriented surface with boundary. Let T be
a collection of marked points on the boundary of L. We assume that each bound-
ary component contains at least one marked point. The decorated character variety
A (L,T ) parametrizes the data (L,{vi}), where

– L is a line bundle over L with flat connection,
– for every boundary interval i in ∂L− T , the data vi is a nontrivial flat section

of L over i.

The space A (L,T ) is a special case of the moduli space of decorated G-local
systems introduced by Fock and Goncharov in [FG06]. Let [c] be the homotopy
class of a oriented curve connecting two boundary components j and k. For each
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(L,{vi}) ∈ A (L,T ), we parallel transport the section vj along [c], obtaining a flat
section v′i over k. It gives rise to a function g[c] of A (L,T ) such that

g[c] =
vk
v′j

.

Now suppose L is an exact Lagrangian filling of a Legendrian link Λ. Let T be
a collection of marked points on Λ, with each component of Λ contains at least one
marked point.

Lemma 3.7. There is natural morphism

π : Aug(∅,P)−→A (L,T ).

If P is sufficient, then π is surjective.

Proof. Following the proof of Lemma 3.15, Aug(∅,P) is naturally isomorphic to the
moduli space of trivilizations of GL1-local systems on L, with a choice of a vector
on each connected region of L− P . By forgetting vectors assigned to regions that
are not connected to boundaries of L, we obtain a morphism π from Aug(∅,P) to
A (L,T ). By the definition of sufficiency of P , the map π is surjective. �

Lemma 3.8. For every exact Lagrangian filling L of Λ, there is a natural morphism

κL : A (L,T )−→Aug(Λ).

The composition κL ◦ π coincides with the morphism αL,P in (3.3).

Proof. Let a be a Reeb chord of Λ with degree 0. Recall the moduli space M(a)
of J -holomorphic disks such that the boundary of each disk u ∈M(a) is a together
with a path c(u) in L. We set

ε(a) =
∑

u∈M(a)
g[c(u)]. (3.4)

For every marked point t ∈ T , let c(t) be the unique path connecting the neighbored
boundary intervals of t such that c(t) can be retracted to t. We set

ε(t) = g[c(t)]. (3.5)

By definition, for each (L,{vi}) ∈ A (L,T ), its image under (3.4) and (3.5) is an
augmentation of Λ, which gives rise to the morphism κL. The identity αL ◦π = αL,P
follows by a comparison of definitions. �

As a consequence of Lemma 3.7 and 3.8, when P is sufficient, the image of αL,P
coincides with the image of κL. In this case, the image, denoted by Im(αL), is
independent of the sufficient decoration P chosen. Combining with Theorem 3.5, we
get

Corollary 3.9. Suppose the exact Lagrangian fillings L and L′ are Hamiltonian

isotopic, then Im(αL) = Im(αL′).
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Figure 3: Saddle Cobordism.

3.2 EHK functorial morphisms for admissible cobordisms. In this section, we
present explicit computations of the EHK morphisms associated with four basic
types of exact Lagrangian cobordisms, i.e., saddle cobordisms, cyclic rotations, braid
moves, and minimum cobordisms, for positive braid Legendrian links. Compositions
of such cobordisms are called admissible cobordisms. An admissible cobordism from
∅ to Λ is called an admissible filling.

(I) Saddle Cobordism. Let (Λ+,T+) be a decorated Legendrian link. Let b be a
contractible Reeb chord as in Definition 6.12 of [EHK16]. As in Fig. 3, we contract
b via a saddle cobordism S, obtaining a new Legendrian link Λ−. The holomorphic
disk, represented by the gradient flow tree traced out by the contraction of b, is called
the basic disk associated with b and denoted by ub.

We decorate a saddle cobordism S as follows. First, each marked point on Λ+
traces out an oriented path that goes from Λ+ to Λ−. Second, the unstable manifold
of the saddle defines a new path p, both of whose endpoints are on Λ−, and we orient
it so that the homological intersection of ∂ub and p is 1. The induced decoration on
Λ− is T− := T+ �

{
p±1}.

When the contractible Reeb chord b is simple ([EHK16, Definition 6.15]),
the recipe for the dga homomorphism Φ∗

S stated in loc. cit. can be modified
slightly to incorporate the enhancement of coefficients. For any Reeb chord a �= b,
let M (a, b; c1, . . . , cn) be the moduli space of holomorphic disks that map into(
R

4
txyz,Rt ×Λ+

)
, with one positive puncture at each of a and b, and one negative

puncture at each of the ci’s. We define

(Φ∗
S)0 (d) =

{
d if d �= b,

p if d = b,

(Φ∗
S)1 (d) =

⎧⎪⎪⎨
⎪⎪⎩

∑
c1,...,cn∈R+

dimM(d,b;c1,...,cn)=1

∑
u∈M(d,b;c1,...,cn)/R

w(u)
∣∣∣
b=p−1

if d �= b,

0 if d = b,

where w(u) is defined in the same way as (3.2). The homomorphism Φ∗
S is

Φ∗
S = (Φ∗

S)0 + (Φ∗
S)1 . (3.6)

Remark 3.10. In (Φ∗
S)0, b is mapped to p, whereas in (Φ∗

S)1, b is substituted by
p−1. Their difference can be understood via holomorphic disk degeneration. Note the
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Figure 4: D←−. S←−. D−1
←−−−. Dipping and Saddle Cobordism in the Lagrangian Projection.

cusp edge in Fig. 3. The term in (Φ∗
S)1 comes from a negative degeneration of an

end at the cusp edge, and the term in (Φ∗
S)1 comes from a positive degeneration of a

switch at the cusp edge.2 Their contributions with respect to the marked curve are
reciprocal.

Degree 0 Reeb chords in a positive braid Legendrian link are contractible but
not necessarily simple in general. For contractible Reeb chords that are not sim-
ple, Ekholm, Honda, and Kálmán stated that these cases can be reduced to the
simple cases by implementing a collection of “dippings” [EHK16, Fig. 17], a notion
introduced in [Fuc03] and also appeared in [Sab05, FR11].

For positive braid Legendrian links, it turns out that two dippings will suffice. Fig.
4 is a depiction of local moves on the Lagrangian projection for a saddle cobordism
that pinches a degree 0 Reeb chord bk of a positive braid Legendrian link Λβ . Among
the three steps, D and D−1 are compositions of Legendrian Reidemeister II moves,
and hence we can compute Φ∗

D and Φ∗
D−1 by following [Che02, §8.4]; S is a simple

saddle cobordism, allowing us to employ (3.6) to compute Φ∗
S .

Proposition 3.11. Let Sk be the saddle cobordism contracting the Reeb chord bk of

Λβ . The functorial dga homomorphism Φ∗
Sk

: A (Λ+,P)→A (Λ−,P) maps the degree

0 Reeb chords as follows:

Φ∗
Sk

(bs) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bs +
∑

∂bs=
∑

uyLv

up−1
k Φ∗

Sk
(v) if s < k,

pk if s= k,

bs +
∑

∂bs=
∑

uyRv

Φ∗
Sk

(u)p−1
k v if s > k.

(3.7)

Here the summation index ∂bs =
∑

uyLv and ∂bs =
∑

uyRv are computed on the

Lagrangian projection after the dipping D.

Proof. Chekanov [Che02] constructed a pair of tame dga isomorphisms ψ+ :A (Λ′)→
SA (Λ+) and ψ− : A (Λ′′)→ SA (Λ−), where S denotes a stablization of the dga. By
[EHK16, Lemma 6.7, 6.8, Remark 6.9], we know that the dga homomorphisms Φ∗

D

and Φ∗
D−1 are given by

Φ∗
D :A (Λ+) ↪→ SA (Λ+)

ψ−1
+−−→A (Λ′) ,

2 These singular points were first introduced in [Ekh07]. Pictures are available in Fig. 3 of [E+13].
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Φ∗
D−1 :A (Λ′′) ψ−−−→ SA (Λ−) �A (Λ−) .

By following Chekanov’s recipe, we see that for any degree 0 Reeb chord bs of Λβ ,

Φ∗
D (bs) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bs +
∑

∂bs=
∑

uyLv

uxLΦ∗
D(v) if s < k,

bk if s = k,

bs +
∑

∂bs=
∑

uyRv

Φ∗
D(u)xRv if s > k.

and Φ∗
D−1 annihilates all occurrences of xL and xR.

On the other hand, between the dipping and undipping cobordisms, we have a
simple saddle cobordism S, and by (3.6) we see that

Φ∗
S (bk) = pk, Φ∗

S (xL) = xL + p−1
k , Φ∗

S (xR) = xR + p−1
k .

By composing Φ∗
D−1 ◦Φ∗

S ◦Φ∗
D, we get the formula stated in the proposition. �

The recursive nature of Formula (3.7) suggests an algorithm, termed matrix scan-
ning, to compute Φ∗

Sk
for degree 0 Reeb chords of Λβ . This algorithm starts at the

kth crossing and scans the left and the right portions of the braid using two family
of matrices, which keep track of all possible incomplete disks sandwiched between
levels.

Let us describe in details the family of matrices
{
U (s)

}
k+1≤s≤l

, which we use to

scan the braid word sik+1sik+2 · · ·sil . Each U (s) is an n× n upper triangular matrix,
and he (i, j)-entry of U (s) counts partial disks between strands i < j right before
scanning through the crossing is. Following this idea, we see that the initial matrix
U (k+1) must have all entries 0 except the (ik, ik + 1)-entry, which is p−1

k .
Inductively for s > k, we scan through the crossing is and perform two actions.

First, we record

Φ∗
Sk

(bs) = bs +U
(s)
is,is+1. (3.8)

Second, we define U (s+1) in terms of U (s); note that these two matrices differ only
at entries whose rows or columns are equal to is or is + 1:

To describe this transformation more compactly, we introduce the following tri-
angular truncations for matrices:

M+
ij :=

{
Mij if i < j,
0 otherwise, M−

ij :=
{
Mij if i > j,

0 otherwise. (3.9)
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Figure 5: α←−. β←−. γ←−. δ←−. Cyclic Rotation.

Recall the matrix Zis from (2.1). Then U (s+1) is defined in terms of U (s) as

U (s+1) =
(
Zis

(
Φ∗

Sk
(bs)

)−1 ·U (s) ·Zis (bs)
)+

. (3.10)

The left-scanning family of matrices
{
L(s)

}
1≤s≤k−1

works similarly. Each matrix

L(s) is an n × n lower triangular matrix and the (i, j)-entry of L(s) counts partial
disks between strands i > j right before scanning through the crossing is. The initial
matrix L(k−1) has all entries 0 except that its (ik + 1, ik)-entry is p−1

k . Inductively
for s < k, we perform the following two actions when scanning through a crossing is.
First, we record

Φ∗
Sk

(bs) = bs +L
(s)
is+1,is . (3.11)

Second, we define L(s−1) in terms of L(s) according to

L(s−1) :=
(
Zis (bs) ·L(s) ·Zis

(
Φ∗

Sk
(bs)

)−1
)−

. (3.12)

Note that (3.8) and (3.11), together with Φ∗
Sk

(bk) = pk, completely describe the
image of all degree 0 Reeb chords in Λβ under the functorial homomorphism Φ∗

Sk
.

Remark 3.12. For a degree 0 Reeb chord in a positive braid Legendrian link,
Proposition 3.11 yields an explicit description Φ∗

Sk
(bs) :=

∑∞
m=0(Φ∗

Sk
)m (bs), where

for m≥ 2,

(Φ∗
Sk

)m (d) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
c1,...,cn∈R+

dimM
(
d,bmk ;c1,...,cn

)
=m−1

∑

u∈M
(
d,bm

k
;c1,...,cn

)
/Rm−1

w(u)
∣∣∣
bk=p−1

k

if d �= bk,

0 if d = bk,

(3.13)

where M (d, bmk ; c1, . . . , ct) is the moduli space of immersed disks in (R2
xy, πL(Λ+))

with positive quadrants at bs and bk, and remaining negative quadrants, where a
negative quadrant is allowed to be a (−+−) triple quadrant.

(II) Cyclic Rotation. A cyclic rotation is a Legendrian isotopy from Λβsi to Λsiβ ,
illustrated by the moves on the front projection of Legendrian links in Fig. 5.

We denote the exact Lagrangian concordance corresponding to a cyclic rotation
as

ρ : Λβsi → Λsiβ. (3.14)
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We decorate ρ with oriented marked curves tracing the marked points on either
end.

Proposition 3.13. Let β = si1 · · ·sil be a positive braid word. Set

r(β) := silsi1 · · ·sil−1 , l(β) := si2 · · ·silsi1 .

Recall M (k) in Proposition 2.1. The dga homomorphism Φ∗
ρ : A

(
Λr(β)

)
→A (Λβ) as-

sociated with the cyclic rotation ρ : Λβ → Λr(β) maps degree 0 Reeb chords as follows:

Φ∗
ρ (bk) = bk−1 ∀1 < k ≤ l and Φ∗

ρ (b1) =M
(il)
il+1,iltil .

The dga homomorphism Φ∗
ρ−1 :A

(
Λl(β)

)
→A (Λβ) associated with the inverse cyclic

rotation ρ−1 : Λβ → Λl(β) maps degree 0 Reeb chords as follows:

Φ∗
ρ−1 (bk) = bk+1 ∀1 ≤ k < l and Φ∗

ρ−1 (bl) = ti1M
(i1)
i1,i1+1.

Proof. We only prove the formula for Φ∗
ρ. The proof for Φ∗

ρ−1 is similar.
We break the cyclic rotation ρ into steps according to Fig. 5 and use the bordered

dga method [Siv11] to compute the functorial homomorphism for each step. First,
by considering the bordered dga on the complement of the right cusps region, we see
that

Φ∗
β ◦Φ∗

α (bk) =
{
c if k = 1,
bk−1 otherwise,

where c is depicted in Fig. 5.
The Reidemeister II move is performed away from the crossing c and the braid

region. Therefore Φ∗
γ(c) = c and Φ∗

γ (bk) = bk. For the same reason, Φ∗
δ (bk) = bk,

which, combined with the formulas of Φ∗
β ◦ Φ∗

α and Φ∗
γ , implies that Φ∗

ρ (bk) = bk−1
for 1< k ≤ l.

It remains to compute Φ∗
δ(c). Define i := il. Let us consider the bordered dga of

the region on the right of the braid region (including the crossing c). The differentials
of the degree 1 Reeb chords of the bordered dga before Φ∗

δ are

∂ai = t−1
i + x24 + x23bl,

∂ai+1 = t−1
i+1 + x13 + cx23,

∂d= x14 + x13bl + cx24 + cx23bl. 4

2

3

1

bl

c

d
ai
ai+1

where ti denotes the marked point near the Reeb chord ai. On the other hand, we
know that the differentials of the degree 1 Reeb chords of the bordered dga after Φ∗

δ

are

∂ai = t−1
i + x24 + x23bl, ∂ai+1 = t−1

i+1 + x13 + x14tix23 + x13bltix23 + x12aitix23.
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Figure 6: Legendrian unkont and its minimum cobordism.

By comparison, we see that Φ∗
δ (ai) = ai, Φ∗

δ (ai+1) = ai+1, and most importantly,

Φ∗
δ(c) = x14ti + x13blti + x12aiti.

Now if we include the bordered dga of the remaining part of Λ(i1,...,il), we see that
x12 = 0 and x14 + x13bl =M

(i)
i+1,i. Therefore we conclude that

Φ∗
ρ (b1) = Φ∗

δ ◦Φ∗
γ ◦Φ∗

β ◦Φ∗
α (b1) = Φ∗

δ(c) =M
(i)
i+1,iti. �

(III) Braid Move. A braid move B is a Reidemeister III move within the braid
region, which naturally gives rise to an invertible exact Lagrangian concordance B.
We decorate B with oriented marked curves that are the traces of the marked points
on either end.

Consider the braid move B : Λ(...sisjsi... ) → Λ(...sjsisj ... ), where |i − j| = 1. Let
b1, b2, b3 be the Reeb chords corresponding to the crossings involved in B. By [Che02,
§8.2, 8.3],

Φ∗
B (b1) = b3, Φ∗

B (b2) = b2 + b3b1, Φ∗
B (b3) = b1. (3.15)

The move B is local. Therefore the rest Reeb chords are invariant under Φ∗
B .

(IV) Minimum Cobordism. Let O denote the Legendrian unknot whose Thurston-
Bennequin number is −1. Without loss of generality, we assume that O has only one
Reeb chord a. Then |a| = 1 in the CE dga A(O). By [EP96], the unknot O has a
unique exact Lagrangian filling M , called the minimum cobordism, which topologi-
cally is a hemisphere capping off O.

Now suppose O is decorated with m marked points. Let P be the decoration of
M with oriented marked curves that flow from the marked points on O to the unique
t-minimum τ on M . Abusing notation, let us label the the marked curves with the
same symbol ti as the marked points they originate from. Then

A (∅,P) =
Z2

〈
t±1
1 , t±1

2 , . . . , t±1
m

〉

t1t2 · · · tm = 1
.

The functorial homomorphism Φ∗
M : A (O,P)→A (∅,P) maps

Φ∗
M (ti) = ti and Φ∗

M (a) = 0. (3.16)
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3.3 Cluster charts from admissible fillings. By (3.3), every decorated admissible
filling (L,P) of Λβ gives rise to a morphism of algebraic varieties

αL = φ+ ◦ΦL : Aug (∅,P) ΦL−−→ Aug (Λβ,P) φ+−−→ Aug (Λβ) .

In this section, we show that the morphism αL is an open embedding of an algebraic
torus and its image is a cluster chart of Aug (Λβ).

Among the basic exact Lagrangian cobordisms defining admissible cobordisms,
the decorated saddle cobordism Sk is the only one that creates new oriented marked
curves (and hence marked points) in the decoration. Thus, on any admissible filling
L, we have exactly l + n many oriented marked curves in the decoration P on L,
where l is the length of the braid word β and n is the number of strands. There
are n many t-minima on L, one for each strand in β, and hence we have n relations
(3.1) among the formal variables associated with the marked curves. Moreover, since
the original cuspidal marked points ti of Λβ end at distinct t-minima on L, we can
use these n relations to eliminate ti, leaving the formal variables pi formal variables.
This proves the following lemma.

Lemma 3.14. For any admissible filling L of Λβ with decoration P , Aug (∅,P) ∼=
(F×)l.

For any admissible filling L of Λβ with decoration P , every component of the
complement L−P is simply connected. Thus, we can think of the numerical values
of the formal variables pi and ti as a recording the transition functions of a trivi-
alization of some rank 1 local system on L (in the normal direction determined by
the orientation of the marked curve). From this perspective, the condition (3.1) at
t-minima can be viewed as a compatibility condition for the transition functions. As
a consequence, we get the following Lemma.

Lemma 3.15. For any admissible filling L of Λβ with decoration P , there is a natural

isomorphism Aug (∅,P) ∼= Triv1(L,P), where Triv1(L,P) denotes the moduli space

of trivializations of rank 1 local systems on L with respect to the family of oriented

marked curves P .

Next, using the isomorphism between Aug (Λβ) and Confeβ (C) in Theorem 2.12,
we prove that, for the first three types of the basic admissible cobordisms, the cor-
responding functorial morphism of augmentation varieties is intertwined with a cer-
tain quasi-cluster morphism between double Bott-Samelson cells. For the minimum
cobordism, we show that the corresponding functorial morphism is an isomorphism
of algebraic tori.

(I) Saddle Cobordism. Let β = si1 · · ·sil be a positive braid word. Consider the
decorated saddle cobordism (Sk,P) that resolves the crossing ik into a new pair of
marked points p±1

k . Let Λ− denote the obtained decorated Legendrian link. The un-
derlying undecorated Legendrian link of Λ− is Λβk̂

, where βk̂ := si1 · · ·sik−1sik+1 · · ·sil .
Let us move the marked points p±1

k to the right and absorb them into two of the
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cuspidal marked points ti. This procedure induces an isomorphism

Aug (Λ−,P)
∼=−→ Aug

(
Λβk̂

)
×
(
F
×)

pk
.

Denote by τ the composition

Aug
(
Λβk̂

)
×
(
F
×)

pk

∼=−→ Aug (Λ−,P)
φ+◦ΦSk−−−−−→ Aug (Λβ) .

Proposition 3.16. The following diagram commutes:

Aug
(
Λβk̂

)
× (F×)pk

γ×id

∼=

τ

Confeβk̂
(C)× (F×)qk

l−1◦ψ◦l

Aug (Λβ)
γ

∼=
Confeβ(C)

where l is the sequence of left reflections on double Bott-Samelson cells that reflects

the first k−1 flags from the bottom to the top, and ψ is the open embedding in (B.3).

Proof. The left map τ is composed of an isomorphism corresponding to the migration
of the new pair of marked points p±1

k and the functorial morphism φ+ ◦ΦSk
. We show

that the open embedding

ψ : Conf
sik−1 ···si1
sik+1 ···sil (C)×

(
F
×)

qk
−→Conf

sik−1 ···si1
sik ···sil (C)

admits a similar factorization, and prove that the two factorizations coincide under
γ.

Following the proof of Theorem 2.12, γ is defined by setting bs = qs for 1≤ s≤ l,
where bs are the Reeb coordinates on Aug (Λβ) and qs are the affine coordinates on
Confeβ (C). Together with Φ∗

Sk
(pk) = bk, we have

pk = qk. (3.17)

Now consider the standard representative of a point in the image of ψ:

U− U−Zik−1 (qk−1) · · · U−Zi1 (q1) . . .Zik−1 (qk−1)

U+ Zik (qk)U+ · · · Zik (qk) . . .Zil (ql)U+

sik−1 sik−2 si1

sik sik+1 sil

,

(3.18)
where qk �= 0. We have

Zik (qk) = e−ik

(
q−1
k

)
q
α∨
ik

k eik

(
q−1
k

)
.
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Let us delete the U+ at the lower left corner of (3.18), and act by
(
e−ik

(
q−1
k

))−1

on the rest decorated flags. It gives rise to the first factor of the preimage of (3.18)
under ψ:

.

The following procedure transforms the above configuration to a standard represen-
tative.

(a) Move the unipotent factor e−ik

(
q−1
k

)
inside each decorated flag in the top row

all the way to the left so that it can be absorbed into U−.
(b) Move the unipotent factor eik

(
q−1
k

)
inside each decorated flag in the bottom

row all the way to the right so that it can be absorbed into B+.
(c) Move the torus factor q

α∨
ik

k inside each decorated flag in the bottom row all the
way to the right so that it can be absorbed into B+.

(d) Replace every B+ in the bottom row by U+ to obtain a standard representative.

Among these operations, we claim that (a) and (b) correspond to the matrix scanning
algorithms for Φ∗

Sk
, and (c) corresponds to moving the new pair of marked points to

the far right after the saddle cobordism Sk.
Let us start with (a). Let q′ be a collection of F-valued parameters such that

U−Zis (qs) · · ·Zik−1 (qk−1)e−ik

(
q−1
k

)
= U−Zis (q′s) · · ·Zik−1

(
q′k−1

)
.

Note that these q′ parameters are part of the affine coordinates for Confeβk̂
(C). Since

we would like to compare the pull-back of the Reeb coordinates on the augmentation
varieties versus the affine coordinates on the double Bott-Samelson cells, we need to
express the q parameters in terms of the q′ parameters. To do so, let us multiply the
above equation by eik

(
q−1
k

)
on both sides, which yields

U−Zis (qs) · · ·Zik−1 (qk−1) = U−Zis (q′s) · · ·Zik−1

(
q′k−1

)
e−ik

(
q−1
k

)
.

We then observe that in order for Zi(q)lZi(q′) to hold for l ∈ U−, we need

q = q′ + li+1,i. (3.19)

Set l(k−1) = e−ik

(
q−1
k

)
. For s < k, using (3.19) recursively, we obtain

qs = q′s + l
(s)
is+1,is , l(s−1) = Zis (q′s) l(s)Zis (qs)−1 ∈ U−. (3.20)

Now we turn to (b). The identity we need is

eik

(
q−1
k

)
Zik+1 (qk+1) · · ·Zis (qs)B+ = Zik+1

(
q′k+1

)
· · ·Zis (q′s)B+,
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which is equivalent to

Zik+1 (qk+1) · · ·Zis (qs)B+ = eik

(
q−1
k

)
Zik+1

(
q′k+1

)
· · ·Zis (q′s)B+.

To express the q parameters in terms of the q′ parameters, we can first set u(k+1) =
eik

(
q−1
k

)
, and then recursively, we have

qs = q′s + u
(s)
is,is+1 ∈ F, u(s+1) := Zis (qs)−1 u(s)Zis (q′s) ∈ U+. (3.21)

Let b′ denote the Reeb coordinates on the Legendrian link after the saddle cobor-
dism but before moving the pair of the newly created marked points to the right.
We want to show that, under the assumption

b′s = q′s, (3.22)

we have

bs = qs. (3.23)

By comparing (3.20) with (3.11) and (3.21) with (3.8), it suffices to show

1 +L(s) =l(s) for s < k, and

1 +U (s) =u(s) for s > k,

where 1 denotes the identity matrix of the appropriate size.
Let us do a backward induction on s to prove the s < k case; the s > k case is

similar. The base case s = k − 1 is clear. By a calculation similar to (3.19), for any
square matrix M over F (of characteristic 2) and any element x ∈ F, we have

Zi (x)
(
1 +M−)Zi (x+Mi+1,i)−1 = 1 +

(
Zi (x)M−Zi (x+Mi+1,i)−1

)−
.

Using this identity, we see that

l(s−1) =Zis(q′s)l(s)Zis(qs)−1

=Zis (b′s) l(s)Zis(bs)−1

=Zis (b′s)
(
1 +L(s)

)
Zis

(
b′s +L

(s)
is+1,is

)−1

=1 +
(
Zis (b′s)L(s)Zis

(
b′s +L

(s)
is+1,is

)−1
)−

=1 +L(s−1).

For step (c), we claim that moving the torus factor q
α∨
ik

k through the product

Zik+1

(
q′k+1

)
Zik+2

(
q′k+2

)
· · ·Zis (q′s)
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corresponds to moving the new marked points p±1
k to the right through the crossings

sik+1 · · ·sis . To include marked points in the braid region, we modify the algorithm
to compute the CE dga in Proposition 2.1 by interpolating diagonal matrices from
marked points. Observe that moving the new marked points through the crossings
sik+1 · · ·sis changes the Reeb coordinates b′s of Λ− to b′′s , which are determined by
the identity

p
α∨
ik

k Zik+1

(
b′k+1

)
Zik+2

(
b′k+2

)
· · ·Zis (b′s) = Zik+1

(
b′′k+1

)
Zik+2

(
b′′k+2

)
· · ·Zis (b′′s)D,

where D is a diagonal matrix recording the strand level of the marked points p±1
k .

Correspondingly, let q′′s be uniquely chosen such that for all s > k,

q
α∨
ik

k Zik+1

(
q′k+1

)
Zik+2

(
q′k+2

)
· · ·Zis (q′s)B+ = Zik+1

(
q′′k+1

)
Zik+2

(
q′′k+2

)
· · ·Zis (q′′s )B+.

By (3.17) and (3.22), we deduce that

b′′s = q′′s , ∀s > k. (3.24)

Note that
(
b′1, . . . , b

′
k−1, b

′′
k+1, . . . b

′′
l

)
are the Reeb coordinates on Aug

(
Λβk̂

)
, and(

q′1, . . . , q
′
k−1, q

′′
k+1, . . . , q

′′
l

)
are the affine coordinates on Confeβk̂

(C). Therefore, (3.17),
(3.22), and (3.24) imply the commutativity of the diagram in the proposition. �

Corollary 3.17. Let (Sk,P) : Λ− → Λβ be the decorated saddle cobordism that re-

solves the crossing ik into a pair of marked points p±1
k . Then the functorial morphism

φ+ ◦ΦSk
: Aug (Λ−,P)→ Aug (Λβ) is an open embedding.

Proof. Note that in the commutative diagram in Proposition 3.16, the top map and
the bottom map are both isomorphisms, whereas the map on the right is an open
embedding. Therefore the map on the left is also an open embedding. �

(II) Cyclic Rotation. Our next proposition shows that the cyclic rotation mor-
phism between augmentation varieties is equivalent to the composition of a pair of
reflections between the double Bott-Samelson varieties. Following [SW19], the reflec-
tions on double Bott-Samelson varieties are quasi-cluster isomorphisms.

Proposition 3.18. The following two diagrams commute:

Aug (Λβsi)
γ

∼=

Φρ ∼=

Confeβsi (C)

l◦r∼=

Aug (Λsiβ)
γ

∼=
Confesiβ(C),

Aug (Λsiβ)
γ

∼=

Φρ−1 ∼=

Confesiβ (C)

r−1◦l−1∼=

Aug (Λβsi)
γ

∼=
Confeβsi(C),

(3.25)

where r : Confeβsi(C)
∼=→ Confsiβ (C) is the right reflection isomorphism and l :

Confsiβ (C)
∼=→ Confesiβ(C) is the left reflection isomorphism.
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Proof. Due to symmetry, it suffices to prove the first commutative diagram.
Suppose that β = si1 . . . sil−1 . The right reflection r maps

Following the definition of r, all affine coordinates on Confsiβ (C) are pulled back to
the corresponding affine coordinates except for q′.

Now we compute the pull back r∗ (q′). From the assumption
U− xl−1Zi(q)U+ , we know that z := xl−1Zi(q) is Gaussian decomposable,

i.e., there exists unique matrices [z]± ∈ U± and [z]0 ∈ T such that z = [z]−[z]0[z]+.
We act on the left configuration by [z]−1

− , turning it into the picture on the left
below.

· · · [z]0U+

U−

si

U−

· · ·

U−si

[z]0U+

si

si

si

According to the definition of r, the new flag in the top row is the unique flag that
is of Tits distance si from U− and of Tits codistance si from [z]0U+. It is not hard
to see that this flag must be U−si. To restore to the standard representative for the
preimage, we need to act again by [z]−, which implies that

U−Zi (q′) = U−si[z]−1
− .

Following the Gaussian elimination process, one can see that

[z]− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
Δ1
(
s−1
1 z

)
Δ1(z) 1 · · · 0 0

...
... . . . ...

...
∗ ∗ · · · 1 0

∗ ∗ · · · Δn−1
(
s−1
n−1z

)
Δn−1(z) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This implies that Zi

(
Δi

(
s−1
i z

)
Δi(z)

)
[z]−s−1

i is still a lower triangular unipotent matrix.
Therefore, we get

r∗ (q′) =
Δi

(
s−1
i z

)

Δi(z)
.

On the other hand, since the left reflection map l only moves decorated flags
within the compatible region, it follows that the pull-back map l∗ is the identity
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map on affine coordinates. Composing r∗ and l∗ we get that

(l ◦ r)∗ (qk) = qk−1 ∀1< k ≤ l and (l ◦ r)∗ (q1) =
Δi

(
s−1
i z

)

Δi(z)
, (3.26)

where

z = Zi1 (q1)Zi2 (q2) · · ·Zil−1 (ql−1)Zi (ql) .

Let us now make use of the natural isomorphism γ. We first observe that γ∗ (qi) =
bi and γ∗(z) =M := Zi1 (b1) · · ·Zil−1 (bl−1)Zi (bl). Therefore we have

γ∗ ◦ (l ◦ r)∗ (q1) =
Δi

(
s−1
i M

)

Δi(M)
=

Δ{1,...,i}
{1,...,i−1,i+1}(M)

Δi(M)
, (3.27)

where ΔJ
I denotes the determinant of the submatrix formed by the rows in the set

I and the columns in the set J . By Propositions 2.2 and 2.8 we can further deduce
that

Δi(M) =
i∏

k=1
t−1
k and Δ{1,...,i}

{1,...,i−1,i+1}(M) =M
(i)
i+1,i

i−1∏
k=1

t−1
k . (3.28)

Combining (3.27), (3.28), and Proposition 3.13, we obtain the following pull-back
image for the affine coordinate q1:

γ∗ ◦ (l ◦ r)∗ (q1) = tiM
(i)
i+1,i = Φ∗

R ◦ γ∗ (q1) .

For all other affine coordinates qk with 1 < k ≤ l, we can deduce from (3.26) and
Proposition 3.13 that γ∗ ◦ (l ◦ r)∗ (qk) = Φ∗

ρ ◦ γ∗ (qk). �

(III) Braid Move. Suppose |i− j|= 1 and suppose β′ and β are two braid words
that only differ at three consecutive crossings by replacing (i, j, i) with (j, i, j). From
the matrix identity

Zi (q1)Zj (q2)Zi (q3) = Zj (q3)Zi (q2 + q1q3)Zj (q1)

and (3.15) we deduce that the following diagram commutes

Aug (Λβ′)

ΦB

γ

∼=
Confeβ′(C)

Aug (Λβ)
γ

∼=
Confeβ(C)

(3.29)

where ΦB is the functorial morphism induced from the braid move Legendrian isotopy
B : Λβ′ → Λβ . Note that the two γ maps are not identical because the top one is
defined by the braid word β′ and the bottom one is defined by the braid word β.
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(IV) Minimum Cobordism. Consider a decorated Legendrian unknot O with tb =
−1 as drawn in Fig. 6. The differential of the unique degree 1 Reeb chord a is

∂a = t1t2 · · · tk + t−1
m t−1

m−1 · · · t−1
k+1.

Therefore Aug(O) is the vanishing locus of t1t2 · · · tk + t−1
m t−1

m−1 · · · t−1
k+1 in (F×)mt1,...,tm .

Let (M,P) : ∅ → O be the decorated minimum cobordism that fills O. By def-
inition, Aug (∅,P) is defined to be the subtorus of (F×)mt1,...,tm satisfying

∏
i ti = 1.

In characteristic 2, the equation t1t2 · · · tk + t−1
m t−1

m−1 · · · t−1
k+1 = 0 is equivalent to the

equation
∏

i ti = 1. Moreover, recall from (3.16) that Φ∗
M (ti) = ti for all ti. Therefore

we can conclude the following Lemma.

Lemma 3.19. The functorial morphism ΦM : Aug (∅,P) → Aug(O,P) is an isomor-

phism of algebraic tori.

We are now ready to prove the main theorem of this section.

Theorem 3.20. For any admissible filling L of Λβ with decoration P , the functorial

morphism φ+ ◦ ΦL : Aug (∅,P) → Aug (Λβ) is an open embedding of an algebraic

torus, and its image is a cluster chart on Aug (Λβ).

Proof. Among the four types of building blocks, we know that cyclic rotations and
braid moves are Legendrian isotopies, which are invertible exact Lagrangian con-
cordance. This implies that their induced functorial morphisms between Augmenta-
tion varieties are always isomorphisms. Moreover, commutative diagrams (3.25) and
(3.29) yield that Φρ±1 and ΦB are both quasi-cluster isomorphisms, which map clus-
ter charts to cluster charts. Therefore it suffices to prove the theorem for admissible
fillings L : ∅ → Λβ that are of the form Sk1 ◦ Sk2 ◦ · · ·Skl ◦ (

⊔
nM), where l is the

length of β and n is the number of strands in β.
First we observe that Φ⊔

n
M =

∏
n ΦM . Let

⊔
nO be the split union of n dec-

orated Legendrian unknots right before the final minimum cobordisms. Then by
Lemma 3.19, we know that Φ⊔

n
M : Aug(∅,P) → Aug (

⊔
nO,P) is an isomorphism

between algebraic tori. Therefore it remains to show that φ+ ◦ ΦSk1
◦ · · · ◦ ΦSkl

:
Aug (

⊔
nO,P) −→ Aug (Λβ) is an open embedding from an algebraic torus onto a

cluster chart.
Let us do an induction on the length l of β. For the base case with l = 1, the

statement follows from Proposition 3.16 and Corollary 3.17. For l > 1, we consider
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the following commutative diagram:

where P ′ = P \ {pk1}, and Pk1 denotes the decoration on the saddle cobordism Sk1 .
By the inductive hypothesis, we know that the top morphism is an open embedding
onto a cluster chart. On the other hand, Proposition 3.16 and Corollary 3.17 implies
that φ+ ◦ ΦSk1

is an open embedding and a quasi-cluster morphism. Therefore, it
follows from the commutative that the bottom morphism is also an open embedding
onto a cluster chart. This finishes the proof of the theorem. �

Corollary 3.21. Every degree 0 Reeb chord bk of Λβ is a mutable cluster variable

of the cluster structure on Aug(Λβ).

Proof. From the proof of Proposition 3.16 and Theorem 3.20, we see that bk is
a mutable cluster coordinate on the cluster chart corresponding to the admissible
filling L ◦ Sk where L is any admissible filling of Λβk̂

. �

Corollary 3.22. Suppose L and L′ are Hamiltonian isotopic admissible fillings of

Λβ , then they give rise to the same cluster seed.

Proof. By construction, any admissible filling (L,P) has sufficient P . By Corollary
3.9, the cluster charts corresponding to L and L′ are equal as open subvarieties.
By Proposition A.3, we know that L and L′ must correspond to the same cluster
seed. �

The theory of cluster algebras gives rise to a computable numerical invariant for
each admissible filling. Let α0 be the cluster seed associated to the admissible filling

L0 :=
(⊔

n

M

)
◦ Sl ◦ Sl−1 ◦ · · · ◦ S2 ◦ S1.

We set α0 as the initial cluster seed. Fomin and Zelevinsky [FZ07, (6.4)] constructed
an integer matrix Gα, called the g-matrix, for every cluster seed α. Following [G+18],
each α corresponds to a cluster chamber Cα in the scattering diagram associated with
the cluster algebra, and the column vectors of Gα are the primitive vectors spanning
Cα. Thus, the sums of the column vectors of the g-matrices are a complete invariant
for the cluster seeds. We conclude the following corollary.
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Corollary 3.23. For each admissible filling L, let αL be its corresponding cluster

seed and let GL be the g-matrix of αL with respect to the initial seed α0. Let gL be the

sum of column vectors of GL. If L and L′ are Hamiltonian isotopic, then gL = gL′ .

3.4 Computing cluster seeds associated with admissible fillings. In this section,
we present an explicit algorithm to compute the cluster seeds (including their cluster
coordinates and quivers) associated with admissible fillings. Throughout this section,
we fix an n-stranded braid word β = si1 . . . sil .

(0) Initial Seed. Let us first consider the cluster chart that is the image of the
functorial morphism φ+ ◦ΦL0 with L0 = (

⊔
nM)◦Sl ◦Sl−1 ◦· · ·◦S2 ◦S1. The following

statement is a direct consequence of Proposition 3.16 and Theorem 3.20.

Proposition 3.24. Under the isomorphism γ : Aug(Λβ) → Confeβ(C), the cluster

seed α0 is identified with the unique triangulation defined by the braid word β on

Confeβ(C).

The cluster coordinates on α0 are

Ak = Δik (Zi1 (b1)Zi2 (b2) · · ·Zik (bk)) , ∀1≤ k ≤ l.

Comparing Qβ with the quivers associated with triangulations for Confeβ(C) in Ap-
pendix B, we see that Qβ is precisely the quiver for the initial cluster seed α0. Note
that the cluster coordinate Ak is associated with the region (quiver vertex) to the im-
mediate right of the kth crossing, and the cluster coordinates that are on the furthest
right on each horizontal level are automatically frozen. We call α0 =

(
{Ak}1≤k≤l ,Qβ

)

the initial seed and Qβ the initial quiver associated with the braid word β. Other
cluster seeds can be obtained from the initial seed via a sequence of cluster muta-
tions, and we will describe an explicit cluster mutation sequence for each building
block of admissible fillings.

(I) Saddle Cobordism. We make use of Proposition 3.16 to derive the mutation
sequence for saddle cobordisms. From this proposition we know that a saddle cobor-
dism Sk : Λβk̂

→ Λβ corresponds an open quasi-cluster morphism. In order to get the
image, which is an open cluster subvariety, we need to

(1) apply a sequence of left reflection maps l that reflects first k − 1 flags from
the bottom to the top;

(2) perform the open embedding ψ described in Appendix B.6;
(3) apply the inverse sequence of left reflection maps l−1.

Our goal is to produce the initial quiver Qβk̂
for the positive braid Legendrian link

Λβk̂
(without marked points in the braid region). The mutation sequence to turn Qβ

to Qβk̂
will be a composition of mutation sequences that correspond to the three

steps above.
Since (2) involves setting aside a quiver vertex that will no longer be considered

as part of the quiver for Λβk̂
, we introduce a new concept called active vertices for

the quivers associated with admissible fillings.
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Definition 3.25. Let L : Λ− → Λβ be an admissible cobordism. An unfrozen quiver
vertex is said to be active if it is still considered as part of the quiver for the positive
braid Legendrian link Λ− after disregarding all the marked point in the braid region.
A quiver vertex is said to be inactive if it is not active.

Note that in the initial quiver Qβ , all unfrozen vertices are active.
Let us now describe the mutation sequences for each of the three steps involved

in locating the open cluster subvariety.

(1) In terms of the triangulation description of cluster seeds in double Bott-
Samelson cells, each left reflection in l reflects a flag from the bottom left
hand corner to the top left hand corner by turning the left most triangle
upside down. But then in order to prepare for the next left reflection, we
should move this newly turned triangle to the right of the triangle with base

Bk
sik

Bk+1 using cluster mutations.
Let us denote the active quiver vertices on the ith level as

(i
1
)
,
(i
2
)
, . . . ,

( i
mi

)

from left to right. For each level i and two integers a, b satisfying 1 ≤ a≤ b≤
mi, we define a mutation sequence

η(i, a, b) := μ(i
b
) ◦ μ( i

b−1)
◦ · · · ◦ μ(i

a
). (3.30)

For each crossing ij in the braid β with 1≤ j < k, we define

tj := #{s | j < s≤ k, is = ij} .

The sequence of left reflections l corresponds to the sequence of mutations:

El := η (ik−1,1, tk−1) ◦ · · · ◦ η (i2,1, t2) ◦ η (i1,1, t1) . (3.31)

(2) In this step, we need to remove the left most triangle, which has base

Bk
sik

Bk+1 , from the triangulation. This corresponds to deactivating
the left most active vertex on the ikth level. Due to this deactivation, there
will be one fewer active vertex on the ikth level. To avoid confusion, let us
denote the new braid by β′ and denote the active quiver vertices on the ith
level as

(i
1
)′
,
(i
2
)′
, . . . ,

( i
m′

i

)′. Note that

(i
a

)′ =
{(i

a

)
if i �= ik,( i

a+1
)

if i= ik.

(3) Note that β′ = βk̂ = si1 · · ·sik−1sik+1 · · ·sil . For each ij with 1≤ j < k, we define

t′j := #{s | j < s < k, is = ij} .
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Figure 7: Braid Move.

Define η′(i, a, b) similar to (3.30) with each mutation indexed by primed indices(i
s

)′. The muatation sequence corresponding to the sequence of left reflections
l−1 is

El−1 := η′ (i1,1, t′1)
−1 ◦ η′ (i2,1, t′2)

−1 ◦ · · · ◦ η′
(
ik−1,1, t′k−1

)−1
. (3.32)

Combining the three steps, the total mutation sequence for a saddle cobordism
Sk is

ESk
:=El−1 ◦El, (3.33)

where El is defined in (3.31) and El−1 is defined in (3.32).
(II) Cyclic Rotation. Let ρi : Λβsi → Λsiβ be a cyclic rotation cobordism. Ac-

cording to Proposition 3.18, the functorial morphism Φρi : Aug (Λβsi) → Aug (Λsiβ)
corresponds to the composition

Confeβsi(C) r−→ Confsiβ (C) l−→ Confsiβ(C).

The change of initial quiver associated with this composition of reflection maps can
be realized via a mutation sequence that mutates every active quiver vertex on the
ith level. When we left-compose ρi onto an admissible cobordism, we are changing
from the initial quiver of Aug (Λsiβ) to the initial quiver for Aug (Λβsi). Therefore
the corresponding mutation sequence is

Eρi := η (i,1,mi) , (3.34)

where η is defined in (3.30). Consequently,

Eρ−1
i

:= η (i,1,mi)−1 . (3.35)

(III) Braid Move. From the commutative diagram (3.29) we know that a braid
move cobordism B : Λ′

β → Λβ corresponds to a braid move on the bases of the cor-
responding double Bott-Samelson cell triangulation. It is known that the latter is a
single mutation that takes place at a unique quiver vertex. In terms of the initial
quiver Qβ , this unique quiver vertex is the unique vertex that is associated with the
region completely enclosed by the three strands involved in the braid move. Therefore
we conclude that

EB := μc. (3.36)

Note that after a braid move, the active vertex c needs to move to the adjacent
level, as depicted in Fig. 7.
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(IV) Minimum Cobordism. A minimum cobordism M induces an isomosphism
ΦM between algebraic tori. Therefore it corresponds to the empty mutation sequence,
i.e.,

EM = ∅. (3.37)

(V) Summary. For any admissible filling L of Λβ , the corresponding cluster seed
αL can be computed as follows. First we compute the initial seed α0 associated with
the braid word β; then we write L as a composition of elementary building blocks
L= Lm ◦ · · · ◦L2 ◦L1, and mutate the initial seed α0 accordingly, yielding

αL :=ELm ◦ · · · ◦EL2 ◦EL1 (α0) .

Each mutation subsequence ELi is given by one of (3.33), (3.34), (3.35), (3.36),
and (3.37). We have implemented a characteristic 0 version of this algorithm in a
javascript program.3 For any admissible filling L, this program computes

– the functorial homomorphism images Φ∗
L (bi) for all degree 0 Reeb chords;

– the mutation sequence from the initial cluster α0 to the cluster αL;
– the cluster seed of αL, including both the cluster variables and the associated

quiver;
– the seed invariant vector gL (Corollary 3.23).

4 Infinitely many fillings

In this section, we solve the infinite-filling problem for positive braid Legendrian
links. One key ingredient in our proof is the cluster Donaldson-Thomas transforma-
tions. Throughout this section, all mentions of the quiver Qβ refer to its unfrozen
part. To better visualize the proofs in this section, the color version of the article is
given online.

4.1 Full cyclic rotation and Donaldson-Thomas transformation.

Definition 4.1. For a positive braid word β of length l, the full cyclic rotation R is
the exact Lagrangian concordance ρl : Λβ → Λβ , where ρ is the cyclic rotation (3.14).

The cluster DT transformation is a unique central element of the cluster modular
group acting on the associated cluster varieties (Definition A.9). Combinatorially,
the cluster DT transformation can be manifested as a maximal green sequence, or
more generally, a reddening sequence of quiver mutations [Kel17].

Lemma 4.2. For any positive braid word β, we have ΦR = DT2 on Aug (Λβ).

Proof. Suppose β = si1 · · ·sil . By [SW19], the DT transformation on Confeβ(C) is

DT = t ◦ (ri1 ◦ ri2 ◦ · · · ◦ ril) ,

3 See https://users.math.msu.edu/users/wengdap1/filling_to_cluster.html.

https://users.math.msu.edu/users/wengdap1/filling_to_cluster.html
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where t is a biregular isomorphism induced by the transposition action on G = SLn

and ri are right reflection maps. Let us denote the left reflection of si by li. Then

DT2 =t ◦ (ri1 ◦ ri2 ◦ · · · ◦ ril) ◦ t ◦ (ri1 ◦ ri2 ◦ · · · ◦ ril)

=t ◦ t ◦
(
li1 ◦ li2 ◦ · · · ◦ lil

)
◦ (ri1 ◦ ri2 ◦ · · · ◦ ril)

=
(
li1 ◦ li2 ◦ · · · ◦ lil

)
◦ (ri1 ◦ ri2 ◦ · · · ◦ ril)

=
(
li1 ◦ ri1

)
◦
(
li2 ◦ ri2

)
◦ · · · ◦

(
lil ◦ ril

)
.

The first commutative diagram in Proposition 3.18 asserts that lik ◦ rik = Φρ. There-
fore DT2 = Φρl = ΦR. �

Theorem 4.3. For any positive braid word β, if the DT transformation on Aug (Λβ)
is aperiodic, then Λβ admits infinitely many admissible fillings.

Proof. Let L0 be the admissible filling that pinches the crossings in β from left to
right and then fills the resulted unlinks with minimum cobordisms. Let Lm = Rm ◦L0.
We claim that Lm is not Hamiltonian isotopic to Lk for m �= k. To see this, note that
by Lemma 4.2, the cluster seeds of Lm can be computed by mutating the initial seed
according to DT2m; the aperiodicity of DT implies that the cluster seeds of Lm and
Lk are distinct for m �= k. The statement follows from Corollary 3.22. �

Remark 4.4. The full cyclic rotation was observed by Kálmán [Kal05]. For torus
links Λ(n,m), where β = (s1s2 · · ·sn−1)m, [Kal05] further defined another Legendrian
loop K = ρn−1, with the property R = Km. Kálmán showed that ΦK has finite order.

The quivers associated to Aug
(
Λ(n,m)

)
and those associated to the Grassmannian

Grn,n+m share the same unfrozen parts. Hence, their DT transformations have the
same order. The DT on Grn,n+m has finite order because it is related to the periodic
Zamolodchikov operator by DT2 = Zam [Kel13, Wen16, SW19]. In fact, Kálmán’s
loop induces the Zamolodchikov operator. Summarizing,

ΦR = Φm
K = DT2 = Zam.

Theorem 4.5. Let Q be an acyclic quiver. Its associated DT transformation is of

finite order if and only if Q is of finite type.

Proof. Combinatorially, the DT transformation arises from a maximal green se-
quence of quiver mutations [Kel17]. When Q is acyclic, one may label the vertices of
Q by 1, . . . , l such that i < j if there is an arrow from i to j. The mutation sequence
μn ◦ · · · ◦ μ1 is maximal green and therefore gives rise to the DT transformation
associated with Q.

The DT transformation acts on the cluster variety AQ associated with the quiver
Q. Following [L+20], the frieze variety X(Q) is defined to be the Zariski closure of
the DT-orbit containing the point P = (1, . . . ,1) ∈AQ. Theorem 1.1 of loc.cit. states
that
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(1) If Q is representation finite (i.e., the underlying graph of Q is a Dynkin dia-
gram of type ADE), then the frieze variety X(Q) is of dimension 0.

(2) If Q is tame then the frieze variety X(Q) is of dimension 1.
(3) If Q is wild then the frieze variety X(Q) is of dimension at least 2.

As a direct consequence, if Q is not of finite type, then the DT-orbit of P contains
infinitely many points, and therefore DT is not periodic. If Q is of finite type, then its
cluster variety is of finite type, and therefore its DT transformation is periodic. �

Remark 4.6. Keller pointed out to us that the aperiodicity of DT for acyclic quiver
Q of infinite type follows from the aperiodicity of the Auslander-Reiten translation
functor on the derived category of representations of Q.

Corollary 4.7. For any positive braid word β, if Qβ is acyclic and of infinite type,

then Λβ admits infinitely many admissible fillings.

Proof. It follows from Theorem 4.3 and Theorem 4.5. �

4.2 Infinitely many fillings for infinite type. This section is devoted to the proof
of the following result.

Theorem 4.8. If [β] is a positive braid of infinite type, then the positive braid Leg-

endrian link Λβ admits infinitely many non-Hamiltonian isotopic exact Lagrangian

fillings.

Definition 4.9. Given two positive braid words β and γ, we say β dominates γ if
there is an admissible cobordism from Λγ to Λβ . Dominance is a partial order on
braid words.

Recall that a quiver is connected if its underlying graph is connected. Connected-
ness of quivers is invariant under mutations. Under the connectedness assumption,
Theorem 4.8 is a consequence of Corollary 4.7 and the following Propositions.

Proposition 4.10. Suppose β dominates γ. If Λγ admits infinitely many admissible

fillings, then so does Λβ .

Proof. Recall from Corollary 3.22 that the cluster seeds can be used to distinguish
admissible fillings. Since the functorial morphism between augmentation varieties
induced by any admissible cobordism is a cluster morphisms, it must map distinct
cluster seeds to distinct cluster seeds. �

Proposition 4.11. For any braid word β with connected Qβ , either one of the

following two scenarios happens:

(1) there is an admissible concordance from Λγ to Λβ and Qγ is a quiver of finite

type.

(2) β dominates a braid word γ and Qγ is acyclic and of infinite type.

Proposition 4.12. If Proposition 4.11 (1) happens, then [β] is of finite type.

If Proposition 4.11 (2) happens, then [β] is of infinite type.
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Proof. Admissible concordances give rise to sequences of mutations (Sect. 3.4). If
Proposition 4.11 (1) happens, then Qβ is mutation equivalent to Qγ . The latter is of
finite type. Therefore [β] is of finite type.

If Proposition 4.11 (2) happens, then by Theorem 3.20, Qβ is mutation equivalent
to a quiver which contains Qγ as a full subquiver. Suppose that [β] is of finite type.
Then Qγ is mutation equivalent to finite type quiver, which contradicts with the
assumption that Qγ is acyclic and of infinite type. Therefore [β] is of infinite type. �

Proposition 4.12 implies the exclusiveness of the two scenarios of Proposition 4.11.
To conclude the proof of Proposition 4.11, it remains to prove that the two scenarios
cover all braid words with connected quivers. The strategy of our proof is as follows.

– Suppose there is an admissible concordance Λγ → Λβ such that Qγ is acyclic. If
Qγ is of finite type, then β satisfies (1); otherwise, β satisfies (2).

– Otherwise, we prove that β satisfies (2).

(I) Preparation. We adopt the following notations for operations on braid words.

1. R1= denotes the positive Markov destabilization, which deletes the s1 (resp. sn−1)
if it only occurs once in β.

2. R3= denotes the braid move R3, which switches sisi+1si and si+1sisi+1.
3. ρ= denotes the cyclic rotation, which turns βsi into siβ or vice versa.
4. c= denotes the commutation which turns sisj into sjsi whenever |i− j|> 1.
5. � denotes deleting letters; β � γ means that γ can be obtained by deleting

letters in β. In particular, when β � γ, we say that γ is a subword of β.
6. oppo� denotes taking the opposite word βop. The quiver Qβop alters the orientation

of every arrow in Qβ .

Operations 1 - 4 induce Legendrian isotopies between corresponding positive braid
Legendrian links, which are building blocks for admissible concordance. Operations
5 induces pinch cobordisms between Legendrian links. Operation 6 is a symmetry
that can be used to reduce the number of cases considered in the proof.

Lemma 4.13. The quivers for the following braids are acyclic and of infinite type:

(1) s2
1s

2
2s

2
1s

2
2, or more generally, s2

i s
2
i+1s

2
i s

2
i+1;

(2) s1s3s
2
2s1s3s

2
2.

Proof. The quivers for (1) and (2) are D̃5 and D̃4 respectively.

�

Lemma 4.14. Suppose w1,w2,w3,w4 ∈
{
s1s3, s

2
1, s

2
3
}
. Then w1s2w2s2w3s2w4s2 dom-

inates a braid with an acyclic quiver of infinite type.
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Proof. Note that . If w1 = w3, then the Lemma
follows from Lemma 4.13. The same argument applies to w2 =w4. In the rest of the
proof, we assume that w1 �=w3 and w2 �=w4.

Let k be the size of the set {i | wi = s1s3}. Here k ≤ 2; otherwise, w1 = w3 or
w2 = w4. Using the symmetry between s1 and s3, we further assume that there are
more s2

1 than s2
3 in {w1,w2,w3,w4}. We shall exhaust all the possibilities of k.

Case 1: k=2

After taking necessary cyclic rotations and/or the opposite word, we have w1 =
w2 = s1s3, and the values of w3,w4 split into two subcases.

If w3 = s2
1 and w4 = s2

3, then Λβ is admissibly concordant to the standard E9 link:

If w3 =w4 = s2
1, we make the following moves and then apply Lemma 4.13 (1):

Case 2: k=1

We assume that w1 = s1s3 after a necessary cyclic rotation. Then w2,w3,w4 are
either s2

1 or s2
3. Note that w2 �=w4. By the symmetry between s1 and s3, and taking

rotations and the opposite word if necessary, it suffices to consider w2 =w3 = s2
1 and

w4 = s2
3. The Λβ is admissible concordance to the standard E9 link:

Case 3: k=0

Assume that w1 =w2 = s2
1 and w3 =w4 = s2

3. Then Qβ is of type D̃8:

. �
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Definition 4.15. Let β be a braid word of n strands. For 1 ≤ i < j ≤ n − 1, we
define

β(i, j) := the sub-word of β that contains si, si+1, . . . , sj .

For example, if β = s1s2s3s
2
1s2s5s2s3s4, then β(2,3) = s2s3s

2
2s3.

Lemma 4.16. Let β be a braid word of n strands.

(1) If s2
i is not a subword of β, then Qβ =Qβ(1,i−1) �Qβ(i+1,n−1).

(2) If β(i, i+1) does not contain a sub-word of intertwining pairs, namely neither

sisi+1sisi+1 nor si+1sisi+1si, then Qβ =Qβ(1,i) �Qβ(i+1,n−1).

Proof. The brick diagram has an empty level i in case (1) and does not have arrows
between level i and level i+ 1 in case (2). �

Lemma 4.17. Let n ≥ 3 and let β be an n-strand braid word such that Qβ is con-

nected. If β � s2
1 and β � s2

n−1, then Qβ is acyclic if and only if for 1 ≤ i≤ n− 2, we
have

β(i, i+ 1) = sa1
i sb1i+1s

a2
i sb2i+1 or sb1i+1s

a1
i sb2i+1s

a2
i , where a1, a2, b1, b2 ≥ 1

Proof. The if direction is obvious. To see the only if direction, let us assume without
loss of generality that β(i, i + 1) begins with si. If β(i, i + 1) does not end after
sa1
i sb1i+1s

a2
i sb2i+1, then there is at least one si after sb2i+1, giving Qβ an a2-cycle between

levels i and i+ 1. �

Assumption 4.18. Note that 2-strand braids correspond to type A quivers. It suf-
fices to consider braid words β of at least 3 strands. Let us single out the generator
s2. After necessary rotations, we assume that β does not start with s2 but ends with
s2, that is,

β =w1s
b1
2 w2s

b2
2 · · ·wms

bm
2 ,

where each wi is a word of s1, s3, s4, . . . , sn−1.
We assume that every wi contains at least one s1 or s3; otherwise, we can move

the whole wi across the s2’s at either end and merge it with wi−1 or wi+1. We
further assume that

∑
bi achieves minimum. Under this assumption, the length of

every wi(1,3) is at least 2. Otherwise, with the letters s4 · · · , sn−1 migrated away, we
have s2wis2 = s2s1s2 or s2s3s2, and we can use R3 to reduce

∑
bi.

We assume that m≥ 2; otherwise, Qβ is disconnected by Lemma 4.16. Meanwhile,
if m≥ 4, then after necessarily deleting letters, we land on the case of Lemma 4.14,
and the braid β dominates a braid with an acyclic quiver of infinite type.

In the rest of this section, without loss of generality, we assume that

β =w1s
b1
2 w2s

b2
2 · · ·wms

bm
2 , (4.1)

where bi ≥ 1, m = 2 or 3, and wi � s2
1, s

2
3 or s1s3.
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We prove Proposition 4.11 by induction on the number of strands of β.
(II) Proof of Proposition 4.11 for 3-strand braids If m = 2 in (4.1), then Qβ is

acyclic and therefore the proposition follows. It remains to consider m = 3. Suppose
that at least one of the bi’s, say b3 after necessary cyclic rotations, is greater than 1.
The proposition follows since

It remains to consider b1 = b2 = b3 = 1, i.e.,

β = sa1
1 s2s

a2
1 s2s

a3
1 s2.

If two of ai’s, say a1 and a2 after necessary rotations, are equal to 2, then

The quiver for the last word is acyclic. The proposition is proved.
Otherwise, at least two of the ai’s, say a1 and a2 after necessary rotations, are

greater than 2. The proposition follows since

(III) Proof of Proposition 4.11 for braids of at least 4 strands. Assume that β

is expressed as in (4.1). Note that s1 commutes with all other generators in wi.
Therefore we further assume that

– wi = sai1 vi = vis
ai
1 , where vi is a word of s3, . . . , sn−1.

We shall start with the proof of the following two lemmas.

Lemma 4.19. Suppose β � s1 and β � s2. If Qβ(1,2) is of Dynkin type A, then there

exists an admissible concordance Λγ → Λβ such that γ has fewer strands than β.

Proof. Since Qβ(1,2) is of Dynkin type A, β(1,2) must be of the form sa1
1 sb12 sa2

1 sb22
with min{a1, a2} = min{b1, b2} = 1. After necessary cyclic rotations and/or taking
the opposite word, we assume a1 = b1 = 1. Then

The braid reduces to the case of one fewer strand. �

Lemma 4.20. Suppose Qβ is connected. If Qβ(1,3) is acyclic and Qβ(1,2) is not of type

A, then Proposition 4.11 is true for [β].

Proof. Define

k := max{i | Qβ(1,i) is acyclic}.
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If k = n, then Qβ is acyclic and the Lemma is proved. If Qβ(1,k) is of infinite type,
then the Lemma follows since β � β(1, k). Now we assume k < n and Qβ(1,k) is of
finite type.

Note that Qβ(1,3) is a subquiver of Qβ(1,k). By assumption, Qβ(1,2) is not of type A.
Therefore Qβ(1,k) must be of type D or E. Hence, Qβ(i,j) is of type A for 1< i < j ≤ k.
In particular, Qβ(k−1,k) is of type A and Qβ is connected. Therefore we have

β(k− 1, k) = se1k−1s
f1
k se2k−1s

f2
k , or β(k− 1, k) = sf1k se1k−1s

f2
k se2k−1,

where

min{e1, e2} = min{f1, f2} = 1.

Below we consider the first case β(k − 1, k) = se1k−1s
f1
k se2k−1s

f2
k . The second case

follows by taking the opposite word of β. The letters s1, . . . , sk−2 commute with
sk+1, . . . , sn. After necessary communications of the letters in β, we can write

β = γ1δ1γ2δ2,

where γi (i = 1,2) is a word of s1 · · · , sk−1 with ei many of sk−1, and δi is a word
of sk, . . . , sn with fi many of sk. We remark that we have not performed cyclic
rotations yet and will only do it carefully, so that the quiver for β(1, k− 1) = γ1γ2 is
not distorted.

Recall that min{f1, f2}= 1. We consider the case f1 = 1. The argument for f2 = 1
is a similar repetition. Let us write δ1 = xsky, where x, y are words of sk+1 · · · , sn
and they commute with γ1, γ2. We pass y through γ2, and we pass x through γ1
and rotation, obtaining γ1(xsky)γ2δ2 � γ1skγ2(yδ2x). This move does not change
the quiver for β(1, k), and is a Legendrian isotopy. Consequently, we can assume
δ1 = sk and write β = γ1skγ2δ2.

Now we consider

δ2(k, k + 1) = sg1k sh1
k+1s

g2
k sh2

k+1 · · ·s
gl
k ,

where g1, gl ≥ 0 and all other powers ≥ 1. The Lemma holds for the following two
cases.

(1) If δ2 � sk+1s
2
ksk+1, then β � γ1skγ2sk+1s

2
ksk+1 := β1.

(2) If δ2 � s2
k+1sks

2
k+1, then β � γ1skγ2s

2
k+1sks

2
k+1 := β2.

The quivers for β1 and β2 are acyclic and of infinite type, as depicted below:

· · · · · ·

...

(1)

· · · · · ·

...

(2)
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By the definition of k, the quiver for β(k, k+ 1) is not acyclic. Therefore we have
δ2 � sk+1sksk+1sk. We assume that δ2 does not satisfy the above (1) or (2). Then

δ2(k, k + 1) = sg1k sh1
k+1sks

h2
k+1s

g3
k ,

where g1 ≥ 0, g3 ≥ 1, and min{h1, h2} = 1. Depending on whether h1 = 1 or h2 = 1,
we have the following two cases:

In both cases, the only R3 move is sksk+1sk � sk+1sksk+1 (only from left to right)
performed in δ2, hence the move can be extended from β(1, k + 1) to β. The cyclic
rotations can also be extended to β without changing the quiver for β(1, k). In the
end, we performed a Legendrian isotopy and get a new braid word β′ with acyclic
Qβ′(1,k+1). We repeat the above argument for β′ and k + 1. This completes the case
f1 = 1. �

Now we prove the proposition. If m= 2 in (4.1), then Qβ(1,3) is acyclic. If Qβ(1,2)
is not of type A, then the proposition follows directly from Lemma 4.20. Otherwise,
we apply Lemma 4.19. It remains to consider the case m= 3, in which we have

β =w1s
b1
2 w2s

b2
2 w3s

b3
2 = v1s

a1
1 sb12 v2s

a2
1 sb22 v3s

a3
1 sb32 . (4.2)

Let us set

p = #{i | ai �= 0}, q = #{i | vi � s3}.

Here p, q ∈ {2,3}. We consider cases by (p, q).

Case 1: (p, q) = (2,2). After suitable cyclic rotation, we assume a3 = 0. Then Qβ(1,3)
is acyclic. The rest goes through the same line as the above proof for the case m = 2.

Case 2: (p, q) = (2,3). After suitable cyclic rotation, we assume a3 = 0. If b1 ≥ 2,
then

β = v1s
a1
1 sb12 v2s

a2
1 sb22 v3s

b3
2 � v1s1s

b1
2 v2s1s

b2+b3
2 � s3s1s

2
2s3s1s

2
2.

The proposition follows. So we assume b2 = 1.
Now if a2 = 1, then using sa1

1 s2s1 = s2s1s
a1
2 , we can reduce the number of strands.

The same argument works for a1 = 1. It remain to consider a1 ≥ 2 and a2 ≥ 2. Then
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Case 3: (p, q) = (3,3). We have

wi = vis
ai
i � s3s1, ∀i = 1,2,3.

If there is a bi, say b1 after necessary cyclic rotation, greater than 1, then

β � s3s1s
b1
2 s3s1s

b2+b3
2 � s1s3s

2
2s1s3s

2
2.

The proposition follows. It remains to consider b1 = b2 = b3 = 1.
If there is some wi with wi(1,3) = s1s3, after suitable cyclic rotation we can

assume w2(1,3) = s1s3. Note that the rest letters of w2 are s4, . . . , sn. They commute
with the s2 at either end and can be merged into w1 or w3. Therefore, we may assume
w2 = s1s3 and use identity

sa1
1 s2s1s3s2s

a3
1 = sa3

3 s2s1s3s2s
a1
3 (4.3)

to reduce the number of strands.
If none of the wi’s has wi(1,3) = s1s3. Then wi(1,3) � s2

1s3 or wi(1,3) � s1s
3
3 for

i = 1,2,3. Two of them must be the same kind, and they have adjacent indices after
cyclic rotation. For example, if w1,w2 are of the same type s1s1s3, then

Other combinations of wi are similar.

Case 4: (p, q) = (3,2). If β is a 4-strand word, then by the symmetry between
s1 and s3, it reduces to the case (p, q) = (2,3). Below we assume β is at least of 5
strands.

After cyclic rotations, we assume that v3 does not contain s3. Then v3 commutes
with s2 and can be merged into w2. By (4.1), we assume that

w1 � s1s3, w2 � s1s3, w3 = sa3
1 with a3 ≥ 2.

If b1 ≥ 2, then the proposition follows since

Below we consider b1 = 1.
If w1 � s1s

2
3 and w2 � s1s

2
3, then the proposition follows since

Hence, we assume that one of w1,w2 contains a single s3. After suitable cyclic rota-
tions and taking the opposite word if necessary, we assume that w2 contains a single
s3. Moreover, all the letters s4, . . . , sn−1 in w2 can be merged to w1 by moving them
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in two directions and taking necessary cyclic rotations. To summarize, it remains to
consider

β = v1s
a1
1 s2s

a2
1 s3s

b2
2 sa3

1 sb32 , where v1 � s3, a3 ≥ 2, and a1, a2, b2, b3 ≥ 1.

We split our proof into two cases based on the value of a2.
A. If a2 = 1, then b2 ≥ 2. Otherwise, , and we can apply

Identity (4.3) to the purple part to reduce the number of strands. We further assume
b3 = 1; otherwise, b3 ≥ 2, and together with a3, b2 ≥ 2, we have

To recollect, we have

β = v1s
a1
1 s2s

a2
1 s3s

b2≥2
2 sa3≥2

1 s2.

If w1(1,3) = s1s3, then w1 = xs1s3y. After rotating sa3
1 s2, and moving x, y, we have

We apply identity (4.3) to the purple part to reduce the number of strands. Therefore
we can assume w1(1,3)� s1s

2
3 or s2

1s3.
Now we focus on w1(1,4). The connectedness of Qβ implies that w1(1,4) has at

least two copies of s4, with at least one s3 sandwiched in between. Hence there are
four possibilities:

w1(1,4)� (a) s2
1s4s3s4, (b) s1s4s3s3s4, (c) s1s4s3s4s3, (d) s1s3s4s3s4.

The proposition follows via direct calculations:

(a) w1(1,4)� s2
1s4s3s4 = s2

1s3s4s3 � s2
1s

2
3. Then

(b) w1(1,4)� s1s4s3s3s4. Then

(c) w1(1,4)� s1s4s3s4s3 = s1s3s4s3s3 � s1s
3
3. Then
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We end up with an E9 quiver, which is acyclic and of infinite type.
(d) w1(1,4) � s1s3s4s3s4 = s1s3s3s4s3 � s1s

3
3. The rest follows from the same calcu-

lation as in (c).

B. If a2 ≥ 2, then we look at w1(1,3).
If w1(1,3) = s1s3, then v1 = xs3y, where x, y are words of s4, . . . , sn−1. Let x̃ and

ỹ be the opposite word of x and y respectively. Then

It goes back to Case A.
If w1(1,3)� s2

1s3, then

It remains to consider w1(1,3)� s1s
2
3. There are three possibilities for w1(1,4):

w1(1,4)� (e) s1s4s3s4s3, (f) s1s3s4s3s4, (g) s1s4s3s3s4.

For both (e) and (f), after s4s3s4 = s3s4s3, we have w1(1,4)� s1s
3
3. Then

This is again the E9 quiver. For (g), we have w1(1,4)� s1s4s3s3s4. Then

This completes the proof of Proposition 4.11.

Corollary 4.21. For positive braids [β] with connected Qβ , the two cases in Propo-

sition 4.11 coincides with the dichotomy between finite and infinite types for positive

braids.

Proof. It follows from Proposition 4.11 and Proposition 4.12. �

Proof of Theorem 4.8 for disconnected Qβ . Suppose Qβ has two components.
Because vertices on the same level are connected, there exists a unique 1 ≤ i <

n such that no arrow appears between level i and i + 1. We consider β(1, i) and
β(i+1, n−1). Since we can pinch some crossings of β to obtain β(1, i) and β(i+1, n−
1), if one of them has infinitely many admissible fillings, so does β by Proposition
4.10. Otherwise by Propositions 4.11 (1) and 4.12, both Qβ(1,i) and Qβ(i+1,n−1) are
mutation equivalent to finite type quivers, and hence [β] is of finite type. In general,
we can induct on the number of components in the quiver of the braid. �
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4.3 Finite type classification. In this section, we focus on positive braid Legen-
drian links of finite type.

Theorem 4.22. Let β be a braid word such that Qβ is mutation equivalent to a Dynkin

quiver and Λβ does not contain a split union of knots. Then Λβ is Legendrian isotopic

to a standard link in Definition 1.9.

Proof. By Proposition 4.11 (1), it suffices to assume that Qβ is a Dynkin quiver.
If Qβ is of type A, we repeated utilize Lemma 4.19 to reduce the number of

strands of Λβ until it becomes 2-strand link, which is a standard link of type A.
If Qβ is of type D or E, then it contains a unique trivalent vertex. If n≥ 4, we

can apply Lemma 4.19 to β(1,2) or β(n− 2, n− 1), whichever does not contain the
trivalent vertex, to reduce n until n = 3. Note that β can be written as (4.1). Since
[β] is of finite type, following the discussion in (II) of Sect. 4.2, we may assume m = 2
in (4.1). After necessary rotation, we get

β = sa1
1 sb12 sa2

1 sb22 , where a1 ≥ 2, a2 ≥ 2, min{b1, b2}= 1.

The trivalent vertex in a Dynkin DE quiver has three legs, at least one of which
is of length 1. For Qβ , two legs lie in level 1 and one leg stretches to level 2. We show
that b1 = b2 = 1 after suitable Legendrian isotopy. Otherwise, one of the level 1 legs
is of length 1. Then up to cyclic rotations, we get a2 = 2. Depending on b1 = 1 or
b2 = 1, we have the following Legendrian isotopies:

Eventually, after necessary cyclic notations, we get the standard links. �

Definition 4.23. Let β be an n-strand braid word and let γ be an m-strand braid
word. Denote by γ#j the word obtained from γ via si �→ si+j .

The connect sum of β and γ is the braid word β#γ := βγ#n−1 .
The split union of β and γ is the braid word β � γ := βγ#n .
Note that [β#γ] ∈ Br+n+m−1 and [β � γ] ∈ Br+n+m.

The connect sum of two positive braid links is again a positive braid link. By
[EV18], positive braid links attain a unique maximum tb Legendrian representative.
The connect sum of two links is well-defined once specifying which components to
attach the 1-handle. Once well-defined, the connect sum is associative and commu-
tative.

Remark 4.24. Here is a list of the numbers of components for the standard ADE
links:
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knots 2-component links 3-component links

Aeven, E6, E8 Aodd, Dodd, E7 Deven
.

Theorem 4.25. If [β] is of finite type, then Λβ is Legendrian isotopic to a split union

of unknots and connect sums of standard links of ADE types.

Proof. For an n-strand positive braid β, the vertices of Qβ are separated into n− 1
many levels, each of which forms a type A quiver. If Qβ is disconnected, then

(1) two adjacent levels of Qβ have vertices but no arrows in between; and/or
(2) a level of Qβ has no vertex.

For (1), after necessary rotation, we get β(i, i + 1) = sai s
b
i+1 for some i. We may

further commute s1, . . . , si−1 with si+2, . . . , sn−1, obtaining

β = β(1, i)β(i+ 1, n− 1).

Hence, β is a connect sum of two braid words.
For (2), we get β(i, i) = si or empty for some i. If it is empty, then

β = β(1, i− 1)β(i+ 1, n),

which is a split union of two braid words. If β(i, i) = si, then the braid is a connect
sum via the following Legendrian isotopy:

Each quiver component is Legendrian isotopic to the standard ADE links. There
could also be a split union of unknot for every pair of consecutive levels β(i, i) and
β(i+ 1, i+ 1) that are both empty. This completes the proof. �

Appendix A: Cluster varieties

We provide a rapid review on cluster varieties in the skew-symmetric cases. Below
we set [n]+ := max{0, n} for n ∈R.

A.1: Definitions

A quiver is a triple Q =
(
I, Iuf , ε

)
, where I is a finite set, Iuf is a subset of I , and

ε is an I × I skew-symmetric matrix whose entries εij are integers when i ∈ I and
j ∈ Iuf .
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Let k ∈ Iuf . The mutation in the direction k produces a new quiver μkQ =(
I ′, I ′uf , ε′

)
where I ′ = I , I ′uf = Iuf , and

ε′ij =

⎧⎪⎨
⎪⎩

−εij if k ∈ {i, j},
εij if εikεkj < 0, and k /∈ {i, j},
εij + |εik|εkj if εikεkj ≥ 0, and k /∈ {i, j}.

Two quivers are mutation equivalent if they are related by a sequence of mutations.
Denote by |Q| the class of quivers that are mutation equivalent to Q.

Each Q induces a directed graph with vertex set I . For i, j ∈ I , the number of
arrows from i to j is [εij ]+. Vertices parametrized by i ∈ I − Iuf are called frozen
vertices. In this paper, arrows among frozen vertices are allowed to be of half weight
and will be illustrated by dashed arrows.

The unfrozen part of Q is the full subquiver Quf containing the unfrozen vertices.
A quiver Q is said to be acyclic if there is no directed cycle inside Quf .
A quiver Q is said to be connected if the underlying graph of Quf is connected.
A quiver Q is said to have full-rank if the submatrix ε|Iuf×I is of full-rank.
Connectedness and being full-rank are invariant under mutations and therefore

descend to properties of mutation equivalence classes of quivers.

Definition A.1. A cluster K2 variety A is an affine variety together with a collec-
tion C of triples α = (Qα,Tα,Aα), where

– Qα =
(
I, Iuf , ε

)
is a quiver;

– Tα is a split algebraic torus of rank |I| inside A ;
– Aα = {Ai;α}i∈I is a coordinate system of Tα.

We require that

– For any unfrozen vertex k of the quiver Qα, there is an α′ = (Qα′ ,Tα′ ,Aα′) ∈ C,
where Qα′ = μkQα, and the transition map between Aα′ and Aα is

Ai;α′ =
{
A−1

k;α

(∏
j A

[−εkj ]+
j;α +

∏
j A

[εkj ]+
j;α

)
if i = k,

Ai;α if i �= k.

We say that α′ is a mutation of α in the direction k and write α′ = μkα.
– Every pair α,α′ ∈ C are related by a finite sequence of mutations.
– The complement of the union of Tα for all α is of codimension 2 in A .

Each α is called a cluster seed, Tα is called a cluster chart, Aα is called a cluster, and
Ai;α is called a cluster K2 coordinate or a cluster variable. Each Ai;α for i ∈ I − Iuf

is invariant under mutations and is called a frozen variable. We will suppress the
subscript α when the context is clear.

Remark A.2. The coordinate ring of a cluster chart Tα is a Laurent polynomial
ring Lα in the variables Ai;α. The intersection

⋂
α∈C Lα is an upper cluster algebra

of [BFZ05]. A cluster K2 variety A is an affine variety whose coordinate ring is
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an upper cluster algebra. It is worth mentioning that our cluster K2 varieties are
different from the cluster A varieties in [FG09]. The latter is defined to be the union
of the tori Tα for α ∈ C, and is not affine in general.

Each cluster seed α of A encodes a 2-form on Tα:

Ωα :=
∑

εij
dAi;α

Ai;α
∧ dAj;α

Aj;α
. (A.1)

By Corollary 6.5 of [FG09], this 2-form does not depend on the choice of cluster
seeds and therefore defines a global 2-form Ω on A .

Borrowing ideas from mirror symmetry, Gross, Hacking, Keel, and Kontsevich
interpreted the cluster structures in terms of wall-crossing structures called scattering
diagrams [G+18]. In detail, associated to a quiver Q is a scattering diagram D. Inside
D is a simplicial fan consisting of cones called cluster chambers. The paper [G+18]
establishes a one-to-one correspondence between the cluster seeds of A and the
cluster chambers of D. The mutation from α to μkα corresponds to crossing the
sharing facet (a.k.a the wall) of their corresponding cluster chambers.

The following proposition is crucial for this paper.

Proposition A.3. Let Q be a quiver of full rank and let A be its associated cluster

K2 variety over an algebraically closed field (of any characteristic). The cluster charts

of distinct cluster seeds of A do not coincide.

Remark A.4. Proposition A.3 may not hold when Q is not of full rank, e.g., if Q
contains one vertex and no arrows, then its cluster variety has two cluster seeds but
only one cluster chart.

Proof. Let A be defined over an algebraically closed field of characteristic p. The
characteristic 0 case follows by the same argument. Let α and α′ be two distinct
cluster seeds of A . By Corollary 6.3 of [FZ07], the transition map between Aα′ =
{A′

i} and Aα = {Ai} takes the form

A′
i =

(
Fi

∣∣∣
Xk=

∏
l
A

εkl
l

)∏
j∈I

A
gij
j , (A.2)

where gij are integers, and each Fi is a polynomial in the variables Xk for k ∈ Iuf . The
matrix G = (gij) is called a g-matrix. The polynomials Fi are called F-polynomials.

By [G+18], each Fi is a generating function that counts broken lines in the scat-
tering diagram associated to Q. For distinct α and α′, there is at least one wall
between their corresponding chambers. In particular, there is an i ∈ Iuf such that
Fi �= 1. By [LS15] and [G+18], we have

– all coefficients of Fi are positive integers;
– the constant term of Fi is 1;
– the coefficient of the highest term of Fi is 1.
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Here the highest term of Fi is the monomial
∏

j X
aj
j such that for any other term∏

j X
bj
j in Fi, we have aj ≥ bj for all j. The above last two properties are equivalent

due to [FZ07, Prop.5.3].
By the above discussion, there exists an i ∈ Iuf such that the polynomial Fi has

at least two terms even after reducing to a polynomial with coefficients in the finite
field Fp. The quiver Q is of full rank. The substitution Xk =

∏
lA

εkl

l gives rise to an
injective homomorphism from the polynomial ring Fp[Xi]i∈Iuf to the Laurent poly-
nomial ring Fp[A±1

j ]j∈I . Therefore A′
i is not a Laurent monomial of Aj for j ∈ I . On

the other hand, biregular isomorphisms between algebraic tori over an algebraically
closed field are of monomial coordinate transformations. Thus Tα �= Tα′ . �

A.2: Cluster ensembles

Following [FG09], cluster Poisson varieties are the cluster dual of cluster K2 varieties.
Each cluster Poisson variety X is equipped with a collection of torus charts with
coordinate systems Xα = {X±1

i;α}i∈I . The transition map between Xα′ = Xμkα and
Xα is

Xi;α′ =
{
X−1

k;α if i= k,
Xi;αX

[εik]+
k;α (1 +Xk;α)−εik if i �= k.

The coordinates Xi;α are called cluster Poisson coordinates.
Let A and X be a pair of cluster varieties associated to a mutation equivalence

class |Q|. There is a natural one-to-one correspondence between the cluster seeds of
A and the cluster seeds of X . Each pair of corresponding cluster seeds is called a
cluster seed of (A ,X ). Following [FG09, §1.2], there is a canonical map p : A →X

such that4

p∗ (Xi;α) =
∏
j

A
εij
j;α

for every cluster seed of (A ,X ). The triple (A ,X , p) is called a cluster ensemble.

Definition A.5. Suppose σ : I ′ → I is an injective map such that

(1) σ|I′uf : I ′uf → Iuf is a bijection,
(2) ε′ij = εσ(i)σ(j) for all i, j ∈ I ′.

Then σ induces a morphism of algebraic tori σ : α′ → α and σ : χ→ χ′, which are
extended to morphisms of cluster varieties σ : A ′ → A and σ : X → X ′, called
cluster morphisms. If σ is bijective, then the induced cluster morphisms are called
cluster isomorphisms.

4 Since εij may not be integers when i, j are frozen, the map p is not necessarily algebraic. In
Sect. A.3, we consider the unfrozen quotient X uf of X . The induced map p : A → X uf is algebraic.
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Example A.6. Consider the inclusion of the unfrozen part Quf =
(
Iuf , Iuf , ε|Iuf×Iuf

)
into Q. This inclusion induces cluster morphisms A uf → A and X → X uf . More
properties about these cluster morphisms can be found in [She14, §3].

Definition A.7. A cluster automorphism is a cluster isomorphism from a cluster
variety to itself. Cluster automorphisms form a group G called the cluster modular
group.

Fix an initial cluster seed of (A ,X ). Every cluster automorphism maps the initial
seed to another cluster seed. We can express the obtained new cluster coordinates in
terms of the initial ones as in (A.2). As a consequence, one may assign the c-matrix,
g-matrix, and F -polynomials of [FZ07] to each cluster automorphism with respect
to a fixed initial seed.

Proposition A.8. A cluster automorphism σ is the identity map on A if and only

if it is the identity map on X .

Proof. The separation formula of Fomin-Zelevinsky [FZ07] implies that σ is the
identity map on A (resp. X ) if and only if its g-matrix G (resp. c-matrix C) is the
identity matrix with respect to one (equivalently any) initial seed. The proposition
then follows from the tropical duality theorem [NZ12, Theorem 1.2], which says that
C−1 =Gt. �

Definition A.9 ([GS18]). A cluster Donaldson-Thomas transformation on a cluster
variety is a cluster automorphism whose c-matrix is equal to minus identity.

For any cluster ensemble, its cluster Donaldson-Thomas transformation, if exists,
is a unique central element in the cluster modular group.

A.3: Quasi-cluster morphisms

Define N :=
⊕

i∈I Zei for a quiver Q =
(
I, Iuf , ε

)
, and let Nuf its the sub-lattice

spanned by ei for i ∈ Iuf . The exchange matrix ε equips N with a skew-symmetric
form {·, ·} :N ×N →Q such that {ei, ej}= εij . Let M be the dual lattice of N .

One should think of N as the character lattice of a cluster chart χ and think of
M as the character lattice of the cluster chart α dual to χ. For n ∈N and m ∈M we
denote the corresponding character functions as Xn and Am. In particular, Xei are
precisely the cluster Poisson coordinates Xi, and the map p : A →X is induced by
the linear map p∗ :N →M,n �→ {n, ·}. We will use this set-up to define quasi-cluster
morphisms. More detailed discussions can be found in [Fra16, GS19, SW19].

Definition A.10. Let N and N ′ be the lattices associated to Q and Q′ respectively.
Suppose σ :N ′ →N is an injective linear map such that

(1) σ|N ′uf is an isomoprhism onto Nuf ;
(3) for any i ∈ I ′uf , we have σ (e′i) = ej for some j ∈ Iuf ,
(3) σ preserves the skew-symmetric forms.
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Then σ induces a morphism of algebraic tori σ : χ→ χ′ which extends to a morphism
σ : X →X ′. On the dual side, σ induces a linear map σ :M →M ′, which defines a
morphism of algebraic tori σ : α′ → α and extends to a morphism σ : A ′ → A . We
call the induced morphisms σ : X →X ′ and σ : A ′ →A quasi-cluster morphisms.

A quasi-cluster isomorphism is a quasi-cluster morphism where σ :N ′ →N is an
isomorphism. A quasi-cluster automorphism is a quasi-cluster isomorphism from a
cluster variety to itself. Quasi-cluster automorphisms form a group QG called the
quasi-cluster modular group.

The cluster modular group G is a subgroup of the quasi-cluster modular group
QG. There is a natural map QG →Guf where Guf denotes the cluster modular group
for the unfrozen part.

Remark A.11. Quasi-cluster automorphisms are also known as (quasi-)cluster
transformations.

The restriction of quasi-cluster morphisms to cluster charts commute with cluster
mutations. Consequently, we have the following theorem.

Theorem A.12. Let V and W be two cluster varieties of the same type (either K2
or Poisson). If σ : V →W is a quasi-cluster morphism, then there is a one-to-one

correspondence between their cluster seeds, and σ restricts to a morphism between

the corresponding cluster charts.

Below we construct two types of quasi-cluster morphisms that are crucial for us.

Changing a frozen vertex. Recall the lattice N associated with a quiver Q =(
I, Iuf , ε

)
. Let k be a frozen vertex of Q. Let (δj)j∈I is an |I|-tuple of integers.

We consider a lattice N ′ =
⊕

i∈I Ze
′
i and define a linear map σ :N ′ →N such that

σ (e′i) :=
{
ei if i �= k,∑

j∈I δjej if i= k.

The exchange matrix ε equips N with a skew-symmetric form {·, ·}, whose pull-
back through σ induces a skew-symmetric form {·, ·}′ on N ′. Let ε′ be an I×I matrix
such that

ε′ij =
{
e′i, e

′
j

}′
:=

{
σ(e′i), σ(e′j)

}
.

Let A ′ and X ′ be the cluster varieties associated with the quiver Q′ =
(
I, Iuf , ε′

)
.

Note that σ satisfies the conditions (1) and (2) of Definition A.10. Therefore it defines
quasi-cluster morphisms

σ : A ′ →A and σ : X →X ′.

Let α (resp. α′) be the K2 cluster chart associated with the quiver Q (resp. Q′). Let
χ (resp. χ′) be the Poisson cluster chart associated with the quiver Q (resp. Q′).
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Then the pull-back maps of σ can be written in terms of these cluster charts as

σ∗ (Ai) =
{
A′

iA
′ δi
k if i �= k,

A′
k if i = k.

and σ∗ (X ′
i) =

{
Xi if i �= k,∏

j X
δj
j if i = k.

(A.3)

Proposition A.13. With the above set-up, the following statements are true.

(1) If δk = 1, then the quasi-cluster morphisms σ are quasi-cluster isomorphisms.

(2) If
∑

j εijδj = 0 for every i ∈ Iuf , then there is no arrow between the vertex k

and the unfrozen part of Q′.

Proof. (1) is obvious. For (2), it suffices to note that for i ∈ Iuf ,

ε′ik = {e′i, e′k}
′ = {σ (e′i) , σ (e′k)}=

{
ei,
∑
j

δjej

}
=
∑
j

δjεij = 0.

Hence, there is no arrow between the vertex k and the unfrozen part of Q′. �

Merging frozen vertices. Let t1 and t2 be frozen vertices in a quiver Q =
(
I, Iuf , ε

)
.

Define the quiver Q′ =
(
I ′, I ′uf , ε′

)
, where I ′ := (I \ {t1, t2})� {t}, I ′uf := Iuf , and

ε′ij :=

⎧⎪⎨
⎪⎩

εij if i, j �= t,

εt1j + εt2j if i = t,

εit1 + εit2 if j = t.

We say that Q′ is obtained from Q by merging the frozen vertices t1 and t2 into a
single frozen vertex t. Let N and N ′ be the lattices associated with the quivers Q

and Q′ respectively. There is an injective linear map

σ :N ′ →N

e′i �→ ei for i �= t,

e′t �→ et1 + et2 .

Note that σ satisfies the conditions in Definition A.10. It defines quasi-cluster mor-
phisms

σ : A ′ →A and σ : X →X ′.

The next proposition is direct consequence of the construction of σ.

Proposition A.14. The quasi-cluster morphism σ : A ′ → A embeds A ′ as a sub-

variety of A determined by the locus {Ai =Aj}.
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Appendix B: Double Bott-Samelson cells

B.4: Definition and basic properties

Double Bott-Samelson (BS) cells, introduced in [SW19], are moduli spaces of flags
with prescribed relative positions encoded by positive braids. In this section we briefly
recall their definition and basic properties following loc. cit. Theorem 2.12 establishes
natural isomorphisms between the augmentation varieties of positive braid closures
and the double BS cells associated with SLn.

Let B± be a pair of opposite Borel subgroups of a Kac-Moody group G and
let U± := [B±,B±] be the maximal unipotent subgroups. There are flag varieties
B+ := G/B+ and B− := B−\G. By replacing B± with U± we define decorated flag
varieties A+ := G/U+ and A− := U−\G. There are natural projections π :A± →B±.
If π(A) = B then we say that A is a decoration over B.

We denote elements in B+ as Bi and elements in B− as Bi. The same convention
is applied to A± with the letter B replaced by A.

Let T := B+ ∩B− and let W := N(T)/T be the Weyl group. Consider the Bruhat
decompositions and Birkhoff decomposition

G =
⊔

w∈W
B+wB+ =

⊔
w∈W

B−wB− =
⊔

w∈W
B−wB+.

We adopt the convention of writing
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xB+
w

yB+ if x−1y ∈ B+wB+,

B−x
w

B−y if xy−1 ∈ B−wB−,

B−x
w

yB+ if xy ∈ B−wB+.

We often omit w in the notation when it is the identity. Moreover, when decorated
flags are involved, the notations only concern the underlying flags; for example,

Bi
w

Aj means Bi
w

π
(
Aj
)

.

For a positive braid word β = si1 . . . sim , a chain B0
si1

· · ·
sim

Bm will

be abbreviated as B0
β

Bm . By Theorem 2.18 of [SW19], the chains of flags
associated to different words of the positive braid [β] have a natural one-to-one

correspondence. In this sense, the chain B0
β

Bm does not depend on the
word β chosen.

Definition B.1. Let β and γ be positive braids. The half decorated double BS cell
Confγβ(C), viewed as a Z-scheme, is a moduli space parametrizes G-orbits of the
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chains of flags

B0 Am

B0 Bl

β

γ

.

If one forgets to choose a decoration Am over Bm, then the resulting space is denoted
by Confγβ(B). Denote by π the forgetful map from Confγβ(C) to Confγβ(B).

Remark B.2. This version of double BS cells is slightly different from those in
[SW19]: first, the two chains of flags swap places with the B+-chain at the bottom
and the B−-chain at the top now; second, there is only one decoration Am over Bm

and the flag B0 is no longer decorated.

For B0 B0
si

B1 , there is a unique flag B−1 such that

B0
si

B−1
si

B0 . It then follows from B−1
si

B0
si

B1 that

B−1 B1 . This construction gives rise to the following reflection maps.

Definition B.3. The left reflection map li : Confγsiβ(C) → Confsiγβ (C) is an isomor-
phism mapping

B0
γ

Am

B0
si

B1
β

Bn

�−→

B−1
si

B0
γ

Am

B1
β

Bn

Its inverse map li : Confsiγβ (C)→ Confγsiβ(C) is defined by an analogous process.

Let ϕi : SL2 → G be the group homomorphism associated to the simple root αi.
Define

ei(q) := ϕi

(
1 q

0 1

)
, e−i(q) := ϕi

(
1 0
q 1

)
,

si := ϕi

(
0 −1
1 0

)
, si := ϕi

(
0 1
−1 0

)
.

Consider a reduced expression w = si1 . . . sin in W. Let

w = si1 . . . sin , w = si1 . . . sin .
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The elements w and w in G do not depend on the reduced expression chosen. We set

Ri(q) := ei(q)si = ϕi

(
q −1
1 0

)
. (B.1)

Lemma B.4. Fix a flag Bj . The space of flags Bk such that Bj
si

Bk is iso-

morphic to A
1. In particular, if Bj = B+, then Bk =Ri(q)B+ for some unique q ∈A

1.

Proof. It suffices to prove the lemma for Bj = B+. Let Ui :=
{
ei(t)

∣∣ t ∈A
1} be the

1-dimensional unipotent subgroup associated to the simple root αi and let Qi :=
B+ ∩ siB+si. By [Kum02, Lemma 6.1.3], we know that B+ = UiQi. Therefore

B+siB+/B+ = UiQisiB+/B+ = UisiQiB+/B+ = UisiB+/B+.

Hence Bk =Ri(q)B+ for some unique q ∈A
1. �

We prove an important property of the double BS cells, following [SW19, §2.4].

Proposition B.5. The space Confγβ(C) is the non-vanishing locus of a polynomial

in A
l(β)+l(γ). Consequently, it is a smooth affine variety.

Proof. It suffices to prove the lemma for Confeβ(C); the general case will follow by
using the reflections to shift the top γ to the bottom. Suppose β is of length l. Every
point of Confeβ(C) admits a unique representative as follows

U−

B+ B1 B2 · · · Bl
si1 si2 si3 sil

(B.2)

Using Lemma B.4 recursively, we obtain parameters (q1, . . . , ql) ∈A
l such that

Bk =Ri1(q1) · · ·Rik(qk)B+, k = 1, . . . , l.

By definition, we require that the rightmost pair (U−,Bl) is in general position.
Let ωi be the ith fundamental weight. The ith principal minor Δi : G → A

is a regular function uniquely determined by the following two conditions: (1)
Δi(u−gu+) = Δi(g), where u± ∈ U±; (2) Δi(h) = hωi for h ∈ T. When G = SLn,
the function Δi coincides with (2.7). Note that g ∈ B−B+ if and only if Δi(g) �= 0 for
all i. Therefore the pair (U−,Bl) is in general position if and only if

f(q1, . . . , ql) :=
∏

1≤i≤rkG
Δi (Ri1(q1) · · ·Ril(ql)) �= 0. �
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B.5: Cluster structures on double Bott-Samelson cells

A pair of positive braids (β,γ) can be regarded as a single braid in the product
Br × Br. We shall prove that every word of (β,γ) gives rise to a cluster seed of
Confγβ(C). First, each word determines a labeling of arrows and a triangulation on
the configuration diagram. Then we require that every pair of flags that are connected
by a diagonal in the triangulation are in general position. The subspace of Confγβ(C)
that satisfy these general position conditions is an algebraic torus. The algebraic tori
obtained from all words of (β,γ) form a subset of the atlas of cluster charts.

In detail, let t be a word of (β,γ). We label the arrows and draw the triangulation
on the configuration diagram according to t as shown in Example B.8. On top of
the triangulation, we draw rank(G) many parallel lines, each of which represents
a simple root of G. Triangles in the triangulation are either upward pointing or
downward pointing (as shown below), and depending on the orientation and the
labeling of the base, each triangle places a node at one of the lines, cutting it into
segments called strings. The segments from such cutting become the vertices of the
quiver Qt, and the arrows in Qt are drawn according to the pictures below, where the
dashed arrows between different levels i �= j are weighted by weights that are related
to Cartan numbers (see [SW19] for more details). In particular, in the simply-laced
cases (which include SLn), the dashed arrows all have weight 1/2. In the end, we
delete the left most vertices (together with all incident arrows) and freeze the right
most vertices on each level.

si

−i
jth
ith

−i

jth

ith • •

•

• •

•

si

i
jth
ith

i

jth

ith • •

•

• •

•

To define the cluster K2 coordinates, we first need to decorate the flags. Two dec-

orated flags xU+
w

yU+ (resp. U−x
w

U−y ) are said to be compatible

if x−1y ∈ U+wU+ (resp. xy−1 ∈ U−wU−). Two decorated flags U−x yU+ is
called a pinning if xy ∈ U−U+.

Lemma B.6. Given B
w

B′ (resp. B′ w
B or B B′ ), for ev-

ery decoration A over B, there exists a unique decoration A′ over B′, such that
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A
w

A′ are compatible (resp. A′ w
A are compatible or A A′

is a pinning).

Using the above lemma, we can begin with the decoration Am over Bm and induce
decorations one-by-one over the rest flags following the C-shape path illustrated by
the dashed circles below

B0 B1 B2 · · · Bm−1 Am

B0 B1 B2 · · · Bl−1 Bl
si1 si2 si3 sil−1 sil

sj1 sj2 sj3 sjm−1 sjm

The next proposition presents a standard representative for every point in
Confγβ(C).

Proposition B.7. Every point in Confγβ(C) admits a unique representative in the

following form:

U− U−y1 · · · U−ym

U+ x1U+ · · · xlU+

sj1 sj2 sjm

si1 si2 sil

where

xk =Ri1 (q1)Ri2 (q2) . . .Rik (qk) , yk =Rjk (pk) . . .Rj2 (p2)Rj1 (p1) .

This gives an open embedding Confγβ(C) ↪→A
m
p1,...,pm ×A

l
q1,...,ql

.

Proof. Let us first verify that adjacent decorated flags along the top chain and the
bottom chain are compatible. Let x0 = y0 = e. Note that

U+x
−1
k−1xkU+ = U+eik (qk)sikU+ = U+sikU+,

U−yk−1y
−1
k U− = U− (ejk (pk)sjk)−1 U− = U−e−jk (−pk)sjkU− = U−sjkU−.

Since a compatible decoration on one end of any adjacent pair of flags along either
of the horizontal chains can be uniquely determined by the decoration on the other
end of the pair, the existence of uniqueness of such representative automatically
follows from the fact that G acts freely and transitively on the space of pinnings. �

Now for a fixed word t of (β,γ), we get a quiver Qt with vertices corresponding
to strings, which necessarily cross certain diagonals (possibly more than one) in the



858 H. GAO ET AL. GAFA

triangulation.

ith
a

xU+

U−y

The cluster K2 coordinate associated to the string a is defined to be the ith principal
minor of xy:

Aa = Δi(yx).

The function Aa is independent of the choice of diagonals if a crosses more than one
diagonals.

Example B.8. Let G = SL3, β = s2s1s2s1, and γ = s2s1. For Br×Br, we use negative
numbers for letters in the second factor. The word t = (2,−2,1,2,−1,1) for (β,γ)
gives rise to the following triangulation, string diagram, and quiver

A0 A1 A2

A0 A1 A2 A3 A4

s2 s1

s2 s1 s2 s1

A0 A1 A2

A0 A1 A2 A3 A4

s2 s1

s2 s1 s2 s1

1 −1 1
2 −2 22nd

1st

1 −1 1

2 −2 22nd

1st • • �

• • �

Remark B.9. In [SW19] a cluster K2 structure is constructed on the decorated
double BS cell Confγβ (Asc) for a simply-connected group G, which has frozen vertices
on both sides of the quiver. The cluster K2 structure on Confγβ(C) is essentially
obtained from that of Confγβ (Asc) by setting all the frozen variables on the left to

be 1 due to the pinning condition on A0 A0 .
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The next Proposition provides an interpretation of left reflections in terms of
standard representatives in Proposition B.7. It implies that the left reflections are
cluster transformations.

Proposition B.10. The left reflection Confγsiβ(C)→ Confsiγβ (C) can be expressed in

terms of standard representatives as

U− U−y1 · · · U−ym

U+ Ri(q)U+ Ri(q)x1U+ · · · Ri(q)xlU+

sj1 sj2 sjm

si si1 si2 sil

�−→

U+ x1U+ · · · xlU+

U− U−Ri(q) U−y1Ri(q) · · · U−ymRi(q)

si1 si2 sil

si sj1 sj2 sjm

Proof. The left reflection does the following.

U−

U+
si

Ri(q)U+

�

U−si
si

si

U−

U+
si

Ri(q)U+

�

U−si
si

U−

Ri(q)U+

To restore to the standard representative, we need to act on the resulting config-
uration by (Ri(q))−1. Note that under the such action, xU+ �→ (Ri(q))−1 xU+ and
U−y �→ U−yRi(q). It is not hard to see that such action will give the standard con-
figuration as claimed in the proposition. �

B.6: An open embedding

In this section we construct an open embedding ψ : Confγβ(C) × Gm ↪→ Confγsiβ(C)
whose image is the localization (freezing) at a cluster variable of the latter.

Recall from Lemma B.4 that the moduli space of B−1 that fits into the triangle
in the picture on the left below is parametrized by the multiplicative group scheme
Gm. Note that the base change of Gm to any field k is isomorphic to k× as affine
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schemes over k.

B−

B−1 B+si

B− · · · Am

B+ · · · Bl︸ ︷︷ ︸
i

j︷ ︸︸ ︷

On the other hand, consider a standard representative and let us temporarily forget
about the decorations on the pinning and the bottom chain, as shown in the picture
on the right above. By gluing these two figures along the pinning B− B+ ,
we end up with a point in Confγsiβ(C), which defines a morphism

ψ : Confγβ(C)×Gm → Confγsiβ(C), (B.3)

It is easy to see that ψ is an open embedding.

Proposition B.11. The image of ψ in Confγsiβ(C) is the distinguished open subset

corresponding to the localization (freezing) at the leftmost cluster variable Ac in the

picture below

B0 · · ·
γ

Am

B−1 B0 · · ·
β

Blsi

ith
c

.
(B.4)

Proof. There is a unique representative of (B.4) such that B0 = B−, B−1 = B+, and
B0 =Ri(d)B+. The principal minors of Ri(d) are

Δk(Ri(d)) =
{
d if i = k;
1 if i �= k.

Hence, the left cluster variable Ac = d. By definition, (B.4) is in the image of ψ when
B0 and B0 are in general position, or equivalently when d �= 0. In other words, the
image of ψ is precisely the non-vanishing locus of the cluster variable Ac. In cluster
theory, localization of a cluster K2 variety at a cluster variable Ac is again a cluster
K2 variety, which can be obtained by freezing the vertex c. Therefore the image of
ψ is also a cluster K2 variety. �

Now we make Confγβ(C)×Gm into a cluster K2 variety by adding an extra frozen
variable d corresponding to the Gm factor. There should not be no arrows connecting
c and the unfrozen variables of Confγβ(C) because the extra Gm factor will not affect
their mutations. However, there is freedom of adding arrows connecting c and the
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frozen variables of Confγβ(C). The next proposition shows that these arrows can be
uniquely determined by requiring ψ to be a quasi-cluster isomorphism onto its image.

Proposition B.12. The space Confγβ(C)×Gm can be equipped with a unique cluster

K2 structure which extends the cluster K2 structure on Confγβ(C) by adding one extra

frozen vertex c and possibly arrows between c and the original frozen part, such that

ψ becomes a quasi-cluster isomorphism onto its image.

Proof. Suppose we start with a standard representative in the image of ψ as follows.

U− U−y1 · · · U−ym

U+ x0U+ x1U+ · · · xlU+

sj1 sj2 sjm

si1 si2 silsi

ith
c

From the last proposition we know that x0U+ =Ri(d)U+ for some non-zero d.
To obtain the preimage of this representative under ψ, we need to delete the flag

U+ at the lower left corner and re-scale the decorations along the bottom chain as
follows.

U− U−y1 · · · U−ym

x0h0U+ x1h1U+ · · · xlhlU+

sj1 sj2 sjm

si1 si2 sil

Here hk ∈ T are such that (U−, x0h0U+) is a pinning and (xk−1hk−1U+, xkhkU+) are
compatible.

Set λ∨
0 =−α∨

i . Define co-characters λ∨
k of T for 1≤ k ≤ l by the recursive relation

λ∨
k := sik

(
λ∨
k−1

)
.

Note that x0 = Ri(d). An easy calculation shows that x0h0 ∈ U−U+ if and only if
h0 = dλ

∨
0 . Since (xk−1U+, xkU+) is a compatible pair, by definition we get x−1

k−1xk ∈
U+sikU+. Therefore,

U+ (xk−1hk−1)−1 · xkhkU+ = U+sik · sik(h−1
k−1)hkU+.

The pair (xk−1hk−1U+, xkhkU+) is compatible if and only if hk = sik(hk−1). By in-
duction we get hk = dλ

∨
k for 0≤ k ≤ l.

Next we investigate the pull-back of cluster K2 coordinates of Confγsiβ(C) under
ψ. Fix a word t for (β,γ) and consider the word (i, t) for (siβ,γ). Let Qt be the
quiver associated to t, and Qi,t the quiver associated to (i, t) with the leftmost vertex
c frozen.
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Recall that

ψ∗ (Ac) = Δi(x0) = Δi(Ri(d)) = d.

We define d to be the cluster variable A′
c for the new frozen vertex c.

For any other string (vertex) a associated to (i, t) as the left picture below, there
is a corresponding string (vertex) a associated to t as the right right below.

hth level a

xkU+

U−yj

hth level a

xkd
λ∨
k U+

U−yj

Let δa :=−〈λ∨
k , ωh〉 ∈ Z; then

ψ∗ (Aa) = Δh (yjxk) = Δh (yjxkhk)d−
〈
λ∨
k ,ωh

〉
=A′

aA
′ δa
c .

In addition we define δc := −〈λ∨
0 , ωi〉 = 1. Let I denote the vertices of Qi,t and let

εij be the exchange matrix encoded by Qi,t. The set I ′ = I −{c} consists of vertices
of Qt and Iuf consists of unfrozen vertices of Qt. We claim that for any a ∈ Iuf , we
have

∑
b∈I

εabδb = 0. (B.5)

To see this, recall that there is projection map

p : Confγβ(C)×Gm −→Confγβ(C) π−→Confγβ(B)

As in [SW19, §3], Confγβ(B) is equipped with the cluster Poission variables {X ′
a}a∈Iuf

such that

p∗ (X ′
a) =

∏
b∈I′

A′ εab

b . (B.6)

Consider the composition

p′ := Confγsiβ(C) π−→Confγsiβ(B) −→Confγβ(B)

Here the second map is rational, obtained by forgetting the flag B−1. Note that
B−1 only changes the decorations on the other flags. Therefore we have p = p′ ◦ ψ.
Therefore for a ∈ Iuf we have

p∗ (X ′
a) = ψ∗ ◦ p′ ∗ (X ′

a) = ψ∗
(∏

b∈I
Aεab

b

)
=A′ εac

c

∏
b∈I′

A′ εabδb
c A′ εab

b

=A
′
∑

b∈I
εabδb

c ·
∏
b∈I′

A′ εab

b .

Comparing it with (B.6), we arrive at the identity (B.5).
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Note that identity (B.5) satisfies the assumptions stated in Proposition A.13.
Therefore we know that there is a unique way to extend the quiver of Confγβ(C) so
that ψ becomes a quasi-cluster isomorphism onto its image. �

Example B.13. We continue from Example B.8. Consider the map φ1 : Confγβ(C)×
Gm → Confγs1β(C). Let d = A′

c be the coordinate for the Gm factor. Then in the
preimage,

A0 A1 A2

d−α∨
1 .A0 d−α∨

1 −α∨
2 .A1 d−α∨

2 .A2 dα
∨
2 .A3 dα

∨
1 +α∨

2 .A4

s2 s1

s2 s1 s2 s1

The change of decorations gives rise the the pull-backs φ∗
1 (Ac) = A′

c and φ∗
1 (Aa) =

A′
ad

δa =A′
aA

′ δa
c for a �= c. The integers δa assigned to the vertices a are as follows.

1 1 −1 1

2 −2 22nd

1st 1 0 0 −1

1 1 −1

Using these δa we conclude that the cluster structure on Confγβ(C)×Gm is given by
the following quiver, where the right most vertex is the extra frozen vertex c.

1 −1 1

2 −2 22nd

1st • • �

• • �

�
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