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AUGMENTATIONS, FILLINGS, AND CLUSTERS

HoncHAO GAO, LINHUI SHEN, AND DAPING WENG

Abstract. We investigate positive braid Legendrian links via a Floer-theoretic ap-
proach and prove that their augmentation varieties are cluster Ko (aka. A-) vari-
eties. Using the exact Lagrangian cobordisms of Legendrian links in Ekholm et al.
(J. Eur. Math. Soc. 18(11):2627-2689, 2016), we prove that a large family of exact
Lagrangian fillings of positive braid Legendrian links correspond to cluster seeds of
their augmentation varieties. We solve the infinite-filling problem for positive braid
Legendrian links; i.e., whenever a positive braid Legendrian link is not of type ADE,
it admits infinitely many exact Lagrangian fillings up to Hamiltonian isotopy.
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1 Introduction

This paper is the first attempt to relate Floer theory and cluster algebras in the
context of contact manifolds and Legendrian knots. Starting from [S+19], and to-
gether with subsequent [SW19, CZ20], the relations between microlocal sheaf theory
and cluster Poisson (aka X')-varieties have been studied for several classes of Legen-
drian links. It is natural to ask whether the cluster structure exists on the celebrated
Floer-theoretic invariant, namely the Chekanov-Eliashberg dga and its augmenta-
tions [Che02]. Despite the famous augmentation-sheaf correspondence for Legendrian
links [L+15], which suggests a similar cluster structure on the augmentation moduli,
it is to our surprise that we obtain an intrinsic cluster Ky (aka A)-structure on the
augmentation variety of any positive braid Legendrian link. This paper further uti-
lizes this new cluster Ky structure to build invariants for exact Lagrangian fillings.
As an application, we prove that positive braids that do not underline finite type
quivers admit infinitely many Lagrangian fillings. To our knowledge, this is by far
the largest family of Legendrian links satisfying the infinite filling properties.

1.1 Context. In the standard contact three-space (R3¢, = kera) with o =
dz — ydx, a Legendrian link A is a smooth one-dimensional submanifold where
alp = 0. The Chekanov-Eliashberg differential graded algebra (CE dga) is the first
non-classical algebraic invariant for Legendrian links [Che02]. An exact Lagrangian
cobordism between Legendrian links functorially induces an algebraic map between
the dgas [EHK16]. Following this functoriality, each exact Lagrangian filling L gives
rise to an embedding of the decorated GL;-character variety' on L into the augmen-
tation variety. The images of these morphisms are invariants that distinguish exact
Lagrangian fillings.

Cluster algebras are a class of commutative algebras introduced by Fomin and
Zelevinsky [FZ02]. Since its inception, the theory of cluster algebras has found
tremendous applications in diverse areas of mathematics and physics. Fock and Gon-
charov [FG09] introduce a pair (2, ) of log Calabi-Yau varieties, which are a ge-
ometric enrichment of the cluster algebras. The variety 2~ carries a natural Poisson
structure and is referred to as a cluster Poisson variety. The variety </ carries a
canonical class in the Milnor Ky group of its function field and is referred to as a
cluster Ko wvariety. See Sect. 6.2 of loc.cit. for the construction of such a canonical
class. The duality between &/ and 2", conjectured by Fock and Goncharov, has been
realized by Gross, Hacking, Keel, and Kontsevich [G+18] under the framework of
scattering diagrams and mirror symmetry. Despite such a duality, the geometries

! Here the decoration means a specific trivialization of the line bundle near the boundary of the
surface. See Definition 3.6 for a precise description.
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of 2 and .« are rather different. For the convenience of the reader, we recall the
definition of cluster varieties in Appendix A.

This paper focuses on certain representatives of positive braid Legendrian links
with maximum Thurston-Bennequin (tb) numbers. It follows from [EV18, Theorem
3.4] that a positive braid has a unique Legendrian representative with maximal tb.
We include a construction of these Legendrian representatives in Sect. 2.1. We prove
that their augmentation varieties carry natural cluster Ky structures. We consider a
large family of exact Lagrangian fillings and prove that each filling induces a cluster
seed of the augmentation variety. As an application, we prove that all positive braid
Legendrian links, except those underlying ADE Dynkin-type quivers, admit infinitely
many non-Hamiltonian isotopic exact Lagrangian fillings.

The classification of exact Lagrangian fillings is a central but rather difficult
problem. Except for the unique filling for unknot [EP96], most subsequent works
focus on giving a lower bound on the number of distinct fillings. The existence of
infinitely many exact Lagrangian fillings was not known until the year 2020. Within
the year, several methods emerged concurrently and each successfully solved this
problem for a certain class. Two proceeding results are:

— Casals-Gao [CG20] proved that any positive torus (n,m)-link, (n,m) # (2,m),
(3,3), (3,4), and (3,5), admits infinitely many fillings. The proof uses Legen-
drian loops, microlocal sheaves, and cluster structures on Grassmannians.

— Casals-Zaslow [CZ20] proved that the rainbow closure of a class of 3-strand
positive braids admit infinitely many fillings. The proof uses Legendrian weaves
and cluster Poisson structures on moduli space of microlocal sheaves.

The present paper investigates the infinite-filling problem for all positive braid clo-
sures, covering all examples of [CG20, CZ20] as special cases.

This paper is based on a Floer theoretical approach. In particular, our proof
uses the Ekholm-Honda-Kélman (EHK) functor [EHK16] instead of the microlocal
sheaves in [CG20, CZ20]. In this paper, we show for the first time that the aug-
mentation varieties are cluster Ko varieties. It is an interesting direction for future
research to compare with cluster structures arising from sheaves.

We would like to remark that, shortly after our result, Casals-Ng [CN21] proved
the existence of infinitely many fillings for certain Legendrian links that are not
positive braid closures. They use holomorphic curves but without cluster theory.

1.2 Cluster K5 structures on augmentation varieties. For any positive braid
word /3, we construct a quiver ()3 via the following three-step procedure:

Step 1 Plot 3 on R? horizontally. Put a vertex in each region of the diagram
sandwiched by strands (including the leftmost and the rightmost “half-
open” regions).
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Figure 1: An Eg quiver with two frozen vertices.

Step 2 At each crossing, draw the following arrow pattern among neighboring
vertices (dashed arrows are of weight 1/2):

Step 3 Sum up the arrows between each pair of vertices. Freeze the vertices in the
rightmost regions. Delete the leftmost vertices and their incident arrows.

EXAMPLE 1.1. Fig. 1 is a positive braid word 3 = s$s2s3s9 and its quiver Qg.

Let A be the positive braid Legendrian link associated to 8 as in Sect. 2.1. Let
Aug (Ag) be the augmentation variety of Ag defined over an algebraically closed field
F of characteristic 2 as in Definition 2.4. Our first main result is as follows.

Theorem 1.2 (Theorem 2.12, Corollary 3.21, and Proposition 3.24). The augmenta-
tion variety Aug(Ag) is a cluster Ko variety associated to the quiver Q. The degree

zero Reeb chords of Ag are cluster variables that generate the coordinate ring of
Aug(Ag).

REMARK 1.3. As defined in Definition A.1, a cluster Ky variety is the spectrum of
an upper cluster algebra. Up to codimension 2, each cluster Ky variety is obtained by
gluing a collection of algebraic tori. The transition maps between different algebraic
tori are given by particular relations called cluster mutations.

REMARK 1.4. Associated with each quiver is a cluster algebra A generated by cluster
variables, and an upper cluster algebra U that is the intersection of the ring of
Laurent polynomials for each seed [BFZ05]. The Laurent phenomenon of cluster
variables implies that A C U/, but in general A # U. The problem when A=U is
a fundamental question in cluster theory. See [GLS11] for its application on the
quantization of cluster algebras. As an application of Theorem 1.2, the upper cluster
algebra U associated to the quiver Qg coincides the coordinate ring O(Aug(Ag)).
Meanwhile, the O(Aug(Ag)) is generated by the Reeb chords as cluster variables.
Therefore we get A =U for the quiver (g.

1.3 From fillings to cluster seeds. Our second main result establishes a nat-
ural correspondence between a large family of exact Lagrangian fillings, which we
call “admissible fillings”, of positive braid closures and the seeds of the cluster Ko
structure on their augmentation varieties.
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DEFINITION 1.5. An exact Lagrangian cobordism L between positive braid Legen-
drian links is admissible if it is a concatenation of the following exact Lagrangian
cobordisms:

(1) saddle cobordism, which resolves a crossing inside the positive braid;

(2) braid move, also known as a Legendrian Reidemeister III move;

(3) cyclic rotation, which changes Ass, <> Ag,5 for any positive braid ¢ and any
elementary braid s;;

(4) minimum cobordism, which is the unique filling of a maximal tb unknot.

An admissible filling of Ag is an admissible cobordism from the empty set to Ag.

We refer readers to Sect. 3.1 for the definition of exact Lagrangian cobordisms
and fillings. A notable property of exact Lagrangian cobordisms is that they are
directed. While a smooth cobordism surface can be reversed to interchange the two
end, the same operation does not apply to the exact Lagrangian setting due to
the directionality of the Liouville vector field, which is d; in the symplectization
(Ry x Riyz, d(e'a)). For instance, a Lagrangian cobordism L:A_ — A, must satisfy
th(Ay) — tb(A—) = —x(L), where tb(A) is the Thurston-Bennequin number of the
Legendrian A and x(L) is the Euler characteristic of the surface L [Bapl0]. Even in
the case of Lagrangian concordance, which means the cobordism surface is smoothly
a union of cylinders, the relation is still not symmetric [Bap15].

Let L be an exact Lagrangian filling of A with a collection 7 of marked points
on A. Following Fock and Goncharov [FG06], we consider the moduli space </ (L, T)
of decorated GL;j-local systems (See Definition 3.6). Applying the Ekholm-Honda-
Kélméan functor, we obtain an open embedding

arp: (L, T)— Aug(Ag).
where o7 (L, T) is isomorphic to an algebraic torus.

Theorem 1.6 (Theorem 3.20 and Corollary 3.22). For any admissible filling L of
Ag, the image of ay, is an open torus which determines a cluster seed of Aug(Ag).
Admissible fillings determining distinct cluster seeds are non-Hamiltonian isotopic.

Theorem 1.6 gives a new method to distinguish non-Hamiltonian isotopic ad-
missible fillings of positive braid closures via computing their corresponding cluster
seeds. This theorem generalizes the methods in [EHK16, Pan17], which use the set
of augmentations induced from a filling as an invariant and discovered a Catalan
number worth of fillings for torus (2,7n) links. A different approach using sheaves
can be found in [S+19]. The set of augmentations is the chart in the corresponding
cluster seed.

The machinery of cluster theory allows us to develop an efficient method to com-
pute the induced toric chart of augmentations from an admissible filling. Instead
of keeping track of holomorphic curves bounded by the filling (following the recipe
of [EHK16]), one can compute the sequence of cluster mutations, find the induced
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cluster variables, and their non-vanishing loci give the desired result. We summa-
rize the algorithm in Sect. 3.4 and build a program to implement the computation.
Every cluster seed admits a complete combinatorial invariant called the g-matrix.
Our algorithm presents an efficient method to explicitly compute the g-matrix as an
invariant for admissible fillings.

REMARK 1.7. The CE dga is defined over Zs with contributions from marked points.
Theorems 1.2 and 1.6 can be enhanced to characteristic 0 by including the spin struc-
ture as suggested by [ENS02, Kar20]. Nevertheless, by Proposition A.3, the cluster
structure in characteristic 0 will not distinguish more fillings than characteristic 2.
For the purpose of building an invariant for Lagrangian fillings from cluster theory,
it is enough to consider characteristic 2. Meanwhile, for Proposition A.3 to apply,
augmentations must be defined over an algebraically closed field.

1.4 Finite type classifications. Recall that an ADE quiver is a directed graph
whose underlying graph is one of the ADE Dynkin diagrams. The quivers Q)3 for
different words f3 of [(] are mutation equivalent, leading us to the following definition.

DEFINITION 1.8. A positive braid [f] is of finite type if the unfrozen part of Qg is
mutation equivalent to a disjoint union of ADE quivers for one (equivalently any)
word (3 of [B]. Otherwise, [3] is of infinite type.

DEFINITION 1.9. The Legendrian links Ag associated with the positive braid words
5 in the following table are called the standard ADE links.

+ +
Brs, Br3
A, D, Es E7 Eg
r+1 r—2 2 3 3 4 3 5 3

REMARK 1.10. The underlying smooth links of the above standard Legendrian ADE
links are the same as links of certain plane curves singularities as in [Arn76]. Namely,
they coincide with the intersections B(0,0) N V¢, where V7 is the vanishing locus of
f(x,y):C? — C given by

A4y Deia?y+yl, Eg:af+yt, Erid’4ayd, B2+l
Another topological description of this class is prime positive braid links with
positive-definite symmetric Seifert forms [Baal3].

The next result provides several characterizations of positive braids of finite type.

Theorem 1.11. Let Ag be the Legendrian link associated with a positive braid 3. The
following statements are equivalent.

(1) [B] is of finite type.
(2) Aug(Ag) has a finite number of cluster seeds.
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(3) Ag is Legendrian isotopic to a split union of unknots and connect sums of
standard ADE links.
4) The symmetric Seifert form of Ag is positive definite.
B

Proof. The equivalence “(1) < (2)” follows from the finite classification of cluster
algebras [FZ03] and Theorem 1.2. The implications “(3) = (4) = (1)” are a result
of [Baal3]. We prove “(1) = (3)” in Theorem 4.25. O

1.5 Infinitely many exact Lagrangian fillings. Our last main result is as follows.

Theorem 1.12 (Theorem 4.8). If [3] is of infinite type, then Ag admits infinitely
many non-Hamiltonian isotopic exact Lagrangian fillings.

The proof of Theorem 1.12 uses the aperiodicity of some cluster Donaldson-
Thomas transformations [SW19] and a trichotomy of the frieze variety [L+420]. The
DT transformation is not generally aperiodic (Remark 4.4), and we employ sophis-
ticated combinatorial arguments to solve the problem.

As a topological consequence, this theorem yields that most positive braid links
admit infinitely many non-Hamiltonian isotopic Lagrangian fillings. Hence it is rea-
sonable to conjecture that Legendrian links with infinitely many fillings exist more
broadly than those with finitely many fillings, whenever fillings are unobstructed.
This theorem also motivates and proves a major class in the conjecture of ADE clas-
sification of Lagrangian fillings proposed in a later paper by Casals [Cas20]. It also
provides interesting examples of concordance monoids, group of Legendrian loops,
and Weinstein manifolds, following the framework of [CG20].

2 Cluster K5 structure on augmentation varieties

2.1 Positive braid Legendrian links. Artin’s braid group on n strands is
+1 +1 ol
Bro={(s1",...,8,_1 | 8iSi+15; = Si415:Si+1, and sjs = sgs; if [j — k| > 2).

The positive braid semigroup Br, is the sub-semigroup inside Br, generated by the
si’s. The positive braid wo = (s1---Sp—1)(S1-*-Sp—2) - (s152)(s1) is called the half
twist, and its square wg is the full twist. Under the quotient map from Br, to the
symmetric group S,,, wy becomes the element of the longest Coxeter length.

We denote a word of a positive braid by [, and its equivalence class by [3].
Every positive braid word § uniquely determines a Legendrian link Ag with maximal
Thurston-Bennequin number in its smooth isotopy class [EV18, Theorem 3.4]. The
Legendrian Ag can be obtained via a satellite construction, that is, the braid closure
of woBwy satellited along the standard unknot, |weBwo| C J*(S*) C R3, produces the
Legendrian embedding Ag. Alternatively, the front projection of As is given via the
rainbow closure construction [STZ17]. We apply Ng’s resolution [Ng03, Proposition
2.2] to obtain its Lagrangian projection 7 (Ag) as follows, where the left cusps are
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Figure 2:  ~» . Ng’s resolution.

smoothed out and the right cusps are resolved to a crossing attaching a teardrop
loop. Note that the Lagrangian projection is not drawn in scale — the teardrop loop
should be drawn much larger, so that the signed area on the left of a resolved crossing
equals to the area of the teardrop.

2.2 Augmentation varieties for positive braid Legendrian links. In this section
we compute the CE dga A (Ag) and the augmentation variety Aug(Ag) for a positive
braid word f = s;, ---s;, with n strands. We refer the readers to [EN18] for the
definition of CE dga for general Legendrians. For postive braids, Kélman [Kal05] had
explicitly computed the dga with Zs-coefficient. We recover the computation with a
different method using the boarded dga in [Siv11]. The coefficients are enhanced to
include contributions from marked points.

Let 71,(Ag) be the Lagrangian projection of Ag as in Fig. 2. The Reeb chords of
A correspond to crossings in 7, (Ag). We equip Ag with a binary Maslov potential
{0,1}, which determines degrees for the Reeb chords. The crossings in the braid have
degree 0 and are denoted by bq,...,b;. The crossings located at resolved right cusps
have degree 1 and are denoted by aj,...,a,. We decorate Ag by placing a marked
point ¢; next to each crossing a;, located on the resolved teardrop loop. Let T be
the set of marked points. The dga A(Ag) is generated by the Reeb chords and the
formal variables ¢;'. The non-trivial differentials of A(Ag) are the day’s, which we
shall describe.

For any noncommutative formal variable b and 1 <7 < n, we define an n x n
matrix

-

1

where the 2 x 2 sub-matrix sits at the ith and (i + 1)st rows and columns. For
reference, this matrix is called the path matrix in [Kal06]. For 8 =s;, ...s;,, let us set

MW :=7Z; (by)---Z;, (by). Define the matrices M*) = (Mi(jkﬂ)) recursively by

k<i,j<n

MY =M+ M. (2.2)
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PROPOSITION 2.1. The differential of the CE-dga A(Ag) has the following compact
form:

day =M+t Vi<k<n.

Proof. Borrowing the idea of the bordered dga [Siv11], we consider the diagram

Let us label a dashed line between the braid region and the right cusps so that each
disk contributing to the differential can be divided into two parts. On the left, each
disk boundary will travel along a strand on the top, making many or no turns in the
braid region, and then hit the dashed line. In general, the disk configuration near a
resolved right cusp can be one of the following:

el ol -

/ e / /

In our setup, only the first and the last configurations occur.

Let us start with the left part. Suppose the (i,j)-th entry of M counts disks
that are bounded by top level 7 and bottom level j near the dashed line. It can be
computed inductively on crossings from left to right. Before the braiding region, there
is a unique pairing between the strands, giving the identity matrix. For an arbitrary
crossing ix, let N (resp. N') be the disk counting matrix before (resp. after) scanning
across 7. Then

~ N +1;=Ni,j due to (a); and N], ; = Ny, jbr + N, 41,5 due to (b) and (c).
Jth Tty jth =t jth =t

Zkth ] Zkth 1 Zkth 1
Zk+1 St >< (’Lk—i-l)st ><: (zk—l—l)st ><:

In other words, N’ = N Z;, (bs). By induction, we have M = M) = Z; (by)--- Z;, (by).



GAFA AUGMENTATIONS, FILLINGS, AND CLUSTERS 807

Similarly, we place a dashed line between each pair of right cusps. Let M®*) be the
matrix associated to the dashed line between a;_; and a. There is no disk between
any two top strands or between any two bottom strands near M) dashed line, and
will be inductively true for any other dashed lines.

ith ———— ith ————
kth kth

>©tk .@tk
kth kth
jth ———— jth ————

Enumerating the two local situations above, we have
k+1 k k k
M( ) _ M( )+Mi(k)t M( )

We are ready to compute day. It counts two types of disks. One consists of
those disks that hit the dashed line labeled by M®) and the other one consists
of only one disk given by the teardrop loop with no negative punctures. Hence,
dar = MY + 11 0

Gelfand and Retakh [GR91] introduced the quasi-determinant as a replacement
for the determinant for matrices with noncommutative entries. Let Mllzz,’::ff be
the k x k submatrix of M = M® consisting of rows 1,2,...,k — 1,7 and columns
1,2,...,k — 1,7. The next proposition establishes a connection between Mi(f) and
the quasi-determinants.

ProrosITION 2.2. If dap =0 for 1 <k <mn, then Mi(f) 1s the quasi-determinant
12,0 k=1,5
M1 2,k 15 i

-1
Proof. The assumption day = 0 implies that ¢, = — (M é’,z)) . Then (2.2) becomes

L

k41 k k B\"L, (&
MO = — P (aa) T .

, -1

Inductively, the RHS equals )Mllfjllf = ‘Mll ’,f:ll’zk " M) ,f:lllf‘kk X
’ ’ ] e ’ (3 e ’

‘M 17’ ,f 11 ,ﬁ . which yields ‘M L ,“] . by the Sylvester’s identity for quasi-

determinants (Proposition 1.5 of [GRI1]). O

The dga A(Ag) is concentrated at non-negative degrees. Its homology Hy (A (Ag))
is a non-commutative algebra. Let us write M}, := M ,gz) for short. The following result
is a direct consequence of Propositions 2.1 and 2.2.

COROLLARY 2.3. As non-commutative algebras over Zs, we have
Zz<b1,...,bl,tf1,...,t§1>
-1 :

I

Hy (A(Ag))
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Now let us fix an algebraic closed field F of characteristic 2.

DEFINITION 2.4. An augmentation of A(Ag) is a unital dga homomorphism
e:(A(Ag),0) — (F,0).

The augmentation variety Aug(Ag) is the moduli space of augmentations of A (Ag).

REMARK 2.5. The augmentation variety is different from the moduli stack of ob-
jects in the unital augmentation category introduced in [L+15]. Therefore it is not
isomorphic to the moduli space of microlocal rank one sheaves associated to A in
general.

LEMMA 2.6. For any positive braid word 3, let A(Ag)¢ be the abelianization of A(Ag).
Then Aug(A(Ag)) is an affine variety whose coordinate ring is Hy (A(Ag)¢,F).

Proof. By definition, the augmentations e preserve the degree. In particular, (a) =0
for any generator a of non-zero degree. Hence, ¢ is uniquely determined by its evalu-
ations at the degree zero Reeb chords and the formal variables, and the evaluations
are subject to the conditions € o d(a) = 0 for any degree 1 Reeb chord a. As a con-
sequence, the augmentation varieties are affine varieties.

The field F is commutative. Thus, the augmentations for A(Ag) and A(Ag)°
coincide. Let 0; be the i-th degree of 0. Since A(Ag)° is concentrated in non-
negative degrees, kerdy is the free algebra generated by the formal variables and
the degree 0 Reeb chords, and im0; is an ideal generated by (da) for all degree
1 Reeb chords a. Hence, Hy(A(Ag)%,F) = kerdy/im0; is the coordinate ring of
Aug(A(Ag)). O

DEFINITION 2.7. Let N be an n X n matrix over F. The mth principal minor of N,
denoted by A,,(N), is the determinant of the m x m submatrix of N formed by the
first m rows and columns.

PROPOSITION 2.8. The coordinate ring of Aug(Ag) is

F[bl,...,bl,tlﬂ,...,tﬂ/z,

where the ideal T is generated by

A (Zi, (b)) ... Zi, (b)) = ﬁt,;l, 1<m<n. (2.3)
k=1

The Aug(Ag) is the non-vanishing locus of the polynomial [],_4 Ap (Zil(bl)...

----- "

REMARK 2.9. Note that the Reeb chords b; can be regarded as coordinate functions
on Aug(Ag). We call them the Reeb coordinates.
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Proof. By Lemma 2.6, we have Aug (Ag) = Spec Ho(A(Ag)“,F), where

Hy (A(Ap)°,F) = F[bi,til} / (0°(ax) =0).

J

Therefore the defining equations of Aug (Ag) are 0°(ay) =0 for k=1,...,n.
In the commutative setting, the quasi-determinant reduces to ratio of determi-
nants

det N
det N’

’N’ij = (‘UHJ (2.4)
where N¥ is the minor that results from deleting row i and column j from N.
We ignore the signs in the setting of characteristic 2. Using Lemma 2.2 and (2.4)
inductively, 0°(ax) =0 is equivalent to (2.3), which concludes the proof of the first
part.

Note that tjil are invertible. Using (2.3) recursively, each t; is can be expressed
in terms of principal minors, and hence in terms of the coordinates b1,...,b;. After
eliminating all the formal variables tfl, we end up with the desired equation. O

COROLLARY 2.10. The augmentation variety Aug (Ag) is smooth.
Proof. By Proposition 2.8, it is the non-vanishing locus of a polynomial function. [
COROLLARY 2.11. Any augmentation € on A(Ag) satisfies [[}_, € (ty) =1.

Proof. Take m =n in (2.3). Then [[}_,t; ' = A, (M) = det(M). Since each commu-
tative Z;, (by) has determinant 1, we have det(M) = 1. Therefore [[}_,t,=1. O

2.3 Cluster K, structures on augmentation varieties. A double Bott-Samelson

cell Conf§(C) is a cluster Ky variety introduced in [SW19]. We recall its definition and

cluster structure in Appendix B. In this section, we construct a natural isomorphism

between Aug (Ag) and Conf3(C), which endows Aug (Ag) with a cluster Ky structure.
By Proposition B.5, Confj(C) is a scheme over Z. We have

Theorem 2.12. Let G=SL,, and let B be a positive braid word of n strands. After a
base-change of Conf§(C) to IF, there is a natural isomorphism as F-varieties:

Aug (Ag) - Confj(C).

The pull-back of the cluster Ky structure on Conf§(C) equips Aug(Ag) with a cluster
Ky structure.

Proof. Let (b1,...,b;) be the Reeb coordinates of Aug(Ag) and let (¢i,...,q) be
the affine coordinates of Conf%(C) as in Proposition B.5. Let v be the isomorphism
of the ambient affine spaces Fj , and F. such that g =b; for 1 <k <.
Since F is of characteristic 2, the matrix Z;, (bx) in (2.1) equals R;, (gx) in (B.1).
Hence the non-vanishing locus of [, <,«,, Ai (Ri, (¢1) - - - Ri, (q1)) coincides with that of
[Ti<icn Ai(Zi, (b1)--- Z;, (br)). By Propositions B.5 and 2.8, these two non-vanishing
loci are Conf}(C) and Aug (Ag) respectively. Therefore « restricts to an isomorphism
between the two [F-varieties. O



810 H. GAO ET AL. GAFA
3 From fillings to clusters

3.1 Exact Lagrangian cobordisms and enhanced EHK functors. Ekholm,
Honda, and Kalman [EHK16] introduced a contravariant functor from the exact
Lagrangian cobordism category of Legendrian links to the category of dga’s. In this
section, we discuss an enhancement of the EHK functor that includes decorations on
exact Lagrangian cobordisms.

Recall the standard contact Riyz with the contact 1-form o = dz — ydz. Let

Rf,,. =Ry x RS, _ be its symplectization with the symplectic form w = d (e'a).

tryz

DEFINITION 3.1. Let Ay and A_ be two Legendrian links in R3 . An ezact La-
grangian cobordism L :A_ — A, is an embedded oriented Lagrangian submanifold

L of R{,,. such that for some N >0,

(1) LN((—00,—N] x R?) = (—00, —N] x A_ and LN ([N, 00) x R3) =[N, 00) x A;
(2) there is a function f of L, constant on (—oo, —N| x A_ and [N, 00) X A4, such
that df = w|r.

An exact Lagrangian filling of A is an exact Lagrangian cobordism from () to A. An
exact Lagrangian concordance is an exact Lagrangian cobordism that is topologically
a cylinder.

Exact Lagrangian fillings are central objects in contact and symplectic topology
[NZ12, Nad09, Syl19, GPS18, EL17]. These fillings induce augmentations [EGH00,
EN18]. Many, but not all, augmentations can be obtained from fillings. Note that
the exact fillings of a Legendrian link have the same genus [Bapl0]. It is expected
that their induced charts of augmentations have the same dimension.

A t-minimum on an exact Lagrangian cobordism L is a point which achieves a
local minimum for the coordinate function ¢ restricted on L. Denote by T, the set
of t-minima. Up to a Morse type perturbation, we will always assume that L has
finitely many isolated t-minima in the rest of this paper.

DEFINITION 3.2. Let (Ay,7;) and (A_,7_) be two decorated Legendrian links.
A decorated exact Lagrangian cobordism

(L’P> : (A*’71> - (A+’7jr)

is an exact Lagrangian cobordism L:A_ — Ay, together with a decoration P, that
is, a set of generic oriented marked curves P = {p1,...,pn} on L, such that

(1) each p; is either a closed 1-cycle or an oriented curve that begins and ends at
7-+ U7 u Tmin;

(2) intersections between these marked curves are transverse and isolated,;

(3) each marked point in 73 U 7_ is the restriction of a unique marked curve p;
to AL WAL

Recall that the dga A (A) of a decorated Legendrian (A, 7) is a non-commutative
Zy-algebra freely generated by the set of Reeb chords R and formal variables 7+,
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Given a decorated exact Lagrangian cobordism (L,P): (A_,7-) — (A4+,7T+), we de-
fine a pair of non-commutative Zs-algebras A (A4, P), each of which is generated
by the respective set of Reeb chords R+ and the formal variables P*!, modulo the
following relations:

(1) pipj =pjpi if p; and p; intersect;

(2) near each t-minimum 7 of L, let v be a small oriented loop around 7, inter-
secting a collection of oriented marked curves cyclically, say pi,,Di,,---,Di;
then

i1 i2 il

<%Pn>p<wi2> . p<”’”> =1 (3.1)

where (-,-) denotes the intersection number with respect to the orientation of

L.

The degrees of the Reeb chord generators of A (AL,P) are the same as those of
A(A+). The degree of p! is set to be 0. It makes A (A, P) graded Z,-algebras.
We further define a pair of graded algebra homomorphisms

9L A(As) = A(Ax, P),

each of which sends the Reeb chord generators to themselves and sends the marked
points t to

(1) = {pil if p starts from ¢,

pt! if p ends at t.

Let 04 be the differentials on A(A4). By defining the differentials on A (Ay,P) to
be ¢% o0+, we make A (A4, P) into a pair of dga’s over Z,.

DEFINITION 3.3. We call A (A4, P) the enhanced CE dga’s for Ay with respect to
the decorated exact Lagrangian cobordism (L, P).

REMARK 3.4. For an exact Lagrangian concordance L:A_ — A, coming from a
Legendrian isotopy, with a decoration P coming from the trace of marked points,
the dga homomorphisms ¢* are isomorphisms between A (A1) and A (AL, P).

Two decorations P and P’ on the same exact Lagrangian cobordism L are equiv-
alent if the two sets of oriented marked curves can be related by a sequence of path
homotopy and orientation reversing. Note that if p € P and p’ € P’ have the same
underlying path but opposite orientation, the change of variable p <+ p'~! gives rise
to a natural dga isomorphism A (A1, P) = A (AL, P’). Therefore, for the rest of this
paper, we no longer distinguish equivalent decorations on the same exact Lagrangian
cobordism.

Given two decorated exact Lagrangian cobordisms

(Lo1,Po1) (L12,P12)
v, A,

(Ao, To) (A1, T7) (A2, T2),
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we can compose them by concatenation (possibly with orientation reversing on some

elements of the decorations) and get a decorated exact Lagrangian cobordism
(L')P) : (A0776) — (A277-2) .

In particular, the resulting decoration P is unique up to equivalence of decorations.

Let us now describe the enhancement of the EHK functor for the enhanced CE
dga.

Let (L,P):(A_,7-) = (A+,7+) be a decorated exact Lagrangian cobordism. Let
J be a generic compatible tame almost complex structure on the symplectization
]Rf}zyz. For a € R4 and by,...,b, € R_, we define the moduli space M (a;by,...,b,)
to be the set of bi-holomorphic equivalence classes of J-holomorphic curves, each
with a positive puncture asymptotic to the strip over the Reeb chord a at 400 and
a negative puncture asymptotic to the strip over the Reeb chord b; at —oo for each
b;, appearing in the counterclockwise order along the boundary of the curve. For
generic J, the moduli space M (a,bs,...,b,) is a manifold of dimension |a| — >, |b;]
(see [EHK16, Lemma 3.7]).

For any u € M (a;by,...,b,), the image of the disk boundary du is the disjoint

union of n + 1 oriented paths 7g,...,n, in the Lagrangian surface L. Suppose the
path 7; crosses oriented marked curves p;,,pj,,...,p;, in this particular order. We
define

L <7]iapj > <77i7Pj > <77ivp1' >
pm)i=p P p ) L\ g (3.2)

w(u) :=p(10) b1p (M1) b2 -+ bup (M) -

Following [EHK16], we define the dga homomorphism &} : A(A;,P) - A(A_,P)
such that

¢ (a) = Z Z w(u) VaeRy4,

b1, bn ER - u€EM(a;bi,...,byn)
dim M(a;b1,...,bn)=0

and
®7(p)=p VpeP

If (L,P): (Ao, To) — (Aa, T3) is the composition of (L1, Po1) : (Ao, To) — (A1,71) and
(L12,P12) : (A1,T1) — (A2, T2), then the functorial homomorphisms can be composed
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via the following commutative diagram:

A(Asg) A(Ar) A(A2)

l o / \ ®; \L
A(A2,Pra) — A(A1,Pr12) A(A1,Por) — A(Ao,Por)
l ~. . |
A(As, P) — A(A1,P) _ A(Ag, P)
o

The dga homomorphism ®7 satisfies the following important property.

Theorem 3.5 ([EHK16, Lemma 3.13]). Suppose L and L' are Hamiltonian isotopic
exact Lagrangian cobordisms from (A_,T_) to (A4, T+) and their decorations can be
identified via the underlying isotopy (up to equivalence of decorations). Denote both
decorations by P. Then the Hamiltonian isotopy induces a dga homotopy &7 = ®7,.

Let (L,P) be a decorated exact Lagrangian filling of A. Dualizing the homomor-
phism

AN) S A(A,P) 2 A0, P),
we obtain a morphism of algebraic varieties
arp=dyo®r: Aug(D,P) 2L Aug (A, P) 5 Aug (A). (3.3)

A decoration P is sufficient if its complement L — P is a disjoint union of simply-
connected regions. If each component of A contains at least one marked point, then
such a sufficient decoration P exists. We study the image of o, p for sufficient P.

DEFINITION 3.6. Let L be a compact oriented surface with boundary. Let T be
a collection of marked points on the boundary of L. We assume that each bound-
ary component contains at least one marked point. The decorated character variety

o/ (L, T) parametrizes the data (£, {v;}), where

— L is a line bundle over L with flat connection,
— for every boundary interval ¢ in 0L — T, the data v; is a nontrivial flat section
of L over 1.

The space </ (L,T) is a special case of the moduli space of decorated G-local
systems introduced by Fock and Goncharov in [FGO06]. Let [¢] be the homotopy
class of a oriented curve connecting two boundary components j and k. For each
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(L,{vi}) € &/(L,T), we parallel transport the section v; along [c|, obtaining a flat
section v; over k. It gives rise to a function gjq of @/ (L,T) such that

Vg

el = 7
J

Now suppose L is an exact Lagrangian filling of a Legendrian link A. Let T be
a collection of marked points on A, with each component of A contains at least one
marked point.

LEMMA 3.7. There is natural morphism
m:Aug(0,P) — o/ (L,T).
If P is sufficient, then 7 is surjective.

Proof. Following the proof of Lemma 3.15, Aug(), P) is naturally isomorphic to the
moduli space of trivilizations of GLj-local systems on L, with a choice of a vector
on each connected region of L — P. By forgetting vectors assigned to regions that
are not connected to boundaries of L, we obtain a morphism 7 from Aug(,P) to
o/ (L,T). By the definition of sufficiency of P, the map = is surjective. O

LEMMA 3.8. For every exact Lagrangian filling L of A, there is a natural morphism
kr: @ (L, T) — Aug(A).
The composition ko m coincides with the morphism aypp in (3.3).

Proof. Let a be a Reeb chord of A with degree 0. Recall the moduli space M (a)
of J-holomorphic disks such that the boundary of each disk v € M(a) is a together
with a path ¢(u) in L. We set

@)= > G (3.4)

ueEM(a)

For every marked point ¢ € T, let ¢(¢) be the unique path connecting the neighbored
boundary intervals of ¢ such that c(t) can be retracted to t. We set

€(t) = gle(r))- (3.5)

By definition, for each (L,{v;}) € &/(L,T), its image under (3.4) and (3.5) is an
augmentation of A, which gives rise to the morphism . The identity ap om =g p
follows by a comparison of definitions. O

As a consequence of Lemma 3.7 and 3.8, when P is sufficient, the image of oy, p
coincides with the image of kp. In this case, the image, denoted by Im(ay), is
independent of the sufficient decoration P chosen. Combining with Theorem 3.5, we
get

COROLLARY 3.9. Suppose the exact Lagrangian fillings L and L' are Hamiltonian
isotopic, then Im(ay) =Im(ay/).
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front projection Lagrangian projection

Figure 3: Saddle Cobordism.

3.2 EHK functorial morphisms for admissible cobordisms. In this section, we
present explicit computations of the EHK morphisms associated with four basic
types of exact Lagrangian cobordisms, i.e., saddle cobordisms, cyclic rotations, braid
moves, and minimum cobordisms, for positive braid Legendrian links. Compositions
of such cobordisms are called admissible cobordisms. An admissible cobordism from
0 to A is called an admissible filling.

(I) Saddle Cobordism. Let (A4, 7.) be a decorated Legendrian link. Let b be a
contractible Reeb chord as in Definition 6.12 of [EHK16]. As in Fig. 3, we contract
b via a saddle cobordism S, obtaining a new Legendrian link A_. The holomorphic
disk, represented by the gradient flow tree traced out by the contraction of b, is called
the basic disk associated with b and denoted by wup.

We decorate a saddle cobordism S as follows. First, each marked point on A
traces out an oriented path that goes from A, to A_. Second, the unstable manifold
of the saddle defines a new path p, both of whose endpoints are on A_, and we orient
it so that the homological intersection of du; and p is 1. The induced decoration on
A is T_ =Ty U {p*}.

When the contractible Reeb chord b is simple ([EHK16, Definition 6.15]),
the recipe for the dga homomorphism ®% stated in loc. cit. can be modified
slightly to incorporate the enhancement of coefficients. For any Reeb chord a # b,
let M (a,b;cq,...,c,) be the moduli space of holomorphic disks that map into
(foyz,Rt X A+), with one positive puncture at each of a and b, and one negative
puncture at each of the ¢;’s. We define

w2 54

3 3 w(u)’bip_l it d b,
x\1 — C1,..,cn€R ueM(d,b;cy,...,cn) /R B
(@) (d) = dimM(d,b;cf..i,Jgn):l Ml )/
0 if d=10,

where w(u) is defined in the same way as (3.2). The homomorphism ®% is
o5 = (05)" +(25)" (3.6)

REMARK 3.10. In (®%)°, b is mapped to p, whereas in (®%)!, b is substituted by
p~ 1. Their difference can be understood via holomorphic disk degeneration. Note the



816 H. GAO ET AL. GAFA

YL Ty L Pk Dk

e S
TR 73/712 ;1 TR p;;l
Ay N A A

-1
Figure 4: PRER AL Dipping and Saddle Cobordism in the Lagrangian Projection.

cusp edge in Fig. 3. The term in (®%)' comes from a negative degeneration of an
end at the cusp edge, and the term in (®%)* comes from a positive degeneration of a
switch at the cusp edge.? Their contributions with respect to the marked curve are
reciprocal.

Degree 0 Reeb chords in a positive braid Legendrian link are contractible but
not necessarily simple in general. For contractible Reeb chords that are not sim-
ple, Ekholm, Honda, and Kalman stated that these cases can be reduced to the
simple cases by implementing a collection of “dippings” [EHK16, Fig. 17], a notion
introduced in [Fuc03] and also appeared in [Sab05, FR11].

For positive braid Legendrian links, it turns out that two dippings will suffice. Fig.
4 is a depiction of local moves on the Lagrangian projection for a saddle cobordism
that pinches a degree 0 Reeb chord by, of a positive braid Legendrian link Ag. Among
the three steps, D and D! are compositions of Legendrian Reidemeister II moves,
and hence we can compute ®}, and ®3,_, by following [Che02, §8.4]; S is a simple
saddle cobordism, allowing us to employ (3.6) to compute ®%.

PROPOSITION 3.11. Let Sy be the saddle cobordism contracting the Reeb chord by of
Ag. The functorial dga homomorphism ®% : A(Ay,P) — A(A_,P) maps the degree
0 Reeb chords as follows:

b+ > up'®5 (v) ifs<k,

8b5:ZuyLv
Z‘k (bs) =9 Pk Zf s=k, (37)
bs + Z o5, (u)p,;lv if s> k.
8b5:ZuyR'u

Here the summation index 0bs = > uyrv and 0bs = > uyrv are computed on the
Lagrangian projection after the dipping D.

Proof. Chekanov [Che02] constructed a pair of tame dga isomorphisms ¢ : A (A’) —
SA(A4) and ¢_ : A(A") — SA(A_), where S denotes a stablization of the dga. By
[EHK16, Lemma 6.7, 6.8, Remark 6.9], we know that the dga homomorphisms ®7,
and ®7,_, are given by

B A(AL) < SA(ML) S AN,

2 These singular points were first introduced in [Ekh07]. Pictures are available in Fig. 3 of [E+13].
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D 1.A(A”) — SAA_) > A(A).
By following Chekanov’s recipe, we see that for any degree 0 Reeb chord b, of Ag,

bs + Z ur®h(v) if s<k,

BbSZZuyLv
>|iD (bs) =q bk if 5= k,
bs+ Y. Oh(wapy if s>k
8b5:2uva

and ®7,_; annihilates all occurrences of x7, and zg.
On the other hand, between the dipping and undipping cobordisms, we have a
simple saddle cobordism S, and by (3.6) we see that

5 (br) = pr, % (xL) =z +p; 5 (vr) =xr+py -
By composing ®7,_; o @5 0 7, we get the formula stated in the proposition. O

The recursive nature of Formula (3.7) suggests an algorithm, termed matriz scan-
ning, to compute @3, for degree 0 Reeb chords of Ag. This algorithm starts at the
kth crossing and scans the left and the right portions of the braid using two family
of matrices, which keep track of all possible incomplete disks sandwiched between
levels.

Let us describe in details the family of matrices {U(S)} , which we use to

k+1<s<l

scan the braid word s;, s;,. Bach U®) is an n xn upp_er triangular matrix,

Sipey

and he (i,7)-entry of U®) (;rounts partial disks between strands i < j right before

scanning through the crossing i;. Following this idea, we see that the initial matrix

U®+1) must have all entries 0 except the (iy, i, + 1)-entry, which is p,;l.
Inductively for s > k, we scan through the crossing i; and perform two actions.

First, we record

o (bs) = by + U

lsylst

(3.8)

Second, we define UGt in terms of U®); note that these two matrices differ only
at entries whose rows or columns are equal to i, or i, + 1:

(s+1) (s (s+1) (s) 7th
U; Uz+1+U b Uzz +1— Uzz; isth

iyis i
s+1 s s+1 s * s s ><
Ui(s,j ) = Ui(s—)ﬁ-l,j U(g—&-l J= Uis,)j + (I)Sk- (bs) Ui(s-)‘rl,j' (Z N 1]1?}&

To describe this transformation more compactly, we introduce the following tri-
angular truncations for matrices:

M;; ifi<jy _ M;; ifi>j
M= K ’ M = K ’ .
w4 { 0 otherwise, K { 0 otherwise. (3.9)
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N R e e

Figure 5: <. L2 L Cyclic Rotation.

Recall the matrix Z;, from (2.1). Then U+ is defined in terms of U®) as

U = (2, (83, (0)) U - Z,, (b)) (3.10)

The left-scanning family of matrices {L(S)}K . works similarly. Each matrix

L®) is an n x n lower triangular matrix and the (4,)-entry of L(*) counts partial
disks between strands ¢ > j right before scanning through the crossing is. The initial
matrix L*~1) has all entries 0 except that its (i + 1,4x)-entry is p, '. Inductively
for s < k, we perform the following two actions when scanning through a crossing ;.
First, we record

(I)Z‘k (b )_b +Lz 2i—l is” (311)

Second, we define L(*~1 in terms of L(®) according to

LE = (Z, (be) - L9 - Zi (@, (b)) (3.12)
Note that (3.8) and (3.11), together with ®% (bx) = px, completely describe the
image of all degree 0 Reeb chords in A under the functorial homomorphism ®% .

REMARK 3.12. For a degree 0 Reeb chord in a positive braid Legendrian link,
Proposition 3.11 yields an explicit description ®§ (bs) := > 75 (@5, )™ (bs), where
for m > 2,

2. 2 w(w)

1
ClyesCn ER 4 weM (d»b}cn;cl,...7cn)/Rm—1 br=p,,
(q)gk)m (d) = dimM(d,bZL;cl,..‘,cn):m—l (313)
if d # by,
0 if d=1by,
where M (d,bj;c1,...,¢) is the moduli space of immersed disks in (R2,,7z(A4))

with positive quadrants at bs; and b, and remaining negative quadrants, where a
negative quadrant is allowed to be a (— + —) triple quadrant.

(IT) Cyclic Rotation. A cyclic rotation is a Legendrian isotopy from Ags, to Ay, g3,
illustrated by the moves on the front projection of Legendrian links in Fig. 5.

We denote the exact Lagrangian concordance corresponding to a cyclic rotation
as

p:Agsi —>A81.5. (3.14)
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We decorate p with oriented marked curves tracing the marked points on either
end.

PROPOSITION 3.13. Let B =s;, ---5;, be a positive braid word. Set

r(B) :=8i,Siy =" Siy_1» L(B) :=Siy - SiSiy -
Recall M*) in Proposition 2.1. The dga homomorphism oA (Argy) = A(Ap) as-
sociated with the cyclic rotation p: Ag — A, 3y maps degree O Reeb chords as follows:

O (by) =bpoy VI<k<l and @ (b)) =MV, i

The dga homomorphism ®7_, : A (Ayg)) = A(Ap) associated with the inverse cyclic
rotation p~': Ag — Aygy maps degree 0 Reeb chords as follows:

O (b)) =bppr VI<k<l and @5 (b)=t, M .

Proof. We only prove the formula for ®7. The proof for @;_1 is similar.

We break the cyclic rotation p into steps according to Fig. 5 and use the bordered
dga method [Siv1ll] to compute the functorial homomorphism for each step. First,
by considering the bordered dga on the complement of the right cusps region, we see
that

N N c ifk=1,
50, (br) = {bk_l otherwise,
where c is depicted in Fig. 5.

The Reidemeister II move is performed away from the crossing ¢ and the braid
region. Therefore ®%(c) = c and @7 (by) = by. For the same reason, @ (by) = by,
which, combined with the formulas of ®} o ®; and ®X, implies that @7 (b) = b1
for 1 <k <.

It remains to compute ®}(c). Define i :=14;. Let us consider the bordered dga of
the region on the right of the braid region (including the crossing c). The differentials
of the degree 1 Reeb chords of the bordered dga before ®} are

da; =t7" + a4 + wasby, % ¢
a
1 i
8ai+1 = ti+1 —+ 13 + Cx23, 3 Qi1
od = T14 + Jilgbl + cxoy + CCCngl. 4 bl

where ¢; denotes the marked point near the Reeb chord a;. On the other hand, we
know that the differentials of the degree 1 Reeb chords of the bordered dga after @}
are

1 1
da; =1t; " + w24 + x230y, Oair1 =t + 13 + T14tiT23 + 21301t 723 + T120:tiT23.
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Figure 6: Legendrian unkont and its minimum cobordism.

By comparison, we see that @} (a;) = a;, ®; (ai+1) = a;+1, and most importantly,
D5 (c) = x14t; + x13bit; + w1204,

Now if we include the bordered dga of the remaining part of A, we see that

,,,,, i)

212 =0 and x4 + x13b; = MZ-(_?LZ-. Therefore we conclude that

©F (b)) = B 0 ®F 0 @ 0 B, (by) = Dj(c) = ML) t;. 0
(III) Braid Move. A braid move B is a Reidemeister III move within the braid
region, which naturally gives rise to an invertible exact Lagrangian concordance B.
We decorate B with oriented marked curves that are the traces of the marked points
on either end.
Consider the braid move B : A(_ss;s,..) = M(.s;sis;...), Where [i — j| =1. Let
b1, by, by be the Reeb chords corresponding to the crossings involved in B. By [Che02,
§8.2, 8.3,

(I)*B (bl) = b3, (I)*B (bg) = by + b3bq, (I)*B (bg) =b;. (315)

The move B is local. Therefore the rest Reeb chords are invariant under ®%.

(IV) Minimum Cobordism. Let O denote the Legendrian unknot whose Thurston-
Bennequin number is —1. Without loss of generality, we assume that O has only one
Reeb chord a. Then |a| =1 in the CE dga A(O). By [EP96], the unknot O has a
unique exact Lagrangian filling M, called the minimum cobordism, which topologi-
cally is a hemisphere capping off O.

Now suppose O is decorated with m marked points. Let P be the decoration of
M with oriented marked curves that flow from the marked points on O to the unique
t-minimum 7 on M. Abusing notation, let us label the the marked curves with the
same symbol ¢; as the marked points they originate from. Then

ZZ <t1il’t§tl7 s ,til>
AOP)=— 7 1

The functorial homomorphism &%, : A(O,P) — A (0, P) maps

o, (t)=t; and @} (a)=0. (3.16)
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3.3 Cluster charts from admissible fillings. By (3.3), every decorated admissible
filling (L, P) of Ag gives rise to a morphism of algebraic varieties

ar =, 0®r: Aug(D,P) 25 Aug (Ag, P) 25 Aug (As) .

In this section, we show that the morphism «7, is an open embedding of an algebraic
torus and its image is a cluster chart of Aug(Ag).

Among the basic exact Lagrangian cobordisms defining admissible cobordisms,
the decorated saddle cobordism S} is the only one that creates new oriented marked
curves (and hence marked points) in the decoration. Thus, on any admissible filling
L, we have exactly [ +n many oriented marked curves in the decoration P on L,
where [ is the length of the braid word § and n is the number of strands. There
are n many t-minima on L, one for each strand in 3, and hence we have n relations
(3.1) among the formal variables associated with the marked curves. Moreover, since
the original cuspidal marked points ¢; of Ag end at distinct ¢-minima on L, we can
use these n relations to eliminate t¢;, leaving the formal variables p; formal variables.
This proves the following lemma.

LEMMA 3.14. For any admissible filling L of Az with decoration P, Aug (0, P) =
()"

For any admissible filling L of Ag with decoration P, every component of the
complement L — P is simply connected. Thus, we can think of the numerical values
of the formal variables p; and t; as a recording the transition functions of a trivi-
alization of some rank 1 local system on L (in the normal direction determined by
the orientation of the marked curve). From this perspective, the condition (3.1) at
t-minima can be viewed as a compatibility condition for the transition functions. As
a consequence, we get the following Lemma.

LEMMA 3.15. For any admissible filling L of Ag with decoration P, there is a natural
isomorphism Aug (0, P) = Trivi(L, P), where Trivi(L,P) denotes the moduli space
of trivializations of rank 1 local systems on L with respect to the family of oriented
marked curves P.

Next, using the isomorphism between Aug(Ag) and Confj (C) in Theorem 2.12,
we prove that, for the first three types of the basic admissible cobordisms, the cor-
responding functorial morphism of augmentation varieties is intertwined with a cer-
tain quasi-cluster morphism between double Bott-Samelson cells. For the minimum
cobordism, we show that the corresponding functorial morphism is an isomorphism
of algebraic tori.

(I) Saddle Cobordism. Let 5 =s;, ---s;, be a positive braid word. Consider the
decorated saddle cobordism (Si,P) that resolves the crossing i into a new pair of
marked points pkﬂ. Let A_ denote the obtained decorated Legendrian link. The un-
derlying undecorated Legendrian link of A_ is A, , where 5 :=s;, -85, _, Siy ;=" Sy
Let us move the marked points pfl to the right and absorb them into two of the
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cuspidal marked points ¢;. This procedure induces an isomorphism

o

Aug (A, P) = Aug (Ag, ) x (F¥),, .

Denote by 7 the composition

o~ ¢40Ps
Aug (Ag, ) x (F¥), = Aug (A, P) Z5 Aug (Ag).
ProPOSITION 3.16. The following diagram commutes:

xid

,
Aug (Ag, ) x (F7),, —= Conff (€) x (F),,

T \L I~ Yogpol

IR

Aug (Ap) . Conf§(C)

where 1 is the sequence of left reflections on double Bott-Samelson cells that reflects
the first k—1 flags from the bottom to the top, and 1) is the open embedding in (B.3).

Proof. The left map 7 is composed of an isomorphism corresponding to the migration
of the new pair of marked points pfl and the functorial morphism ¢, o ®g, . We show
that the open embedding

(¥ Confsi’“’l:::zzll (C) x (FX)

Sijt1

— Confy =4, (C)
k

q Sig Sy

admits a similar factorization, and prove that the two factorizations coincide under

7.

Following the proof of Theorem 2.12, ~ is defined by setting by = ¢5 for 1 < s </,
where by are the Reeb coordinates on Aug(Ag) and g5 are the affine coordinates on
Conf} (C). Together with ®% (px) = by, we have

Pk = k- (3.17)

Now consider the standard representative of a point in the image of :

l Sij,— Sij,_ 5 :
| u_ L U—Zlk 1 (Qk—l) — - U_Z;, (6]1) e Zik—l (Qk—l) |
Uy ——— Zi, (ar) Us ) : Ziy (ar) - - Ziy (@) U+ |
I Sin, Siky1 Si, !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

where g # 0. We have

Vv

Zi (@) = ein (0 ") @i e (0
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under :

1k—1

: 1 Sik—Q —1 :
U —U_Z;,  (ge-1) e, (Qk ) — = U_Zy (1) Ziy_y (qre—1) ey, (qk ) l

4

Q. e, (qk_l) B,

Y

s e (07) Zi (@) - Zi (@) By

Sipt1

The following procedure transforms the above configuration to a standard represen-
tative.

(a) Move the unipotent factor e_;, (q,?) inside each decorated flag in the top row
all the way to the left so that it can be absorbed into U_.

(b) Move the unipotent factor e;, (q,; 1) inside each decorated flag in the bottom
row all the way to the ri%ht so that it can be absorbed into B .

(c) Move the torus factor qu’“ inside each decorated flag in the bottom row all the

way to the right so that it can be absorbed into B .
(d) Replace every B in the bottom row by U, to obtain a standard representative.

Among these operations, we claim that (a) and (b) correspond to the matrix scanning
algorithms for ®% , and (c) corresponds to moving the new pair of marked points to
the far right after the saddle cobordism Sj.

Let us start with (a). Let ¢’ be a collection of F-valued parameters such that

U-Zi.(a5) - Zip s an1) emiy (') =U-Zi (a) - Zi, (ghon) -

Note that these ¢’ parameters are part of the affine coordinates for Conf%k (C). Since
we would like to compare the pull-back of the Reeb coordinates on the augmentation
varieties versus the affine coordinates on the double Bott-Samelson cells, we need to
express the g parameters in terms of the ¢’ parameters. To do so, let us multiply the
above equation by e;, (q,;l) on both sides, which yields

U_Zi, () Ziny (ar—1) =U-Zi (0)) - Zir_, (Gh1) =iy (qk_1> :
We then observe that in order for Z;(¢)!Z;(¢") to hold for I € U_, we need
q=q +lis1i (3.19)

Set [F=D =¢ ;. (qk_1>. For s < k, using (3.19) recursively, we obtain

qs = q; + lz(ii-l,is’ 170 = Z (q;) l(s)Zis (%)71 eu_. (3.20)

E]

Now we turn to (b). The identity we need is

iy, (%:1) Zik+1 (Qk-i-l) T Zis (QS) B+ = Zik+1 (QI,c+1) e Zis (q;) B+a
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which is equivalent to
Zik+1 (Qk+1) T Zis (QS) B+ = €j, (qlgl> Zik+1 (q;c-H) T Zis (q;) B+~

To express the ¢ parameters in terms of the ¢’ parameters, we can first set kD) =
€i, (q,;l), and then recursively, we have

qs = q. + “z(:?isﬂ eF, uwt) = 7, (qs)_1 u(S)ZiS (q}) € Ug. (3.21)

s

Let o' denote the Reeb coordinates on the Legendrian link after the saddle cobor-
dism but before moving the pair of the newly created marked points to the right.
We want to show that, under the assumption

b=, (322)
we have
bs = gs. (3.23)
By comparing (3.20) with (3.11) and (3.21) with (3.8), it suffices to show

1+L® =1 for s <k, and
1+U9 =u  for s>k,

where 1 denotes the identity matrix of the appropriate size.

Let us do a backward induction on s to prove the s < k case; the s > k case is
similar. The base case s =k — 1 is clear. By a calculation similar to (3.19), for any
square matrix M over F (of characteristic 2) and any element = € IF, we have

Zi (CC) (1 + M_) Zi ({L‘ + MH,Li)il =1 + (Zz ((IJ) M_Zi (CC + Mi+1,i)71)_
Using this identity, we see that

147 =7, ()12 (gs) ™!
=Z;, (W) 19 Z;, (bs) ™"

s ) s )
=1+ (Zz's ) L7 (¥, + Lih,) _1> 7

=1+ L67Y,

v
For step (c), we claim that moving the torus factor q:”“ through the product

Zik+1 (q;c-i-l) Zik+2 (q;c+2) T Zis (q;)
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corresponds to moving the new marked points pfl to the right through the crossings
Sipsq " Si,- To include marked points in the braid region, we modify the algorithm
to compute the CE dga in Proposition 2.1 by interpolating diagonal matrices from
marked points. Observe that moving the new marked points through the crossings
Sin.1 - Si, changes the Reeb coordinates b of A_ to b}, which are determined by
the identity

\

pkik Zik+1 ( ;i:-‘rl) Zik+2 ( ;c+2) T Zis (b/s) = Zik+1 ( %-ﬁ-l) Zik+2 ( ;</7+2) T Zis (b/s/) Dv

where D is a diagonal matrix recording the strand level of the marked points pfl.
Correspondingly, let ¢/ be uniquely chosen such that for all s > k,

Qkik Zik+1 (QI,chl) Zik+2 (QI,chQ) T Zis (q;) B+ = Zik+1 (qllc/Jrl) Zik+2 (qllc/+2) e Zis (q;') B+-
By (3.17) and (3.22), we deduce that
v =q!, Vs>k. (3.24)

Note that (by,...,b}_1,b/,,,...b]) are the Reeb coordinates on Aug (Aﬁ;;)7 and

(@1s- - @1, @y1s---»q) are the affine coordinates on Confj (C). Therefore, (3.17),
(3.22), and (3.24) imply the commutativity of the diagram in the proposition. [

COROLLARY 3.17. Let (S, P): A_ — Ag be the decorated saddle cobordism that re-
solves the crossing iy into a pair of marked points pfl. Then the functorial morphism
¢4 0Pg, : Aug (A_,P) = Aug (Ag) is an open embedding.

Proof. Note that in the commutative diagram in Proposition 3.16, the top map and
the bottom map are both isomorphisms, whereas the map on the right is an open
embedding. Therefore the map on the left is also an open embedding. O

(IT) Cyclic Rotation. Our next proposition shows that the cyclic rotation mor-
phism between augmentation varieties is equivalent to the composition of a pair of
reflections between the double Bott-Samelson varieties. Following [SW19], the reflec-
tions on double Bott-Samelson varieties are quasi-cluster isomorphisms.

PROPOSITION 3.18. The following two diagrams commute:

Aug (Ags,) % Confj,, (C) Aug (Ag,8) % Confg 5 (C) (3.25)
b, | = = l lor @1 l = = \L r—lol=1
Aug (A, 5) % Conf? 4(C), Aug (Agy,) % Conf§,,(C),

where r : Confj,, (C)

5 Conf} (C) is the right reflection isomorphism and 1 :
Conf} (C) = Confs 45(C) is the left reflection isomorphism.
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Proof. Due to symmetry, it suffices to prove the first commutative diagram.
Suppose that 5 =s;, ...s;,_,. The right reflection » maps

U- 25 U_Zi(q)

_\ — yd AN

U+ =?“> .'E1U+' . .SiifvlilUJr ?Z .T)l_lzi (q) U+ U+ 571 1'1U+ ?22 te ?”> .’,E'lflUJr
Following the definition of 7, all affine coordinates on Conf} (C) are pulled back to

the corresponding affine coordinates except for ¢'.
Now we compute the pull back 7*(¢’). From the assumption

u_

i.e., there exists unique matrices [z]3 € Uy and [z]p € T such that z = [z]_[z]o[z]+.
We act on the left configuration by [z]=!, turning it into the picture on the left

x1-1Z;(q)Uy , we know that z :=x;_17;(q) is Gaussian decomposable,

below.
Si
u_ Uu_. —— U_s;
\ ‘ Si
. *>3i [Z]0U+ i ’ [Z]OU-i-

According to the definition of 7, the new flag in the top row is the unique flag that
is of Tits distance s; from U_ and of Tits codistance s; from [z]oU;. It is not hard
to see that this flag must be U_7;. To restore to the standard representative for the
preimage, we need to act again by [z]_, which implies that

U_2z; (q') = U_§Z‘[Z}:1.

Following the Gaussian elimination process, one can see that

1 0 --- 0 0
Al <§7 12)
TEZ) 1 ... 0 0
[2]- = : P : :
* ke 1 0
——1
* * A";l(,sln(;)lz) 1

This implies that Z; (

Therefore, we get

A §i_12) 1 . . . . .
T Z|-S8; 1S SUlll a lower Triangular unipotent matrix.
NIE) [2]-5; till a 1 t gul tent t

On the other hand, since the left reflection map [ only moves decorated flags
within the compatible region, it follows that the pull-back map [* is the identity
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map on affine coordinates. Composing r* and [* we get that

(lor)* (qr) =qr—1 YV1<k<l and (lor) (q)=

where

z= Zi1 (ql) Zi2 (qQ) T Zilfl (QI—l) Zi (QI) .

Let us now make use of the natural isomorphism ~. We first observe that v* (¢;) =
bi and v*(2) = M := Z;, (b1) -+ Zi,_, (bi—1) Zi (bi). Therefore we have
(1 {1,...i}
v o(lor) (q1) = A (Si M) _ A{1 Z—l,i-l—l}(M)
Ai(M) A;(M) ’

(3.27)

where A{ denotes the determinant of the submatrix formed by the rows in the set
I and the columns in the set J. By Propositions 2.2 and 2.8 we can further deduce
that

=[I%" and AfD (M Ml(i)“Htk. (3.28)

Combining (3.27), (3.28), and Proposition 3.13, we obtain the following pull-back
image for the affine coordinate ¢:

Vo lor) (@) =M = ®hoy" (m).
For all other affine coordinates ¢, with 1 < k <1, we can deduce from (3.26) and
Proposition 3.13 that v* o (lo7)* (qx) = ®5 07" (qx). O

(III) Braid Move. Suppose |i — j| =1 and suppose 3’ and 8 are two braid words
that only differ at three consecutive crossings by replacing (i, ,7) with (4,4, ). From
the matrix identity

Zi(q1) Z;j (q2) Zi (a3) = Z; (q3) Zi (@2 + q143) Z; (q1)

and (3.15) we deduce that the following diagram commutes

Aug (Ay) —= Conff,(C) (3.29)

Aug (Ap) T> Conf3(C)

where ®p is the functorial morphism induced from the braid move Legendrian isotopy
B :Ag — Ag. Note that the two v maps are not identical because the top one is
defined by the braid word ' and the bottom one is defined by the braid word f.
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(IV) Minimum Cobordism. Consider a decorated Legendrian unknot O with tb =
—1 as drawn in Fig. 6. The differential of the unique degree 1 Reeb chord a is

da=tity -ty + bttt

m bm—1"

m

Therefore Aug(O) is the vanishing locus of ity -+ tp + ¢, 1 -t} in (F)iy o

Let (M,P):0 — O be the decorated minimum cobordism that fills O. By def-
inition, Aug (0,P) is defined to be the subtorus of (Fx)g,...,tm satisfying [];¢; = 1.
In characteristic 2, the equation tity-- -ty + ¢ 1t 1 - ~t,;+11 =0 is equivalent to the

equation [];¢; = 1. Moreover, recall from (3.16) that ®}, (¢;) =¢; for all ;. Therefore

we can conclude the following Lemma.

LEMMA 3.19. The functorial morphism @y : Aug (0, P) — Aug(O,P) is an isomor-

phism of algebraic tori.
We are now ready to prove the main theorem of this section.

Theorem 3.20. For any admissible filling L of Ag with decoration P, the functorial
morphism ¢4 o @p : Aug (0,P) — Aug(Ag) is an open embedding of an algebraic

torus, and its image is a cluster chart on Aug (Ag).

Proof. Among the four types of building blocks, we know that cyclic rotations and
braid moves are Legendrian isotopies, which are invertible exact Lagrangian con-
cordance. This implies that their induced functorial morphisms between Augmenta-
tion varieties are always isomorphisms. Moreover, commutative diagrams (3.25) and
(3.29) yield that ®,+:1 and ®p are both quasi-cluster isomorphisms, which map clus-
ter charts to cluster charts. Therefore it suffices to prove the theorem for admissible
fillings L: () — Ag that are of the form Sy, o Sk, o---Sg, o (L, M), where [ is the
length of 8 and n is the number of strands in j3.

First we observe that CIDUnM =11, ®um. Let | ], O be the split union of n dec-
orated Legendrian unknots right before the final minimum cobordisms. Then by
Lemma 3.19, we know that <I>|_|nM : Aug(0,P) — Aug (], O,P) is an isomorphism
between algebraic tori. Therefore it remains to show that ¢, o ®g, o---0®g, :
Aug (Ll,,0,P) — Aug(Ap) is an open embedding from an algebraic torus onto a
cluster chart.

Let us do an induction on the length [ of 3. For the base case with [ =1, the

statement follows from Proposition 3.16 and Corollary 3.17. For [ > 1, we consider
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the following commutative diagram:

¢+O(I>Sk2 O~~~O¢Skl ) xid

Aug (L, 0,P') x (FX),, Aug (Aﬁkl) x (F%),,

l b+0Ps,, 00Psy l m\“{%k;
Aug (l_ln 07 P) Aug (Aﬁkl 77)7?1) Aug (Aﬁ)
Aug (L, 0, P) Aug (Ag)

d)+0q>skl O...O(I)Skl

where P’ =P\ {p, }, and Py, denotes the decoration on the saddle cobordism S, .
By the inductive hypothesis, we know that the top morphism is an open embedding
onto a cluster chart. On the other hand, Proposition 3.16 and Corollary 3.17 implies
that ¢4 o ®g, is an open embedding and a quasi-cluster morphism. Therefore, it
follows from the commutative that the bottom morphism is also an open embedding
onto a cluster chart. This finishes the proof of the theorem. Il

COROLLARY 3.21. Every degree 0 Reeb chord by, of Ag is a mutable cluster variable
of the cluster structure on Aug(Ag).

Proof. From the proof of Proposition 3.16 and Theorem 3.20, we see that by is
a mutable cluster coordinate on the cluster chart corresponding to the admissible
filling L o Sy, where L is any admissible filling of Ag, . U

COROLLARY 3.22. Suppose L and L' are Hamiltonian isotopic admissible fillings of
Ag, then they give rise to the same cluster seed.

Proof. By construction, any admissible filling (L, P) has sufficient P. By Corollary
3.9, the cluster charts corresponding to L and L' are equal as open subvarieties.
By Proposition A.3, we know that L and L’ must correspond to the same cluster
seed. O

The theory of cluster algebras gives rise to a computable numerical invariant for
each admissible filling. Let o be the cluster seed associated to the admissible filling

L02= <|_|M> 051051710'”052081.

We set a as the initial cluster seed. Fomin and Zelevinsky [FZ07, (6.4)] constructed
an integer matrix G, called the g-matriz, for every cluster seed . Following [G+18],
each « corresponds to a cluster chamber C,, in the scattering diagram associated with
the cluster algebra, and the column vectors of G, are the primitive vectors spanning
Cu. Thus, the sums of the column vectors of the g-matrices are a complete invariant
for the cluster seeds. We conclude the following corollary.
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COROLLARY 3.23. For each admissible filling L, let oy, be its corresponding cluster
seed and let G, be the g-matrix of o, with respect to the initial seed ag. Let gy, be the
sum of column vectors of Gr. If L and L' are Hamiltonian isotopic, then gr = gr-.

3.4 Computing cluster seeds associated with admissible fillings. In this section,
we present an explicit algorithm to compute the cluster seeds (including their cluster
coordinates and quivers) associated with admissible fillings. Throughout this section,
we fix an n-stranded braid word g =s;, ...s;,.

(0) Initial Seed. Let us first consider the cluster chart that is the image of the
functorial morphism ¢ o ®, with Ly = (L, M)oS;0S,_10---05505;. The following
statement is a direct consequence of Proposition 3.16 and Theorem 3.20.

PROPOSITION 3.24. Under the isomorphism v : Aug(Ag) — Conf3(C), the cluster

seed «g is identified with the unique triangulation defined by the braid word B on
Conf}(C).

The cluster coordinates on «g are
A=A, (Zi, (b1) Zi, (ba) -+ Z;,, (b)), V1<k<I.

Comparing ()3 with the quivers associated with triangulations for Conf%(C) in Ap-
pendix B, we see that ()g is precisely the quiver for the initial cluster seed ag. Note
that the cluster coordinate Ay, is associated with the region (quiver vertex) to the im-
mediate right of the kth crossing, and the cluster coordinates that are on the furthest
right on each horizontal level are automatically frozen. We call ap = ({Ak}l <p<t» @ 5)
the initial seed and Qg the initial quiver associated with the braid word (3. Other
cluster seeds can be obtained from the initial seed via a sequence of cluster muta-
tions, and we will describe an explicit cluster mutation sequence for each building
block of admissible fillings.

(I) Saddle Cobordism. We make use of Proposition 3.16 to derive the mutation
sequence for saddle cobordisms. From this proposition we know that a saddle cobor-
dism Sy : Ag, — Ag corresponds an open quasi-cluster morphism. In order to get the
image, which is an open cluster subvariety, we need to

(1) apply a sequence of left reflection maps [ that reflects first £ — 1 flags from
the bottom to the top;

(2) perform the open embedding 1) described in Appendix B.6;

(3) apply the inverse sequence of left reflection maps [7?.

Our goal is to produce the initial quiver Qg, for the positive braid Legendrian link
Ag. (without marked points in the braid region). The mutation sequence to turn Qs
to s, will be a composition of mutation sequences that correspond to the three
steps above.

Since (2) involves setting aside a quiver vertex that will no longer be considered
as part of the quiver for Ag, , we introduce a new concept called active vertices for
the quivers associated with admissible fillings.
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DEFINITION 3.25. Let L : A_ — Ag be an admissible cobordism. An unfrozen quiver
vertex is said to be active if it is still considered as part of the quiver for the positive
braid Legendrian link A_ after disregarding all the marked point in the braid region.
A quiver vertex is said to be inactive if it is not active.

Note that in the initial quiver @), all unfrozen vertices are active.
Let us now describe the mutation sequences for each of the three steps involved
in locating the open cluster subvariety.

(1) In terms of the triangulation description of cluster seeds in double Bott-
Samelson cells, each left reflection in [ reflects a flag from the bottom left
hand corner to the top left hand corner by turning the left most triangle
upside down. But then in order to prepare for the next left reflection, we
should move this newly turned triangle to the right of the triangle with base

s

B _ B*! using cluster mutations.

Let us denote the active quiver vertices on the ith level as

1) () ()

from left to right. For each level 7 and two integers a, b satisfying 1 <a <b <
m;, we define a mutation sequence

n(i,a,b) () OB i )OO p Y (3.30)

z bil a
For each crossing i; in the braid g with 1 < j <k, we define
t; 2:#{8 ’ j<8§k,is:ij}.
The sequence of left reflections [ corresponds to the sequence of mutations:
Epi=n(ik-1,1,tp-1) 0 ---om(iz,1,t2) on (i1, 1,t1). (3.31)

(2) In this step, we need to remove the left most triangle, which has base
si
B 5 B! | from the triangulation. This corresponds to deactivating
the left most active vertex on the iiyth level. Due to this deactivation, there
will be one fewer active vertex on the ixth level. To avoid confusion, let us
denote the new braid by ' and denote the active quiver vertices on the ith
level as (i)/, (i)/, el (WZL/)I Note that

1)
(1) = () i,
@ (a—Z}—l) if 4 =1.
(3) Note that ' = B;, = si, -+ 84,1 Sipy, - Siy- For each i; with 1 < j <k, we define

thi=H#{s|j<s<k,is=1i;}.
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ERS - R

Figure 7: Braid Move.

Define 1/(i, a, b) similar to (3.30) with each mutation indexed by primed indices
i/

(l) . The muatation sequence corresponding to the sequence of left reflections

I=tis

. -1 . -1 . ~1
Ej-v:=n'(i1,1,t])" on'(ia,1,t5) " oo (ig—1,1,t,_1) . (3.32)
Combining the three steps, the total mutation sequence for a saddle cobordism
Sy is

Es, :=FE;-10E, (3.33)

where Ej is defined in (3.31) and Ej-1 is defined in (3.32).

(IT) Cyclic Rotation. Let p; : Ags, — A5 be a cyclic rotation cobordism. Ac-
cording to Proposition 3.18, the functorial morphism ®,, : Aug(Ags,) — Aug (As,3)
corresponds to the composition

Conf§,, (C) % Conf (C) & Cont,,5(C).

The change of initial quiver associated with this composition of reflection maps can
be realized via a mutation sequence that mutates every active quiver vertex on the
ith level. When we left-compose p; onto an admissible cobordism, we are changing
from the initial quiver of Aug(As,) to the initial quiver for Aug(Ags,). Therefore
the corresponding mutation sequence is

Epi :n(zalamz) ’ (334)
where 7 is defined in (3.30). Consequently,

E,- =i, 1,m;) " (3.35)

(ITII) Braid Move. From the commutative diagram (3.29) we know that a braid
move cobordism B : Aj — Ag corresponds to a braid move on the bases of the cor-
responding double Bott-Samelson cell triangulation. It is known that the latter is a
single mutation that takes place at a unique quiver vertex. In terms of the initial
quiver (g, this unique quiver vertex is the unique vertex that is associated with the
region completely enclosed by the three strands involved in the braid move. Therefore
we conclude that

Ep = p.. (3.36)

Note that after a braid move, the active vertex ¢ needs to move to the adjacent
level, as depicted in Fig. 7.
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(IV) Minimum Cobordism. A minimum cobordism M induces an isomosphism
@, between algebraic tori. Therefore it corresponds to the empty mutation sequence,
ie.,

En =0. (3.37)

(V) Summary. For any admissible filling L of Ag, the corresponding cluster seed
ay, can be computed as follows. First we compute the initial seed o associated with
the braid word [; then we write L as a composition of elementary building blocks
L=L,o0---0Lso L, and mutate the initial seed g accordingly, yielding

Qay, 1= ELm O--'O_E'L2 O_EIL1 (Oéo).

Each mutation subsequence Ep, is given by one of (3.33), (3.34), (3.35), (3.36),
and (3.37). We have implemented a characteristic 0 version of this algorithm in a
javascript program.® For any admissible filling L, this program computes

— the functorial homomorphism images ®; (b;) for all degree 0 Reeb chords;

— the mutation sequence from the initial cluster aq to the cluster ajp;

— the cluster seed of «y, including both the cluster variables and the associated
quiver;

— the seed invariant vector gr, (Corollary 3.23).

4 Infinitely many fillings

In this section, we solve the infinite-filling problem for positive braid Legendrian
links. One key ingredient in our proof is the cluster Donaldson-Thomas transforma-
tions. Throughout this section, all mentions of the quiver (g refer to its unfrozen
part. To better visualize the proofs in this section, the color version of the article is
given online.

4.1 Full cyclic rotation and Donaldson-Thomas transformation.

DEFINITION 4.1. For a positive braid word g of length [, the full cyclic rotation R is
the exact Lagrangian concordance p' : Ag — Ag, where p is the cyclic rotation (3.14).

The cluster DT transformation is a unique central element of the cluster modular
group acting on the associated cluster varieties (Definition A.9). Combinatorially,
the cluster DT transformation can be manifested as a maximal green sequence, or
more generally, a reddening sequence of quiver mutations [Kell7].

LEMMA 4.2. For any positive braid word 3, we have ®g =DT? on Aug (Ag).
Proof. Suppose 3 =s;, ---s;,. By [SW19], the DT transformation on Conf3(C) is

DT =to(r; orio---ory),

3 See https://users.math.msu.edu/users/wengdapl/filling to_ cluster.html.
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where t is a biregular isomorphism induced by the transposition action on G = SL,
and r; are right reflection maps. Let us denote the left reflection of s; by I*. Then

2
DT :to(rhOrizo“'oriz)oto(rilOTi2O"'OTiz)
:toto(l“ol”o--'ol“)o(nl 0Ty 0+ 0Ty)

:(llolzo"'oll>0(7“1‘107%‘20"‘07’1‘1)

= (l“ onl) o (liz oriz) 0-:-0 (l“ onl) .

The first commutative diagram in Proposition 3.18 asserts that ['* or; = ®,. There-
fore DT? = @, = ®g. O

Theorem 4.3. For any positive braid word 3, if the DT transformation on Aug(Ag)
is aperiodic, then Ag admits infinitely many admissible fillings.

Proof. Let Ly be the admissible filling that pinches the crossings in £ from left to
right and then fills the resulted unlinks with minimum cobordisms. Let L,, = R™ o L.
We claim that L,, is not Hamiltonian isotopic to Ly for m # k. To see this, note that
by Lemma 4.2, the cluster seeds of L,, can be computed by mutating the initial seed
according to DT?™; the aperiodicity of DT implies that the cluster seeds of L., and
Ly, are distinct for m # k. The statement follows from Corollary 3.22. U

REMARK 4.4. The full cyclic rotation was observed by Kélman [Kal05]. For torus
links A, m), where 3= (s152---5,-1)™, [Kal05] further defined another Legendrian
loop K = p"~!, with the property R = K™. Kalman showed that ®x has finite order.

The quivers associated to Aug (A(mm)) and those associated to the Grassmannian
Gry, nm share the same unfrozen parts. Hence, their DT transformations have the
same order. The DT on Gry, 5,4+, has finite order because it is related to the periodic
Zamolodchikov operator by DT? = Za™ [Kell3, Wenl6, SW19]. In fact, Kalman’s
loop induces the Zamolodchikov operator. Summarizing,

b =D =DT? =Za™.

Theorem 4.5. Let ) be an acyclic quiver. Its associated DT transformation is of
finite order if and only if Q is of finite type.

Proof. Combinatorially, the DT transformation arises from a maximal green se-
quence of quiver mutations [Kell7]. When @ is acyclic, one may label the vertices of
Q@ by 1,...,1 such that ¢ < j if there is an arrow from i to j. The mutation sequence
[n © +-+0 g1 is maximal green and therefore gives rise to the DT transformation
associated with Q.

The DT transformation acts on the cluster variety 7 associated with the quiver
Q. Following [L+20], the frieze variety X (Q) is defined to be the Zariski closure of
the DT-orbit containing the point P =(1,...,1) € o/. Theorem 1.1 of loc.cit. states
that
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(1) If @ is representation finite (i.e., the underlying graph of @ is a Dynkin dia-
gram of type ADE), then the frieze variety X (Q) is of dimension 0.

(2) If @ is tame then the frieze variety X (Q) is of dimension 1.

(3) If @ is wild then the frieze variety X (@) is of dimension at least 2.

As a direct consequence, if () is not of finite type, then the DT-orbit of P contains
infinitely many points, and therefore DT is not periodic. If @) is of finite type, then its
cluster variety is of finite type, and therefore its DT transformation is periodic. [

REMARK 4.6. Keller pointed out to us that the aperiodicity of DT for acyclic quiver
Q of infinite type follows from the aperiodicity of the Auslander-Reiten translation
functor on the derived category of representations of Q).

COROLLARY 4.7. For any positive braid word 3, if Qg is acyclic and of infinite type,
then Ag admits infinitely many admissible fillings.

Proof. 1t follows from Theorem 4.3 and Theorem 4.5. U

4.2 Infinitely many fillings for infinite type. This section is devoted to the proof
of the following result.

Theorem 4.8. If [5] is a positive braid of infinite type, then the positive braid Leg-
endrian link Ag admits infinitely many non-Hamiltonian isotopic exact Lagrangian

fillings.

DEFINITION 4.9. Given two positive braid words g and v, we say § dominates 7 if
there is an admissible cobordism from A, to Ag. Dominance is a partial order on
braid words.

Recall that a quiver is connected if its underlying graph is connected. Connected-
ness of quivers is invariant under mutations. Under the connectedness assumption,
Theorem 4.8 is a consequence of Corollary 4.7 and the following Propositions.

PRrROPOSITION 4.10. Suppose 3 dominates v. If Ay admits infinitely many admissible
fillings, then so does Ag.

Proof. Recall from Corollary 3.22 that the cluster seeds can be used to distinguish
admissible fillings. Since the functorial morphism between augmentation varieties
induced by any admissible cobordism is a cluster morphisms, it must map distinct
cluster seeds to distinct cluster seeds. O

ProprosITION 4.11. For any braid word [ with connected QQg, either one of the
following two scenarios happens:

(1) there is an admissible concordance from A, to Ag and Q is a quiver of finite

type.
(2) B dominates a braid word v and Q~ is acyclic and of infinite type.

PROPOSITION 4.12. If Proposition 4.11 (1) happens, then [B] is of finite type.
If Proposition 4.11 (2) happens, then [§] is of infinite type.
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Proof. Admissible concordances give rise to sequences of mutations (Sect. 3.4). If
Proposition 4.11 (1) happens, then @3 is mutation equivalent to Q. The latter is of
finite type. Therefore [5] is of finite type.

If Proposition 4.11 (2) happens, then by Theorem 3.20, Q3 is mutation equivalent
to a quiver which contains @), as a full subquiver. Suppose that [f] is of finite type.
Then @, is mutation equivalent to finite type quiver, which contradicts with the
assumption that @), is acyclic and of infinite type. Therefore [3] is of infinite type. O

Proposition 4.12 implies the exclusiveness of the two scenarios of Proposition 4.11.
To conclude the proof of Proposition 4.11, it remains to prove that the two scenarios
cover all braid words with connected quivers. The strategy of our proof is as follows.

— Suppose there is an admissible concordance A, — Ag such that @), is acyclic. If
@ is of finite type, then [ satisfies (1); otherwise, § satisfies (2).
— Otherwise, we prove that § satisfies (2).

(I) Preparation. We adopt the following notations for operations on braid words.

1. & denotes the positive Markov destabilization, which deletes the s; (resp. s,—1)
if it only occurs once in .

3 denotes the braid move R3, which switches s;s;115; and $;115;5;+1-

£ denotes the cyclic rotation, which turns 8s; into s;8 or vice versa.

= denotes the commutation which turns s;s; into s;s; whenever |i — j| > 1.

> denotes deleting letters; 8 > v means that v can be obtained by deleting
letters in B. In particular, when (§ > ~, we say that « is a subword of 5.

6. %8 denotes taking the opposite word 3°P. The quiver ()gor alters the orientation

of every arrow in @)g.

AN

Operations 1 - 4 induce Legendrian isotopies between corresponding positive braid
Legendrian links, which are building blocks for admissible concordance. Operations
5 induces pinch cobordisms between Legendrian links. Operation 6 is a symmetry
that can be used to reduce the number of cases considered in the proof.

LEMMA 4.13. The quivers for the following braids are acyclic and of infinite type:
(1) sis3sis3, or more generally, s?s?,  s2s2 ;
(2) s15383518353.

Proof. The quivers for (1) and (2) are D5 and Dy respectively.

o—re—e

0

]
oe—re—e
o—re—e
)

LEMMA 4.14. Suppose wy,wz, w3, wy € {s183,5%,53}. Then wsywesswssowysy dom-
inates a braid with an acyclic quiver of infinite type.
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Proof. Note that 8 = wisowssowssow,se > wls%wgsg. If w = w3, then the Lemma
follows from Lemma 4.13. The same argument applies to wy = wy. In the rest of the
proof, we assume that w; # ws and wsy # wy.

Let k be the size of the set {i | w; = sys3}. Here k < 2; otherwise, wy = ws or
wy = wy. Using the symmetry between s; and s3, we further assume that there are
more s? than s3 in {wy,ws, w3, ws}. We shall exhaust all the possibilities of k.

Case 1: k=2

After taking necessary cyclic rotations and/or the opposite word, we have wy =
wy = 8183, and the values of w3, wy split into two subcases.

If wg = 3% and wy = s%, then Ag is admissibly concordant to the standard Eg link:

P
5 = 515352535152515152535352 = 525353525153525351525151
R3 R3
= 525353525152535251525151 = 525353515251535251525151
c R3
= 525153535253515251525151 = 525152535252515251525151

R1 R3
= 5251525252515251525151 = 5152515252515152515151

R3 JE: D D I I SR
= 5151515251515152515151 = §152515251 = §1525152

If w3 = wy = 52, we make the following moves and then apply Lemma 4.13 (1):

_ 2. 2. B3 2, 2, BL -2 2. 42
ﬂ = 51535253515251525152 = 51525352515251525152 = 5159515251525152

e 2 e 2 2 R3 2. 2.2.2.2
= 8515951528515152515152 = §1525159515251515251 = 8152813281-528182<9182>—81828182.

Case 2: k=1
We assume that w; = s1s3 after a necessary cyclic rotation. Then ws, w3, w, are
either s? or s2. Note that ws # wy. By the symmetry between s; and s3, and taking

rotations and the opposite word if necessary, it suffices to consider wy = w3 = s7 and
wy = s3. The Ag is admissible concordance to the standard Eg link:

: 4 R3
ﬁ = 8381828%828%828:2382 = 8283828381828%828% = 8283838281828%828%

R1 R3 2 P
= 82838281828%828% = 8381828%828% = 841182818%828% = 8?828382.

Case 3: k=0
Assume that wy =wy = s} and w3 = wy = s3. Then Qg is of type Dg:
o—re—>e
oe—r0—>e

o—jYo— e O
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DEFINITION 4.15. Let 8 be a braid word of n strands. For 1 <i<j<n—1, we
define

B(%,7) := the sub-word of § that contains s;,s;t1,...,5;.

For example, if 3 = s5152535%5255525354, then 3(2,3) = s52535353.
LEMMA 4.16. Let 8 be a braid word of n strands.

(1) If s? is not a subword of 3, then Qp = Qp(1,i-1) U QB(i+1,n-1)-
(2) If B(i,i+ 1) does not contain a sub-word of intertwining pairs, namely neither

8i8i+18iSit1 NOT 8i418;Si+18;, then Qﬁ = QB(I,i) U Qg(i+1,n—1)«

Proof. The brick diagram has an empty level ¢ in case (1) and does not have arrows
between level i and level ¢ + 1 in case (2). O

LEMMA 4.17. Let n >3 and let B be an n-strand braid word such that Qg is con-
nected. If B = s3 and 3= s2_,, then Qg is acyclic if and only if for 1 <i<n—2, we
have

i _ 01 .b1 a2 b b1 a1 b2 a2
B(i,i+1)=si"s;115%8{7, or 8]} 18§ 5/3,5{°, where ay,az,by,by > 1

Proof. The if direction is obvious. To see the only if direction, let us assume without
loss of generality that (B(i,i + 1) begins with s;. If 8(i,i + 1) does not end after
s?ls?jrls‘fz s?il, then there is at least one s; after s?il, giving ()g an as-cycle between

levels 7 and 7 + 1. O

ASSUMPTION 4.18. Note that 2-strand braids correspond to type A quivers. It suf-
fices to consider braid words [ of at least 3 strands. Let us single out the generator
s9. After necessary rotations, we assume that 8 does not start with sy but ends with
So, that is,

B = w85 wash? - wp sy,
where each w; is a word of s1,83,84,...,8,_1.

We assume that every w; contains at least one s; or s3; otherwise, we can move
the whole w; across the s9’s at either end and merge it with w;_1 or w;11. We
further assume that 3 b; achieves minimum. Under this assumption, the length of
every w;(1,3) is at least 2. Otherwise, with the letters s;--- ,s,_1 migrated away, we
have sow;ss = $28182 Or S98389, and we can use R3 to reduce Y b;.

We assume that m > 2; otherwise, ()g is disconnected by Lemma 4.16. Meanwhile,
if m >4, then after necessarily deleting letters, we land on the case of Lemma 4.14,
and the braid 5 dominates a braid with an acyclic quiver of infinite type.

In the rest of this section, without loss of generality, we assume that

B =wish wos? - wyshm, (4.1)

where b; > 1, m =2 or 3, and w; = s%,s3 or s;s3.
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We prove Proposition 4.11 by induction on the number of strands of j.

(IT) Proof of Proposition 4.11 for 3-strand braids If m =2 in (4.1), then Qg is
acyclic and therefore the proposition follows. It remains to consider m = 3. Suppose
that at least one of the b;’s, say b3 after necessary cyclic rotations, is greater than 1.
The proposition follows since

B = w152w252w35§>w153w33% = 5%5%5%5%.

It remains to consider by = by = b3 =1, i.e.,
B = 51" s257%5251% 59.
If two of a;’s, say a1 and ao after necessary rotations, are equal to 2, then

as . R3 as . R3 as
B = 8515152515152517 52 = §15251525152517 52 = §15251515251517 52

4 R3 4
= 5251525151525157° = 515251515152518]° = S2515151525181°81 = 328?823?3+2

The quiver for the last word is acyclic. The proposition is proved.
Otherwise, at least two of the a;’s, say a; and ao after necessary rotations, are
greater than 2. The proposition follows since

R3
,8 - 8?828?828%82 = 8%8182818%828%82 = 8%8281828%825%82>—S%S§S?S%.

(III) Proof of Proposition 4.11 for braids of at least 4 strands. Assume that
is expressed as in (4.1). Note that s; commutes with all other generators in w;.
Therefore we further assume that

— w; = s{'v; = v;s7", where v; is a word of s3,...,8,-1.
We shall start with the proof of the following two lemmas.

LEMMA 4.19. Suppose = s1 and B = sa. If Qg(1,2) is of Dynkin type A, then there
exists an admissible concordance Ay — Ag such that v has fewer strands than 3.

Proof. Since Qp(1,9) is of Dynkin type A, 3(1,2) must be of the form s?lsgls‘fzsgz
with min{ay,as} = min{by,bo} = 1. After necessary cyclic rotations and/or taking
the opposite word, we assume a; = b; = 1. Then

R3 R1
8= 0151325?21}2532 = 0158525 522}2532 = v1552 52v2532.

The braid reduces to the case of one fewer strand. O

LEMMA 4.20. Suppose Qg is connected. If Qg1 3) is acyclic and Qg1 2y is not of type
A, then Proposition 4.11 is true for [B].

Proof. Define

k:=max{i | Qg is acyclic}.
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If k=n, then Qg is acyclic and the Lemma is proved. If Qg ) is of infinite type,
then the Lemma follows since >~ 3(1,k). Now we assume k <n and Qg k) is of
finite type.

Note that Qg(1 3 is a subquiver of Qg ). By assumption, Qg(; 2y is not of type A.
Therefore Qg1 1) must be of type D or E. Hence, Qg; ;) is of type A for 1 <i < j <k.
In particular, Qg—14) is of type A and Qg is connected. Therefore we have

Blk—1,k)= 32113£132315£2, or Bk—1,k)= silszl,lsfsf,p

where
min{ey,ex} = min{ f1, fo} = 1.

Below we consider the first case S(k — 1,k) = szl_ls£1 s?_lsf. The second case
follows by taking the opposite word of B. The letters si,...,sx_2 commute with
Sk+1s- - -5 Sn. After necessary communications of the letters in 3, we can write

B = 71017202,
where v; (i =1,2) is a word of s;---,s,_1 with e; many of s;_;, and §; is a word
of sg,...,s, with f; many of s;. We remark that we have not performed cyclic

rotations yet and will only do it carefully, so that the quiver for S(1,k—1) =712 is
not distorted.

Recall that min{ f1, fo} = 1. We consider the case f; = 1. The argument for fo =1
is a similar repetition. Let us write §; = xsiy, where x,y are words of sgy1- -, S,
and they commute with ~1,72. We pass y through ~,, and we pass z through v
and rotation, obtaining i (xsky)y202 ~> Y¥18kY2(yd2z). This move does not change
the quiver for §(1,k), and is a Legendrian isotopy. Consequently, we can assume
01 = s and write 8 = 1 85Y202.

Now we consider

__ 91 h1 92 ho gi
So(k,k+1)=s] SEA ST S S

where ¢1,¢9; > 0 and all other powers > 1. The Lemma holds for the following two
cases.

(1) If 69 = Sgy1528k+1, then B = v18,Y28k11528k41 := P
(2) If 83 = s7 1 SkSh 41, then B yispy257, 1 SkShq = Do

The quivers for 5, and By are acyclic and of infinite type, as depicted below:

- e—je—e - - e—>e—de ---
) °
;—). °

o—r>e—e
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By the definition of k, the quiver for 5(k,k + 1) is not acyclic. Therefore we have
09 = Sk+18kSk+15k- We assume that do does not satisfy the above (1) or (2). Then

— 91 ch h2 .93
G2k, k+1) = si' sphysksiasy s

where g1 >0, g3 > 1, and min{hy, ha} = 1. Depending on whether hy =1 or hy =1,
we have the following two cases:
h R3 ) +ha _g:
Bk +1) =v18k725] Sk415kS5315% = MSKV2Sk+1565]4 7 51
p +h
=SS S YISk Y25kt 1

_ g1  h g3 R3 g1 hi1+g3
B(Lk+1) = yisk725] 8,4 15k5k+15] = V1SKY25), Sph1  SkSk+1-

In both cases, the only R3 move is skSg+18k ~ Sk+15kSk+1 (only from left to right)
performed in d2, hence the move can be extended from £(1,k+ 1) to 8. The cyclic
rotations can also be extended to 8 without changing the quiver for 3(1,k). In the
end, we performed a Legendrian isotopy and get a new braid word 3’ with acyclic
Qpr(1,6+1)- We repeat the above argument for 4" and & + 1. This completes the case
fi=1 O

Now we prove the proposition. If m =2 in (4.1), then Qg 3) is acyclic. If Q31 2)
is not of type A, then the proposition follows directly from Lemma 4.20. Otherwise,
we apply Lemma 4.19. It remains to consider the case m = 3, in which we have

B = w183 wysPwssy = vy 55 vys592 55203575 553 (4.2)
Let us set
p=7#{i | ai#0}, q=#{i | vi = s3}.

Here p,q € {2,3}. We consider cases by (p,q).

Case 1: (p,q) = (2,2).  After suitable cyclic rotation, we assume a3z = 0. Then Qg(; 3
is acyclic. The rest goes through the same line as the above proof for the case m = 2.

Case 2: (p,q) = (2,3). After suitable cyclic rotation, we assume a3 = 0. If by > 2,
then

B = 018§ 85 09892 552 3553 = 015155 09515521 = 835153535153
The proposition follows. So we assume by = 1.
Now if ay = 1, then using s7's281 = s95155', we can reduce the number of strands.
The same argument works for a; = 1. It remain to consider a; > 2 and as > 2. Then

R3
ﬂ t 8%’0182’1)28%82’0382>8%8382838%8282 = 8%32=5'3828%8282>‘3%S§8%$§.
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Case 3: (p,q) =(3,3). We have
w; = ;87" = $381, Vi=1,2,3.

If there is a b;, say by after necessary cyclic rotation, greater than 1, then

8= 3351581 5331332“’3 - 513333515353.
The proposition follows. It remains to consider by = by = b3 = 1.

If there is some w; with w;(1,3) = s1s3, after suitable cyclic rotation we can
assume wsy(1,3) = s153. Note that the rest letters of wy are sy, ..., s,. They commute
with the s, at either end and can be merged into w; or ws. Therefore, we may assume
wy = $183 and use identity

a a. a a
5115251535281 = 55° 5251535255 (4.3)

to reduce the number of strands.

If none of the w;’s has w;(1,3) = s183. Then w;(1,3) = s9s3 or w;(1,3) = s153 for
i =1,2,3. Two of them must be the same kind, and they have adjacent indices after
cyclic rotation. For example, if wq, w9 are of the same type s1s1s3, then

R3
,8 i S81835815892515835182W382>~515351525153515282 = 818382818283818282>81838383818§.
Other combinations of w; are similar.

Case 4: (p,q) = (3,2). 1If B is a 4-strand word, then by the symmetry between
s1 and ss, it reduces to the case (p,q) = (2,3). Below we assume f is at least of 5
strands.

After cyclic rotations, we assume that vz does not contain s3. Then v3 commutes
with s and can be merged into wy. By (4.1), we assume that

wy = 5183, wy = 5183, ws = s7* with ag > 2.
If by > 2, then the proposition follows since

5 i 81835%81535211/382>5183835183$g.

Below we consider b; = 1.
If wy = 818§ and w9y >~ 51 s%, then the proposition follows since

R3
ﬁ > 818383828383818% - 81838283828381Sg>818383818383.

Hence, we assume that one of wy,wy contains a single s3. After suitable cyclic rota-
tions and taking the opposite word if necessary, we assume that wy contains a single
s3. Moreover, all the letters sy4,...,s,_1 in we can be merged to w; by moving them



GAFA AUGMENTATIONS, FILLINGS, AND CLUSTERS 843

in two directions and taking necessary cyclic rotations. To summarize, it remains to
consider

B =wv157"s287 53512’251 sg ,  where vy > s3, agz > 2, and aq,as, by, by > 1.

We split our proof into two cases based on the value of as.

A. If as =1, then by > 2. Otherwise, = vls‘f1523153325‘1‘3sg3, and we can apply
Identity (4.3) to the purple part to reduce the number of strands. We further assume
b3 = 1; otherwise, b > 2, and together with ag, by > 2, we have

B = s 50512 552593 553 - 51 T2 502 593 6bs - 526252 52,

To recollect, we have

_ b2>2 a3>2
B =1v15]"828128385° = 517~ 59

If wy(1,3) = s183, then wy = xs1s3y. After rotating s{*ss, and moving x,y, we have
b2 P ba ©P
ﬂ—.TESngySQSl 5389 51 52 —51 821,8183J8281 5389 = 81 8251858281 y8382
We apply identity (4.3) to the purple part to reduce the number of strands. Therefore
we can assume wi(1,3) = 153 or s2s3.
Now we focus on w;(1,4). The connectedness of Q3 implies that w;(1,4) has at

least two copies of s4, with at least one s3 sandwiched in between. Hence there are
four possibilities:

2
w1(1,4) = (a) s7548384, (b) $154838354, (C) S154538483, (d) $153548384.
The proposition follows via direct calculations:
(a) wy(1,4) = s2548384 = 57835483 = s253. Then
R32
B - 8383828381858%82 = 8?828382828182828%82
R3
= 8182 538981 5281826182>-818%S%83
(b) w1(1,4) = s154835354. Then
c,p R3
B t 818,18384528183835%82 = 81838281848384535%82 = 81835251835483838382
2 ) 22 C 2 2 R3 2 2
>—S1S352$15383825182 = 851535352535153595152 = 51535253525153595152
2 2
515355515385
(€) wi(1,4) = 5154835453 = 5153548353 = $155. Then
B R3 R1 ‘
B t 8133328381838%82 = 8182838%818%8?82 = 818421818%&’{82

P2 4, 2R3 2.4, 2P
= 818281828182 = 528159595159 = 81828182
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We end up with an Eg quiver, which is acyclic and of infinite type.
(d) wy(1,4) = 5183548354 = 5153535483 = 5155. The rest follows from the same calcu-
lation as in (c).

B. If ay > 2, then we look at w;(1,3).
If wy(1,3) = s1s3, then vy = xsgy, where z,y are words of sy,...,s,-1. Let  and
7 be the opposite word of  and y respectively. Then

o an ba PC oppo . .
B = 153y5159592 53557 597 557 25 582593 653 551 59592y 531 NB F537502 59515355 593552

It goes back to Case A.
If wi(1,3) = s?s3, then

8= 335131323131335323‘113333 3 333152513231335325?3533>51333351333§.
It remains to consider wy(1,3) = s1s3. There are three possibilities for w;(1,4):
w1 (1,4) = (e) $154535453, (f) S153545354, (g) S154535354.
For both (e) and (f), after s4s3s4 = 35483, we have w;(1,4) = s1s3. Then

R3 R1
B = 5155505357505750 = 5150535551595189 = 515581525752
p R3
L 595750515557 = 525251505150 = 52505955
This is again the Eg quiver. For (g), we have wq(1,4) = s154535384. Then

c,p R3
ﬁ t 818,15384525%53828%82 = 5153828%848384528%52 = 815?}5285838483828582

2 2 c 2 R3
>‘8183828183538282 = 5185353525351535252 = 51535253525151535252

>—818383815353.

This completes the proof of Proposition 4.11.

COROLLARY 4.21. For positive braids 5] with connected Qg, the two cases in Propo-
sition 4.11 coincides with the dichotomy between finite and infinite types for positive
braids.

Proof. 1t follows from Proposition 4.11 and Proposition 4.12. O

Proof of Theorem 4.8 for disconnected (Qg. Suppose Qg has two components.
Because vertices on the same level are connected, there exists a unique 1 < i <
n such that no arrow appears between level i and i + 1. We consider §(1,7) and
B(i+1,n—1). Since we can pinch some crossings of 5 to obtain 3(1,47) and (i+1,n—
1), if one of them has infinitely many admissible fillings, so does 8 by Proposition
4.10. Otherwise by Propositions 4.11 (1) and 4.12, both Qg1 ;) and Qg(i41,n—1) are
mutation equivalent to finite type quivers, and hence [f] is of finite type. In general,
we can induct on the number of components in the quiver of the braid. O
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4.3 Finite type classification. In this section, we focus on positive braid Legen-
drian links of finite type.

Theorem 4.22. Let 3 be a braid word such that Qg is mutation equivalent to a Dynkin
quiver and Ag does not contain a split union of knots. Then Ag is Legendrian isotopic
to a standard link in Definition 1.9.

Proof. By Proposition 4.11 (1), it suffices to assume that Qg is a Dynkin quiver.

If Qs is of type A, we repeated utilize Lemma 4.19 to reduce the number of
strands of Ag until it becomes 2-strand link, which is a standard link of type A.

If Qs is of type D or E, then it contains a unique trivalent vertex. If n >4, we
can apply Lemma 4.19 to 3(1,2) or B(n —2,n — 1), whichever does not contain the
trivalent vertex, to reduce n until n = 3. Note that § can be written as (4.1). Since
[B] is of finite type, following the discussion in (IT) of Sect. 4.2, we may assume m = 2
n (4.1). After necessary rotation, we get

B =sirshrsizsh where a1 > 2, as > 2, min{by,bo} =1.

The trivalent vertex in a Dynkin DE quiver has three legs, at least one of which
is of length 1. For 3, two legs lie in level 1 and one leg stretches to level 2. We show
that by = by =1 after suitable Legendrian isotopy. Otherwise, one of the level 1 legs
is of length 1. Then up to cyclic rotations, we get as = 2. Depending on by =1 or
bs =1, we have the following Legendrian isotopies:

a 2 b a1—1 by R3 a1—1 by R3 a1-1
B =51"52575y> = 81" 5152515189° = S]' 525152515y° = S1' ' S2

bo+1, .
812 S251
P
L 50159582 gy,
__ La1 b1 2 o a1—1 bl 2 ﬁ a1—1 b1 &3 (Z1—1 b1
B=57"55"8182 =5181" Sy 8782 =587 S9'81515251 = S1' S9! S1525152

R3
= 5P sosi1 g,

Eventually, after necessary cyclic notations, we get the standard links. O

DEFINITION 4.23. Let 8 be an n-strand braid word and let v be an m-strand braid
word. Denote by v#i the word obtained from v via s; — Sitj-

The connect sum of 3 and v is the braid word f#~y := By# 1.

The split union of B and ~ is the braid word 8L~ := B~7".

Note that [8#~] €Br/},,,_, and [BU~] €Br/, ..

The connect sum of two positive braid links is again a positive braid link. By
[EV18], positive braid links attain a unique maximum tb Legendrian representative.
The connect sum of two links is well-defined once specifying which components to
attach the 1-handle. Once well-defined, the connect sum is associative and commu-
tative.

REMARK 4.24. Here is a list of the numbers of components for the standard ADE
links:
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knots 2-component links 3-component links

Aevem E67 E8 Aodd7 Dodda E7 Deven

Theorem 4.25. If [3] is of finite type, then Ag is Legendrian isotopic to a split union
of unknots and connect sums of standard links of ADE types.

Proof. For an n-strand positive braid 3, the vertices of ()3 are separated into n —1
many levels, each of which forms a type A quiver. If Qg is disconnected, then

1) two adjacent levels of Qg have vertices but no arrows in between; and/or
B
(2) alevel of Qs has no vertex.

For (1), after necessary rotation, we get 3(i,i + 1) = s¢s?,; for some i. We may
further commute sq,...,s;,_1 with s;19,...,5,_1, obtaining

B=p1,i)B(t+1,n—1).

Hence, § is a connect sum of two braid words.
For (2), we get f(i,i) = s; or empty for some 7. If it is empty, then

B=p(Li-1)B(i+1,n),

which is a split union of two braid words. If 8(i,i) = s;, then the braid is a connect
sum via the following Legendrian isotopy:

& = o
- G 6

Each quiver component is Legendrian isotopic to the standard ADE links. There
could also be a split union of unknot for every pair of consecutive levels 3(i,4) and
B(i+ 1,1+ 1) that are both empty. This completes the proof. O

Appendix A: Cluster varieties

We provide a rapid review on cluster varieties in the skew-symmetric cases. Below
we set [n]; :=max{0,n} for n € R.

A.1: Definitions

A quiver is a triple Q = (I,1,¢), where I is a finite set, ' is a subset of I, and
€ is an I x I skew-symmetric matrix whose entries €;; are integers when 7 € I and
: f
jer.
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Let k € I'f. The mutation in the direction k produces a new quiver p,Q =
(I', 1", ¢") where I' =1, I''f = " and

—Eij if ke {i,j},
=14 Eij if eiger; <0, and k ¢ {i,j},
€ij + |5ik|5kj if EikEkj >0, and k ¢ {Z,j}

Two quivers are mutation equivalent if they are related by a sequence of mutations.
Denote by |@| the class of quivers that are mutation equivalent to Q.

Each @ induces a directed graph with vertex set I. For 4,5 € I, the number of
arrows from i to j is [g;j]4+. Vertices parametrized by i € I — I uf are called frozen
vertices. In this paper, arrows among frozen vertices are allowed to be of half weight
and will be illustrated by dashed arrows.

The unfrozen part of @ is the full subquiver Q" containing the unfrozen vertices.

A quiver Q is said to be acyclic if there is no directed cycle inside Q™.

A quiver Q is said to be connected if the underlying graph of Q" is connected.

A quiver @ is said to have full-rank if the submatrix &|jur, is of full-rank.

Connectedness and being full-rank are invariant under mutations and therefore
descend to properties of mutation equivalence classes of quivers.

DEFINITION A.1. A cluster Ko variety </ is an affine variety together with a collec-
tion C of triples a = (Qq, Ta, An), where

— Qo = (I,1,¢) is a quiver;
— T, is a split algebraic torus of rank |I| inside <7
— A, ={A;.}ier is a coordinate system of T,.

We require that

— For any unfrozen vertex k of the quiver Q,, there is an o = (Qn/, Tor, Anr) €C,
where Qo = urQq, and the transition map between A, and A, is

A — | Ak (1, A5 411, AR iti=,
;00 Ai;a lf ’L ;é k

We say that o is a mutation of a in the direction k and write o/ = uga.
— Every pair «, o’ € C are related by a finite sequence of mutations.
— The complement of the union of T, for all « is of codimension 2 in .o/

Each « is called a cluster seed, T, is called a cluster chart, A, is called a cluster, and
A;.q is called a cluster Ky coordinate or a cluster variable. Each A;,, for i€ I — Ivf
is invariant under mutations and is called a frozen variable. We will suppress the
subscript a when the context is clear.

REMARK A.2. The coordinate ring of a cluster chart T, is a Laurent polynomial
ring L, in the variables A;,. The intersection (\,cc Lo is an upper cluster algebra
of [BFZ05]. A cluster Ky variety o/ is an affine variety whose coordinate ring is
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an upper cluster algebra. It is worth mentioning that our cluster K, varieties are
different from the cluster A varieties in [FG09]. The latter is defined to be the union
of the tori T, for a € C, and is not affine in general.

Each cluster seed a of & encodes a 2-form on T,,:

dA;. dA;.
Q=Y gyt \ 20 (A.1)
Z ’ Ai;a Aj;a

By Corollary 6.5 of [FG09], this 2-form does not depend on the choice of cluster
seeds and therefore defines a global 2-form € on <.
Borrowing ideas from mirror symmetry, Gross, Hacking, Keel, and Kontsevich

interpreted the cluster structures in terms of wall-crossing structures called scattering
diagrams [G+18]. In detail, associated to a quiver @ is a scattering diagram ®. Inside
D is a simplicial fan consisting of cones called cluster chambers. The paper [G+18]
establishes a one-to-one correspondence between the cluster seeds of &/ and the
cluster chambers of ©. The mutation from « to pra corresponds to crossing the
sharing facet (a.k.a the wall) of their corresponding cluster chambers.

The following proposition is crucial for this paper.

PrOPOSITION A.3. Let Q be a quiver of full rank and let o7 be its associated cluster
Ky variety over an algebraically closed field (of any characteristic). The cluster charts
of distinct cluster seeds of o/ do mnot coincide.

REMARK A.4. Proposition A.3 may not hold when @ is not of full rank, e.g., if Q
contains one vertex and no arrows, then its cluster variety has two cluster seeds but
only one cluster chart.

Proof. Let &/ be defined over an algebraically closed field of characteristic p. The
characteristic 0 case follows by the same argument. Let o and o' be two distinct
cluster seeds of 7. By Corollary 6.3 of [FZ07], the transition map between A, =
{Al} and A, ={A;} takes the form

A= (F

where g;; are integers, and each Fj is a polynomial in the variables X}, for k € 1 uf The
matrix G = (g;;) is called a g-matrix. The polynomials F; are called F-polynomials.

By [G+18], each F; is a generating function that counts broken lines in the scat-
tering diagram associated to @Q. For distinct « and o/, there is at least one wall
between their corresponding chambers. In particular, there is an i € I such that
F; # 1. By [LS15] and [G+18], we have

A% A2
Xp= lAlEkz>jg J ( )

— all coefficients of F; are positive integers;
— the constant term of Fj is 1;
— the coefficient of the highest term of F; is 1.
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Here the highest term of F; is the monomial [, X;L"' such that for any other term

I1; XJI»’" in Fj, we have a; > b; for all j. The above last two properties are equivalent
due to [FZ07, Prop.5.3].

By the above discussion, there exists an i € I'f such that the polynomial F; has
at least two terms even after reducing to a polynomial with coefficients in the finite
field Fp. The quiver @ is of full rank. The substitution X =[], A;*" gives rise to an
injective homomorphism from the polynomial ring F,[X;];c u¢ to the Laurent poly-
nomial ring F, [Ajﬂ] jer- Therefore A} is not a Laurent monomial of A; for j € 1. On
the other hand, biregular isomorphisms between algebraic tori over an algebraically
closed field are of monomial coordinate transformations. Thus T, # T,. [l

A.2: Cluster ensembles

Following [FG09], cluster Poisson varieties are the cluster dual of cluster Ko varieties.
Each cluster Poisson variety £ is equipped with a collection of torus charts with
coordinate systems X, = {Xf;}ie - The transition map between X, =X, and
X, is

¥ Xia if i =k,
ST Kia X (14 Xpa) ™ i i A k.

The coordinates X;., are called cluster Poisson coordinates.

Let o and 42 be a pair of cluster varieties associated to a mutation equivalence
class |@|. There is a natural one-to-one correspondence between the cluster seeds of
o/ and the cluster seeds of 2 . Each pair of corresponding cluster seeds is called a
cluster seed of (o, Z"). Following [FG09, §1.2], there is a canonical map p: & — 2
such that?

P (Xia) =[] 452
j

for every cluster seed of (o7, Z"). The triple (&7, 2, p) is called a cluster ensemble.
DEFINITION A.5. Suppose o : I’ — I is an injective map such that

(1) o|pu: ' — ' is a bijection,

(2) €ij =¢oi)o(j) for alli,j€I'.

Then o induces a morphism of algebraic tori o: o’ — « and o : x — X/, which are
extended to morphisms of cluster varieties o : @' — & and o: 2 — 2, called
cluster morphisms. If o is bijective, then the induced cluster morphisms are called
cluster isomorphisms.

4 Since €i; may not be integers when i,j are frozen, the map p is not necessarily algebraic. In
Sect. A.3, we consider the unfrozen quotient 2 of 2. The induced map p: & — 2" is algebraic.
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EXAMPLE A.6. Consider the inclusion of the unfrozen part Q% = (I, I, | jur, yur)
into Q. This inclusion induces cluster morphisms & — & and 2" — 2. More
properties about these cluster morphisms can be found in [Shel4, §3].

DEFINITION A.7. A cluster automorphism is a cluster isomorphism from a cluster
variety to itself. Cluster automorphisms form a group G called the cluster modular
group.

Fix an initial cluster seed of (&7, Z"). Every cluster automorphism maps the initial
seed to another cluster seed. We can express the obtained new cluster coordinates in
terms of the initial ones as in (A.2). As a consequence, one may assign the c-matrix,
g-matrix, and F-polynomials of [FZ07] to each cluster automorphism with respect
to a fixed initial seed.

PRrROPOSITION A.8. A cluster automorphism o is the identity map on <7 if and only
if it is the identity map on 2.

Proof. The separation formula of Fomin-Zelevinsky [FZ07]| implies that o is the
identity map on &7 (resp. Z) if and only if its g-matrix G (resp. c-matrix C') is the
identity matrix with respect to one (equivalently any) initial seed. The proposition
then follows from the tropical duality theorem [NZ12, Theorem 1.2], which says that
Cc-l=aGt O

DEFINITION A.9 ([GS18]). A cluster Donaldson-Thomas transformation on a cluster
variety is a cluster automorphism whose c-matrix is equal to minus identity.

For any cluster ensemble, its cluster Donaldson-Thomas transformation, if exists,
is a unique central element in the cluster modular group.

A.3: Quasi-cluster morphisms

Define N := @,c;Ze; for a quiver Q = (I,1%,¢), and let NU its the sub-lattice
spanned by e; for i € I*f. The exchange matrix € equips N with a skew-symmetric
form {-,-}: N x N — Q such that {e;,e;} =¢;;. Let M be the dual lattice of N.
One should think of NV as the character lattice of a cluster chart x and think of
M as the character lattice of the cluster chart a dual to x. For n € N and m € M we
denote the corresponding character functions as X™ and A™. In particular, X¢ are
precisely the cluster Poisson coordinates X;, and the map p: .o/ — £ is induced by
the linear map p* : N — M,n+— {n,-}. We will use this set-up to define quasi-cluster
morphisms. More detailed discussions can be found in [Fral6, GS19, SW19].

DEFINITION A.10. Let N and N’ be the lattices associated to Q and Q' respectively.
Suppose o : N’ — N is an injective linear map such that

(1) o|nvue is an isomoprhism onto N
(3) for any i € I'", we have o (e}) = e; for some j € I,
(3) o preserves the skew-symmetric forms.
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Then o induces a morphism of algebraic tori o : Y — ¥’ which extends to a morphism
o: 2 — 2. On the dual side, ¢ induces a linear map o : M — M’, which defines a
morphism of algebraic tori o: o’ — «a and extends to a morphism o : .o/’ — o/. We
call the induced morphisms o : 2" — 2" and o : &' — & quasi-cluster morphisms.

A quasi-cluster isomorphism is a quasi-cluster morphism where o : N’ — N is an
isomorphism. A quasi-cluster automorphism is a quasi-cluster isomorphism from a
cluster variety to itself. Quasi-cluster automorphisms form a group QG called the
quasi-cluster modular group.

The cluster modular group G is a subgroup of the quasi-cluster modular group
QG. There is a natural map QG — G" where G* denotes the cluster modular group
for the unfrozen part.

REMARK A.11. Quasi-cluster automorphisms are also known as (quasi-)cluster
transformations.

The restriction of quasi-cluster morphisms to cluster charts commute with cluster
mutations. Consequently, we have the following theorem.

Theorem A.12. Let V and W be two cluster varieties of the same type (either Ko
or Poisson). If o:V — W is a quasi-cluster morphism, then there is a one-to-one
correspondence between their cluster seeds, and o restricts to a morphism between
the corresponding cluster charts.

Below we construct two types of quasi-cluster morphisms that are crucial for us.
Changing a frozen vertex. Recall the lattice N associated with a quiver @ =

(I,I%,¢). Let k be a frozen vertex of Q. Let (07)¢; is an |I|-tuple of integers.
We consider a lattice N’ = @,.; Ze, and define a linear map o : N’ — N such that

n . ) Ei lf’L%k,
o ()= {Zjel Sie; ifi=k.

The exchange matrix e equips N with a skew-symmetric form {-,-}, whose pull-
back through o induces a skew-symmetric form {-, -}’ on N’. Let ¢’ be an I x I matrix
such that

€= {e;,e;}/ = {a(eg),a(e;)} )

Let /' and 2" be the cluster varieties associated with the quiver Q' = (I,1%,¢’).
Note that o satisfies the conditions (1) and (2) of Definition A.10. Therefore it defines
quasi-cluster morphisms

oo — of and o X > Z.

Let « (resp. o) be the Ky cluster chart associated with the quiver @ (resp. @'). Let
X (resp. x’) be the Poisson cluster chart associated with the quiver @ (resp. Q).
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Then the pull-back maps of o can be written in terms of these cluster charts as

ALAY i ik,

X; ifi£k
* 1) — * I = ’
o* (4;) {A;€ ik and o (X)) { (A.3)

5 e
I[; X;7 ifi=k.
PROPOSITION A.13. With the above set-up, the following statements are true.

(1) If 6p = 1, then the quasi-cluster morphisms o are quasi-cluster isomorphisms.
(2) If > €ij0; =0 for every i € It then there is no arrow between the vertex k
and the unfrozen part of Q'.

Proof. (1) is obvious. For (2), it suffices to note that for ¢ € I,
= el = o () o (e} = {en T des | = by =0,
J J
Hence, there is no arrow between the vertex k and the unfrozen part of @Q’. O

Merging frozen vertices.  Let t1 and ty be frozen vertices in a quiver Q = (I, 1 uf, £).
Define the quiver Q' = (I', I'% '), where I’ := (I \ {t1,t2}) U {t}, I'* := I, and

€ij if 4,75 #1,
E;j =4 €5 T Etyj if i =1t,
Eitq + Eito if j =t.

We say that Q' is obtained from @ by merging the frozen vertices ¢; and to into a
single frozen vertex t. Let N and N’ be the lattices associated with the quivers Q
and @’ respectively. There is an injective linear map

o:N' — N
e e; fori#t,

/
e > e + €y

Note that o satisfies the conditions in Definition A.10. It defines quasi-cluster mor-
phisms

o —>of and o: % = Z'.

The next proposition is direct consequence of the construction of o.

PROPOSITION A.14. The quasi-cluster morphism o : &' — of embeds <7/’ as a sub-
variety of &/ determined by the locus {A; = A;}.
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Appendix B: Double Bott-Samelson cells
B.4: Definition and basic properties

Double Bott-Samelson (BS) cells, introduced in [SW19], are moduli spaces of flags
with prescribed relative positions encoded by positive braids. In this section we briefly
recall their definition and basic properties following loc. cit. Theorem 2.12 establishes
natural isomorphisms between the augmentation varieties of positive braid closures
and the double BS cells associated with SL,,.

Let B+ be a pair of opposite Borel subgroups of a Kac-Moody group G and
let Uy := [B4,By] be the maximal unipotent subgroups. There are flag varieties
By :=G/B; and B_ := B_\G. By replacing By with Uy we define decorated flag
varieties Ay :=G/Uy and A_ :=U_\G. There are natural projections 7: Ay — Bx.
If 7(A) =B then we say that A is a decoration over B.

We denote elements in B, as B and elements in B_ as B;. The same convention
is applied to AL with the letter B replaced by A.

Let T:=B;.NB_ and let W:= N(T)/T be the Weyl group. Consider the Bruhat
decompositions and Birkhoff decomposition

G=| ] BiwBy= || B.wB_= | | B_wB.,.
weW weW weW

We adopt the convention of writing

JJB+ L yB+ if l'ily € B+’UJB+,
w
B.x ——= B_y ifzy 'eB_wB_,

B_x

yBy ifxy e B_wB,.

We often omit w in the notation when it is the identity. Moreover, when decorated
flags are involved, the notations only concern the underlying flags; for example,

Bl — > A/ means Bi — > 7 (AY) .

Siq Sim
For a positive braid word 8 =s;, ...s;,,, a chain B B™ will

B
be abbreviated as B? — — > B™ . By Theorem 2.18 of [SW19], the chains of flags
associated to different words of the positive braid [$] have a natural one-to-one

correspondence. In this sense, the chain B? — — > B™ does not depend on the
word [ chosen.

DEFINITION B.1. Let 8 and v be positive braids. The half decorated double BS cell
Confg)(C)7 viewed as a Z-scheme, is a moduli space parametrizes G-orbits of the
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chains of flags

BO *79 Am

B0 -~ B!
s

If one forgets to choose a decoration A,, over B,,, then the resulting space is denoted
by Conf(B). Denote by 7 the forgetful map from Conf}(C) to Conf}(B).

REMARK B.2. This version of double BS cells is slightly different from those in
[SW19]: first, the two chains of flags swap places with the B, -chain at the bottom
and the B_-chain at the top now; second, there is only one decoration A,, over B,,
and the flag B? is no longer decorated.

Si

For By BY B! , there is a unique flag B_; such that
Sq Sq Sq Sq
BY B.y —— By . It then follows from B_; BY B! that
B_1 B! . This construction gives rise to the following reflection maps.

DEFINITION B.3. The left reflection map I; : Conf] 4(C) — Conf”(C) is an isomor-
phism mapping

v Si Y
By - —> A, By ——= By - —-> A,
/ — \
BO —~ Bl - - B" Bl - -~ B"
5i 8 B

Its inverse map [* : Conf} ™ (C) — Conf] ;(C) is defined by an analogous process.

Let ¢; : SLy — G be the group homomorphism associated to the simple root «;.

Define
1 ¢ 1 0
ei(q) == i <0 1) ;o esi(q) =i (q 1> ,

_ 0 -1 = 0 1
S; ‘= @; 1 0 s S; 1= @5 1 0ol

Consider a reduced expression w =s;, ...s;, in W. Let

gll

W=38; ---Si,, =S4y ---Sip,-
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The elements w and w in G do not depend on the reduced expression chosen. We set

Ri(q) :=ei(q)3: = @i <(i _01> . (B.1)

LEMMA B.4. Fiz a flag B/. The space of flags B* such that B’ L B* s iso-
morphic to A'. In particular, if B = B, , then B* = R;(q)B.. for some unique q € A'.

Proof. Tt suffices to prove the lemma for B/ = B.. Let U; := {e;(t) | t € A'} be the
1-dimensional unipotent subgroup associated to the simple root «; and let Q; :=
B; N s;Bis;. By [Kum02, Lemma 6.1.3], we know that B, = U;Q;. Therefore

B+S1’B+/ B+ = UZQZS,LBJ,_/ B+ = UZSlQZBJ,_/ B+ = UZ‘SiB+/B+.
Hence B* = R;(q)B, for some unique ¢ € Al O

We prove an important property of the double BS cells, following [SW19, §2.4].

PRroOPOSITION B.5. The space Confg(C) is the non-vanishing locus of a polynomial
in AMBIHO) - Consequently, it is a smooth affine variety.

Proof. Tt suffices to prove the lemma for Conf%(C); the general case will follow by
using the reflections to shift the top ~ to the bottom. Suppose 5 is of length [. Every
point of Confj(C) admits a unique representative as follows

Using Lemma B.4 recursively, we obtain parameters (qi,...,q) € Al such that

B* =Ry (q1)-- Ry, (q:)B, k=1,...,1

By definition, we require that the rightmost pair (U_,B!) is in general position.

Let w; be the ith fundamental weight. The ith principal minor A; : G — A
is a regular function uniquely determined by the following two conditions: (1)
Aj(u_guy) = Ai(g), where uy € Uy; (2) Aj(h) =h¥ for h € T. When G = SL,,,
the function A; coincides with (2.7). Note that g € B”B™ if and only if A;(g) # 0 for
all i. Therefore the pair (U_,B!) is in general position if and only if

f(q17 7ql H A z1 Q1 Zz (QZ)) ?é 0. U

1<i<rkG
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B.5: Cluster structures on double Bott-Samelson cells

A pair of positive braids (/3,7) can be regarded as a single braid in the product
Br x Br. We shall prove that every word of (8,7) gives rise to a cluster seed of
Confg(C). First, each word determines a labeling of arrows and a triangulation on
the configuration diagram. Then we require that every pair of flags that are connected
by a diagonal in the triangulation are in general position. The subspace of Confg (C)
that satisfy these general position conditions is an algebraic torus. The algebraic tori
obtained from all words of (3,7) form a subset of the atlas of cluster charts.

In detail, let t be a word of (3,7). We label the arrows and draw the triangulation
on the configuration diagram according to t as shown in Example B.8. On top of
the triangulation, we draw rank(G) many parallel lines, each of which represents
a simple root of G. Triangles in the triangulation are either upward pointing or
downward pointing (as shown below), and depending on the orientation and the
labeling of the base, each triangle places a node at one of the lines, cutting it into
segments called strings. The segments from such cutting become the vertices of the
quiver ()¢, and the arrows in ()¢ are drawn according to the pictures below, where the
dashed arrows between different levels ¢ # j are weighted by weights that are related
to Cartan numbers (see [SW19] for more details). In particular, in the simply-laced
cases (which include SL,,), the dashed arrows all have weight 1/2. In the end, we
delete the left most vertices (together with all incident arrows) and freeze the right
most vertices on each level.

Si
) ith —&— —i —e— oo

ith —1 . E
jth jth — Yo

) ith —— ¢ —eo— e e
’Lth 7 F 7
jth jth ——o——— Yo

Si

To define the cluster Ky coordinates, we first need to decorate the flags. Two dec-

orated flags zU, S yU, (resp. U_z L U_y ) are said to be compatible

if 7'y e U, wU, (resp. 2y~ € U_wU_). Two decorated flags U_zx yU, s
called a pinning if zy e U_U,.
LEMMA B.6. Given B —> B (resp. B’ . B or B— B ), for ev-

ery decoration A over B, there exists a unique decoration A’ over B', such that



GAFA AUGMENTATIONS, FILLINGS, AND CLUSTERS 857

A ——= A are compatible (resp. A’ oA are compatible or A —— A’
is a pinning).
Using the above lemma, we can begin with the decoration A,, over B,, and induce

decorations one-by-one over the rest flags following the C-shape path illustrated by
the dashed circles below

| S S S S; !
J1 J2 J3 Im—1 Im

. Bo B: B = B — A
| |
| [
! l
e "
! 0 1 2 . -1 l
B B B — Bt —— B
I Siq Siy Sig Siy_1 Siy !

The next proposition presents a standard representative for every point in
Conf}(C).

ProprosiTION B.7. Every point in Confg(C) admits a unique representative in the
following form:

where

zp =Ry (1) Riy (q2) - R (ak) .y =Ry, (pr) .- Rjy (p2) Rjy (p1) -

This gives an open embedding Conf}(C) — A} X Al

Proof. Let us first verify that adjacent decorated flags along the top chain and the
bottom chain are compatible. Let xy = yy = e. Note that

U+x,;_11:ka+ = UJreik (Qk)gikUwL = U+§iku+7
U_yi—1yy, "U— = U_ (ej, (pr)55,) U- =U_e_j, (—px)5;,U- =U_5; U_.

Since a compatible decoration on one end of any adjacent pair of flags along either
of the horizontal chains can be uniquely determined by the decoration on the other
end of the pair, the existence of uniqueness of such representative automatically
follows from the fact that G acts freely and transitively on the space of pinnings. [

Now for a fixed word t of (53,7), we get a quiver Q¢ with vertices corresponding
to strings, which necessarily cross certain diagonals (possibly more than one) in the
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triangulation.

1th
.’IJU+

The cluster Ky coordinate associated to the string a is defined to be the ¢th principal
minor of xy:

As=A(yx).
The function A, is independent of the choice of diagonals if a crosses more than one
diagonals.

ExAMPLE B.8. Let G =SLg3, 8 = 59515251, and 7 = s981. For Br x Br, we use negative
numbers for letters in the second factor. The word t = (2,-2,1,2,—1,1) for (5,7)
gives rise to the following triangulation, string diagram, and quiver

1st 1 —1-1
2nd —— 2 — =2 2
° o\[}
. . IE]

REMARK B.9. In [SW19] a cluster Ky structure is constructed on the decorated
double BS cell Confzg (Ase) for a simply-connected group G, which has frozen vertices
on both sides of the quiver. The cluster Ky structure on Conf}(C) is essentially
obtained from that of Conf} (As.) by setting all the frozen variables on the left to

AY .

be 1 due to the pinning condition on A
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The next Proposition provides an interpretation of left reflections in terms of
standard representatives in Proposition B.7. It implies that the left reflections are
cluster transformations.

PROPOSITION B.10. The left reflection Conf] 45(C) — Confy”7(C) can be expressed in
terms of standard representatives as

- s 55 S5 |

U 1 U_u J2 J Uy :

/’/ U+ — Rl(q)U+ S—> Rl(q).fClUJr 5 P Ri(q)fElU+ :

e S U _____ |
—

OO s Sjpi Sjy Sjm 1

~. Uo —= U_Ri(q) —— U_n1Ri(q) U_ym Ri(q);

\\\ u, — ;U ;U :

N * Siy e Siy Sy e ‘

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Proof. The left reflection does the following.

Si

u_ Uus — U U5 — - U_
U, 4; Ri(q)U4 Uy — Ri(q)Uy4 Ri(q)U4

To restore to the standard representative, we need to act on the resulting config-
uration by (R;(q))”". Note that under the such action, zU — (R;(q)) ' zU, and
U_y+— U_yR;(q). It is not hard to see that such action will give the standard con-
figuration as claimed in the proposition. O

B.6: An open embedding

In this section we construct an open embedding 1 : Conf}(C) x G, — Conf] 4(C)
whose image is the localization (freezing) at a cluster variable of the latter.

Recall from Lemma B.4 that the moduli space of B™! that fits into the triangle
in the picture on the left below is parametrized by the multiplicative group scheme
Gy,. Note that the base change of G,, to any field k is isomorphic to k* as affine
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schemes over k.

BL - — A,

/\ 5,

B~ —5.— B+

i

On the other hand, consider a standard representative and let us temporarily forget
about the decorations on the pinning and the bottom chain, as shown in the picture

on the right above. By gluing these two figures along the pinning B_ —— B, |

we end up with a point in Conf 5(C), which defines a morphism
¥ : Conf}(C) x Gy, — Conf] 45(C), (B.3)
It is easy to see that 1 is an open embedding.

ProroSITION B.11. The image of v in CoaniB(C) is the distinguished open subset
corresponding to the localization (freezing) at the leftmost cluster variable A, in the
picture below

Bo . A,
% % | (B.4)
B—l 5 BO ﬁ Bl

Proof. There is a unique representative of (B.4) such that By =B_, B! =B, and
BY = R;(d)B,. The principal minors of R;(d) are

N

Hence, the left cluster variable A. = d. By definition, (B.4) is in the image of ¢ when
By and BY are in general position, or equivalently when d # 0. In other words, the
image of v is precisely the non-vanishing locus of the cluster variable A.. In cluster
theory, localization of a cluster Ky variety at a cluster variable A, is again a cluster
K5 variety, which can be obtained by freezing the vertex c. Therefore the image of
1 is also a cluster Ky variety. O

Now we make Confg (C) x Gy, into a cluster Ky variety by adding an extra frozen
variable d corresponding to the G,, factor. There should not be no arrows connecting
c and the unfrozen variables of Conf;(C) because the extra G,, factor will not affect
their mutations. However, there is freedom of adding arrows connecting ¢ and the
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frozen variables of Confg(C). The next proposition shows that these arrows can be
uniquely determined by requiring 1 to be a quasi-cluster isomorphism onto its image.

PROPOSITION B.12. The space Conf}(C) X Gy, can be equipped with a unique cluster
Ky structure which extends the cluster Ko structure on Confg (C) by adding one extra
frozen vertex ¢ and possibly arrows between c¢ and the original frozen part, such that
1 becomes a quasi-cluster isomorphism onto its image.

Proof. Suppose we start with a standard representative in the image of ¢ as follows.

From the last proposition we know that zoU; = R;(d)U; for some non-zero d.

To obtain the preimage of this representative under v, we need to delete the flag
Uy at the lower left corner and re-scale the decorations along the bottom chain as
follows.

‘ S S; S [
1 J1 J2 Im

‘ U_ U—yl U—ym :
! I
I e e e e e e e e e e e e
| |

| |
e -
| |
! .fU()h()U+ - :II1h1U+ — 7t T .IlhlU+ !
: Siy Siy S'Ll ‘

Here hy € T are such that (U_,x0hoU,) is a pinning and (zx_1hg—1Us, zphiUL) are
compatible.
Set Ay = —a;’. Define co-characters A} of T for 1 <k <[ by the recursive relation

A= sin (M) -

Note that zo = R;(d). An easy calculation shows that zohy € U_U, if and only if
ho = d* . Since (zx—1U4,z,Uy) is a compatible pair, by definition we get :c,;_llmk €
U.43;, Uy. Therefore,

Uy (zrrhp1) " arpheUy = U s, - i (it ) Uy

The pair (xg—1hr—1Uy, z1hpUy) is compatible if and only if hy = s;, (hx—1). By in-
duction we get hy = dM for 0 <k <I.

Next we investigate the pull-back of cluster Ky coordinates of Confzi 5(C) under
Y. Fix a word t for (5,7) and consider the word (i,t) for (s;0,7). Let Q¢ be the
quiver associated to t, and @Q); ¢ the quiver associated to (i,t) with the leftmost vertex
¢ frozen.
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Recall that
V" (Ae) = Ai(wo) = Ai(Ri(d)) = d.

We define d to be the cluster variable A/ for the new frozen vertex c.
For any other string (vertex) a associated to (i,t) as the left picture below, there
is a corresponding string (vertex) a associated to t as the right right below.

U_yj Ufyj
hth level + a hth level «"> a
U zpd U

Let 84 := — (\/,wn) € Z; then
¢* (Aa) =Ay (ijk) =Ay (y]xkhk) d7<)\z’wh> = AZIA’C%'

In addition we define . := —(\J,w;) = 1. Let I denote the vertices of @;¢ and let
ei; be the exchange matrix encoded by Q;¢. The set I’ =1 — {c} consists of vertices
of Q¢ and I consists of unfrozen vertices of Q. We claim that for any a € I'f, we
have

Zsabéb =0. (B.5)

bel

To see this, recall that there is projection map
p: Conf}(C) x G,, — Conf}(C) — Conf}(B)

As in [SW19, §3], Conf;(B) is equipped with the cluster Poission variables { X }4eur
such that

P (X)) = [T A7 (B.6)
bel’

Consider the composition
p' = Conf] 4(C) — Conf] 4(B) — Conf}(B)

Here the second map is rational, obtained by forgetting the flag B~!. Note that
B~! only changes the decorations on the other flags. Therefore we have p = p’ o 1.
Therefore for a € I"* we have

) = () = (T ) = e T A

bel bel’
/Z €abdb Ie
— Ac bel ‘ H Ab ab‘
bel’

Comparing it with (B.6), we arrive at the identity (B.5).
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Note that identity (B.5) satisfies the assumptions stated in Proposition A.13.
Therefore we know that there is a unique way to extend the quiver of Conf}(C) so
that ¢ becomes a quasi-cluster isomorphism onto its image. O

ExAMPLE B.13. We continue from Example B.8. Consider the map ¢, : Conf}(C) x
Gy — Conf] 4(C). Let d = A, be the coordinate for the G,, factor. Then in the
preimage,

52 S1

Ao A Az

401 AO > dmo oY AT g0f AZ b of AP ———— oy +o} Al
2 1 2 1

The change of decorations gives rise the the pull-backs ¢f (A.) = AL and ¢ (A,) =
Al d’s = A! A% for a # c. The integers J, assigned to the vertices a are as follows.

0 —— 0= [T

VY

e

Using these d, we conclude that the cluster structure on Conf}(C) x Gy, is given by

the following quiver, where the right most vertex is the extra frozen vertex c.

) ° O -
/ \ L
L] ° a o
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