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Abstract—Time-frequency warped waveform is a novel type
of well-contained waveform composed of raised cosine (RC)
pulses with roll-off factors profile customized for spectrally
efficient signal containment. The waveform is suited for massive
machine-type communication (mMTC), and Internet-of-Things
(IoT) applications. The paper is a follow-up to the original work
of time-frequency warped waveforms; here, we are proposing a
warping function suited for length-independent symbols, which is
missing from the previous work. The paper proposes the design
steps starting from a piecewise warping function with parts of
straight segments and other curved parts. A maximum Out-of-
band leakage is used as a criterion to determine the warping
function parameters. The roll-off factors profile determined in the
previous study is used as a minimum bound for the leakage limits.
Gains are presented over Windowed Zero-tail Discrete Fourier
Transform-spread-Orthogonal Frequency Division Multiplexing
(ZT-DFT-s-OFDM) in the simulations section.

Index Terms—6G and Beyond, Waveform, Time-Frequency
Warping, massive machine-type communication, mMTC, IoT.

I. INTRODUCTION

The number of Internet of Things (IoT) connected devices
is expected to increaese exponentially in the next decade,
serving various use cases with highly diverse requirements.
Machine Type Communication (MTC), with its massive and
low latency unlimited wireless connectivity, is a key driver in
this expanding trend. To support this massive MTC (mMTC)
vision, it is required to design ultra-low power receivers, highly
efficient sleep modes, and ultra-low-cost MTC devices [1].
This paper uses the concept of time-frequency warping as a
waveform modifier on signals intended for relaxed synchro-
nization, energy efficiency, and low latency scenarios [2], [3].

This paper is a follow-up to [3] that proposes a method to
create a spectrally efficient, well-contained symbol in time and
frequency domains. The idea is to use high roll-off factors for
the raised-cosine (RC) shaped pulses near the edges of the
symbol and low roll-off factors for the inner pulses. This is
because, in a zero-tail DFT-s-OFDM-like symbol, the outer
pulses contribute more to the time domain zero tails than
the internal pulses. A similar idea was proposed in [4], but
without the warping modifier. This high containment enhances
the performance in the presence of time dispersion or time
and frequency offsets because the power leaked from the
edge symbols would be minimal in the time domain. Then,

the pulse occupancy in the frequency domain is controlled
by introducing time-axis warping, which will align the spec-
tral occupancy of all the pulses in the frequency domain.
As a result, intersymbol interference (ISI) in the time and
frequency domains is reduced. The time-frequency warping
modifier is used in the fields of signal analysis and wavelet
theory. In [5], Evangelista extends the definition of dyadic
wavelets to include frequency-warped wavelets. Moreover, the
time-frequency plane’s flexible orthogonal and non-orthogonal
tilings were defined using frequency-warped wavelets. In [6],
designing warped variable filters is proposed to fit the fre-
quency response of a signal.

Our previous work in [3] proposed methods to determine
an optimized roll-off factors α profile, followed by warping
function determination that fits the decided α profile. The
paper also proposed a computationally efficient method for
the transmitter scheme that splits the modulated waveform
into two parts: a middle part with a linear time progression
and an edges part with a warped time function. There was,
however, no warping function design procedure proposed for
this modified split modulation.

This paper proposes a method to define the warping function
first because it decides the different block sizes of the transmit-
ter, and then the roll-off factors of the pulses are determined
accordingly, which is the opposite order of our previous study.
Moreover, the containment utility function, which is used to
determine the roll-off factors, will take into consideration the
sampling quantization in time. Finally, the containment, as the
zero-tails and OOBE power, is compared with a more generic
waveform, Windowed ZT-DFT-s-OFDM.

The base symbol that we will use is Zero Tail DFT spread
OFDM (ZT-DFT-s-OFDM) [7]; a variation of the (DFT-s-
OFDM) modulation, aiming to decrease the zero tails power.
DFT-s-OFDM is used as the modulation scheme for Long-
Term Evolution (LTE) uplink schemes because of its low peak-
to-average power ratio (PAPR), making it suitable for low-
power systems.

The rest of this paper is organized as follows; the time-
frequency warping theory is discussed in Section II. The
piecewise warping function is proposed in Section III. Roll-off
factors profile determination is discussed in Section IV. Finally,



x

y

x

y

~

~

Fig. 1. Windowing versus Axis Warping with gradually changing roll-off
factors.

an evaluation of the time-frequency waveform and comparison
with the Windowed ZT-DFT-s-OFDM waveforms is provided
in Section V.

II. BACKGROUND

In this section, axis warping unitary theory is briefly pre-
sented, and its effect is described when applied to the time-
frequency plane.

A. Axis Warping Theory

Axis warping transformation is a subclass of unitary trans-
formations. The unitary operator U is a linear transformation
that maps between two Hilbert spaces (i.e., U : L2(R) 7−→
L2(R)). Unitary transformations have the following character-
istics. They maintain inner products (i.e., ⟨Us,Uh⟩ = ⟨s, h⟩),
and they preserve energy (i.e., ∥Us∥2 = ∥s∥2). Axis warping
is applied through the warping function w that maps the axis
x to the new axis w(x):

w : R 7→ R, x 7→ w(x) , (1)

where w is a one-to-one, monotonic function. The warped
orthogonal axes x̃, and ỹ are related to the original axes x and
y through:

x̃ = w(x), ỹ = y ṁ(w(x)) , (2)

where m = w−1 is the inverse function of w. Axis warping
of waveform s is expressed as follows [8]:

[Us](x) = |ẇ(x)|1/2s[w(x)] , (3)

where ẇ represents the first derivative of the function w. The
warping transform allows for non-uniform axes manipulation
and provides a flexible method for controlling time-frequency
occupancy.

Time axis warping for an SC-OFDM-based waveform uses
axis warping to dilate the time domain pulses at the symbol
edges to equalize the effect of the pulses having higher roll-off
factors at the symbol edges. The warping concept is shown
in Fig. 1 and its comparison with windowing in a generic
x-y plane, where x and y can be used to represent time or
frequency interchangeably.

In the case of waveform windowing, the shape of the pulse
is similar for all pulses. The spacing between the pulses on
the x-axis is uniform, and the occupancy in the frequency
domain is similar for all of them. On the symbol’s edges, the
pulse shape has higher roll-off factors and lower tails on the

x-axis for the warped waveform. The pulses with higher roll-
off factors have higher occupancy on the y-axis. Therefore,
warping is used to shrink the x-y plane on the y-dimension by
dilating the x-dimension at the position of the high α pulse.
The warping function has to be designed to fit the roll-off
factors of the pulses, and the roll-off factors should be chosen
to have low power of tails without losing spectral efficiency.

B. Frequency Domain Deformation

Axis warping in the time domain creates deformation in
the frequency domain [9]. Let H(f) be the frequency domain
response of the unwarped version of the studied waveform.
The frequency domain warping deformation results from the
operator:

Wt = FWF†, (4)

where F, and F† are the Fourier and inverse Fourier transforms,
respectively. W is warping operator such that; [Wh](t) =√
ẇ(t)h[w(t)]. The first part of the Wt operator is

WF†(t, f) =

∫
R

√
ẇ(t)δ(w(t)− τ)ej2πfτdτ

=
√

ẇ(t)ej2πfw(t).

(5)

Then,

FWF†(f, ν) =

∫
R

√
ẇ(t)ej2πνw(t)e−j2πftdt. (6)

So, the new shape of H after warping is found by

[FWF†H](f) =

∫
R
H(ν)

∫
R

√
ẇ(t)e−j2π(ft−νw(t))dtdν.

(7)
The output of this operation can not be found analytically

for warped RC pulses or windows [10]. Therefore in the
following sections, numerical methods will be used to cal-
culate the frequency domain leakage based on the previous
formulation.

constant 

constant (xt)

xt

Fig. 2. Splitting modulation regions for lower computational complexity.

C. Split Transmitter Scheme

This section revisits the Split transmitter scheme proposed
in [3]. Filter banks are the straightforward choice, given the
varying roll-off factors of the pulses, but they come at the
expense of computational complexity. Our previous paper
introduced an efficient computational complexity method for
the transmitter and receiver, which forms the basis of our
current work. To reduce complexity in the transmitter filter
bank, we consider the ẇ(xt) function with a flat middle. For
symbols with a high number of pulses, the middle region
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Fig. 3. Splitting modulation regions transmitter scheme.

has a constant α value. This allows for a warping function
with a consistent slope over this pulse region, taking into
consideration the duration of the effect of these pulses on the
time axis.

Fig. 2 illustrates the middle pulses (solid red line) and the
edge pulses (blue dotted line). The constant ẇ(xt) region
extends to include the middle pulses and their tails, with the
duration dependent on the minimum α value. Since the middle
pulses are not warped, they can be modulated by a parallel
structure of the DFT-s-OFDM modulator, as shown in Fig.
3. The DFT-s-OFDM section includes a long IFFT output to
match the sampling rate of the filter bank section responsible
for the warped pulses.

The proposed modulation region split reduces computational
complexity by utilizing efficient FFT and IFFT blocks. Addi-
tionally, the IFFT block can be more efficient through pruning,
which excludes V N − 2N inputs from the IFFT butterfly
structure.

III. WARPING AND ROLL-OFF FACTOR PROFILES DESIGN

In the previous study, the warping function followed a
sigmoid profile, which does not suit the structure of the split
modulation scheme. In this section, we propose a warping
function specifically designed for this scheme, aiming to
minimize the number of parameters for optimization and be
more fitting to the scheme.

A. Piecewise Warping Function Design

The warping function, depicted in Fig. 4, consists of straight
segments with constant slopes in the middle and at the ends,
connected by curved segments. Fig. 4 illustrates the warping
function from the center pulse position to one of the edges, and
the function exhibits odd symmetry around the center pulse.

The warping function can be mathematically formulated as
follows:

w(xt) =


xt

V ; |xt| < w−1(E1)
xt

2V + sign(xt)
(
N
2 − k

2

)
; |xt| > w−1(E2)

ax3
t + bx2

t + cxt + d ; Otherwise,

,

(8)
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Fig. 4. Warping function determination.

where E1 and E2 are the points in the warped domain where
the segments are connected, k represents the extension in
pulse widths, and (a, b, c, d) are variables controlling the cubic
spline.

To avoid interpulse interference caused by peaks and zeros
falling between sampling points, the sampled warping function
at the sampling instances (w(xt) ; xt ∈ Z) should have
integer values at the sampling points w−1(n). Consequently,
in the implementation, the curved segments (Seg 2) within
the interval w−1(E1) < |xt| < w−1(E2) are divided into
spline subsegments that connect between the anchor points
(w−1(n), n) closest to Seg 2.

We have three main parameters that control the shape of
the warping function E1, E2, and k. Segment Seg 1, covering
the inner pulses with low roll-off factors, corresponds to the
interval |xt| < w−1(E1) and has a slope of 1/V , where V
represents the oversampling ratio. The edge segment Seg 3 has
half the slope because we designed the symbol to cover the
full roll-off factors range. The zero tails fall within the region
of Seg 3.

The extension factor k determines the extent to which the
warped pulse is stretched in the time domain. Fig. 4 displays
two examples with the same E1 and E2 parameters but
different k values. A higher k value shifts the region of zero
tails ztb to a larger xt value. Seg 2 has distinct (a, b, c, d)
values to connect between Seg 1 and Seg 3 in both cases.
B. Roll-off Factors versus Leakage Profiles

The selection of warping function slopes ensures that pulses
at the edges have α = 1, while inner pulses have α → 0. The
time domain representation of the warped RC pulse is given
by:

RC(t) =


π

4
sinc

(
1

2α

)
, ; w(xt) = ± 1

2α

sinc(w(xt))

cos

(
1

2α

)
1− (2α w(xt))

2 ; otherwise,

(9)
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Fig. 5. Out-of-band leakage profiles versus roll-off factors along pulses n at different warping functions. The contours at the bottom of the plots correspond
to a leakage value of 0.02%

and the frequency domain representation RC(f) is formulated
as:

RC(f) =
∫
R
R(ν)

∫
R

√
ẇ(t) e−j2π(ft−νw(t)) dt dν , (10)

where

R(ν) =


1 ; |ν| ≤ 1− α

2
1

2

(
1 + cos(

π

α
[|ν| − 1− α

2
])
)

;
1− α

2
< |ν| ≤ 1 + α

2
0 ; otherwise.

(11)
The frequency domain representation is equivalent to the

convolution between the unwarped frequency domain window
and the chirp function modulated by w(xt), as shown in Eq.
(10). Since the chirp function exhibits more occupancy and
leakage in the frequency domain [10], the convolution result
will have some leakage outside the expected spectrum. In this
section, we establish limits on the roll-off factors based on the
per-pulse leakage function Ln(α). These limits are determined
by selecting a maximum leakage value outside a specific band.

The power leakage ratio L outside the range [−fm, fm] is
defined as:

Ln(α) = 1−
∫ fm

−fm
|RCn(f, α)|2 df∫∞

−∞ |RCn(f, α)|2 df
. (12)

To provide flexibility in the design problem, we allow the
band fm to be higher than the band of the sinc pulse by a
factor of ζ, resulting in fm = ζfs

2V . Later, we will demonstrate
that the factor ζ is crucial, as without it (fm = fs

2V ), we would
not find a solution to unite all pulses under the same spectral
mask unless high leakage is allowed.

In Fig. 5, we plot the profile Ln(α) for k values of 1, 2, and
3, while fixing E1 = 12, E2 = 1, and V = 6. Additionally,
we draw the contour of Ln(α) = 0.02% to represent the
boundaries for selecting α values. In other words, roll-off
factors below this boundary are acceptable for the chosen
frequency domain leakage.

We can observe different leakage behavior for different
k extension values. For a low value of k = 2, pulses at

(a)

(b)

Fig. 6. Roll-off factor boundaries with 0.02 % leakage limits.



the edges and in the middle exhibit a low leakage profile.
However, pulses at the transition or curved part of the warped
function have a higher leakage profile. On the other hand, for
a higher k = 3 value, pulses at the edges have low leakage
profiles, while inner pulses suffer from high leakage profiles.
Interestingly, there exists a near-optimal k value in the middle
where the transition is smooth enough for pulses in the curved
region yet short enough for the inner pulses. The contours of
Ln(α) = 0.02% are shown in Fig. 6a, along with the roll-
off factors profile labeled as ”solution 1” from the paper [3].
This roll-off factor profile is determined by solving a marginal
utility problem, assuming a cost of cn = 1

1+αn
and a utility

gain represented by the power suppression over the first side
lobe in the tails region. The roll-off factor profile values for
20 pulses from the edges are as follows: ρN → N − 19 =[1.0
0.55 0.41 0.32 0.26 0.22 0.19 0.17 0.15 0.13 0.12 0.11 0.1 0.09
0.09 0.08 0.08 0.07 0.07 0.06].

For the three contours in Fig. 6a, the closest boundary that
fits with the roll-off factor profile is at k = 3. By fixing
k and further tuning the parameters E1 and E2, we obtain
the contours in Fig. 6b. From the figure, we observe that the
closest contour to the roll-off profile is achieved at E1 = 12
and E1 = 16. However, for E1 = 8 and E1 = 20, some
pulses in the range n = [17, 26] fall below the roll-off factor
profile limit ρ due to high leakage.

C. Optimization Solutions

In this section, we discuss two different optimization prob-
lems to find the warping function parameters. Linear program-
ming is used to get the maximum spectral efficiency with the
minimum out-of-spectrum leakage [11].

First, we formulate an optimization problem that minimizes
the product of excess time and excess bandwidth, denoted as
η:

η = ζ

(
2k +N

N

)
. (13)

This finds the values of E1, E2, and k that yield an αn contour
with the lowest loss of spectral efficiency while satisfying ρn
for all n.

min
E1,E2,k,ζ

ζ

(
2k +N

N

)
s.t. lim

αn→ρn

Ln(α) > Lmin ∀n,
(14)

where Lmin represents the minimum allowed leakage value.
Different solutions can be obtained for different Lmin values.
As the problem inherently allows a range of E1 values, we
select the minimum E1 values to minimize computational
complexity by reducing the number of filter bank branches.

Table 1 presents the results of Eq. 14 for various leak-
age tolerance Lmin values, along with the corresponding
(E1, E2, k, ζ, η) values. The optimization is performed for
different N values, resulting in different η values, where the
subscript denotes the value of N . The solution (E1, E2, k, ζ)
remains the same and is independent of the N values.

TABLE I
SOLUTIONS FOR EQ. (14) FOR DIFFERENT Lmin VALUES, N VALUES AND

AT V=6.

Lmin E1 E2 k ζ η64 η128 η256×10−2%

0.7 19 0 29
6

1.034 1.19 1.112 1.073
1 13 0 3 1.06 1.16 1.109 1.085
3 10 0 2.5 1.046 1.128 1.087 1.066
5 8 1 3 1.031 1.128 1.079 1.055

The presence of the ζ value in the optimizable parameter
η and the boundaries set by Ln may lead to overly stringent
solutions, as will be demonstrated in Section IV. Therefore,
we explore an alternative optimization parameter. We consider
minimizing the total leakage outside fm while allowing more
tolerance for the ζ value to exceed the expected spectral
expansion of the inner pulses. This is formulated as:

min
E1,E2,k

∑
n=1,·,N

∫ ∞

fm

Ln(α)

s.t. ζ = (1 + αinner),

(15)

where αinner represents the roll-off factor value of the inner
pulses. The solution to this optimization problem will be
discussed in the following section and compared with the
previous problem.

IV. RESULTS & DISCUSSION

This section presents results comparing the containment
of warped waveforms with RC windowed ZT-DFT-s-OFDM,
which exhibits lower zero tail power compared to ZT-DFT-
s-OFDM. Windowing leads to an expansion in bandwidth.
Hence, we compare with different α RC windowing values.
It’s important to note that this paper does not include a bit-
error-rate (BER) performance comparison as it tends to be
scenario-specific. In other words, the BER performance gains
depend on factors such as separation and power imbalances
between similar modulated words in adjacent bands and time
slots [3]. On the other hand, containment comparison is more
generic and agnostic to interference scenarios.

Previously, we demonstrated that the solution to Eq. (14)
yielded the lowest leakage at (E1 = 19, E2 = 0, k = 29/6).
Now, by solving Eq. (15), we obtain the results (E1 =
8, E2 = 0, k = 4.5) at V = 6 and ζ = (1 + 0.1). The two
solutions are also compared with each other using windowing
evaluations in Fig. 7. All symbols have a length of N = 251,
and the number of zeros for the windowed ZT-DFT-s-OFDM is
zt = zh = 4, while for the warped symbol, it is zt = zh = 2.
This ensures that all symbols have approximately the same
zero gap. The size of the ZT-DFT-s-OFDM FFT block is
[(251+8)×2], and the IFFT block is 1589. The RC windowing
operation is applied after the FFT block, with different α
values for comparison purposes.

We observe the difference between the two warping func-
tions in the frequency domain, Fig. 7b. The result of the
optimization Eq. (14) has a steeper drop of around 0.08fs
compared to the warping function resulting from Eq. (15). This
is due to a more conservative ζ for the first solution. However,
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Fig. 7. Time and frequency amplitude densities comparing windowed and
warped ZT-DFT-s-OFDM.

this comes at the expense of higher out-of-band leakage after
0.1fs. The second solution, on the other hand, focuses on
minimizing total leakage. Therefore, we prefer the solution
obtained from Eq. (15), especially considering that the spectral
and temporal occupancy of both solutions are nearly identical.

The RC windowed ZT-DFT-s-OFDM, defined as
F†(R(f).F([zh a zt])

)
, is simulated with roll-off factors:

α = [0.15, 0.2, 0.25, 0.3]. For all these cases, it is observed
that the zero tails of the warped symbol have lower power in
the time domain with reduced spectral occupancy. However,
there is an out-of-band leakage that reaches the same level of
the windowed symbols after f = 0.15fs.

Lastly, the optimization solutions presented in this paper
are independent of the symbol length (N value). Additionally,
it is found that a minimum leakage solution can be achieved
with E2 = 0. This means that the warping function can be
simplified to one straight segment with a slope of 1

V in the
middle, along with two curved splines at the edges, where the
outer end of the curved segment has a slope of 1

2V .

V. CONCLUSION

This study presents the design and optimization of the
warping function for split modulation schemes. A piecewise

warping function was proposed, consisting of straight seg-
ments with constant slopes and curved segments to connect
them. The shape of the warping function was controlled by
parameters such as E1, E2, and k, which determined the
roll-off factors and spectral containment. Linear programming
optimization was employed to find the optimal values for
these parameters, considering factors like spectral efficiency,
leakage, and tolerance for spectral expansion. The results
demonstrated that different parameter combinations led to
varying leakage profiles and spectral occupancy. The optimiza-
tion solutions were shown to be independent of the symbol
length, allowing for a simplified warping function design with
fewer parameters.
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