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1. Introduction

Cluster algebras &7, introduced by Fomin and Zelevinsky [15], are a class of commuta-
tive algebras with distinguished generators called cluster variables. The cluster variables
are grouped into possibly infinitely many collections called clusters, which are related
by a particular type of transition maps called cluster transformations. In [1], Berenstein,
Fomin, and Zelevinsky introduced the upper cluster algebras %, defined as the intersec-
tions of Laurent polynomial rings associated with clusters. The upper cluster algebras %
are more natural than .o/ from the perspective of geometry. The Laurent phenomenon
of cluster algebras implies that &/ C %, but in general o/ # % .

The problem when &/ = % is a mysterious but rather important question in cluster
theory. For example, let @) be a quiver with a non-degenerate potential W. Motivated
by the representation theory of quivers with potential [9,4], the paper [7] introduces the
Caldero-Chapoton algebra €€ ¢, w. When @ has no loops or 2-cycles, we have

&ZfQ C %%Q,W - %Q,

where /5 and % are the cluster algebra and the upper cluster algebra associated with
Q, respectively. If o7y = %g, then all the three aforementioned algebras are equal. As
an application, after verifying a combinatorial condition on the existence of reddening
mutation sequences of (), the Caldero-Chapoton functions in €% ¢ w provide a natural
linear basis on the cluster algebra 27y, called the generic basis [33]. We refer to [18] for
more details on the significance of the o = % problem in the study of generic basis of
cluster algebras. We refer to [17] for another application of & = % on the quantization
of cluster algebras.

In this paper, we investigate the &/ = % problem for cluster algebras from moduli
spaces of G-local systems. Let G be the simply-connected complex Lie group associated
with a simple Lie algebra g. Let X be a surface with punctures and marked points on its
boundary. Fock and Goncharov [13] introduced a moduli space Ag,x, of decorated G-local
systems over X as an algebro-geometric avatar of higher Teichmiiller spaces. The moduli
space Ag s carries a natural cluster structure, constructed by Fock and Goncharov [13]
for SL,, by Le [29] for other type of classical groups, and by Goncharov and the third
named author [20] for general groups. As a consequence, the cluster structure on Ag »
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gives rise to a cluster algebra .o7; »; and an upper cluster algebra % s over the ground
field C.!
Our first main result is as follows.

Theorem 1. For a finite-dimensional simple Lie algebra g admitting a non-trivial minus-
cule representation (namely, not of type Es, Fy,G3) and a connected marked surface %
with at least two marked points and no punctures, we have

Q{gyg = 62/972.

We prove Theorem 1 in Section 4. Our proof is based on the following geometric
considerations on the moduli space Ag x:

(1) We first show that the function ring O(Af ;) is generated by matrix coefficients of
Wilson lines, which are originally introduced in [23] on the closely related moduli
space P 5 [20] for adjoint groups G'. In this paper, we introduce a “lifted” version
of Wilson lines defined on Aé‘,za whose values are in the simply-connected group G.

(2) Then we show that the upper cluster algebra % s; coincides with the function ring
(’)(Aé’z) over C by a covering argument up to codimension 2, similarly to the proof
of [34, Theorem 1.1]. Therefore we obtain a geometric generating set of the upper
cluster algebra provided by the Wilson lines.

(3) Finally, we show that the generalized minors of certain simple Wilson lines are single
cluster variables, multiplied by several frozen variables (Proposition 4.12). Under the
assumption of Theorem 1, these are enough to generate C’)(Aéyz) = Y,,> and thus
we get the desired inclusion %5, C g 5.

We remark here that Proposition 4.12 implies that the generalized minors of simple
Wilson lines are contained in the theta basis [22], and hence they are universally Laurent
polynomials with positive integral coefficients. This strengthens the positivity result in
[23] for this particular class of Wilson lines and matrix coefficients.

We include a list of results preceding us:

o Muller [31] proved &/ = % for locally acyclic cluster algebras. When g = sly and ¥
is unpunctured and contains at least two marked points, the cluster algebra %, »
is locally acyclic, and hence 5, 5 = 1,5

o Canakci, Lee, and Schiffler [5] prove %y, » = %1,,n, where ¥ is an unpunctured
surface with one marked point. We expect that the same result can be generalized
to arbitrary g.

LIn [3], Bucher, Machacek, and Shapiro show that the equality «/ = % depends on the choice of ground
ring. In this paper, we always choose the ground field C. By an easy exercise of linear algebra, all the results
of the paper can be generalized to Q.
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o Goodearl and Yakimov [21] prove a quantum analog of &/ = % for cluster algebras
associated with double Bruhat cells. We leave it for a future project to achieve a
quantum analog of Theorem 1.

o Shen and Weng [35] prove &/ = % for cluster algebras associated with double Bott-
Samelson cells. Examples of double Bott-Samelson cells include all the double Bruhat
cells and the augmentation varieties associated with positive-braid Legendrian links.
Our Theorem 1 can be viewed as a generalization of the result of [35] from disks to
surfaces.

o In the other direction, Berenstein, Fomin and Zelevinsky [1] prove <7, s # %1,
when ¥ is a closed torus with exactly one puncture. Ladkani [28] extended this result
for closed surfaces of genus g > 1 with exactly one puncture. A very recent work of
Moon and Wong [30] proves i, »» # %s1,,x When ¥ is a closed torus with n > 1
many punctures. They also conjecture 2, s; # %s1,,» when X is a closed surface of
genus g > 1 with n» > 1 many punctures. Therefore our assumption on the absence
of punctures is crucial.

Closely related to the moduli space Ag,x are the (stated) skein algebras, which are
generated by combinatorial objects called g-webs modulo a collection of explicit graphical
relations. For g = sls, the connections between such skein algebras and the cluster algebra
g1, x have been broadly studied in the literature (cf. [2,32,8]). More recently, the study
of the relations of skein and cluster algebras and their web bases has been extended to
sl3 (cf. [10,11,27,24]). The spy-case is also studied in [25].

Following the notation of [24,25], we consider the boundary-localized skein algebra
17;’)2[8’1] for g = slp,sl3,8p,. Let .75 [0~ be its classical specialization ¢ = 1 € C,
which is a C-algebra. As an application of Theorem 1, we prove

Theorem 2. If g = sly, slg or sp, and ¥ is an unpunctured surface with at least two

marked points, then the skein algebra %y [07'] is isomorphic to the cluster algebra
Ay 5.

We prove Theorem 2 in Section 5. The sly-case is exactly the result obtained by [32].
For g = sl3 or sp,, the inclusion .%; x[07!] C 7 x is proved in [24,25]. We further verify
the inclusion O(Ag 5) C Z4,5[071] by verifying that the matrix entries of simple Wilson
lines can be written as explicit g-webs, similarly to the step (3) in the proof of Theorem 1.
Then the equality @ 5 = O(Af 5;) over C allows us to combine these inclusions to get
Theorem 2. Theorem 2 confirms a conjecture of the first named author and Yuasa in the
classical setting ([24, Conjecture 3]).
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2. The function ring O(G)
2.1. Notations from Lie theory

In this section, we briefly recall basic terminologies in Lie theory. We refer the reader
to, for example, [26] for missing definitions.

Let G be a simply-connected connected simple algebraic group over C. Let B+ and
H be a Borel subgroup and a maximal torus contained in BT, respectively. Let UT be
the unipotent radical of BT. Let

o X*(H) = Hom(H, G,,) be the weight lattice, X,(H) = Hom(G,,, H) the coweight
lattice, and (—, —) the natural pairing

(= =): X.(H) % X*(H) — Hom(Gp, Gp) ~ Z;

o & C X*(H) the root system of (G, H);

e &, C P the set of positive roots consisting of the H-weights of the Lie algebra of
Ut

{as | s € S} C @, the set of simple roots, where S is the index set with |S| = r;
{a) | s € S} the set of simple coroots.

For s € S, let ws € X*(H) be the s-th fundamental weight such that (o, @s) = dg. In

other words, we have oy = 7 o Cuyywy for t € S, where Cyy := (), oy) € Z. We have

X*(H) =Y Zw,.

The sub-lattice generated by a; for s € S is called the root lattice.
For h € H and p € X*(H), the evaluation of u at h is denoted by h*. For s € S, we
have a pair of root homomorphisms x4, ys: G, — G such that

ha()h™! = o (h™t),  hys()h™" = yo(h=1).

After a suitable normalization, we obtain a homomorphism ¢;: SLy — G such that

e((5 1)o@ w((a9))—u@ w((f ) -t
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Weyl groups. Let W(G) := Ng(H)/H denote the Weyl group of G, where Ng(H) is
the normalizer subgroup of H in G. For s € 5, we set

r=e (1)) e vetm,

The elements r; :=T,H € W(G) have order 2, and give rise to a Coxeter generating set
for W (G) with the following presentation:

W(G)=(rs (s€8)|ri=1, (rgr)™t =1 (s,t€8)),
where mg; € Z is given by the following table

Cstct320123
mst:2346'

There is a left action of W(G) on X*(H) induced from the (right) conjugation action of
N¢g(H) on H. The action of each reflection 7, is given by

rs i = p— (@), phas, Vse S, VYueX*(H).

For w € W(G), a sequence s = (s1,...,5¢) of elements of S is called a reduced word
of wif w=r, ...7rs, and [ is the smallest among all the sequences with this property.
For a reduced word s = (s1,...,8¢) of w € W(G), the number I(w) := £ is called the
length of w, and set W := Ty, ...Ts, € Ng(H). Then it turns out that w does not depend
on the choice of the reduced word.

Let wo € W(G) be the longest element of W (G), and set sg := wy> € Ng(H). It turns
out that s¢ € Z(G), and s% = 1 (cf. [13, §2]). We define an involution S — S, s — s* by

Qg+ = —Wp.Og.
The Dynkin involution. There exists an anti-involution T : G — G, g + ¢' of the
algebraic group G given by Tox, = ys and h" = h for s € S, h € H. This is called the
transpose in G. Let x : G — G, g — g* be a group automorphism defined by
g wo(g~") Ty

Then (¢*)* = ¢ for all g € G. This is called the Dynkin involution on G (cf. [19, (2)]).

Irreducible modules and matrix coefficients. Let V be a finite dimensional representa-
tion of G (over C). For f € V* and v € V, we define the element C}/,v € O(G) by

g— (f,gv), Vg e G (2.1)
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An element of this form is called a matriz coefficient.

Set X*(H)y := ) ,cgZ>ows C X*(H). For A € X*(H)4, let V(A) be the irreducible
representation of G of highest weight . A fixed highest weight vector of V() is denoted
by wvy. For A* = —wy. A, there is a natural non-degenerate pairing

(—,—)y: V") x V() —C,

which identify V' (A*) with the dual vector space of V(). We further fix a lowest weight
vector of V(A\*), denoted by fy«, such that (fy~,vy) = 1.
For A € X*(H)4+ and w,w’ € W(G), the matrix coefficient

Aupxwr(g) = (W.fax, gw'.vy) (2.2)
is called a generalized minor.
2.2. The generators of O(G)

Proposition 2.1. Let G be a semisimple algebraic group over C, and p: G — GL(V) a
faithful rational representation. Then the ring of regqular functions O(G) is generated by
the matriz coefficients of V.

Proof. Consider the composition map det op: G — C*. Then it gives a one-dimensional
rational representation of G, and it must be trivial since G is semisimple. Therefore,
p(G) C Kerdet = SL(V). Hence, by [36, Proposition 2.2.5], p(G) is a Zariski closed
subgroup of SL(V). Here note that G is isomorphic to p(G) as an algebraic group
since p is faithful. By fixing a basis of V', SL(V) is regarded as a Zariski closed set of
C(@imV)* Hence, p(G) is also considered as a Zariski closed set of C(dim V)* and there
exists a surjective algebra homomorphism R: O(CdimV)*) = ClXi|1<i,j <dimV] —
O(p(Q)) ~ O(G) corresponding to the restriction of the domain. By construction, each
R(X;;) (1 < 14,5 < dimV) is actually a matrix coefficient of V', hence the claim fol-
lows. O

Proposition 2.2. Let G be a simply-connected simple algebraic group G over C of type
Ay, By, Cy, Dy, Eg, or E7. Then O(QG) is generated by generalized minors.

Proof. By Proposition 2.1, it suffices to show that there exist minuscule representations
Vi,...,Vy such that their direct sum Vi @ --- @ Vi, provides a faithful representation of
G. Hence the result follows from the following known facts in representation theory (see,
for example, [37, Appendix]):

e When G is of type A,, the (n 4+ 1)-dimensional vector representation is a faithful
minuscule representation.
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e When G is of type By, the 2"-dimensional spin representation is a faithful minuscule
representation.

e When G is of type C,,, the 2n-dimensional vector representation is a faithful minus-
cule representation.

o When G is of type D, there exist two mutually non-isomorphic 2"~ !-dimensional
minuscule representations, called the half spin representations. Then the direct sum
of these two representations is faithful.

e When G is of type Ejg, there are two faithful minuscule representations of dimension
27.

e When G is of type Er, there exists a faithful minuscule representation of dimension
96. O

Remark 2.3. The simple algebraic group of type Es, Fy, G2 does not admit non-trivial
minuscule representations. This is why we exclude these types from the assumption.
However, the statement makes sense also for these types and we do not know whether
it holds in these cases.

2.83. Decorated flags and pinnings

The homogeneous spaces Ag := G/U* and Bg := G/B™T are called the principal
affine space and the flag variety, respectively. An element of Ag (resp. Bg) is called a
decorated flag (resp. a flag). There is a canonical G-equivariant projection 7 : Ag —
Bg. The basepoint of Ag is denoted by [UT]. We also adopt the notation [U~] :=
wo.[Ut] € Ag. The flag variety Bg is identified with the set of connected maximal
solvable subgroups of G via g.B* + gBtg~!. The Cartan subgroup H acts on Ag
from the right by g.[Ut].h := gh.JU"] for ¢ € G and h € H, making the projection
7w : Ag — Bg a principal H-bundle.

For k € Z >3, the configuration space of decorated flags is defined to be the stack

k times

—_—
COnfk.AG = [.AG X - X AG /G],

where we consider the diagonal left action of G.

By the Bruhat decomposition G = UweW(G) UtHwUT, any G-orbit in the space
Confs A has a unique representative of the form (A1, As) = (h.[UT],w.[U*]) for some
h € H and w € W(G). The parameters h(A1,Az) := h and w(A1,As) := w are called
the h-invariant and the w-distance of (A1, As), respectively. They only depend on the
G-orbit [Aq, As]. See [20, Section 2.2] for details on the properties of these parameters.
A pair (A1, A2) of decorated flags (or its G-orbit) is said to be generic if w(A1, Ag) = wy.
Genericity only depends on the underlying flags.

Angle invariant. Consider the configuration space Conf(Ag, Bg, Bg) parametrizing the
triples (A1, B2, Bs) € Ag X Bg X B such that the pairs (A, Bo) and (Aq, B3) are generic.
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The G-orbit of such a triple has a unique representative of the form (A;,Bs,B3) =
([U*],B~,uyB™) for some u € UT. Then we define the angle invariant to be

an : Conf(Ag, Bg,Bg) = UT, [[UT],B ,uyB™ ]~ u,. (2.3)

Composing the canonical character x5 := Ay, ;.. : UT — C, we get the potential
functions Wy := xs o an : Conf(Ag, Bg, Bg) — C for s € S.

Pinnings. Following [20], we define a pinning to be a generic pair (A1,Bs) € Ag x Bg.
Then the space Pg of pinnings is naturally a principal G-space. We will use the standard
pinning psta := ([UT], B™) as a basepoint of this space. We define the opposite pinning
of p = g.psta as p* := gWo .psta. Alternatively, a pinning is defined to be a generic pair
(A1, A2) € Ag x Ag such that h(A1, As) is trivial. Then we have pgq = ([UT],[U™]) and
Phea = (5. [U ), [U*]).

3. Wilson lines on .Aé,z
3.1. Notations on marked surfaces

A marked surface (X, M) consists of a compact oriented surface ¥ and a fixed non-
empty finite set Ml C 9% of marked points. In particular, we do not consider marked
points in the interior (“punctures”). In this paper, we always assume that

each boundary component has at least one marked point. (3.1)
A connected component of 0¥ \ M is called a boundary interval. The set of boundary

intervals is denoted by B = B(3). When no confusion can occur, we will simply denote
a marked surface by ¥. We will always assume that

n(X) = =2x(X) + M| > 0. (3.2)
This condition ensures that the marked surface ¥ admits an ideal triangulation with
n(X) triangles.

The fiber bundle 7'Y := TS \ (0-section) with fiber R? \ {0} is called the punctured
tangent bundle. The bundle projection 7 : 7' — ¥ induces the exact sequence

1 — 1 (R*\ {0}) = m(T'S) =5 m(8) — 1. (3.3)

The generator of 7 (R? \ {0}) & Z is denoted by o.
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3.2. The boundary-fundamental groupoid

Now we are going to clarify our topological set-up for the definition of Wilson lines
on Aé,za for which we need a little care on the fiber direction of 7"%. We fix a nowhere-
vanishing vector field v, on 0¥ which induces an orientation on 0% compatible with that
induced from X. Then we get two embeddings ¢ty : 0% — T'3E, x — (2, £0ori(x)). For each
boundary interval E € B, fix a reference point zp € E and define E* := 14 (2p) € T'S.
We regard the points E* as representatives of oriented boundary intervals.

Definition 3.1. The boundary-fundamental groupoid I1;(T'%, B*) of T'Y is the groupoid
where the objects are the points E€ for E € B and € € {4, —}, and morphisms from EY*
to E5? are based-homotopy classes of continuous curves in 7% from Ef* to E5*. We call
a morphism [c] : Ef* — E5? in this groupoid a framed arc class in ¥. The composition
of framed arc classes [¢1] : Ef* — E5? and [co] : E5? — E5® is given by the concatenation
[c1] * [co] « BTt — E5°.

Recall from [23] the groupoid II;(X,B), whose objects are the points zg and the
morphisms are based-homotopy classes of continuous curves between them. We have a
natural projection m, : II; ("%, B*) — I, (X, B).

Definition 3.2 (transverse immersions and their standard lifts). A transverse immersion
is an immersed curve ¢ : [0,1] — X such that ¢(0) = zg, and é(1) = xg, for some
boundary intervals Fy, F1 € B, and transverse to 0X. Then its standard lift is the
continuous curve ¢ : [0,1] — T'Y from E; to E] obtained as the composite of the
following two paths:

o the path ¢t — (2(t),vZ(t)) in 1'%, where v (¢) is a nowhere-vanishing normal vector
field along ¢ which points toward the left side of ¢, and such that vZ(0) = E,
vE(1) = Ef.

e a path from Efr to F| in the tangent space at zg,, which rotates the tangent vector
clockwisely.

See Fig. 1. Note that the homotopy class [c] does not depend on the choice of the vector
field vZ which satisfies the condition.

Remark 3.3. The fundamental groupoid II; (7'%,B*) has appeared in [8, Section 8] in
their study on stated skein algebras. Our standard lifts are their “good lifts” with respect
to the negative orientation, which are chosen so that certain matrix coefficients of the
Wilson line along them give rise to cluster variables. See Section 4.4.

For later use, we are going to give a good generating set of the fundamental groupoid
I, (T'%, B+). For each boundary interval E € B, let \/og", /og*" : E~ — E* denote
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S0t S

Ql F—

Fig. 1. The standard lift of a transverse immersion.

Fig. 2. A simple framed arc class [c] : E; — E5 and a band neighborhood B.. Here it is allowed that one
of mr, = m” or mr = m® holds.

the framed arc classes contained in the tangent space at xg which go from E~ to Bt
clockwisely and counter-clockwisely, respectively. Then

op- = op" *(Vop™™) ' € Aut(E”) and
op+ = (Vog™) !« Vo™ € Aut(ET)

represent the clockwise fiber loop. We say that a framed arc class [¢] : Ef — E; is
simple if E1 # E5 and it is represented by the standard lift ¢ of a transverse immersion
¢ without self-intersection. Notice that it implies that there exists a band neighborhood
B, of € which gives an immersed quadrilateral which is embedded except for its vertices?,
as shown in Fig. 2.

Lemma 3.4. The fundamental groupoid I1,(T'Y, B*) is finitely generated. Namely, there
exists a finite set S of framed arc classes such that any framed arc class can be written
as a finite concatenation of those in S and their inverses. Moreover if ¥ has at least
two marked points, then the generating set S can be chosen so that it consists of simple
framed arc classes and \/@in, Vor™" for E € B.

2 This is seen as follows. Since the transverse immersion € : [0,1] — X has no self-intersections, we can
surely take an embedding ¢ : [0,1] X [—€,€¢] — ¥ so that ¢(t,0) = ¢(t), I1 := ({0} X [—e€,€]) C E; and
Iy := ({1} X [—¢, €]) C Es. Since E; # E3 by assumption, we can modify (‘spread out’) this embedding in
small neighborhoods of F; and E5 so that I; = E; and I, = E>. The image of this modified map is B..
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n m

Fig. 3. Decomposition of a loop into two arcs.

Proof. Fix a boundary interval Ey € B. We choose a collection of transverse immersions
in X, as follows.

o Let So = {(@){_y, (B){1, (7;)5=1} be transversely-immersed loops based at zo :=
g, without self-intersections, whose homotopy classes generate the fundamental
group 71 (X, o).

e For each boundary interval E # Fjy, let €g be a transverse immersion without self-
intersection running from xy to zpg.

We first claim that the standard lifts of these transverse immersions, together with the
framed arc classes \/op ", /o " for E € B, generate the fundamental groupoid. Let
G C II,(T"%,B*) denote the sub-groupoid generated by these framed arc classes.

First note that the fiber loops og+ are contained in G. Take an arbitary framed arc
class [c] : E{* — E5*. By concatenating the framed arc classes /05, °"", i = 1,2 or their
inverses if necessary, we may assume €; = €2 = —. Consider its projection [¢] := m.([c]).
Then the concatenation [eg,] * [¢] * [€z,] ™! is an element of 7 (X, 20), which can be
written as a concatenation of the elements in Sy. It implies that there exists a framed
arc class [¢'] : E] — E5 that lies in G such that m.([¢/]) = m.([¢]). Then by the exact
sequence (3.3), the arc class [¢] can be written as a concatenation of [¢/] and several
powers of fiber loops. Hence [¢] belongs to G. Thus the first assertion is proved.

Assume that ¥ has at least two marked points. It implies that 3 has at least two
boundary intervals, say Ey # F;. Then we can decompose each loop n € Sy into two
simple arcs 77 and 752, as shown in Fig. 3. Therefore we can replace the standard lift of n
with the standard lifts of ; and 72 in the generating set, where the latter two are simple
framed arc classes. Thus the second assertion is proved. O

Remark 3.5. For a transverse immersion ¢ : [0,1] — X, let ¢°® : [0,1] — X be the
transverse immersion in the opposite direction given by ¢°P(t) :=¢(1 —t). Let ¢: E; —
Er, P : BT — E be the standard lifts of ¢, €°P, respectively. Then they satisfy

(e [P = 05, (] %[c] = 0

In particular, note that [¢]~! # [c°P] as framed arc classes.
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3.3. Wilson lines on Aé,x

Let G be a semisimple simply-connected algebraic group, ¥ a marked surface without
punctures. Fix an outward tangent vector field vo,y on 93, which gives rise to an em-
bedding tout : 0X — T'3, & +— (x, Vout(x)). Recall from [13, Definition 2.3] that a twisted
G-local system on Y. is a G-local system on the punctured tangent bundle 7" with the
monodromy sg along the fiber loop 0. A decoration of a twisted G-local system L is a
flat section « of the associated bundle £ 4 := £ X Ag defined over (a small neighbor-
hood of) tout (08 \ {xg}Eep). In particular, the flat section is defined on a vicinity of the
outward lift of each marked point. A decoration is said to be generic if for each F € B,
the pair of flat sections defined near the endpoints of E gives rise to a generic pair of
decorated flags when they are evaluated at a common point via a parallel-transport.

Definition 3.6 (/13, Definition 2.4]). Let Ag s denote the moduli space of decorated
twisted G-local systems on .. The open substack consisting of the generically decorated
twisted G-local systems is denoted by Aé‘,z C Ag.s.

Let us briefly mention the description of Ag s as a quotient stack. Fix a basepoint
&= (z,v) € T'S. A rigidification of a twisted G-local system (£, ) at £ is a choice of a
point s € L¢. Let Ag » denote the set of isomorphism classes of rigidified twisted G-local
systems (£, a; s). The group G acts on Ag x by ¢.[L,a;s] = [£,a;s.9] for g € G. The
following can be verified similarly to [13, Definition 2.2], with a little care on twistings:

Lemma 3.7. The set Ag s has a natural structure of quasi-affine G-variety, isomorphic
to

Hom"™ (71 (T"%,€),G) x (Ag)™.

Here Hom"™ (71(T'%,€),G) C Hom(m(T'%,€),G) denotes the subspace such that
plog) = sa; o € m(T'%,€) being the fiber loop based at €.

Thus we get a stacky definition Ag 5 := [Ag,x/G]. In particular, its function ring is
O(Agx) = O(Agx)C.

Remark 3.8. Since m1(X) is a free group, the central extension (3.3) splits. Therefore
we have non-canonical isomorphisms 71 (7"%) 2 71 (%) x Z and Hom"™ (7 (1'%, €), G) =
Hom(7 (%), G) = G291~ where b denotes the number of boundary components of X.
In particular, O(Ag ) is an integral domain, so is its subalgebra O(Ag,s). The field
K(Ag,s) of rational functions is defined to be its field of fractions.

Example 3.9. Let 3 = Dy, be a k-gon, which is a disk with £ marked points on the bound-
ary. Choose one distinguished marked point, and let m, . .., my denote the marked points
in the counter-clockwise order, where m; is the distinguished one. Fix a trivialization
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T'Dy =2 Dy, x (R?\ {0}), and let v; € T.D}, denote a tangent vector points toward m;
for j =1,..., k. We may assume that £ = (z,v;). Then we choose the following paths in
TIDk:

e The straight line €; from & to tous(m1);
o For j = 2,...,k, the path ¢; which first rotates from § = (x,v1) to (z,v;) in the
counter-clockwise direction inside the tangent space at x, and then goes straight from

(x,v5) t0 tout(m;).

See the left picture in Fig. 4. Let (£, «;s) be a rigidified twisted G-local system. The
rigidification s determines a trivialization (£4)¢ = Ag. We have a flat section a; of L4
defined near ¢y (m;) for j = 1,..., k. Via the parallel-transport along the path €;, we can
evaluate it at the basepoint £, which gives rise to a decorated flag o;(§) € (£L4)e = Ag.
Thus we get a G-equivariant isomorphism

AG,Dk ;Agv (L, a; S) = (a1<£),a2(§)""’ak(€))a

which descends to an isomorphism fn,, : Agp, — ConfrAg := [AL/G] of stacks.
Alternatively, one can think that we are choosing a branch cut £ in the fiber direction
R?\ {0} as shown in Fig. 4 by waved orange line, and trivializing the twisted local
systems on the contractible region Dy x (R? \ £). When we discuss the polygon case, we
will only show this branch cut to indicate the isomorphism we use.

When we replace the distinguished marked point m; with mo and use a similar choice
of paths as shown in the right picture in Fig. 4, then we get another isomorphism f,,, :
Acp, =5 ConfpAg. Then the coordinate transformation f,,, o f;l} is given by the
twisted cyclic shift

Sk : Confk.AG :—> Conka(;, [Al, ey Ak—l,Ak] — [Ag, A ,Ak, Sg.Al].

The substack of ConfrAg corresponding to A p, is denoted by Conf; Ag.

Pinnings. For each boundary interval £ € B, let mfg € M be its endpoint in the

direction E*. Given a generic decorated twisted G-local system (£, a), let ag be the
flat section defined near toyus (mzé) To the pair (o, ag), we associate a pinning as fol-
lows. Parallel-transport the flat sections a% along the line tout (F) to the common point
tout(TE), and continue to transport them along the path in the tangent space at xp to
the point E~ = (_(zp) in the clockwise direction. Then we get a generic pair (A5, AL)
in (L4)g-, and the pinning pp- = (A, W(AE)) € (L x¢ Pg)g-- We may associate an-
other pinning pg+ := (AL, 7(A3)) € (£ x¢ Pg)g+, where the pair (A, AL) in (L4)p+
is obtained by the parallel-transport of the pair (Ag, AE) via the outward path \/og"".
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Lout(ml) Lout(ml)

Lout (7”2)

Lout (mS) Lout(m3)

Lout (m4) Lout (m4)

Fig. 4. Construction of isomorphisms Ag p, = Confy Ag with & = 6. The flat sections defined near tous(m;)
are parallel-transported along the dashed lines towards the basepoint & (shown by the solid arrow in the
center of the disk).

Remark 3.10. Thanks to the absence of punctures, the decorated twisted G-local system
(L, a) can be uniquely recovered from the data (£, (pg-)ge) or (£, (pe+)ren)- Thus
the subspace Aé,z can be identified with a variant Pg s of the P-type moduli space
in [20] for simply-connected groups G. Then similarly to the arguments in [23, Remark
3.17], one can verify that .A(X;,Z is an algebraic variety.

Now we define the Wilson lines on A y; in a similar manner as in [23]. Let [c] : E}" —
E3? be a framed arc class, and (£, a) a generically decorated twisted G-local system.
Choose a local trivialization s; of £ on a vicinity of E' so that PEet = Dstd- Extend s
via the parallel-transport along the path ¢, until the terminal point E5?. Then

PEg = §-Pid = W0 Pt

for a unique element g € G under this trivialization. Define g ([£, o]) := g. The following
can be verified in the same way as [23, Proposition 3.9]:

Lemma-Definition 3.11 (Wilson lines). For any framed arc class [c] : E{' — E5?, the
construction above produces a morphism

9l - Aé,E -G

of stacks, which we call the Wilson line along [c]. The morphism g[tc] = g[c]w_(fl is called
the twisted Wilson line.

These Wilson lines are lifts of those introduced in [23].

Remark 3.12. At first, the twisted Wilson lines gf;” might look more natural than gy.
However, it turns out that the Wilson lines g|. are compatible with the positivity struc-
ture, especially with the cluster structure. The twisted ones have negative coefficients
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due to —1 contained in wy. The Wilson lines are also defined so as to fit in well with the
amalgamation (cf. [23, Proposition 3.11]).

In order to state the relation to the Wilson lines in [23], let G’ = G/Z(G) be the adjoint
group, and recall the moduli space Pgr » of framed G’-local systems with pinnings [20].

Proposition 3.13. For any framed arc class [c] 1 E{* — E5?, the following diagram com-
mutes:

Jle]
Ak 10 @

4

PG/7E W G/.
Here py : Aé’z — P » denotes the projection given in [20, Section 9.2], G — G’ is the
canonical projection, and gg is the Wilson line along the arc class [c] := m.([c]) [25].

The twisted Wilson lines contain the Wilson loops in the following sense:

Proposition 3.14. For a free loop || on T'S, choose a representative ¢ based at E€ for
some E € B and € € {+,—}, whose based homotopy class defines a framed arc class
[c] : B¢ — E°. Then the twisted Wilson line g[t;’]v represents the Wilson line p)|, namely,
the following diagram commutes:

Afy — @
o |
(G/AdG].

Here G — [G/AdG] denotes the canonical projection.

Proposition 3.15 (Internal multiplicativity). For any framed arc classes [¢1] : E* — ES?
and [c2] : ES? — E5°, we have

I eles] = 99l o7 equivalently,  ge,ju(cy] = 9]0 Glea]-

In other words, for any point [L,a] € Ag 5, the twisted Wilson lines ¥ ([£, a]) defines
a morphism Iy (T'S,B*) — G of groupoids.

Proof. Given [£,a] € Af y,, let us prove

ng}*[Q]([ﬁ, a) = gfx]([ﬁ,a])gfc‘z]([ﬁ, al).
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Take a local trivialization s; of £ so that (pg,,pE,) = (Pstd,91-Pstd), Where g :=
gm]([ﬁ,a]). Under the local trivialization s := s;1.91, the sections are given by
(PEy s PEy > PEs) = (97 -Pstd, Dstd, G2-Pstd), Where gy = g[t;“;]([ﬁ,a}) by definition. Go-
ing back to the first trivialization, we get (pg,,pE;) = (Pstd,9192-Pstd), and hence
9192 = 913y ([£50]). D

Remark 3.16. As a special case of Proposition 3.15, we have
gl = w_og[z]lw_o = (91)" - 56

In view of Remark 3.5 and g5¥ = sg, we have gjeop) = (g[TC])*, which is a relation
preserving the positivity.

Remark 3.17.

(1) Let (Xg,Mp) C (X,M) be a sub-marked surface, by which we mean an embedding
Yo C ¥ which restrict to Mg C M. Then we have an obvious restriction morphism
res : Ag,sy = Ag,x,- Suppose that a framed arc class [c] : E{* — E5? on ¥ admits a
representative contained in 7"Yg and F1, Fs are also boundary intervals of ¥. Then
[c] can be regarded as a morphism in IT; (T'%; B), and the Wilson line gi¢ factors
through Ay, :

X res X
‘AG,E - AG,EO

9[6]l lg[C]

G ——=0G.

(2) For a subset = C B, let Af sz C Ag,s denote the open substack consisting of
decorated twisted G-local systems such that the pair of flat sections associated to
each E € E is generic. We have Ay = Agy and AG o5 = AG s Then the
Wilson line along a framed arc class [c] : Ef* — E3* can be defined on Ag ;.= for
any subset = containing F; and Fs, which makes the following diagram commute:

X incl X
AG,E AG,E;E

g[c]l lg[c]

Definition 3.18. We give some special names to certain Wilson lines, as follows.
(1) For E € B, we call the g o and g grou the boundary Wilson lines along E.

(2) For m € M, let [¢,,] : Ef — E5 denote the framed arc class as shown in Fig. 5
around m. Then we call g, | the corner Wilson line around m.
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Eq m Fy
A N
T+ 2
Cm,

Fig. 5. The corner Wilson line around m € M.

(3) We call the Wilson lines along simple framed arc classes the simple Wilson lines.

Recall the angle invariant (2.3). For a marked point m € M, let T, be the unique
triangle which contains m as a vertex and the two boundary intervals F;, Fo incident
to m as its sides. Then by Remark 3.17 above, we have Aé,z =, Aé,Tm;{El,Ez} =
Conf(Ag, Bg, Bg). Here the latter isomorphism is obtained by parallel-transport of flags
through the interval 1oy (E1 N Es), or equivalently, with respect to the branch-cut on Ty,
intersecting the opposite side of m. Then we get the angle invariant an,, : A5 — U™
associated with m as the pull-back of the angle invariant via this morphism.

Proposition 3.19.

(1) For E € B, the boundary Wilson line gives the edge invariants g s5zm = h(Ap, AL
and g sogont = (R(AL,AL)*) "L, where A}i; is the decorated flag assigned to m%.

(2) Form € M, the corner Wilson line gives the angle invariant gi.,,| = an, -wy twisted
by wq.

Proof. In view of Remark 3.17 (1)(2), the proof reduces to the local computations in
Example 3.20 below. 0O

~

Example 3.20. Let us consider the case ¥ = D3, and choose an isomorphism Ag p, =
Conf3Ag as described in Example 3.9, corresponding to the branch cut shown in Fig. 6.
The boundary intervals are denoted by Ei, Fo, E53 as shown there. Notice that an arbi-
trary G-orbit in Conf3 Ag has a unique representative of the form

(A1, A2, Az) = (U], wo~ " ha.[UT], ughy w0 [U]) (3.4)

for hi,hy € H and u, € UJ. In this parametrization, we have hy = h(Az, A1), hy =
h(A1,As) and uy = an,,. This parametrization can be extended to a parametrization of
triples (A1, A, A3) such that the pairs (Aj, As) and (A1, Az) are generic by (hq, ho,uy) €
H x H x UT. Let B; := 7(A;) denote the underlying flag for i = 1,2,3. Then we can
compute the associated pinnings as

g, = (A1,B2) = Psta;
ph, = (A2, B1) = W5 "h1.psta,

pg2 - (Ala B3) = u+~pstd>
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Fig. 6. Computation of Wilson lines on a triangle. Here the framed arc classes giving rise to boundary and
corner Wilson lines are shown in dashed blue lines.

Pp, = (A3,B1) = uyhy 'Wo.psa

Using the relation pstq = Wo.pkq, We get:

o g oo = wo(h1) = (h(Ag,A1)*)", which implies that g gzm = wo(hi)se =
]’L(Al,Ag)_l.
® Ylem] = U+Wo = allyy - W,

from which one can confirm the statements in Proposition 3.19. Also note that the framed
arc class [c] == [c] * [\/05,""] 7! : Ef — E5 is simple, and that g = ushy ' sc.

By Lemma 3.4, Hom(II;(7"%,B*), G) has a natural structure of affine variety.
Theorem 3.21. The morphism
ACX?,E — Hom (Hl(T’Z,Bi), G) . [L,a] = g (L, a))
is a closed embedding. The image is characterized by the conditions
Jor. =5G, Gz € Hwg ', giv € UY
for E € B and m € M.

Proof. Let us prove that a decorated twisted G-local system can be characterized by
its (twisted) Wilson lines. Fix a basepoint Ej° for some Ey € B and € € {+,—}. Then
by Proposition 3.14, the monodromy homomorphism 7 (1'%, E;°) — G of the twisted
G-local system can be reconstructed from the twisted Wilson lines. For a marked point
m € M, choose an object E¢, where F € B is a boundary interval incident to m and
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E¢ is the one pointing to m among E*. Then the decoration assigned to m can be read
off from the Wilson line along a framed arc class of the form [¢] : E® — E*°. Since the
image is characterized by closed conditions, the assertion is proved. 0O

Note that the (twisted) Wilson lines define ring homomorphisms
9l O(G) = O(As ), (91)" : O(G) = O(AG 5)-

For a matrix coefficient CXU € O(G), we write c}/,v(g[c]) = 9y (CXU) and cj‘év(g[t;“’) =
tw

(g[c] >*(sz> = CKWAU(Q[C])'
Combining the previous theorem with Lemma 3.4, we get:

Corollary 3.22. The function ring (’)(Aéyz) is generated by the matriz coefficients of
Wilson lines. Moreover if 33 has at least two marked points, then (’)(.Aé,z) is generated
by matriz coefficients of simple Wilson lines and boundary Wilson lines.

Remark 3.23. When ¥ has punctures, the moduli space Loc‘érfz obtained from Aé’z by
forgetting the decorations on punctures is similarly embedded into Hom (IT; (7'%, B*), G).

4. Equality of cluster and upper cluster algebras
4.1. Generalities on cluster algebras

We rapidly recall the necessary definitions of cluster algebras ./ and upper cluster
algebras % following the notations of [14].

Let F = C(A44,...,A,) be the field of rational functions in n many independent
variables A, ..., A, with coefficients in C. Fix a positive integer m < n. Let € = (g;;)
be an m X n integer matrix such that its m x m submatrix given by the first m columns
is skew-symmetrizable. The set A = {4;,...,A,} is called a cluster chart. The pair
i= (A, ¢)is called a seed in F. Let L; = C[AT',..., AF!] C F be the ring of Laurent
polynomials in Aq,...,A,.

For 1 < k < m, the seed mutation of i in the direction k produces a new seed
i == ({A),..., AL}, &) as follows:

YD if i # k,
v -1 Ekj P .
Ay, (HjIEkj S0 457 + Hj\ak]-<0 A ’”) otherwise,
—Eijs if ke {i,j},
R ifeiner; <0, k¢ {0},

€ij + leiclers, if eiver; >0, k& {i,5}.

We say that a seed i’ is mutation equivalent to i, and denote by i’ ~ i, if i’ can be obtained
from i by a sequence of seed mutations. The variables A’ in each i’ are called cluster
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variables. Note that the cluster variables A,,41,..., A, are invariant under mutations
and are called frozen variables.

Let us start with an initial seed i. Following [1], there are three versions of commutative
algebras associated with i.

Definition 4.1. The upper bound associated with a seed i is a ring
() =L;NL;,Nn...NL;, .

The upper cluster algebra associated with i is the intersection of Laurent polynomials for
all seeds i’ that are mutation equivalent to i:

% (i) =)Ly

i’~i

The cluster algebra <7 (i) is the unital C-subalgebra of F generated by the cluster vari-
ables and the inverses A" ,,..., A;! of the frozen variables.

We frequently write % and < instead of % (i) and <7 (i) when there is no confusion.
We have the following inclusion relations

(i) Cu(i) S ),

where the first inclusion is a consequence of the Laurent phenomenon of the cluster
variables [15], and the second inclusion is by definition.
The following result of [1, Corollary 1.9] will be useful in this paper.

Proposition 4.2. If the exchange matrix € in i has full rank m, then the upper cluster
algebra % (i) coincides with the upper bound 7 (i).

4.2. The upper cluster algebra coincides with the function ring (’)(.Aé’z)

Let T be an ideal triangulation of the marked surface . Let e(7T) and ¢(7) denote
the sets of edges and triangles of 7. Note that

H(T)] = =2x(2) + M|, [e(T)] = =3x(%) + 2[M].

For each triangle T € ¢(T), we choose a vertex vy of T together with a reduced decom-
position st of wy. The data

T = (T, {vr},{sr})

is called a decorated ideal triangulation. Following the construction of [20], every T gives
rise to a seed i in the field K(Ag,s) of rational functions (recall Remark 3.8). The seeds
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obtained from different 7~ are mutation equivalent, and thus give rise to the canonical
cluster algebras

Gy C U C K(Ags).
The exchange matrix € in each iy is an m X n matrix, where
n=le(T)lr +[t(T)|(l(wo) —7),  n—m=|M]r
with r := rank G = |S|. Briefly speaking, the construction goes as follows:

o the ideal triangulation 7 gives rise to a decomposition of the moduli space A¢ 5 into
the pieces Ag 1 for T € t(T);

o the vertex vy determines an isomorphism f,,. : Ag,r — ConfsAg as in Example 3.9;

¢ the pull-back of the coordinate system on Confz.A¢ associated with the reduced word
st gives a coordinate system on Ag,r for all T € ¢(7), which glue together to give
a coordinate system on Ag s, i.e., an open dense embedding

i (O — A%,

The transition maps z,}} o 47 for different ideal triangulations are given by sequences of
seed mutations. For details, we refer the reader to [20]. In Section 4.3, we will review the
cluster Ky-structure on AéyQ when ¥ = @ is a quadrilateral, from which the coordinates
on triangles and edges can be also read.

We are going to prove:

Theorem 4.3. For any marked surface ¥ satisfying the assumptions in Section 5.1, the
upper cluster algebra U5, coincides with the function ring O(Af ).

The proof goes through the same steps as the proof of [34, Theorem 1.1].
Lemma 4.4. The exchange matriz € in each it is of full rank.

Proof. Let G’ be the associated adjoint group of G. Fock and Goncharov [13] also consid-
ered a moduli space X¢ 3, called the moduli space of framed G’-local systems. Similarly
to ‘Aé',E’ after imposing a generic condition on each boundary interval of 3, we get an
open subspace XC?’Z C X' 5. Every T equips Xé’,E with a collection of cluster Poisson
coordinates {X; | 1 <i <m}. Let {A; | 1 <j < n} be the cluster coordinates on Ag 5,
associated with T. Following [13] and [20], there is a natural map

L oax X
p'AG,E_>X 5>

such that
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n
p*X; = H A;”', (4.1)
j=1
When ¥ has no punctures, the map p is surjective. Therefore the ring homomorphism
p* in (4.1) is injective, and ¢ is of full rank. O
Lemma 4.5. Theorem 4.3 holds when ¥ = Dy, is a disk with k marked points.
Proof. Let H be the Cartan subgroup of G. If k = 3 or 4, then
Gp, = G x H, &, = GV x H?,

where G and G**"° are double Bruhat cells. After a careful comparison between the
cluster structures on double Bruhat cells and on Aé‘,E’ the lemma is a direct consequence
of [1, Theorem 2.10]. In general, we have

Aéka = COIIfZ}g_z(.ASC) X Hk_z,

where Conf? k-2 (Asc) is a double Bott-Samelson variety in [35]. The lemma follows from
[35, Theorem 1.1. ©

Fix a decorated ideal triangulation 7. Let F € e(7) be a diagonal (i.e., an internal
edge). Let iy g be the seed obtained from iy by freezing all the mutable vertices that
are placed on the diagonals different from E. Let Agg - Aéyz be the open subspace
such that for every E' # E in e(T), its associated pair of decorated flags is generic.

Lemma 4.6 (Proved in Section 6.1). The coordinate ring C’)(Agg) coincides with the
upper cluster algebra % (it g).

Now let us go through all the diagonals E of 7 and set

‘AGE —UAcz CAGs

Lemma 4.7. We have O(“Zéz) =O0(Ag 5)-

Proof. For a pair E1, E» of diagonals of T, let .AT BB o Aéjz be the subspace such
that the pall“b of the decorated flags associated with E1 and Fs are not generic. The com-

.AT Eq,E>

plement of AG s I AE 5 is Up, g, , which is of codimension > 2. See Section 6.2

for a detailed computation of the codlmension. Therefore (’)(.Zéz) =0(Agy). D

Proof of Theorem 4.3. Combining Lemmas 4.4, 4.6 and 4.7, and Proposition 4.2, we
have
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OWAGs) = OAGz) =(0MG) = (1 lirp) = (17 lir.0) = (i) = %5 O
E E

Combining with Corollary 3.22, we get:

Corollary 4.8. The upper cluster algebra %, is generated by the matriz coefficients of
Wilson lines. Moreover if ¥ has at least two marked points, then %gyx is generated by
matriz coefficients of simple Wilson lines and boundary Wilson lines.

Remark 4.9. As stated in [19, Proposition 3.17 (i)], the upper cluster algebra no longer
coincides with O(A 5;) when ¥ has punctures.

4.8. Cluster Ko-coordinates on Conff Ag

For the computations in the next subsection, let us recall the cluster Ks-coordinates
on the configuration space Confj Ag = Confy° Ag from [20, Section 7], which can be
regarded as an open subspace of the moduli space Ag g for a quadrilateral ). Here are
notations from [20, Section 5]:

o Given w € W, we set

S(w) :={s €S| wa, <0},

H(w) := H a)(bs) | bs € Gy,
seS(w)

Then S(w) =5 < H(w)=H <= w = wy.
¢ Given a reduced word s = (s1,...,5;) of w, we get a sequence of distinct coroots

S . \% —
Br =TT q, k=11

They are precisely the positive coroots oV such that wa" are negative.
¢ Recall that we have

O(Conf2dc) = P (Ve VK))©

NEX*(H) 4

and consider the function A; € O(ConfsAg) for s € S such that A, € (V(ws) ®
V() and A,([U*],[U~]) = 1. We have the relation

S

Ave,vw, (9) = As(gu.[UT],w.[UT])

for g € G and u,v € W.
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The configuration space Conf} .Ag parametrizes the G-orbits of quadruples (ALY, Ar,
AR, AR) of decorated flags such that the cyclically consecutive pairs (ALY, Ar), (Ar,Ar),
(AR, AR), (AR AL) are generic. Such a quadruple (ALY, Ap, A, AR) is illustrated as

AL wo Al
wo Wo
Ar Wo Ar

Lemma 4.10 (cf. [20, Lemma-Definition 5.3]). Let (A, A.) be a generic pair of decorated
flags, and s = (s1,...,8n) a reduced word of wg. Then there exists a unique chain
A=Ay &AL & EN Ay = A, of decorated flags such that

o W(Ag,Ap_1) =715, fork=1,...,N, and
L] h(Ak,Ak_l) = Oz;/k (Ck)

Here ¢, € G, is given by

h(A,A)T if B = o is simple,
C =
1 otherwise.

Proof. When (A,,A;) = (h.[U"],wo.[UT]) sits in the standard configuration, the inter-
mediate flags are given by

where hy, := uy, (Hses(wouk) a!(h(AT,Al)wS)> with ug := 7, ...7sy. Indeed, we have
(A, Ak-1] = [ [UF], 7o i1 [UT]] = [y, (R 2 ) [UT), 75, [U ]

and the unique solution of 7, (h; ', )hy = ay () for k=1,..., N is given by

HTSk~ Ty, (C])

Then applying u ' to both sides, we get uy ' (hy,) = Hle B5(c;) = [ieswour) @ (B,
as desired. The intermediate decorated flags for a pair g.(A,, A;) are given by the trans-
lates g.Ap for g € G. O



26 T. Ishibashi et al. / Advances in Mathematics 431 (2023) 109256

Now we choose a double reduced word s of (wg,wp) € W x W. The subword of s
consisting of letters in S gives a reduced word s, = (s1,...,sx) of wp; similarly, the S-
part gives another reduced word s® = (s!,...,s™). Given a quadruple (AX, Az, Ag, AF)
whose orbit lies in Conf} Ag, we apply Lemma 4.10 to the pair (Af, AL) with the word
s*, and to the pair (Ap,Agr) with the word s}. Then we get the following chains of
decorated flags:

AL = AN S AN ST S A0 AR (AR AR =

h(A* AFT1) = Y, ("), (4.2)
Ap=Ag <A <2 LS Ay =Ar, w(AR Al) =T,

h(Ak, A1) = s (cx), (4.3)

where c* and ¢ are given by

h(AL ARYZ: i B5° = oY is simple,
1 otherwise,

and

h(Ag,Ap)®« if ﬁ:i = o is simple,
C ‘=
1 otherwise,

respectively. Using these chains, the double reduced word s gives rise to a decomposition
of the configuration [AL, Ar, Ag, AT into elementary configurations, as explained by the

following example.

Example 4.11 (Type As). The double reduced word s = (1,1,2,2,1,1) gives rise to the
decomposition below. The locations where the coroot B,ﬁ. or B becomes simple are

shown in green.

A3 A? Al Al
vost b s sy,
\ ! a /
\ | / /
\ I ;! /
\ I / ! /
3 I / ! /
\ | / I /
Ny [’
A / i
vy * |/ *
S1 'y S V7 51
o
Ao A Ag As

Then for each pair (A* A;) connected by a dashed line or a vertical solid line, we
consider the functions A, (A* A;) for s € S. These functions are not distinct: for example

if we have a triple
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A A

)

we have A (AF A) = A (AF A y) for s # sy. We have a similar relation for a
down-pointing triangle. See [20, Lemma 7.13] for details. Collectively, we get |S| +
#(dashed lines) + 1 distinct functions among A,(A¥ A;)’s. They can be assigned to
the vertices of the quiver J(s) in [20, Definition 7.5]. We also have additional functions
h(AF, AF=1y@e = p(AL ARY® if 8% = oy is simple, and h(A;, Aj_1)®w = h(Ag, AL)%u
if ﬁ:i = o, is simple. They are assigned to the green lines, and supply the coordinates
on the remaining “extra” vertices in the quiver J(s) in [20, Definition 7.5]. The quiver
J(s) together with the coordinates assigned to its vertices form a cluster Ko-seed in the
field K(Confy Ag).

We remark that these cluster coordinates are regular functions on a larger space
Conf{™ A consisting of the G-orbits of quadruples (AY, Ap, Ar, A) such that the top
and bottom pairs (AL, A®) and (Ar,Ar) are generic.

4.4. Generalized minors of simple Wilson lines are cluster variables

Let [¢] : Ef — E5 be a simple framed arc class and fix its band neighborhood B..
The band B, can be regarded as a marked surface (i.e., a disk with four marked points
m¥, mp, mg, m?) as shown in Fig. 2. By Remark 3.17 (1)(2), the Wilson line g;, can be
computed on the moduli space Aa BulErEa} = Conf{" Ag, where the identification is
determined by the branch cut and the correspondence of flags as shown in Fig. 7. For a

weight A = > ¢ asws, we write [A]; 1= ) _glas]1@s, where [as]4 := max{0,as}.

Proposition 4.12. Each generalized minor of a simple Wilson line g|o is a single cluster
variable in o7y s, multiplied by inverses of several frozen variables. Specifically, we have

As(AkaAl)
Au>lw5)v>kws (g[c]) = [us 1] (44)
h(AR7AL) >1Ws +h(AL,AR)[”>kws]+
forall k,1=0,...,N and s € S, where us; =75y ... 75, and Vsp = Ten ... Tget1 for

any double reduced word s of (wo,wp) € W x W.

Proof. Any G-orbit [AL Az, Agr, AF] contains a unique representative of the form

(A", AL, AR, AT) = (gh.[U™], [UT], w0 1. [UY], gwo.[UF])
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AL = gh.[UT]

AR = gawg.[UY]

Fig. 7. Computation of the Wilson line g[] on ‘Aé,B(. =~ Conf} Ag.

for h,h' € H and g € G, In other words, we have an isomorphism H x H X
Gwowo =y Conf) Ag. In this parametrization, we have h(AL, Af) = h and h(Agr,AL) =
h'. Moreover, (Ar,m(AR)) = psta and (AR, w(AL)) = gwo.psta = 9sc-ply; hence g =
gsa-

Let s be a double reduced word of (wg,wp) € W x W. Then by the proof of
Lemma 4.10, we explicitly get the associated chains (A¥)y, (A;); of decorated flags in
(4.2) and (4.3) as

AF = gT N ... Tght1 hk[U+]
with b := wk (HseS(wowk) a;/(hwg)) and w¥ := g1 - orn, and
A = w—O_lfs}‘\, .. 'Fsl*+1hl'[U+]

with h; := w; (HSES(wowz) asv(h'WS)> and wy 1= rg;, | -7y Then we get

AL (AR A) = A, (gFSN T [UT], 00 Ty, ...FS;H.[UJF]) - (h*hy)=e
= Ay (gFov - TFornr [UT], 86Ty Ty [UT]) - (PR
= Aryrap ey (956) - (TR
Thus we get

Au>zwsw>kws (9[0}) = (hkh?)_ws : AS(Aka Al)~

The frozen variables are computed as follows:

(hk)wﬁ _ H az/(hwt)(w’“)*lws _ Haz/(hwt)[(wk)flmh _ h(AL’AR)[’U>kws]+,
teS(wowk) teS
ht= I ar™yer = = T ay (0T = = h(Ag, Ay sl
teS(wowy) tes

— h(AR,AL)[u>LwS]*+-
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1

Here for the second equality in the first string: note that writing (w*) 'w, = }°,. g i

with ¢; € Z, we have
(ws, wk.atv> = ((wk)*l.ws, atv> =c;.

Hence t € S(wow®) <= w”.a > 0 <= ¢; > 0. The second equality in the second string
is similarly obtained. Thus the assertion is proved. O

Remark 4.13. Notice that the word s} is read in the reversed order when we “scan”
the distances of intermediate flags from the bottom to the top in Fig. 7. Therefore our
seed associated with the double reduced word s is the same as the one in [1] associated
with s* and (87)op := (Sk-..,s7). Letting s’y_,,, := s, the right-hand side of (4.4) is
written as Au'gN,lws,vas (91¢)) with u’gl, =Tl T, which has the same form as the
cluster variable in [1, (2.11)].

Remark 4.14. When m” = m; =: m and AY = Ay, the situation reduces to the triangle
case (Example 3.20), where the parameters are identified as ' = hy and g = uyh; '
In the description of the cluster variables on Confs.Ag given in [20, Section 6], they are
computed as follows:

A (g0 [U], [UF], w0 [UT]) = Ay pw(gwo U], sq (U] woh’.[UT])
= A (91qWo- (U], [UT],w0.[UT]) - s (1)
= Fux(gjqwo.[UT]) - (R')"
= Auwxwor(9r) - h(Ar,AL)".

This formula tells us how to express the cluster variables Ay ,, associated with an
admissible triple (A, 1, V) in terms of the matrix coefficients of Wilson lines.

4.5. Proof of Theorem 1

Recall from Corollary 4.8 that the upper cluster algebra % x. is generated by the ma-
trix coefficients of simple Wilson lines and boundary Wilson lines, under the assumption
that ¥ has at least two marked points. By Proposition 3.19 (1), the boundary Wilson
line g Joment € H is the inverse of the h-invariant of the pair of decorated flags assigned
to a boundary interval E € B. Hence its non-trivial matrix coefficients (g sgzou)™*
for s € S are exactly the inverses of the r many frozen variables on E. By Proposi-
tion 2.2 and Proposition 4.12, the matrix coefficients of simple Wilson lines are also
cluster variables multiplied by the inverses of frozen variables. Therefore these genera-
tors are contained in the cluster algebra 27 s, where the frozen variables are invertible.
Thus we get %,» C g 5.
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5. Examples and skein description

In this section, we give an explicit description of the formula (4.4) in the cases G =
SLo,SLs, Spy, and their description in terms of the skein algebras studied in [32,24,25].
Let us consider a simple Wilson line g|.}, and use the notations in Section 4.4. We denote
the frozen coordinates by

A3 = h(Ag,AL)®: and AZ,, := h(AF AR)T
for s € S.
5.1. SLy-case
The vector representation V(cw;) = C? is minuscule. The weights in this represen-

tation are given by w; and —w; = wgw;. There is a unique choice of reduced word
8* = 8o = (1) of wg € W, which gives rise to the chains of decorated flags:

AL =Ag ¢~~~ — Al — AL
wWo wo
AR=A; <g--—---—-——-——- 4+ A0 = AR

We have [wowi]+ = 0 and [w1]+ = w;. Then by the formula (4.4), we get

B _ A (AL A _A(ALA)
Bl0) = B ) = AT AR= hAn A= ALAL,
Al(AoaAl) Al(AoaAl)

Br2(0) = Bevwom 9 = AT AR R A A= AL
Al(Al,Ao) Al(AlaAO)

A = Awowl w1 = = ’

21(9) s (g) h(AL,AR)wlh(AR,AL)O Aéut
A AO,A
A22(9) = Ay womn (9) = A R) A (A%, A).

h(ALv AR)Oh(ARv AL)O
Thus the Wilson line matrix gjq € SLg((’)(.AéL%E)) is collectively given by

AI(AlvAl) Al(AOaAl)

g[ ] _ AilnAclmt Alll’l (5 1)
‘ A (AL, Ag) '
S A

out
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AL(A, Ag) Ar(AT, o)
A
/ \4
A%, i A > ALGs N N4l
AA%, Ag)
y
A (A AY) A (A A))

Fig. 8. The two clusters in O(Conf{"* Asy,) related by a single mutation.

The clusters corresponding to the two ideal triangulations are shown in Fig. 8.

Recall the skein model o, »» & AL [07!] given by Muller [32], where the cluster vari-
ables are identified with ideal arcs, and the clusters correspond to the ideal triangulations.
In this language, the matrix (5.1) is written as

Here the inverse of an ideal arc is shown in blue.
5.2. SLs-case

The vector representation V() = C? is minuscule. The weights in this representa-
tion are given by wi, riw; = we — @ and roriw; = —woe = wows. Let us choose the
reduced word s* = s, = (1,2,1) of wg € W, which gives rise to the following chains of
decorated flags:

Ap=A)p«$-----—----—-—-——- > A3 = AL
rﬂ\ lrl
A1 A?
rﬂ\ l7"2
Ag Al
rﬂ\ l’“l
AR =A<+ -—-—---—--——- > A0 = AR

Then the matrix entries of the simple Wilson line gig in V() are computed as follows:
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A1 (A% Asz) A1 (A% Asz)
All(g[c]) = AWL’KA (g[C]> = h(AR,AL)wTh(AL,AR)wl = AilnA(l)ut ’
A1 (A%, Az)  A(A%A)

A12(9e)) = A riw (91e)) = h(Ag, AL)= h(AL, ARY=2 Al A2

in“out
Al(AO7A3) _ Al(AO7A3)

AIB(Q[C]) = Awl,wowl (g[c]) =

h(AR,AL)wT a Alln ’
A1 (A3 Ar) A1(A3Ar)
Bar{810) = Arieno 909) = R et (AL AR~ AT AL,
A1 (A% Az) A1 (A% Az)

AQQ(Q[C]) = AT‘]Wl,TlWl (g[c]) = h(AR7AL)w§h(AL,AR)w2 - A2 A2 ’

in“tout
AL (A0, A A (A A
A23(g[0]) = AT1W17WOW1 (g[c]) = 1( 2) = 1( 2)3

h(Ag,AL)™: A?n
A1 (A3, A) A1 (A3, A)
ASl(g[C]) = Awgwl,wl (g[c]) = h(AL AR)Wl = Al . )
A1 (A%, A) A1 (A%, Ag)
ABZ(Q[C]) = Awowumzxm (g[(']) = h(AL,AR)w2 = A2 . s

A33(g[c]) = Awowhwowl (g[c]) = Al(AO?AO) = Al(AOv AO)

Thus the Wilson line matrix gig € SL3(O(Agy, 5)) is collectively given by

Ay(A3A3)  A(A%A3)  A(A%A;)

AilnA})ut AilnAgut A11n
g = | AL A) AR A A A (5.2)
‘ AiQnA(l)ut AiZnAgut A12n
A(A% Ag)  A(A%A)
’ ’ A1 (A%, Ag)
Aclmt Agut ' 0

The clusters to which the cluster variables appearing above belong are shown in Fig. 9,
as well as the mutation sequences relating them. Here we use the fact that the two words
(«--st---) and (---fs---) give rise to the same cluster for s # ¢. The corresponding
transformations of dashed diagonals connecting the decorated flags are shown in Fig. 10.

Recall the skein model studied in [24]. For any marked surface as in Section 3.1, the
first author and W. Yuasa realized the quantum cluster algebra <7, qts,z quantizing 2,

s

inside the skew-field of fractions of a certain sls-skein algebra 1?”5'1[3 5, consisting of sl3-webs

(i.e., oriented trivalent graphs whose vertices are either sinks )*& or sources )J;k), and
shown the inclusion 7 [07'] C @ 5. Here . ;[07'] denote the localized skein
algebra along the boundary slz-webs. It implies y;[,&z[afl] C s, > at the classical
specialization ¢ =1 € C.
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Ax (A%, A)
= Ax(A%,Ar) A1 (A%, Ag)
P
\
Aq (A3, AL
=/A (A3, A
sy |1
= A (A%, A) ()AL (A%, Ag —
= Ax(A%, Af)
Ay (A% Ag
= A1 (A As)
Yy
- — = —
Az (A, Az) A1 (A%, Ag)
= Az(A% As)
Az(A%, Ao)
= Ax(A% Ao) A1 (A3, Ag)
-~ =b
\ n
I—Al(AlJU)
4 PN
— Ma(A', A1) O———KQ)AL(A%, A
y
:A2(A07AO) = A1 (AL A))
A (A%, A
TAl(Aon)
- -
A (A%, Az) A1 (A%, Az)
= Ay(A% Az)

[1,12,11,1 ~ 1,2,11,5,1}

As (A%, Ao)
= As(A% Ar) A1 (A%, Ag)
P
A A
)AL (A%, A;)
= A1(A% Ar)
) N \4
A (A7 Az) (Q————0 A1(A?, Ay
A
= Az(A%, Az)
(O)A1(A%, Ag
Ay (A /
Y Y
N - = = —
Ay (A, Az) Ay (A%, Az)
= A5(A% Ag)
[1,5,1,12 NT,1,§,2,I,1]
Ax (A3, Ag)
= A3(A%, Ag) A1 (A%, Ag)
-~ =b
A1 (A%, A
= A (AL A
N (A, Ag)
\ 4
— = A2(A%, Ag) A1(A% Ao
A
=Ay(A%, Ay)
AR, Ay
T A (A2, A
- =7
A2(A%, Az) Ay (A%, Az)
= Ay(A% Az)

1,2,1,1,2,1

33

Fig. 9. Some clusters in O(Conf{"*Asr,) and the mutation sequences relating them. Here the frozen vari-
ables/vertices are omitted, and the mutated vertices are shown in orange.

On the other hand, if the marked surface ¥ has at least two marked points, then
we have o, 5 = Yiy,x = O(Agy, ») by Theorem 1. Moreover, one can verify that
each entry of the matrix (5.2) comes from the localized skein algebra 7} 5[07'] by

comparing the clusters in Fig. 9 and the construction in [24, Section 5]. Explicitly, we

have
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L e VU Mog--------m- - 4A3  Agp---------- A

T PR 1 Ty PR T1 1 _— r

Fig. 10. The transformations of dashed lines connecting the decorated flags corresponding to the mutation
sequences in Fig. 9. The flipped diagonals are shown in orange, which are corresponding to mutations.

Here the inverse of a boundary sls-web is shown in blue. Then by the same line of
argument as Section 4.5, we see that the inclusion %, » C %1[372[8_1] holds. Thus we
get 5”51[372[8*1] = o1, 5 = a1y, which confirms [24, Conjecture 3] at the classical
level.

5.3. Spy-case

The vector representation V(w;) = C* of Sp, is minuscule. The weights in this
representation are given by

w1, Nwp =w2— W, TNrw)=w —wWs2, WwW = —-Wi.
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By convention, we choose the symplectic form to be

-1

which determines the vector representation Sps = Sp(C%,.J). In this case, we need to
use both of the reduced words s® = (1,2,1,2) and 8° = (2,1,2,1) of wg € W in order
to obtain all the matrix coefficients in V' (w;). They give rise to the chains of decorated
flags

AL = At 2 A% T A2 2 AT TS A0 = AR
AL = At Iy A3 12 A2 T AL 120 A0 _ AR
respectively. Similarly, the words s, = (1,2,1,2) and 8, = (2,1,2,1) give rise to the

bottom chains (A;) and (A;), respectively. Similarly to the SLy- and SLs-cases, we can
compute the Wilson line matrix gig € Spa(O(Ag,, 5)) and get

AL(AL A AL(AR A AL(A% AL AL(AY A
AilnAg)ut AilnAc%ut AilnAclmt Alln
AL(ALAs) AR A3)  AL(A%A3)  AL(AY Ay)
AiQHAéut AiQDAgut AiQHAclmt A12n
9l = N (5.3)
A1(AYAr)  A(A3Ar)  A(A%A))  A(A%A)
AilnAcl)ut AilnAgut AilnAcl)ut Alln
AL(A% Ag)  A(AS Ag)  Ai(A% Ag) 0
A1('A‘ 7A0)
Aéut Acg)ut Acl)ut

The investigation of the clusters to which the cluster variables appearing in this expres-
sion belong is left to the reader. Apart from the A,-cases, the choice of distinguished
vertices v of a triangulation is crucial: we remark here that the cluster for the double
reduced word s = (1,2,1,2,2,1,2,1) corresponds to the decorated triangulation shown
in the left of Fig. 11, whose underlying weighted quiver is shown in the right (see [23,
Appendix B] for our convention on weighted quivers).

The skein model for the case is studied in [25]. For any marked surface, the quantum
cluster algebra 42%5%4’2 quantizing %, s is realized inside the skew-field of fractions
of a certain sp,-skein algebra consisting of sp,-webs. An sp,-web is represented by a
trivalent graph with two types of edges — and == (corresponding to the fundamental
representations V(wi) and V(ws) respectively), and with trivalent vertices of the form

)k in the interior.
Similarly to the sl3-case, we have an inclusion 5’5‘;4’2[6_1] - %%4’2 after localizing

along the boundary sp,-webs. Here 5”5%42 denotes the Z,-form of the sp,-skein algebra
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Fig. 11. The decorated triangulation corresponding to the double reduced word s = (1,2, 1, 2,2, 1,2, 1) (left)
and the underlying weighted quiver (right).

introduced in [25] (namely, 5’5%12 in the notation there). It implies 5’51'3472[8_1] C Hop, =
at the classical specialization ¢ =1 € C.
Again, each entry of the matrix (5.2) comes from the localized skein algebra

5”51‘04)2[6‘*1]. Explicitly, we have

9le) =

Then by exactly the same line of argument as in the sl3-case, we get ﬂ1p472[8_1} =
52{5;34,2 = %p4,2~

6. Supplements to Section 4.2

6.1. Amalgamation of upper cluster algebras

Lemma 6.1. Let % be an upper cluster algebra having a cluster i = ({A;}ier,€) with
isolated variables, namely a subset J C I such that ;; =0 for allj € J andi € I. Then

the quotient of % by the ideal generated by A; — 1 for j € J is the upper cluster algebra
' having the seed obtained from i by deleting the data for j € J.
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A3 A2 A'i ~h3 A2 ~h2

Ay Ay b Aq A1

As As As.hs Ag.he

Fig. 12. The change of decorations with n = 6 and J = {2,3,5,6}.

Proof. It is easy because Z = %’ ® (C[A;-‘Ll | 7 € J] in this case. O

Fix a decorated triangulation 7 of 3. Let A C e(7) be a subset of diagonals so
that we obtain a collection of disks with marked points when cutting along them. Let
AéyE[A] - ‘A(X?,E be the open subspaces such that for every edge in A, its associated pair
of decorated flags is generic. Let i7[A] be the seed obtained from 7 by freezing all the
mutable vertices that are placed on the diagonals in A. We are going to prove:

Proposition 6.2. O(Af; 5[A]) = % (iT[A]).
Lemma 4.6 is covered as the special case A = e(T) \ {E}.

Proof. Let N be the number of disks obtained when cutting 3 along the diagonals in A.
We shall prove Proposition 6.2 via induction on N > 0. The case N = 0 is trivial. For
N > 1, let D be an obtained disk that contains a boundary edge of X. Let ¥’ C X be
the marked surface obtained by cutting off D from .. The decorated triangulation T~ of
¥ naturally induces that of ¥/, which is denoted by 7. Similarly, we define the spaces
AG s [A] C AG 5 and the seed i7-[A]. By induction, we have

O(AG v [A]) = % (i [A)).-

We label the marked points of D from 1 to n in clockwise order, with the edge {1,n}
being a boundary interval of X. For ¢ = 2,...,n, we color the edge {i — 1,7} of D red
if it is glued with either an edge of ¥’ or another edge {j — 1,5} of D with j < i. Let
J be the set of indices 7 such that {i — 1,i} is red. See Fig. 12 for an illustration of the
coloring scheme.

We define the cutting map

o AéyE[A] x H) — ‘Aé’,Z’ [A] x ACX;’D7
(£, al, {hj}jer) — (£, '], (AL, ..., AL)).

Here [£',a/] is the restriction of decorated twisted local system [C,a] from ¥ to X'.
When restricting [£, @] to D, we obtain a n-tuple (Aq,...,A,), and set
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AL Al Al gAs Ay

——— »—————
E
¢71
A, D % — g.A, D ol
E’ E

J L — S Emm—

A’3 A/2 A g.Ag Ao

Fig. 13. The gluing map ¢~ '. Here h € H is uniquely chosen so that h(A],A,.h™') = h(A1,A2). Then
g.(A[,AL.h™1) = (A4, A) for a unique g € G.

A {Aj.hj if j e J;
J A, otherwise.
Conversely, given the data ([L',a'], (A],...,A])), one can recursively determine h; for
j € J such that after rescaling each A;- by hj_l, the h-distance for the pair of decorated
flags for every red edge coincides with the one that it is glued with. Gluing them back
produces the preimage of ([£',a'], (A],...,A})) before ¢. For example, Fig. 13 is the
gluing map along one edge. Hence, the map ¢ is an isomorphism.

The decorated triangulation 7 induces a decorated triangulation of D, which further
gives rise to a cluster seed ip of Ag 5. By Lemma 4.5, we have O(Ag p) = % (ip). By
[20, Theorem 9.17], every cluster variable A in ip is homogeneous with respect to the
H"™-actions. Denote by A(A) := (A1,...,\,) its weight, so that

A(ALhy, . Anhy) = A(Ar, . Ay - T B2
=1

The coordinate ring O(H”) can be regarded as the upper cluster algebra %'V with
isolated m := |S| - |.J| vertices and cluster variables h7 for j € J and s € S.
Let A be a cluster variable in i~ [A] Uip. Under the induced isomorphism

" O(AG s [A]) ® O(AG p) = O(AG s[A]) @ O(H), (6.1)
we get
. A if A belong to iy [A],
¢ (A) = AA); . .
A-Tlje b7 if A belongs to ip.

We claim that ¢* is a quasi-isomorphism in the sense of Fraser [16]. Namely, ¢* rescales
the cluster variables by Laurent monomials of frozen variables in such a way that the
unfrozen cluster Poisson variables for algebras on both sides of (6.1) associated with the
seeds induced by T are the same. Indeed, following the geometric description of cluster
Poisson charts on the moduli spaces Pg,x given in [20], the unfrozen cluster Poisson
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variables are invariant under the rescaling of decorated flags by h € H. Therefore, the
claim follows directly.

As a consequence, the extension of ¢* to the fields of rational functions preserves the
upper cluster algebras:

¢* : 02/(17-1 [A] U iD) = %(iT[AD ® %niriv. (62)

By the induction assumption, we have % (ir/[A] Uip) = O(Ag 5/ [A]) ® O(AG p)-
Therefore we get % (iT[A]) @ %y = O(Ag 5[A]) ® O(H?) by (6.1) and (6.2). Then
by applying Lemma 6.1 to the isolated variables h7* in US| we get O(Aé’E[A]) =
 (ir[A]) as desired. O

6.2. Stratifications of Ag x

T,Ev1,E2
G

Our purpose is to prove that A5, C Ag s has codimension > 2. Along the way, we

also obtain formulae for codimensions of the subspaces in more general stratifications of
Ac » obtained by prescribing w-distances along arcs and boundary intervals. Recall that
the dimension of a quotient stack X = [X/G] is defined to be dim X := dim X — dim G.

Notation 6.3. For an oriented ideal arc « on X, let AT (resp. A}) denote the decorated
flag assigned to the initial (resp. terminal) marked point of «. We endow each boundary
interval with the orientation induced from the boundary.

Fix two diagonals FE;, Es of an ideal triangulation 7, and endow them arbitrary
orientations. For u,v € W, let AZ”UE C Aé’z be the subspace such that w(AE1 AL, = u,
w(A},,AL,) = v. Then we have

T,E1,E2 __ w,v
Ags = L Gx-
uFwo; vEWO

We are going to prove:

Theorem 6.4. We have dim Ag x — dim Ay, = 21(wo) — l(u) —I(v) for all u,v € W. In

. Ey,E . .
particular, Ag’zl’ * has codimension > 2.

It turns out to be useful to include the following more general subspaces into consid-
eration:

Definition 6.5.
« Given a tuple w = {wg} € WB®) let

A%y C A



40 T. Ishibashi et al. / Advances in Mathematics 431 (2023) 109256

denote the subspace such that w(Af,AL) = wg for each E € B(X). For wy =
{wo} € WBE) that assigns the longest element to each boundary interval, we have
Aé‘,x = Ag,oz

« Given a collection C of disjoint oriented ideal arcs in ¥ and a tuple ve = {v,} € W€,
let

AQE[C; vc] C AQX}

denote the subspace such that w(AL,A;) = v, for each a € C.

Furthermore, let us write A% 5[C;vc] := A 5 N Ag »[C;ve]. The original subspace of
our interest is Ay, = Ag%[F1, E2;u, v].

Proposition 6.6. Let w = {wg} € WBE) | If 3 is a polygon, then we assume that there
exists Ey € B(X) such that wg, = wo. Then dim A,z — dim A% 5, = 3~ pep s (H(wo) —
l(wg)). In particular, A5 5, C Ag,s is open dense.

It is proved in Section 6.2.2 below, based on a relation to the braid varieties.

Fix an oriented ideal arc o and an element v, € W. Cutting the surface ¥ along a;, we
obtain a new marked surface Y, where « is splitted into two boundary intervals o/, a”’,
where o is the one following the boundary orientation. Then we consider the cutting
map

cuty, : AG slosva] = A’(‘;’:Z,, (6.3)

where w' := w U {vq, al} under the identification B(X') = B(X) U {o/, @}, v, (resp.
v, ') being assigned to o’ (resp. ). The image of cut,, is characterized by the closed
condition
h(Aj;,,A_ ) =h(A,, Aa,/) (6.4)
Proposition 6.7. Each fiber of cuty is isomorphic to G, , where G,, denotes the stabilizer
of the pair ([UT],u.BT) foru € W. In particular if vo, = wo, then cut,, is an isomorphism
onto its image.

It is proved in Section 6.2.1 below, where we explicitly write down the presentation
of cut,, on an atlas by fixing a generating system on X.

These two propositions might be of independent interest. Assuming them, let us first
complete the proof of Theorem 6.4.

Proof of Theorem 6.4. Let us consider the cutting maps

cutE1 cutE2

4% = Ac sl Er, Boyu,v] — A8 5 [Bav] —2 A8 50,
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where ¥/ := ¥\ Ey, X := X'\ Ey, and E) (resp. Es) is splitted into two boundary intervals
E} EY in ¥ (resp. Eb, EY in ¥"). The elements w’ = {u,u"'}, w” = {u,u=!,v,071}
are the ones naturally inherited via the cutting.

Recall that the image of the cutting map has the constraint (6.4). Then from Propo-
sitions 6.6 and 6.7, we get

dim ALY, = A’ [Ba;v] — dim H + dim G,
= (A¥y, — dim H + dimG,) — dim H + dim G,
= dim A¥y, — 2dim H + dim G, + dim G,
= (dim Ag,y»» — 2(21(wo) — l(u) — I(v))) — 2dim H 4+ dim G,, + dim G,,
Observe that dim Ag 5, — 2dim H = dim Aj 5, by the second statement of Proposi-

tion 6.7, and that dim Ag,x = dimAg, y for X = ¥, %" by the second statement of
Proposition 6.6. We also have

dim G, = dim(Ut n@wU o) = I(wo) — I(w) (6.5)
for any w € W [36, Section 8.3]. Thus we get

dim A5, = dim Ag sz — 2(2l(wo) — I(u) — 1(v)) + (l(wo) — 1(w)) + (I(wo) — I(v))
=dimAgx — (2l(wo) — U(u) — I(v)),

as desired. 0O

6.2.1. Proof of Proposition 6.7

Here are preparatory discussions. We may assume that ¥ is connected, without loss
of generality. Recall from Lemma 3.7 the presentation Ag y = [Ag n/G], where Ag y is
a quasi-affine G-variety that can be identified with Hom™ (m, (7%, €), G).

More precisely, such an identification is provided if we fix a system C,. of arcs in 7'%
from the basepoint £ to the boundary intervals. Let us further specify a collection Cigop
of loops in ¥ based at x := w(§) that generate 71 (X, x). See Fig. 14. Choosing framings
of these loops (i.e., lifts of them to T'Y), we get a splitting m1 (3, x) — m1(T'%, €) of the
exact sequence (3.3), and hence an isomorphism

Hom™ (71 (1'%, £), G) = GCoor = GTX(E)+1
Let us call such a collection C := Cyrc UCioop a generating system. Below we work on the
atlases Ag s & GCloor x Agﬂ by choosing an appropriate generating system C for a given

. The atlases of the relevant moduli spaces are denoted by A# s C Ag,x, and so on.

Proof of Proposition 6.7. The proof is devided into the three cases.
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=\

. < >

Fig. 14. A generating system C = C..c U Cioop that determines an isomorphism Ag s 2 GCror x .Algﬂ. Here
the framings of curves are omitted.

A

cuty

plcr) ™AL p(c2).Az

Fig. 15. The choice of curves: Case 1.

Case 1: Y/ is connected, and « connects different boundary components of Y. Choose
the curves shown in the left in Fig. 15, and extend it to a generating system C on X by
choosing other curves disjointly from «. The curves disjoint from a naturally descend
to X'. Together with the curves shown in the right of Fig. 15, they form a generating
system C’ on X'

Note that rankm (X) = rankm; (32)—1. We have an embedding ¢ : m (X', ) — m (2, z)
given by t(c) := cg * 1 and (d) := d for d € (|, \ {c}. It induces a projection

v Homtw(ﬂ'l(T’Z,f), G) — Homtw(ﬂ'l (T'Y)€),@G),

which is a principal G-bundle. Indeed, we have t*p(c) = p(c2)p(c1) and hence the G-
action

(p(c1), ple2)) = (gp(cr), ple)g™"), g€ G (6.6)

parametrizes the fiber over p € Hom™ (7 (1'%, €), Q). Then the relevant components of
the presentation cut, : A¥ [ va] — Agfz, of (6.3) are given by

Homtw(ﬂ'l(T’E,f), G) x .AQG — Homtw(ﬂ'l (T'Y,€),G) x .Aé,
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cuty

b

Fig. 16. The choice of curves: Case 2. Here § can be written as a product of other loops in C.

(p; A1, A2) = (L5 p; Ar, Agy p(er) 1AL ple2).As).

Observe that the G-action (6.6) preserves the A¢-component if and only if g €
Stab(A1,As) C G. Hence the fiber of cut, equals Stab(A1,A), which is isomorphic
to Gy.

Case 2: Y’ is connected, and o connects the same boundary component C of X. In this
case, one can find a handle that contains « as shown in Fig. 16. (Indeed, if we shrink
the boundary component C to a puncture p, o becomes a based loop oy, at p. If o, was
non-essential, 7.e., belonged to the kernel of the intersection form, then it would cut X
into a disconnected surface, which contradicts to our assumption. Then it is a standard
argument in topology to find such a handle.)

Choose the curves shown in the left in Fig. 16, and extend it to a generating system
C on X by choosing other curves disjointly from a. The curves disjoint from « naturally
descend to Y'. Together with the curves shown in the right of Fig. 16, they form a
generating system C’ on X',

Note that ranks; (X') = rankm; (3)—1. We have an embedding ¢ : 71 (X', 2) — m1 (%, x)
given by i(c1) :==bxaxb™", (c2) :==bxaxb"t x4 and 1(d) :=d for d € ([, \ {c1, ca}.
It induces a projection

o Homtw(ﬂ'l (T'%,6),G) — Homtw(ﬂ'l (T'%,6),Q),

which is a principal G-bundle. Indeed, we have t*p(c1) = p(b)p(a)p(b)~! and t*p(ca) =
p(b)p(a)p(b)~tp(d); hence the G-action

(p(a), p(b)) = (g~ ' p(a)g, p(b)g), g€G (6.7)

parametrizes the fiber over p € Hom™ (7 (7Y, £), G). Then the relevant components of
the presentation cut, : A# s [ va] — Ag:z, of (6.3) are given by

Hom"™ (1, (T'%, €), G) x A% — Hom"™ (11 (T'Y, €), G) x A,
(P A1, A2) = (L7 pi A, Az, p(b).Ax, p(b).Ag).
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A A; A

cut,

_

Fig. 17. The choice of curves: Case 3.

Observe that the G-action (6.7) preserves the Af-component if and only if g €
Stab(A1,A2) C G. Hence the fiber of cut, equals Stab(A1,Ag), which is isomorphic
to Gy.

Case 3: X' is disconnected. Let ¥’ = X; LI ¥y be the decomposition into connected
components, where >, ¥ are connected marked surfaces. Choose the basepoint x on a.
Then m1 (X, 2) = m1(21, 2) * 71 (X2, ). We can choose the generating system C on X so
that they do not cross «, as shown in Fig. 17. It induces a generating system C’ on X',
where the two arcs connecting to the endpoints of a are doubled.

Let Zgz[a; Vo] C AYslosva] denote the subspace such that (Af,7(A7)) =

([U*],u.B™). Since any point (p,\) € AY z[o;vs] can be translated into such a con-
figuration by the G-action, we have

AE slas va] = [A8 slas va] /) = [Ag slas val /G-

A similar argument shows
Yo =A%/ (G % G)] = [Ag 5 /(Gu x Gu)].

Observe that Zgz[a; V4] is isomorphic via cut, to the closed subspace of Zgz charac-
terized by the condition h(AY, A~) = h(A_,,Al,). Identifying these spaces, we have

cuty : [ZE,Z[O‘;Ua]/Gu] - [Zg,z[oﬁva]/(Gu x Gu)l,
which has the fiber (G, x G,,)/Gy = G,. The assertion is proved. 0O

6.2.2. Proof of Proposition 6.6

The knowledge on the braid varieties is useful below. We refer the reader to [6] for
details. Here we introduce a stacky variant of them. Given a positive braid word 5 =
(s1,-..,8) with s1,...,s; € S, the associated braid stack is defined to be the quotient
stack



T. Ishibashi et al. / Advances in Mathematics 431 (2023) 109256 45

X(ﬁ) = [{(A07 Blv ERE Bl*lv Bl) € AG X BZG ‘
w<B’L7 Bifl) =Ts; for i = 17 .. 7la w<BO7 Bl) = 6(6)}/G]

Here §(3) € W denotes the Demazure product. A configuration in X (5) is illustrated as

Si—1
Bl—l ... <8;2 B,

B; ) Ap.

We call B; <22 Ay the bottom side of the configuration. If §(8) = wo, then the G-action

is free and we can uniquely translate the generic pair (Ag, B;4+1) to the standard pinning
([U*],B™). Hence

X(B) = {(Bi,...,Bi_1) € B5' |w(Bi1,B;) =74, fori=1,...,1, By := B",B;:= B™}
is an affine algebraic variety. In this case, it is known that dim X (5) = |8| — I(wo) [12,
Theorem 20], where |3] =1 is the length of §.

In general, if §(8) = w € W, the pair (Ag,Bj11) can be translated to the position
([UT],w.B™), whose stabilizer subgroup is G.,. Hence we get

X(ﬁ) = [{(Bl, .. -7Bl—1) S BIG_I | U)(Bi_l, Bl) =T,
fori=1,...,l1, By:= Bt B, := E.Bo}/Gw}

We again know the dimension of the affine algebraic variety before quotient by [12,
Theorem 20], and we get

dim X () = |5] — l(w) — dim G, = |B| — I(wo). (6.8)
Let us drop the condition on the relative position between By and B;, defining

X(8) = [{(Ao,B1,...,Bi_1,B)) € Ag x B |
w(B,, Bi—l) =Ts; for i = 1, PN ,l}/G]
Note that before quotient by G, the space is isomorphic to Ag x AlPl, since a pair of

flags of w-distance r4 for s € S can be translated into the position (BT, z4(¢)Ts.B™) for
some t € A. Therefore

dim X(8) = dim Ag + |8 — dim G = || — I(wp). (6.9)
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T1T27T1 T1T2

Ay é * Ao w(A2) = By w0 Ao

Fig. 18. A map from A¢g , to X (8). Here ¥ is a triangle, and w = (wg,, wE,, wE,) = (wo, 7172, T17271).

Case 1: ¥ is a k-gon (k > 3). Enumerate the boundary intervals as Ey, E1,..., Ex_1 in
this counter-clockwise order so that wg, = wy. Choose a reduced word s(i) of wg, for
i=1,...,k — 1. Then the concatenation

B:=s(1)s(2)...s(k—1)

is a positive braid word of length | = Z;:ll [(w;) such that 6(8) = wg. Let Ag be the
decoration assigned to the terminal endpoint of Ey. Then we have an isomorphism

'ICI;,E :_> X(ﬂ) X Hk717
Ao, -, Ak—1] > ([Ao, Bro .o Bioa] (Ao, Ar), o (A, Ak1)).
See Fig. 18. Here for each pair (B;_1,B;) with ¢ =1,...,k — 1, we take the sequence
of interpolating flags with their distances given by s(i), and denote by Bl, .. Bl 1 the
resulting sequence from By to By_1. The bottom side is By_1 &0, Observe that the

data [Ag, A1, ..., Ar_1] can be uniquely recovered from [Ag, By,...,Br_1] and h(A;_1, A;)
fori=1,...,k— 1. It follows that

dim AY y, = dim X (8) + (k — 1) rank G = Zz w;) — l(wo) + (k — 1) rank G

by (6.8). The open dense part Aé’z corresponds to wg, = wo for all i = 1,...,k — 1.

Therefore
k—1
dim Ag s — dim Ag 5, = dim A%y, — dim A 5 = (I(wo) — l(wg,)),
=1
as desired.

Case 2: 3. is not a polygon. This case can be reduced to the polygon case, as follows.
Let 90X = I_II;;%J 0,. Choose a special point m,, € 9, forv =1,...,b—1, and a cut system
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O
. <>

Fig. 19. A cut system C of X, which consists of 2g loops based at mg and b — 1 arcs connecting mg to m,,
v=1,...,b—1.

E
0 cutc

Fig. 20. The cutting map cutec. In this example, we get two braid words B(w,vc; 046) =
s(vg)s('vgl)s(vgl)s(wE)s(wEo) and B(w,vc; Eo) = S('Ua)S(UB)S(U;I)S(Ugl)S(WE), where s(w) for w €
W is an arbitrary reduced word.

C as shown in Fig. 19. The collection C consists of 2g + b — 1 > 0 curves. By cutting ¥
along the curves in C, we get a polygon II with 4g + 2(b— 1) + |M] sides. Let us consider
the subspace A 5[C;ve] C AY s, where ve = {va}acc € WC and recall Definition 6.5.
Let us consider the composite of cutting maps along the arcs in C:

cute = H cuta + A 5[Cive] = AGq, (6.10)

aeC
where we := w U {v,,v;' | @ € C} is naturally inherited via the cutting, the pair {vF}
being assigned to the two boundary intervals arising from a. See Fig. 20. Observe that
the image Im(cutc) C AgS; is characterized by the closed condition (6.4), one for each

a € C. By Proposition 6.7, the fiber of cutc is isomorphic to the product [[, .. G

Choose arbitrary reduced words of w and ve. We further choose a side af of the
polygon II which comes from a curve ag € C. Then we get a braid word (w, ve; of) by
reading off the reduced words assigned to the sides of IT except for «f, along the boundary

orientation of II.



48 T. Ishibashi et al. / Advances in Mathematics 431 (2023) 109256

Then we get an embedding

Im(cute) — X (B(w, ve; ap)) x H29H0-1+MI=1 (6.11)

From this embedding, we can compute

dim Ag [C;ve] < Zdim Go, + (29 +b—1+ M| — 1) rank G + dim X (B(w, ve; ap)).

aeC
(6.12)
In particular, when w,; = wo = §(B(w,ve; o)), we get an isomorphism
Im(cute) = X (B(w, ve; o)) x H29T0=1HMI=1 (6.13)

In this case, we get

dim AY 5[C;ve] = Y dim Gy, + (29 + b — 1+ [M| — 1) rank G + dim X (8(w, vc; o).
aeC
(6.14)

Let vg := {wo}acc € WC. We have the following Lemma.
Lemma 6.8.
(1) Fizing ve = vg to be the longest, we get

dim A 5[C; vo] — dim AE [C; vo] = dim X (B(wo, vo; ap)) — dim X (8(w, vo; o))

= Y (Uwo) = l(wg)).

EeB(X)

In particular, the subspace Ag, 5)[C;vo] C Ag,s[C;vo] is open dense.
(2) Fizing any distance w € WB®) | we get

dim AZ 5[C; vo] — dim AZ 5[C;ve] >0
Therefore the subspace A% [C;vo] C AG 5, has the mazimal dimension.

Proof. (1): The first equality follows from (6.14). Since the w-distances on the boundary
intervals are set to be the longest, we have §(8(w,v¢;a))) = wo. Then the second
equality follows from (6.8).

(2): We apply (6.14) to compute dim Ag 5[C;vo] and (6.12) to dim AY 5[C;v.]. By
(6.8) and (6.9), we get
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dimAZ 5[C; vo] — dim A 5[C; ve] > dim X (B(w, vo; ap)) — dim X (B(w, ve; o))

- Z dim G,

aeC

=[B(w, vo; ap)| — [B(w, ves ap)| — D (Hwo) — U(va)).

aeC

Then the claim follows from

|B(w, vo; ap)| — |B(w, ve; ap)| = ((wo) = Uvay)) +2 Y (U(wo) —U(va)),

aeC\{ao}

where notice that the pair {v,,v;'} necessarily appears along the braid word
IB(wavC;EO)' O

Now let us complete the proof of Proposition 6.6. By Lemma 6.8 (2), it suffices to
compute the codimension

dim Ag sz — dim AZ 5, = dim Ag s[C; vo] — dim Ag »[C; vo].
Then by Lemma 6.8 (1), it can be computed as

dim Ag s — dim Ag 5 = dim Ag x[C; vo] — dim Ag 5 [C; vo]

= dim A% ;[C;vo] — dim AY 5 [Civgl = > (I(wo) — l(wg)),
EeB(%)

as desired.
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