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For a finite-dimensional simple Lie algebra g admitting a 
non-trivial minuscule representation and a connected marked 
surface Σ with at least two marked points and no punctures, 
we prove that the cluster algebra Ag,Σ associated with the 
pair (g, Σ) coincides with the upper cluster algebra Ug,Σ. The 
proof is based on the fact that the function ring O(A×

G,Σ) of 
the moduli space of decorated twisted G-local systems on Σ
is generated by matrix coefficients of Wilson lines introduced 
in [23]. As an application, we prove that the Muller-type 
skein algebras Sg,Σ[∂−1] [32,24,25] for g = sl2, sl3, or sp4 are 
isomorphic to the cluster algebras Ag,Σ.
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1. Introduction

Cluster algebras A , introduced by Fomin and Zelevinsky [15], are a class of commuta-
tive algebras with distinguished generators called cluster variables. The cluster variables 
are grouped into possibly infinitely many collections called clusters, which are related 
by a particular type of transition maps called cluster transformations. In [1], Berenstein, 
Fomin, and Zelevinsky introduced the upper cluster algebras U , defined as the intersec-
tions of Laurent polynomial rings associated with clusters. The upper cluster algebras U
are more natural than A from the perspective of geometry. The Laurent phenomenon 
of cluster algebras implies that A ⊂ U , but in general A �= U .

The problem when A = U is a mysterious but rather important question in cluster 
theory. For example, let Q be a quiver with a non-degenerate potential W . Motivated 
by the representation theory of quivers with potential [9,4], the paper [7] introduces the 
Caldero-Chapoton algebra CCQ,W . When Q has no loops or 2-cycles, we have

AQ ⊂ CCQ,W ⊂ UQ,

where AQ and UQ are the cluster algebra and the upper cluster algebra associated with 
Q, respectively. If AQ = UQ, then all the three aforementioned algebras are equal. As 
an application, after verifying a combinatorial condition on the existence of reddening 
mutation sequences of Q, the Caldero-Chapoton functions in CCQ,W provide a natural 
linear basis on the cluster algebra AQ, called the generic basis [33]. We refer to [18] for 
more details on the significance of the A = U problem in the study of generic basis of 
cluster algebras. We refer to [17] for another application of A = U on the quantization 
of cluster algebras.

In this paper, we investigate the A = U problem for cluster algebras from moduli 
spaces of G-local systems. Let G be the simply-connected complex Lie group associated 
with a simple Lie algebra g. Let Σ be a surface with punctures and marked points on its 
boundary. Fock and Goncharov [13] introduced a moduli space AG,Σ of decorated G-local 
systems over Σ as an algebro-geometric avatar of higher Teichmüller spaces. The moduli 
space AG,Σ carries a natural cluster structure, constructed by Fock and Goncharov [13]
for SLn, by Le [29] for other type of classical groups, and by Goncharov and the third 
named author [20] for general groups. As a consequence, the cluster structure on AG,Σ
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gives rise to a cluster algebra Ag,Σ and an upper cluster algebra Ug,Σ over the ground 
field C.1

Our first main result is as follows.

Theorem 1. For a finite-dimensional simple Lie algebra g admitting a non-trivial minus-
cule representation (namely, not of type E8, F4, G2) and a connected marked surface Σ
with at least two marked points and no punctures, we have

Ag,Σ = Ug,Σ.

We prove Theorem 1 in Section 4. Our proof is based on the following geometric 
considerations on the moduli space AG,Σ:

(1) We first show that the function ring O(A×
G,Σ) is generated by matrix coefficients of 

Wilson lines, which are originally introduced in [23] on the closely related moduli 
space PG�,Σ [20] for adjoint groups G�. In this paper, we introduce a “lifted” version 
of Wilson lines defined on A×

G,Σ, whose values are in the simply-connected group G.
(2) Then we show that the upper cluster algebra Ug,Σ coincides with the function ring 

O(A×
G,Σ) over C by a covering argument up to codimension 2, similarly to the proof 

of [34, Theorem 1.1]. Therefore we obtain a geometric generating set of the upper 
cluster algebra provided by the Wilson lines.

(3) Finally, we show that the generalized minors of certain simple Wilson lines are single 
cluster variables, multiplied by several frozen variables (Proposition 4.12). Under the 
assumption of Theorem 1, these are enough to generate O(A×

G,Σ) = Ug,Σ and thus 
we get the desired inclusion Ug,Σ ⊂ Ag,Σ.

We remark here that Proposition 4.12 implies that the generalized minors of simple 
Wilson lines are contained in the theta basis [22], and hence they are universally Laurent 
polynomials with positive integral coefficients. This strengthens the positivity result in 
[23] for this particular class of Wilson lines and matrix coefficients.

We include a list of results preceding us:

• Muller [31] proved A = U for locally acyclic cluster algebras. When g = sl2 and Σ
is unpunctured and contains at least two marked points, the cluster algebra Asl2,Σ

is locally acyclic, and hence Asl2,Σ = Usl2,Σ.
• Canakci, Lee, and Schiffler [5] prove Asl2,Σ = Usl2,Σ, where Σ is an unpunctured 

surface with one marked point. We expect that the same result can be generalized 
to arbitrary g.

1 In [3], Bucher, Machacek, and Shapiro show that the equality A = U depends on the choice of ground 
ring. In this paper, we always choose the ground field C. By an easy exercise of linear algebra, all the results 
of the paper can be generalized to Q.
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• Goodearl and Yakimov [21] prove a quantum analog of A = U for cluster algebras 
associated with double Bruhat cells. We leave it for a future project to achieve a 
quantum analog of Theorem 1.

• Shen and Weng [35] prove A = U for cluster algebras associated with double Bott-
Samelson cells. Examples of double Bott-Samelson cells include all the double Bruhat 
cells and the augmentation varieties associated with positive-braid Legendrian links. 
Our Theorem 1 can be viewed as a generalization of the result of [35] from disks to 
surfaces.

• In the other direction, Berenstein, Fomin and Zelevinsky [1] prove Asl2,Σ �= Usl2,Σ
when Σ is a closed torus with exactly one puncture. Ladkani [28] extended this result 
for closed surfaces of genus g ≥ 1 with exactly one puncture. A very recent work of 
Moon and Wong [30] proves Asl2,Σ �= Usl2,Σ when Σ is a closed torus with n ≥ 1
many punctures. They also conjecture Asl2,Σ �= Usl2,Σ when Σ is a closed surface of 
genus g ≥ 1 with n ≥ 1 many punctures. Therefore our assumption on the absence 
of punctures is crucial.

Closely related to the moduli space AG,Σ are the (stated) skein algebras, which are 
generated by combinatorial objects called g-webs modulo a collection of explicit graphical 
relations. For g = sl2, the connections between such skein algebras and the cluster algebra 
Asl2,Σ have been broadly studied in the literature (cf. [2,32,8]). More recently, the study 
of the relations of skein and cluster algebras and their web bases has been extended to 
sl3 (cf. [10,11,27,24]). The sp4-case is also studied in [25].

Following the notation of [24,25], we consider the boundary-localized skein algebra 
S q

g,Σ[∂−1] for g = sl2, sl3, sp4. Let Sg,Σ[∂−1] be its classical specialization q = 1 ∈ C, 
which is a C-algebra. As an application of Theorem 1, we prove

Theorem 2. If g = sl2, sl3 or sp4 and Σ is an unpunctured surface with at least two 
marked points, then the skein algebra Sg,Σ[∂−1] is isomorphic to the cluster algebra 
Ag,Σ.

We prove Theorem 2 in Section 5. The sl2-case is exactly the result obtained by [32]. 
For g = sl3 or sp4, the inclusion Sg,Σ[∂−1] ⊂ Ag,Σ is proved in [24,25]. We further verify 
the inclusion O(A×

G,Σ) ⊂ Sg,Σ[∂−1] by verifying that the matrix entries of simple Wilson 
lines can be written as explicit g-webs, similarly to the step (3) in the proof of Theorem 1. 
Then the equality Ag,Σ = O(A×

G,Σ) over C allows us to combine these inclusions to get 
Theorem 2. Theorem 2 confirms a conjecture of the first named author and Yuasa in the 
classical setting ([24, Conjecture 3]).
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2. The function ring O(G)

2.1. Notations from Lie theory

In this section, we briefly recall basic terminologies in Lie theory. We refer the reader 
to, for example, [26] for missing definitions.

Let G be a simply-connected connected simple algebraic group over C. Let B+ and 
H be a Borel subgroup and a maximal torus contained in B+, respectively. Let U+ be 
the unipotent radical of B+. Let

• X∗(H) = Hom(H, Gm) be the weight lattice, X∗(H) = Hom(Gm, H) the coweight 
lattice, and �−, −� the natural pairing

�−,−� : X∗(H)×X∗(H) −→ Hom(Gm,Gm) � Z;

• Φ ⊂ X∗(H) the root system of (G, H);
• Φ+ ⊂ Φ the set of positive roots consisting of the H-weights of the Lie algebra of 

U+;
• {αs | s ∈ S} ⊂ Φ+ the set of simple roots, where S is the index set with |S| = r;
• {α∨

s | s ∈ S} the set of simple coroots.

For s ∈ S, let �s ∈ X∗(H) be the s-th fundamental weight such that �α∨
t , �s� = δst. In 

other words, we have αt =
�

u∈S Cut�u for t ∈ S, where Cst := �α∨
s , αt� ∈ Z. We have

X∗(H) =
�
s∈S

Z�s.

The sub-lattice generated by αs for s ∈ S is called the root lattice.
For h ∈ H and μ ∈ X∗(H), the evaluation of μ at h is denoted by hμ. For s ∈ S, we 

have a pair of root homomorphisms xs, ys : Ga → G such that

hxs(t)h−1 = xs(hαst), hys(t)h−1 = ys(h−αst).

After a suitable normalization, we obtain a homomorphism ϕs : SL2 → G such that

ϕs

��
1 a
0 1

��
= xs(a), ϕs

��
1 0
a 1

��
= ys(a), ϕs

��
a 0
0 a−1

��
= α∨

s (a).
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Weyl groups. Let W (G) := NG(H)/H denote the Weyl group of G, where NG(H) is 
the normalizer subgroup of H in G. For s ∈ S, we set

rs := ϕs

��
0 −1
1 0

��
∈ NG(H).

The elements rs := rsH ∈ W (G) have order 2, and give rise to a Coxeter generating set 
for W (G) with the following presentation:

W (G) = �rs (s ∈ S) | r2s = 1, (rsrt)mst = 1 (s, t ∈ S)�,

where mst ∈ Z is given by the following table

CstCts : 0 1 2 3
mst : 2 3 4 6

.

There is a left action of W (G) on X∗(H) induced from the (right) conjugation action of 
NG(H) on H. The action of each reflection rs is given by

rs.μ = μ− �α∨
s , μ�αs, ∀s ∈ S, ∀μ ∈ X∗(H).

For w ∈ W (G), a sequence s = (s1, . . . , s�) of elements of S is called a reduced word 
of w if w = rs1 . . . rs� and l is the smallest among all the sequences with this property. 
For a reduced word s = (s1, . . . , s�) of w ∈ W (G), the number l(w) := � is called the 
length of w, and set w := rs1 . . . rs� ∈ NG(H). Then it turns out that w does not depend 
on the choice of the reduced word.

Let w0 ∈ W (G) be the longest element of W (G), and set sG := w0
2 ∈ NG(H). It turns 

out that sG ∈ Z(G), and s2G = 1 (cf. [13, §2]). We define an involution S → S, s �→ s∗ by

αs∗ = −w0.αs.

The Dynkin involution. There exists an anti-involution T : G → G, g �→ gT of the 
algebraic group G given by T ◦ xs = ys and hT = h for s ∈ S, h ∈ H. This is called the 
transpose in G. Let ∗ : G → G, g �→ g∗ be a group automorphism defined by

g �→ w0(g−1)Tw−1
0 .

Then (g∗)∗ = g for all g ∈ G. This is called the Dynkin involution on G (cf. [19, (2)]).

Irreducible modules and matrix coefficients. Let V be a finite dimensional representa-
tion of G (over C). For f ∈ V ∗ and v ∈ V , we define the element cVf,v ∈ O(G) by

g �→ �f, g.v�, ∀g ∈ G (2.1)
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An element of this form is called a matrix coefficient.
Set X∗(H)+ :=

�
s∈S Z≥0�s ⊂ X∗(H). For λ ∈ X∗(H)+, let V (λ) be the irreducible 

representation of G of highest weight λ. A fixed highest weight vector of V (λ) is denoted 
by vλ. For λ∗ = −w0.λ, there is a natural non-degenerate pairing

�−,−� : V (λ∗)× V (λ) −→ C,

which identify V (λ∗) with the dual vector space of V (λ). We further fix a lowest weight 
vector of V (λ∗), denoted by fλ∗ , such that �fλ∗ , vλ� = 1.

For λ ∈ X∗(H)+ and w, w� ∈ W (G), the matrix coefficient

Δwλ,w�λ(g) := �w.fλ∗ , gw�.vλ� (2.2)

is called a generalized minor.

2.2. The generators of O(G)

Proposition 2.1. Let G be a semisimple algebraic group over C, and ρ : G → GL(V ) a 
faithful rational representation. Then the ring of regular functions O(G) is generated by 
the matrix coefficients of V .

Proof. Consider the composition map det ◦ρ : G → C∗. Then it gives a one-dimensional 
rational representation of G, and it must be trivial since G is semisimple. Therefore, 
ρ(G) ⊂ Ker det = SL(V ). Hence, by [36, Proposition 2.2.5], ρ(G) is a Zariski closed 
subgroup of SL(V ). Here note that G is isomorphic to ρ(G) as an algebraic group 
since ρ is faithful. By fixing a basis of V , SL(V ) is regarded as a Zariski closed set of 
C(dimV )2 . Hence, ρ(G) is also considered as a Zariski closed set of C(dimV )2 , and there 
exists a surjective algebra homomorphism R : O(C(dimV )2) = C[Xij |1 ≤ i, j ≤ dimV ] �
O(ρ(G)) � O(G) corresponding to the restriction of the domain. By construction, each 
R(Xij) (1 ≤ i, j ≤ dimV ) is actually a matrix coefficient of V , hence the claim fol-
lows. �

Proposition 2.2. Let G be a simply-connected simple algebraic group G over C of type 
An, Bn, Cn, Dn, E6, or E7. Then O(G) is generated by generalized minors.

Proof. By Proposition 2.1, it suffices to show that there exist minuscule representations 
V1, . . . , Vk such that their direct sum V1 ⊕ · · · ⊕ Vk provides a faithful representation of 
G. Hence the result follows from the following known facts in representation theory (see, 
for example, [37, Appendix]):

• When G is of type An, the (n + 1)-dimensional vector representation is a faithful 
minuscule representation.
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• When G is of type Bn, the 2n-dimensional spin representation is a faithful minuscule 
representation.

• When G is of type Cn, the 2n-dimensional vector representation is a faithful minus-
cule representation.

• When G is of type Dn, there exist two mutually non-isomorphic 2n−1-dimensional 
minuscule representations, called the half spin representations. Then the direct sum 
of these two representations is faithful.

• When G is of type E6, there are two faithful minuscule representations of dimension 
27.

• When G is of type E7, there exists a faithful minuscule representation of dimension 
56. �

Remark 2.3. The simple algebraic group of type E8, F4, G2 does not admit non-trivial 
minuscule representations. This is why we exclude these types from the assumption. 
However, the statement makes sense also for these types and we do not know whether 
it holds in these cases.

2.3. Decorated flags and pinnings

The homogeneous spaces AG := G/U+ and BG := G/B+ are called the principal 
affine space and the flag variety, respectively. An element of AG (resp. BG) is called a 
decorated flag (resp. a flag). There is a canonical G-equivariant projection π : AG →
BG. The basepoint of AG is denoted by [U+]. We also adopt the notation [U−] :=
w0.[U+] ∈ AG. The flag variety BG is identified with the set of connected maximal 
solvable subgroups of G via g.B+ �→ gB+g−1. The Cartan subgroup H acts on AG

from the right by g.[U+].h := gh.[U+] for g ∈ G and h ∈ H, making the projection 
π : AG → BG a principal H-bundle.

For k ∈ Z≥2, the configuration space of decorated flags is defined to be the stack

ConfkAG := [
k times� �� �

AG × · · · × AG /G],

where we consider the diagonal left action of G.
By the Bruhat decomposition G =

�
w∈W (G) U

+HwU+, any G-orbit in the space 
Conf2AG has a unique representative of the form (A1, A2) = (h.[U+], w.[U+]) for some 
h ∈ H and w ∈ W (G). The parameters h(A1, A2) := h and w(A1, A2) := w are called 
the h-invariant and the w-distance of (A1, A2), respectively. They only depend on the 
G-orbit [A1, A2]. See [20, Section 2.2] for details on the properties of these parameters. 
A pair (A1, A2) of decorated flags (or its G-orbit) is said to be generic if w(A1, A2) = w0. 
Genericity only depends on the underlying flags.

Angle invariant. Consider the configuration space Conf(AG, BG, BG) parametrizing the 
triples (A1, B2, B3) ∈ AG×BG×BG such that the pairs (A1, B2) and (A1, B3) are generic. 
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The G-orbit of such a triple has a unique representative of the form (A1, B2, B3) =
([U+], B−, u+B

−) for some u ∈ U+. Then we define the angle invariant to be

an : Conf(AG,BG,BG) → U+, [[U+], B−, u+B
−] �→ u+. (2.3)

Composing the canonical character χs := Δ�s,rs�s
: U+ → C, we get the potential 

functions Ws := χs ◦ an : Conf(AG, BG, BG) → C for s ∈ S.

Pinnings. Following [20], we define a pinning to be a generic pair (A1, B2) ∈ AG ×BG. 
Then the space PG of pinnings is naturally a principal G-space. We will use the standard 
pinning pstd := ([U+], B−) as a basepoint of this space. We define the opposite pinning
of p = g.pstd as p∗ := gw0

−1.pstd. Alternatively, a pinning is defined to be a generic pair 
(A1, A2) ∈ AG×AG such that h(A1, A2) is trivial. Then we have pstd = ([U+], [U−]) and 
p∗std = (sG.[U−], [U+]).

3. Wilson lines on A×
G,Σ

3.1. Notations on marked surfaces

A marked surface (Σ, M) consists of a compact oriented surface Σ and a fixed non-
empty finite set M ⊂ ∂Σ of marked points. In particular, we do not consider marked 
points in the interior (“punctures”). In this paper, we always assume that

each boundary component has at least one marked point. (3.1)

A connected component of ∂Σ \ M is called a boundary interval. The set of boundary 
intervals is denoted by B = B(Σ). When no confusion can occur, we will simply denote 
a marked surface by Σ. We will always assume that

n(Σ) := −2χ(Σ) + |M| > 0. (3.2)

This condition ensures that the marked surface Σ admits an ideal triangulation with 
n(Σ) triangles.

The fiber bundle T �Σ := TΣ \ (0-section) with fiber R2 \ {0} is called the punctured 
tangent bundle. The bundle projection π : T �Σ → Σ induces the exact sequence

1 → π1(R2 \ {0}) → π1(T �Σ) π∗−→ π1(Σ) → 1. (3.3)

The generator of π1(R2 \ {0}) ∼= Z is denoted by o.
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3.2. The boundary-fundamental groupoid

Now we are going to clarify our topological set-up for the definition of Wilson lines 
on A×

G,Σ, for which we need a little care on the fiber direction of T �Σ. We fix a nowhere-
vanishing vector field vori on ∂Σ which induces an orientation on ∂Σ compatible with that 
induced from Σ. Then we get two embeddings ι± : ∂Σ → T �Σ, x �→ (x, ±vori(x)). For each 
boundary interval E ∈ B, fix a reference point xE ∈ E and define E± := ι±(xE) ∈ T �Σ. 
We regard the points E± as representatives of oriented boundary intervals.

Definition 3.1. The boundary-fundamental groupoid Π1(T �Σ, B±) of T �Σ is the groupoid 
where the objects are the points E� for E ∈ B and � ∈ {+, −}, and morphisms from E�1

1
to E�2

2 are based-homotopy classes of continuous curves in T �Σ from E�1
1 to E�2

2 . We call 
a morphism [c] : E�1

1 → E�2
2 in this groupoid a framed arc class in Σ. The composition 

of framed arc classes [c1] : E�1
1 → E�2

2 and [c2] : E�2
2 → E�3

3 is given by the concatenation 
[c1] ∗ [c2] : E�1

1 → E�3
3 .

Recall from [23] the groupoid Π1(Σ, B), whose objects are the points xE and the 
morphisms are based-homotopy classes of continuous curves between them. We have a 
natural projection π∗ : Π1(T �Σ, B±) → Π1(Σ, B).

Definition 3.2 (transverse immersions and their standard lifts). A transverse immersion
is an immersed curve c : [0, 1] → Σ such that c(0) = xE0 and c(1) = xE1 for some 
boundary intervals E0, E1 ∈ B, and transverse to ∂Σ. Then its standard lift is the 
continuous curve c : [0, 1] → T �Σ from E−

0 to E−
1 obtained as the composite of the 

following two paths:

• the path t �→ (c(t), v⊥c (t)) in T �Σ, where v⊥c (t) is a nowhere-vanishing normal vector 
field along c which points toward the left side of c, and such that v⊥c (0) = E−

0 , 
v⊥c (1) = E+

1 .
• a path from E+

1 to E−
1 in the tangent space at xE1 , which rotates the tangent vector 

clockwisely.

See Fig. 1. Note that the homotopy class [c] does not depend on the choice of the vector 
field v⊥c which satisfies the condition.

Remark 3.3. The fundamental groupoid Π1(T �Σ, B±) has appeared in [8, Section 8] in 
their study on stated skein algebras. Our standard lifts are their “good lifts” with respect 
to the negative orientation, which are chosen so that certain matrix coefficients of the 
Wilson line along them give rise to cluster variables. See Section 4.4.

For later use, we are going to give a good generating set of the fundamental groupoid 
Π1(T �Σ, B±). For each boundary interval E ∈ B, let √oE

in, 
√
oE

out : E− → E+ denote 
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Fig. 1. The standard lift of a transverse immersion.

Fig. 2. A simple framed arc class [c] : E−
1 → E−

2 and a band neighborhood Bc. Here it is allowed that one 
of mL = mL or mR = mR holds.

the framed arc classes contained in the tangent space at xE which go from E− to E+

clockwisely and counter-clockwisely, respectively. Then

oE− :=
√
oE

in ∗ (√oE
out)−1 ∈ Aut(E−) and

oE+ := (
√
oE

out)−1 ∗ √oE
in ∈ Aut(E+)

represent the clockwise fiber loop. We say that a framed arc class [c] : E−
1 → E−

2 is 
simple if E1 �= E2 and it is represented by the standard lift c of a transverse immersion 
c without self-intersection. Notice that it implies that there exists a band neighborhood 
Bc of c which gives an immersed quadrilateral which is embedded except for its vertices2, 
as shown in Fig. 2.

Lemma 3.4. The fundamental groupoid Π1(T �Σ, B±) is finitely generated. Namely, there 
exists a finite set S of framed arc classes such that any framed arc class can be written 
as a finite concatenation of those in S and their inverses. Moreover if Σ has at least 
two marked points, then the generating set S can be chosen so that it consists of simple 
framed arc classes and 

√
oE

in, 
√
oE

out for E ∈ B.

2 This is seen as follows. Since the transverse immersion c : [0, 1] → Σ has no self-intersections, we can 
surely take an embedding ι : [0, 1] × [−�, �] → Σ so that ι(t, 0) = c(t), I1 := ι({0} × [−�, �]) ⊂ E1 and 
I2 := ι({1} × [−�, �]) ⊂ E2. Since E1 �= E2 by assumption, we can modify (‘spread out’) this embedding in 
small neighborhoods of E1 and E2 so that I1 = E1 and I2 = E2. The image of this modified map is Bc.
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Fig. 3. Decomposition of a loop into two arcs.

Proof. Fix a boundary interval E0 ∈ B. We choose a collection of transverse immersions 
in Σ, as follows.

• Let S0 = {(αi)gi=1, (βi)
g
i=1, (γj)bj=1} be transversely-immersed loops based at x0 :=

xE0 without self-intersections, whose homotopy classes generate the fundamental 
group π1(Σ, x0).

• For each boundary interval E �= E0, let �E be a transverse immersion without self-
intersection running from x0 to xE .

We first claim that the standard lifts of these transverse immersions, together with the 
framed arc classes √oE

in, 
√
oE

out for E ∈ B, generate the fundamental groupoid. Let 
G ⊂ Π1(T �Σ, B±) denote the sub-groupoid generated by these framed arc classes.

First note that the fiber loops oE± are contained in G. Take an arbitary framed arc 
class [c] : E�1

1 → E�2
2 . By concatenating the framed arc classes √oEi

out, i = 1, 2 or their 
inverses if necessary, we may assume �1 = �2 = −. Consider its projection [c] := π∗([c]). 
Then the concatenation [�E1 ] ∗ [c] ∗ [�E2 ]−1 is an element of π1(Σ, x0), which can be 
written as a concatenation of the elements in S0. It implies that there exists a framed 
arc class [c�] : E−

1 → E−
2 that lies in G such that π∗([c�]) = π∗([c]). Then by the exact 

sequence (3.3), the arc class [c] can be written as a concatenation of [c�] and several 
powers of fiber loops. Hence [c] belongs to G. Thus the first assertion is proved.

Assume that Σ has at least two marked points. It implies that Σ has at least two 
boundary intervals, say E0 �= E1. Then we can decompose each loop η ∈ S0 into two 
simple arcs η1 and η2, as shown in Fig. 3. Therefore we can replace the standard lift of η
with the standard lifts of η1 and η2 in the generating set, where the latter two are simple 
framed arc classes. Thus the second assertion is proved. �

Remark 3.5. For a transverse immersion c : [0, 1] → Σ, let cop : [0, 1] → Σ be the 
transverse immersion in the opposite direction given by cop(t) := c(1 − t). Let c : E−

0 →
E−

1 , cop : E−
1 → E−

0 be the standard lifts of c, cop, respectively. Then they satisfy

[c] ∗ [cop] = oE−
0
, [cop] ∗ [c] = oE−

1
.

In particular, note that [c]−1 �= [cop] as framed arc classes.
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3.3. Wilson lines on A×
G,Σ

Let G be a semisimple simply-connected algebraic group, Σ a marked surface without 
punctures. Fix an outward tangent vector field vout on ∂Σ, which gives rise to an em-
bedding ιout : ∂Σ → T �Σ, x �→ (x, vout(x)). Recall from [13, Definition 2.3] that a twisted 
G-local system on Σ is a G-local system on the punctured tangent bundle T �Σ with the 
monodromy sG along the fiber loop o. A decoration of a twisted G-local system L is a 
flat section α of the associated bundle LA := L ×G AG defined over (a small neighbor-
hood of) ιout(∂Σ \{xE}E∈B). In particular, the flat section is defined on a vicinity of the 
outward lift of each marked point. A decoration is said to be generic if for each E ∈ B, 
the pair of flat sections defined near the endpoints of E gives rise to a generic pair of 
decorated flags when they are evaluated at a common point via a parallel-transport.

Definition 3.6 ([13, Definition 2.4]). Let AG,Σ denote the moduli space of decorated 
twisted G-local systems on Σ. The open substack consisting of the generically decorated 
twisted G-local systems is denoted by A×

G,Σ ⊂ AG,Σ.

Let us briefly mention the description of AG,Σ as a quotient stack. Fix a basepoint 
ξ = (x, v) ∈ T �Σ. A rigidification of a twisted G-local system (L, α) at ξ is a choice of a 
point s ∈ Lξ. Let AG,Σ denote the set of isomorphism classes of rigidified twisted G-local 
systems (L, α; s). The group G acts on AG,Σ by g.[L, α; s] := [L, α; s.g] for g ∈ G. The 
following can be verified similarly to [13, Definition 2.2], with a little care on twistings:

Lemma 3.7. The set AG,Σ has a natural structure of quasi-affine G-variety, isomorphic 
to

Homtw(π1(T �Σ, ξ), G)× (AG)M.

Here Homtw(π1(T �Σ, ξ), G) ⊂ Hom(π1(T �Σ, ξ), G) denotes the subspace such that 
ρ(oξ) = sG; oξ ∈ π1(T �Σ, ξ) being the fiber loop based at ξ.

Thus we get a stacky definition AG,Σ := [AG,Σ/G]. In particular, its function ring is 
O(AG,Σ) = O(AG,Σ)G.

Remark 3.8. Since π1(Σ) is a free group, the central extension (3.3) splits. Therefore 
we have non-canonical isomorphisms π1(T �Σ) ∼= π1(Σ) ×Z and Homtw(π1(T �Σ, ξ), G) ∼=
Hom(π1(Σ), G) ∼= G2g+b−1, where b denotes the number of boundary components of Σ. 
In particular, O(AG,Σ) is an integral domain, so is its subalgebra O(AG,Σ). The field 
K(AG,Σ) of rational functions is defined to be its field of fractions.

Example 3.9. Let Σ = Dk be a k-gon, which is a disk with k marked points on the bound-
ary. Choose one distinguished marked point, and let m1, . . . , mk denote the marked points 
in the counter-clockwise order, where m1 is the distinguished one. Fix a trivialization 



14 T. Ishibashi et al. / Advances in Mathematics 431 (2023) 109256

T �Dk
∼= Dk × (R2 \ {0}), and let vj ∈ T �

xDk denote a tangent vector points toward mj

for j = 1, . . . , k. We may assume that ξ = (x, v1). Then we choose the following paths in 
T �Dk:

• The straight line �1 from ξ to ιout(m1);
• For j = 2, . . . , k, the path �j which first rotates from ξ = (x, v1) to (x, vj) in the 

counter-clockwise direction inside the tangent space at x, and then goes straight from 
(x, vj) to ιout(mj).

See the left picture in Fig. 4. Let (L, α; s) be a rigidified twisted G-local system. The 
rigidification s determines a trivialization (LA)ξ ∼= AG. We have a flat section αj of LA
defined near ιout(mj) for j = 1, . . . , k. Via the parallel-transport along the path �j, we can 
evaluate it at the basepoint ξ, which gives rise to a decorated flag αj(ξ) ∈ (LA)ξ ∼= AG. 
Thus we get a G-equivariant isomorphism

AG,Dk

∼−→ Ak
G, (L, α; s) �→ (α1(ξ), α2(ξ), . . . , αk(ξ)),

which descends to an isomorphism fm1 : AG,Dk

∼−→ ConfkAG := [Ak
G/G] of stacks. 

Alternatively, one can think that we are choosing a branch cut � in the fiber direction 
R2 \ {0} as shown in Fig. 4 by waved orange line, and trivializing the twisted local 
systems on the contractible region Dk × (R2 \ �). When we discuss the polygon case, we 
will only show this branch cut to indicate the isomorphism we use.

When we replace the distinguished marked point m1 with m2 and use a similar choice 
of paths as shown in the right picture in Fig. 4, then we get another isomorphism fm2 :
AG,Dk

∼−→ ConfkAG. Then the coordinate transformation fm2 ◦ f−1
m1

is given by the 
twisted cyclic shift

Sk : ConfkAG
∼−→ ConfkAG, [A1, . . . ,Ak−1,Ak] �→ [A2, . . . ,Ak, sG.A1].

The substack of ConfkAG corresponding to A×
G,Dk

is denoted by Conf×k AG.

Pinnings. For each boundary interval E ∈ B, let m±
E ∈ M be its endpoint in the 

direction E±. Given a generic decorated twisted G-local system (L, α), let α±
E be the 

flat section defined near ιout(m±
E). To the pair (α−

E , α
+
E), we associate a pinning as fol-

lows. Parallel-transport the flat sections α±
E along the line ιout(E) to the common point 

ιout(xE), and continue to transport them along the path in the tangent space at xE to 
the point E− = ι−(xE) in the clockwise direction. Then we get a generic pair (A−

E , A
+
E)

in (LA)E− , and the pinning pE− := (A−
E , π(A

+
E)) ∈ (L ×G PG)E− . We may associate an-

other pinning pE+ := (Â+
E , π(Â

−
E)) ∈ (L ×G PG)E+ , where the pair (Â−

E , Â
+
E) in (LA)E+

is obtained by the parallel-transport of the pair (A−
E, A

+
E) via the outward path 

√
oE

out.



T. Ishibashi et al. / Advances in Mathematics 431 (2023) 109256 15

Fig. 4. Construction of isomorphisms AG,Dk
∼= ConfkAG with k = 6. The flat sections defined near ιout(mj)

are parallel-transported along the dashed lines towards the basepoint ξ (shown by the solid arrow in the 
center of the disk).

Remark 3.10. Thanks to the absence of punctures, the decorated twisted G-local system 
(L, α) can be uniquely recovered from the data (L, (pE−)E∈B) or (L, (pE+)E∈B). Thus 
the subspace A×

G,Σ can be identified with a variant PG,Σ of the P-type moduli space 
in [20] for simply-connected groups G. Then similarly to the arguments in [23, Remark 
3.17], one can verify that A×

G,Σ is an algebraic variety.

Now we define the Wilson lines on A×
G,Σ in a similar manner as in [23]. Let [c] : E�1

1 →
E�2

2 be a framed arc class, and (L, α) a generically decorated twisted G-local system. 
Choose a local trivialization s1 of L on a vicinity of E�1

1 so that pE�1
1

= pstd. Extend s1
via the parallel-transport along the path c, until the terminal point E�2

2 . Then

pE�2
2

= g.p∗std = gw0
−1.pstd

for a unique element g ∈ G under this trivialization. Define g[c]([L, α]) := g. The following 
can be verified in the same way as [23, Proposition 3.9]:

Lemma-Definition 3.11 (Wilson lines). For any framed arc class [c] : E�1
1 → E�2

2 , the 
construction above produces a morphism

g[c] : A×
G,Σ → G

of stacks, which we call the Wilson line along [c]. The morphism gtw[c] := g[c]w0
−1 is called 

the twisted Wilson line.

These Wilson lines are lifts of those introduced in [23].

Remark 3.12. At first, the twisted Wilson lines gtw[c] might look more natural than g[c]. 
However, it turns out that the Wilson lines g[c] are compatible with the positivity struc-
ture, especially with the cluster structure. The twisted ones have negative coefficients 
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due to −1 contained in w0. The Wilson lines are also defined so as to fit in well with the 
amalgamation (cf. [23, Proposition 3.11]).

In order to state the relation to the Wilson lines in [23], let G� = G/Z(G) be the adjoint 
group, and recall the moduli space PG�,Σ of framed G�-local systems with pinnings [20].

Proposition 3.13. For any framed arc class [c] : E�1
1 → E�2

2 , the following diagram com-
mutes:

A×
G,Σ G

PG�,Σ G�.

pΣ

g[c]

g[c]

Here pΣ : A×
G,Σ → PG�,Σ denotes the projection given in [20, Section 9.2], G → G� is the 

canonical projection, and g[c] is the Wilson line along the arc class [c] := π∗([c]) [23].

The twisted Wilson lines contain the Wilson loops in the following sense:

Proposition 3.14. For a free loop |γ| on T �Σ, choose a representative c based at E� for 
some E ∈ B and � ∈ {+, −}, whose based homotopy class defines a framed arc class 
[c] : E� → E�. Then the twisted Wilson line gtw[c] represents the Wilson line ρ|γ|, namely, 
the following diagram commutes:

A×
G,Σ G

[G/AdG].

gtw
[c]

ρ|γ|

Here G → [G/AdG] denotes the canonical projection.

Proposition 3.15 (Internal multiplicativity). For any framed arc classes [c1] : E�1
1 → E�2

2
and [c2] : E�2

2 → E�3
3 , we have

gtw[c1]∗[c2] = gtw[c1]g
tw
[c2] or equivalently, g[c1]∗[c2] = g[c1]w0

−1g[c2].

In other words, for any point [L, α] ∈ A×
G,Σ, the twisted Wilson lines gtw• ([L, α]) defines 

a morphism Π1(T �Σ, B±) → G of groupoids.

Proof. Given [L, α] ∈ A×
G,Σ, let us prove

gtw[c1]∗[c2]([L, α]) = gtw[c1]([L, α])g
tw
[c2]([L, α]).
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Take a local trivialization s1 of L so that (pE1 , pE2) = (pstd, g1.pstd), where g1 :=
gtw[c1]([L, α]). Under the local trivialization s2 := s1.g1, the sections are given by 

(pE1 , pE2 , pE3) = (g−1
1 .pstd, pstd, g2.pstd), where g2 = gtw[c2]([L, α]) by definition. Go-

ing back to the first trivialization, we get (pE1 , pE3) = (pstd, g1g2.pstd), and hence 
g1g2 = gtw[c1]∗[c2]([L, α]). �

Remark 3.16. As a special case of Proposition 3.15, we have

g[c]−1 = w0g
−1
[c] w0 = (gT[c])∗ · sG.

In view of Remark 3.5 and gtwoE
= sG, we have g[cop] = (gT[c])∗, which is a relation 

preserving the positivity.

Remark 3.17.

(1) Let (Σ0, M0) ⊂ (Σ, M) be a sub-marked surface, by which we mean an embedding 
Σ0 ⊂ Σ which restrict to M0 ⊂ M. Then we have an obvious restriction morphism 
res : AG,Σ → AG,Σ0 . Suppose that a framed arc class [c] : E�1

1 → E�2
2 on Σ admits a 

representative contained in T �Σ0 and E1, E2 are also boundary intervals of Σ0. Then 
[c] can be regarded as a morphism in Π1(T �Σ0; B±

0 ), and the Wilson line g[c] factors 
through A×

G,Σ0
:

A×
G,Σ A×

G,Σ0

G G.

res

g[c] g[c]

(2) For a subset Ξ ⊂ B, let A×
G,Σ;Ξ ⊂ AG,Σ denote the open substack consisting of 

decorated twisted G-local systems such that the pair of flat sections associated to 
each E ∈ Ξ is generic. We have A×

G,Σ;∅ = AG,Σ and A×
G,Σ;B = A×

G,Σ. Then the 
Wilson line along a framed arc class [c] : E�1

1 → E�2
2 can be defined on A×

G,Σ;Ξ for 
any subset Ξ containing E1 and E2, which makes the following diagram commute:

A×
G,Σ A×

G,Σ;Ξ

G G.

incl

g[c] g[c]

Definition 3.18. We give some special names to certain Wilson lines, as follows.

(1) For E ∈ B, we call the g√oE
in and g√oE

out the boundary Wilson lines along E.
(2) For m ∈ M, let [cm] : E−

1 → E+
2 denote the framed arc class as shown in Fig. 5

around m. Then we call g[cm] the corner Wilson line around m.
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Fig. 5. The corner Wilson line around m ∈ M.

(3) We call the Wilson lines along simple framed arc classes the simple Wilson lines.

Recall the angle invariant (2.3). For a marked point m ∈ M, let Tm be the unique 
triangle which contains m as a vertex and the two boundary intervals E1, E2 incident 
to m as its sides. Then by Remark 3.17 above, we have A×

G,Σ
res−−→ A×

G,Tm;{E1,E2}
∼=

Conf(AG, BG, BG). Here the latter isomorphism is obtained by parallel-transport of flags 
through the interval ιout(E1 ∩ E2), or equivalently, with respect to the branch-cut on Tm

intersecting the opposite side of m. Then we get the angle invariant anm : A×
G,Σ → U+

associated with m as the pull-back of the angle invariant via this morphism.

Proposition 3.19.

(1) For E ∈ B, the boundary Wilson line gives the edge invariants g√oE
in = h(A−

E , A
+
E)−1

and g√oE
out = (h(A+

E , A
−
E)∗)−1, where A±

E is the decorated flag assigned to m±
E.

(2) For m ∈ M, the corner Wilson line gives the angle invariant g[cm] = anm ·w0 twisted 
by w0.

Proof. In view of Remark 3.17 (1)(2), the proof reduces to the local computations in 
Example 3.20 below. �

Example 3.20. Let us consider the case Σ = D3, and choose an isomorphism AG,D3
∼=

Conf3AG as described in Example 3.9, corresponding to the branch cut shown in Fig. 6. 
The boundary intervals are denoted by E1, E2, E3 as shown there. Notice that an arbi-
trary G-orbit in Conf×3 AG has a unique representative of the form

(A1,A2,A3) = ([U+], w0
−1h1.[U+], u+h

−1
2 w0.[U+]) (3.4)

for h1, h2 ∈ H and u+ ∈ U+
∗ . In this parametrization, we have h1 = h(A2, A1), h2 =

h(A1, A3) and u+ = anm. This parametrization can be extended to a parametrization of 
triples (A1, A2, A3) such that the pairs (A1, A2) and (A1, A3) are generic by (h1, h2, u+) ∈
H × H × U+. Let Bi := π(Ai) denote the underlying flag for i = 1, 2, 3. Then we can 
compute the associated pinnings as

p−E1
= (A1,B2) = pstd,

p+E1
= (A2,B1) = w0

−1h1.pstd,

p+E2
= (A1,B3) = u+.pstd,
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Fig. 6. Computation of Wilson lines on a triangle. Here the framed arc classes giving rise to boundary and 
corner Wilson lines are shown in dashed blue lines.

p−E2
= (A3,B1) = u+h

−1
2 w0.pstd

Using the relation pstd = w0.p
∗
std, we get:

• g√oE1
out = w0(h1) = (h(A2, A1)∗)−1, which implies that g√oE1

in = w0(h1)sG =
h(A1, A2)−1.

• g[cm] = u+w0 = anm · w0,

from which one can confirm the statements in Proposition 3.19. Also note that the framed 
arc class [c] := [cm] ∗ [√oE2

out]−1 : E−
1 → E−

2 is simple, and that g[c] = u+h
−1
2 sG.

By Lemma 3.4, Hom(Π1(T �Σ, B±), G) has a natural structure of affine variety.

Theorem 3.21. The morphism

A×
G,Σ → Hom

�
Π1(T �Σ,B±), G

�
, [L, α] �→ gtw• ([L, α])

is a closed embedding. The image is characterized by the conditions

gtwoE± = sG, gtw√oE
in ∈ Hw0

−1, gtw[cm] ∈ U+

for E ∈ B and m ∈ M.

Proof. Let us prove that a decorated twisted G-local system can be characterized by 
its (twisted) Wilson lines. Fix a basepoint E�0

0 for some E0 ∈ B and � ∈ {+, −}. Then 
by Proposition 3.14, the monodromy homomorphism π1(T �Σ, E�0

0 ) → G of the twisted 
G-local system can be reconstructed from the twisted Wilson lines. For a marked point 
m ∈ M, choose an object E�, where E ∈ B is a boundary interval incident to m and 
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E� is the one pointing to m among E±. Then the decoration assigned to m can be read 
off from the Wilson line along a framed arc class of the form [c] : E�0

0 → E�. Since the 
image is characterized by closed conditions, the assertion is proved. �

Note that the (twisted) Wilson lines define ring homomorphisms

g∗[c] : O(G) → O(A×
G,Σ), (gtw[c] )∗ : O(G) → O(A×

G,Σ).

For a matrix coefficient cVf,v ∈ O(G), we write cVf,v(g[c]) := g∗[c](cVf,v) and cVf,v(gtw[c] ) :=
(gtw[c] )∗(cVf,v) = cVf,w0.v

(g[c]).
Combining the previous theorem with Lemma 3.4, we get:

Corollary 3.22. The function ring O(A×
G,Σ) is generated by the matrix coefficients of 

Wilson lines. Moreover if Σ has at least two marked points, then O(A×
G,Σ) is generated 

by matrix coefficients of simple Wilson lines and boundary Wilson lines.

Remark 3.23. When Σ has punctures, the moduli space LocunG,Σ obtained from A×
G,Σ by 

forgetting the decorations on punctures is similarly embedded into Hom(Π1(T �Σ,B±), G).

4. Equality of cluster and upper cluster algebras

4.1. Generalities on cluster algebras

We rapidly recall the necessary definitions of cluster algebras A and upper cluster 
algebras U following the notations of [14].

Let F = C(A1, . . . , An) be the field of rational functions in n many independent 
variables A1, . . . , An with coefficients in C. Fix a positive integer m ≤ n. Let ε = (εij)
be an m ×n integer matrix such that its m ×m submatrix given by the first m columns 
is skew-symmetrizable. The set A = {A1, . . . , An} is called a cluster chart. The pair 
i = (A, ε) is called a seed in F . Let Li = C[A±1

1 , . . . , A±1
n ] ⊂ F be the ring of Laurent 

polynomials in A1, . . . , An.
For 1 ≤ k ≤ m, the seed mutation of i in the direction k produces a new seed 

ik := ({A�
1, . . . , A

�
n}, ε�) as follows:

A�
i =

⎧⎨
⎩
Ai if i �= k,

A−1
k

��
j|εkj>0 A

εkj

j +
�

j|εkj<0 A
−εkj

j

�
otherwise,

ε�ij =

⎧⎪⎪⎨
⎪⎪⎩

−εij , if k ∈ {i, j},
εij , if εikεkj < 0, k /∈ {i, j},
εij + |εik|εkj , if εikεkj > 0, k /∈ {i, j}.

We say that a seed i� is mutation equivalent to i, and denote by i� ∼ i, if i� can be obtained 
from i by a sequence of seed mutations. The variables A�

i in each i� are called cluster 
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variables. Note that the cluster variables Am+1, . . . , An are invariant under mutations 
and are called frozen variables.

Let us start with an initial seed i. Following [1], there are three versions of commutative 
algebras associated with i.

Definition 4.1. The upper bound associated with a seed i is a ring

U (i) = Li ∩ Li1 ∩ . . . ∩ Lim .

The upper cluster algebra associated with i is the intersection of Laurent polynomials for 
all seeds i� that are mutation equivalent to i:

U (i) =
�
i�∼i

Li� .

The cluster algebra A (i) is the unital C-subalgebra of F generated by the cluster vari-
ables and the inverses A−1

m+1, . . . , A
−1
n of the frozen variables.

We frequently write U and A instead of U (i) and A (i) when there is no confusion.
We have the following inclusion relations

A (i) ⊆ U (i) ⊆ U (i),

where the first inclusion is a consequence of the Laurent phenomenon of the cluster 
variables [15], and the second inclusion is by definition.

The following result of [1, Corollary 1.9] will be useful in this paper.

Proposition 4.2. If the exchange matrix ε in i has full rank m, then the upper cluster 
algebra U (i) coincides with the upper bound U (i).

4.2. The upper cluster algebra coincides with the function ring O(A×
G,Σ)

Let T be an ideal triangulation of the marked surface Σ. Let e(T ) and t(T ) denote 
the sets of edges and triangles of T . Note that

|t(T )| = −2χ(Σ) + |M|, |e(T )| = −3χ(Σ) + 2|M|.

For each triangle T ∈ t(T ), we choose a vertex vT of T together with a reduced decom-
position sT of w0. The data

T := (T , {vT }, {sT })

is called a decorated ideal triangulation. Following the construction of [20], every T gives 
rise to a seed iT in the field K(AG,Σ) of rational functions (recall Remark 3.8). The seeds 
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obtained from different T are mutation equivalent, and thus give rise to the canonical 
cluster algebras

Ag,Σ ⊆ Ug,Σ ⊂ K(AG,Σ).

The exchange matrix ε in each iT is an m × n matrix, where

n = |e(T )|r + |t(T )|(l(w0)− r), n−m = |M|r

with r := rankG = |S|. Briefly speaking, the construction goes as follows:

• the ideal triangulation T gives rise to a decomposition of the moduli space AG,Σ into 
the pieces AG,T for T ∈ t(T );

• the vertex vT determines an isomorphism fvT : AG,T
∼−→ Conf3AG as in Example 3.9;

• the pull-back of the coordinate system on Conf3AG associated with the reduced word 
sT gives a coordinate system on AG,T for all T ∈ t(T ), which glue together to give 
a coordinate system on AG,Σ, i.e., an open dense embedding

iT : (C×)n −→ A×
G,Σ.

The transition maps i−1
T � ◦ iT for different ideal triangulations are given by sequences of 

seed mutations. For details, we refer the reader to [20]. In Section 4.3, we will review the 
cluster K2-structure on A×

G,Q when Σ = Q is a quadrilateral, from which the coordinates 
on triangles and edges can be also read.

We are going to prove:

Theorem 4.3. For any marked surface Σ satisfying the assumptions in Section 3.1, the 
upper cluster algebra Ug,Σ coincides with the function ring O(A×

G,Σ).

The proof goes through the same steps as the proof of [34, Theorem 1.1].

Lemma 4.4. The exchange matrix ε in each iT is of full rank.

Proof. Let G� be the associated adjoint group of G. Fock and Goncharov [13] also consid-
ered a moduli space XG�,Σ, called the moduli space of framed G�-local systems. Similarly 
to A×

G,Σ, after imposing a generic condition on each boundary interval of Σ, we get an 
open subspace X×

G�,Σ ⊂ XG�,Σ. Every T equips X×
G�,Σ with a collection of cluster Poisson 

coordinates {Xi | 1 ≤ i ≤ m}. Let {Aj | 1 ≤ j ≤ n} be the cluster coordinates on A×
G,Σ

associated with T . Following [13] and [20], there is a natural map

p : A×
G,Σ → X×

G�,Σ

such that
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p∗Xi =
n�

j=1
A

εij
j . (4.1)

When Σ has no punctures, the map p is surjective. Therefore the ring homomorphism 
p∗ in (4.1) is injective, and ε is of full rank. �

Lemma 4.5. Theorem 4.3 holds when Σ = Dk is a disk with k marked points.

Proof. Let H be the Cartan subgroup of G. If k = 3 or 4, then

A×
G,D3

∼= Ge,w0 ×H, A×
G,D4

∼= Gw0,w0 ×H2,

where Ge,w0 and Gw0,w0 are double Bruhat cells. After a careful comparison between the 
cluster structures on double Bruhat cells and on A×

G,Σ, the lemma is a direct consequence 
of [1, Theorem 2.10]. In general, we have

A×
G,Dk

∼= Confe
wk−2

0
(Asc)×Hk−2,

where Confe
wk−2

0
(Asc) is a double Bott-Samelson variety in [35]. The lemma follows from 

[35, Theorem 1.1]. �

Fix a decorated ideal triangulation T . Let E ∈ e(T ) be a diagonal (i.e., an internal 
edge). Let iT ,E be the seed obtained from iT by freezing all the mutable vertices that 
are placed on the diagonals different from E. Let AT ,E

G,Σ ⊂ A×
G,Σ be the open subspace 

such that for every E� �= E in e(T ), its associated pair of decorated flags is generic.

Lemma 4.6 (Proved in Section 6.1). The coordinate ring O(AT ,E
G,Σ ) coincides with the 

upper cluster algebra U (iT ,E).

Now let us go through all the diagonals E of T and set

�A×
G,Σ :=

�
E

AT ,E
G,Σ ⊂ A×

G,Σ

Lemma 4.7. We have O( �A×
G,Σ) = O(A×

G,Σ).

Proof. For a pair E1, E2 of diagonals of T , let AT ,E1,E2
G,Σ ⊂ A×

G,Σ be the subspace such 
that the pairs of the decorated flags associated with E1 and E2 are not generic. The com-
plement of �A×

G,Σ in A×
G,Σ is 

�
E1,E2

AT ,E1,E2
G,Σ , which is of codimension ≥ 2. See Section 6.2

for a detailed computation of the codimension. Therefore O( �A×
G,Σ) = O(A×

G,Σ). �

Proof of Theorem 4.3. Combining Lemmas 4.4, 4.6 and 4.7, and Proposition 4.2, we 
have
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O(A×
G,Σ) = O( �A×

G,Σ) =
�
E

O(AT ,E
G,Σ ) =

�
E

U (iT ,E) =
�
E

U (iT ,E) = U (iT ) = Ug,Σ. �

Combining with Corollary 3.22, we get:

Corollary 4.8. The upper cluster algebra Ug,Σ is generated by the matrix coefficients of 
Wilson lines. Moreover if Σ has at least two marked points, then Ug,Σ is generated by 
matrix coefficients of simple Wilson lines and boundary Wilson lines.

Remark 4.9. As stated in [19, Proposition 3.17 (i)], the upper cluster algebra no longer 
coincides with O(A×

G,Σ) when Σ has punctures.

4.3. Cluster K2-coordinates on Conf×4 AG

For the computations in the next subsection, let us recall the cluster K2-coordinates 
on the configuration space Conf×4 AG = Confw0

w0
AG from [20, Section 7], which can be 

regarded as an open subspace of the moduli space AG,Q for a quadrilateral Q. Here are 
notations from [20, Section 5]:

• Given w ∈ W , we set

S(w) := {s ∈ S | wα∨
s < 0},

H(w) :=

⎧⎨
⎩

�
s∈S(w)

α∨
s (bs) | bs ∈ Gm

⎫⎬
⎭ .

Then S(w) = S ⇐⇒ H(w) = H ⇐⇒ w = w0.
• Given a reduced word s = (s1, . . . , sl) of w, we get a sequence of distinct coroots

βs
k := rsl . . . rsk+1α

∨
sk
, k = 1, . . . , l.

They are precisely the positive coroots α∨ such that wα∨ are negative.
• Recall that we have

O(Conf2AG) ∼=
�

λ∈X∗(H)+

�
V (λ)⊗ V (λ∗)

�G
,

and consider the function Δs ∈ O(Conf2AG) for s ∈ S such that Δs ∈
�
V (�s) ⊗

V (�∗
s)
�G and Δs([U+], [U−]) = 1. We have the relation

Δu�s,v�s
(g) = Δs(gv.[U+], u.[U−])

for g ∈ G and u, v ∈ W .
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The configuration space Conf×4 AG parametrizes the G-orbits of quadruples (AL, AL,

AR, AR) of decorated flags such that the cyclically consecutive pairs (AL, AL), (AL, AR), 
(AR, AR), (AR, AL) are generic. Such a quadruple (AL, AL, AR, AR) is illustrated as

w0 w0

w0

w0

AL AR

AL AR

Lemma 4.10 (cf. [20, Lemma-Definition 5.3]). Let (Al, Ar) be a generic pair of decorated 
flags, and s = (s1, . . . , sN ) a reduced word of w0. Then there exists a unique chain 
Al = A0

s1←− A1
s2←− . . .

sN←−− AN = Ar of decorated flags such that

• w(Ak, Ak−1) = rsk for k = 1, . . . , N , and
• h(Ak, Ak−1) = α∨

sk
(ck).

Here ck ∈ Gm is given by

ck :=
�
h(Ar,Al)�t if βs

k = α∨
t is simple,

1 otherwise.

Proof. When (Ar, Al) = (h.[U+], w0.[U+]) sits in the standard configuration, the inter-
mediate flags are given by

Ak := rsN . . . rsk+1hk.[U+],

where hk := uk

��
s∈S(w0uk) α

∨
s (h(Ar,Al)�s)

�
with uk := rsk+1 . . . rsN . Indeed, we have

[Ak,Ak−1] = [hk.[U+], rskhk−1.[U+]] = [rsk(h−1
k−1)hk.[U+], rsk .[U+]]

and the unique solution of rsk(h−1
k−1)hk = α∨

sk
(ck) for k = 1, . . . , N is given by

hk =
k�

j=1
rsk . . . rsj+1α

∨
sj (cj).

Then applying u−1
k to both sides, we get u−1

k (hk) =
�k

j=1 β
s
j (cj) =

�
t∈S(w0uk) α

∨
t (h�t), 

as desired. The intermediate decorated flags for a pair g.(Ar, Al) are given by the trans-
lates g.Ak for g ∈ G. �
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Now we choose a double reduced word s of (w0, w0) ∈ W × W . The subword of s
consisting of letters in S gives a reduced word s• = (s1, . . . , sN ) of w0; similarly, the S-
part gives another reduced word s• = (s1, . . . , sN ). Given a quadruple (AL, AL, AR, AR)
whose orbit lies in Conf×4 AG, we apply Lemma 4.10 to the pair (AR, AL) with the word 
s•, and to the pair (AL, AR) with the word s∗•. Then we get the following chains of 
decorated flags:

AL = AN sN−−→ AN−1 sN−1

−−−→ . . .
s1−→ A0 = AR, w(Ak,Ak−1) = rsk ,

h(Ak,Ak−1) = α∨
sk(c

k), (4.2)

AL = A0
s∗1←− A1

s∗2←− . . .
s∗N←−− AN = AR, w(Ak,Ak−1) = rs∗k ,

h(Ak,Ak−1) = α∨
s∗k
(ck), (4.3)

where ck and ck are given by

ck :=
�
h(AL,AR)�t if βs•

k = α∨
t is simple,

1 otherwise,

and

ck :=
�
h(AR,AL)�u if βs∗

•
k = α∨

u is simple,
1 otherwise,

respectively. Using these chains, the double reduced word s gives rise to a decomposition 
of the configuration [AL, AL, AR, AR] into elementary configurations, as explained by the 
following example.

Example 4.11 (Type A2). The double reduced word s = (1, 1, 2, 2, 1, 1) gives rise to the 
decomposition below. The locations where the coroot βs•

k or βs•
k becomes simple are 

shown in green.

s∗1 s∗2 s∗1

s1 s2 s1

A0 A1 A2 A3

A3 A2 A1 A0

Then for each pair (Ak, Al) connected by a dashed line or a vertical solid line, we 
consider the functions Δs(Ak, Al) for s ∈ S. These functions are not distinct: for example 
if we have a triple
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Ak

Al Al+1

s∗k

,

we have Δs(Ak, Al) = Δs(Ak, Al+1) for s �= s∗k. We have a similar relation for a 
down-pointing triangle. See [20, Lemma 7.13] for details. Collectively, we get |S| +
#(dashed lines) + 1 distinct functions among Δs(Ak, Al)’s. They can be assigned to 
the vertices of the quiver J(s) in [20, Definition 7.5]. We also have additional functions 
h(Ak, Ak−1)�t = h(AL, AR)�t if βs•

k = α∨
t is simple, and h(Al, Al−1)�

∗
u = h(AR, AL)�

∗
u

if βs∗
•

k = α∨
u is simple. They are assigned to the green lines, and supply the coordinates 

on the remaining “extra” vertices in the quiver J(s) in [20, Definition 7.5]. The quiver 
J(s) together with the coordinates assigned to its vertices form a cluster K2-seed in the 
field K(Conf×4 AG).

We remark that these cluster coordinates are regular functions on a larger space 
Confoutin AG consisting of the G-orbits of quadruples (AL, AL, AR, AR) such that the top 
and bottom pairs (AL, AR) and (AL, AR) are generic.

4.4. Generalized minors of simple Wilson lines are cluster variables

Let [c] : E−
1 → E−

2 be a simple framed arc class and fix its band neighborhood Bc. 
The band Bc can be regarded as a marked surface (i.e., a disk with four marked points 
mL, mL, mR, mR) as shown in Fig. 2. By Remark 3.17 (1)(2), the Wilson line g[c] can be 
computed on the moduli space A×

G,Bc;{E1,E2}
∼= Confoutin AG, where the identification is 

determined by the branch cut and the correspondence of flags as shown in Fig. 7. For a 
weight λ =

�
s∈S as�s, we write [λ]+ :=

�
s∈S [as]+�s, where [as]+ := max{0, as}.

Proposition 4.12. Each generalized minor of a simple Wilson line g[c] is a single cluster 
variable in Ag,Σ multiplied by inverses of several frozen variables. Specifically, we have

Δu>l�s,v>k�s
(g[c]) =

Δs(Ak,Al)
h(AR,AL)[u>l�s]∗+h(AL,AR)[v>k�s]+

(4.4)

for all k, l = 0, . . . , N and s ∈ S, where u>l := rsN . . . rsl+1 and v>k := rsN . . . rsk+1 for 
any double reduced word s of (w0, w0) ∈ W ×W .

Proof. Any G-orbit [AL, AL, AR, AR] contains a unique representative of the form

(AL,AL,AR,AR) = (gh.[U+], [U+], w0
−1h�.[U+], gw0.[U+])
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Fig. 7. Computation of the Wilson line g[c] on A×
G,Bc

∼= Conf×4 AG.

for h, h� ∈ H and g ∈ Gw0,w0 . In other words, we have an isomorphism H × H ×
Gw0,w0 ∼−→ Conf×4 AG. In this parametrization, we have h(AL, AR) = h and h(AR, AL) =
h�. Moreover, (AL, π(AR)) = pstd and (AR, π(AL)) = gw0.pstd = gsG.p

∗
std; hence g[c] =

gsG.
Let s be a double reduced word of (w0, w0) ∈ W × W . Then by the proof of 

Lemma 4.10, we explicitly get the associated chains (Ak)k, (Al)l of decorated flags in 
(4.2) and (4.3) as

Ak = grsN . . . rsk+1hk.[U+]

with hk := wk
��

s∈S(w0wk) α
∨
s (h�s)

�
and wk := rsk+1 · · · rsN , and

Al = w0
−1rs∗N . . . rs∗l+1

hl.[U+]

with hl := wl

��
s∈S(w0wl) α

∨
s (h��s)

�
and wl := rs∗l+1

· · · rs∗N . Then we get

Δs(Ak,Al) = Δs

�
grsN . . . rsk+1 .[U+], w0

−1rs∗N . . . rs∗l+1
.[U+]

�
· (hkh∗

l )�s

= Δs

�
grsN · · · rsk+1 .[U+], sGrsN · · · rsl+1 .[U−]

�
· (hkh∗

l )�s

= ΔrsN ···rsl+1 .�s,rsN ···r
sk+1�s

(gsG) · (hkh∗
l )�s .

Thus we get

Δu>l�s,v>k�s
(g[c]) = (hkh∗

l )−�s ·Δs(Ak,Al).

The frozen variables are computed as follows:

(hk)�s =
�

t∈S(w0wk)

α∨
t (h�t)(w

k)−1�s =
�
t∈S

α∨
t (h�t)[(w

k)−1�s]+ = h(AL,AR)[v>k�s]+ ,

h
�∗

s

l =
�

t∈S(w0wl)

α∨
t (h��t)w

−1
l �∗

s =
�
t∈S

α∨
t (h��t)[w

−1
l �∗

s ]+ = h(AR,AL)[u
∗
>l�

∗
s ]+

= h(AR,AL)[u>l�s]∗+ .
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Here for the second equality in the first string: note that writing (wk)−1�s =
�

t∈S ct�t

with ct ∈ Z, we have

��s, wk.α∨
t � = �(wk)−1.�s, α∨

t � = ct.

Hence t ∈ S(w0w
k) ⇐⇒ wk.α∨

t > 0 ⇐⇒ ct > 0. The second equality in the second string 
is similarly obtained. Thus the assertion is proved. �

Remark 4.13. Notice that the word s∗• is read in the reversed order when we “scan” 
the distances of intermediate flags from the bottom to the top in Fig. 7. Therefore our 
seed associated with the double reduced word s is the same as the one in [1] associated 
with s• and (s∗•)op := (s∗N , . . . , s∗1). Letting s�N−l+1 := sl, the right-hand side of (4.4) is 
written as Δu�

≤N−l�s,v>k�s
(g[c]) with u�

≤l� := rs�1 . . . rs�l� , which has the same form as the 
cluster variable in [1, (2.11)].

Remark 4.14. When mL = mL =: m and AL = AL, the situation reduces to the triangle 
case (Example 3.20), where the parameters are identified as h� = h1 and g = u+h

−1
2 . 

In the description of the cluster variables on Conf3AG given in [20, Section 6], they are 
computed as follows:

Δλ,μ,ν(gw0.[U+], [U+], w0
−1h�.[U+]) = Δλ,μ,ν(gw0

−1.[U+], sG.[U+], w0h
�.[U+])

= Δλ,μ,ν(g[c]w0.[U+], [U+], w0.[U+]) · sμG(h�)ν

= Fwλ(g[c]w0.[U+]) · (h�)ν

= Δwλ,w0λ(g[c]) · h(AR,AL)ν .

This formula tells us how to express the cluster variables Δλ,μ,ν associated with an 
admissible triple (λ, μ, ν) in terms of the matrix coefficients of Wilson lines.

4.5. Proof of Theorem 1

Recall from Corollary 4.8 that the upper cluster algebra Ug,Σ is generated by the ma-
trix coefficients of simple Wilson lines and boundary Wilson lines, under the assumption 
that Σ has at least two marked points. By Proposition 3.19 (1), the boundary Wilson 
line g√oE

out ∈ H is the inverse of the h-invariant of the pair of decorated flags assigned 
to a boundary interval E ∈ B. Hence its non-trivial matrix coefficients (g√oE

out)�s

for s ∈ S are exactly the inverses of the r many frozen variables on E. By Proposi-
tion 2.2 and Proposition 4.12, the matrix coefficients of simple Wilson lines are also 
cluster variables multiplied by the inverses of frozen variables. Therefore these genera-
tors are contained in the cluster algebra Ag,Σ, where the frozen variables are invertible. 
Thus we get Ug,Σ ⊂ Ag,Σ.
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5. Examples and skein description

In this section, we give an explicit description of the formula (4.4) in the cases G =
SL2, SL3, Sp4, and their description in terms of the skein algebras studied in [32,24,25]. 
Let us consider a simple Wilson line g[c], and use the notations in Section 4.4. We denote 
the frozen coordinates by

As
in := h(AR,AL)�

∗
s and As

out := h(AL,AR)�s

for s ∈ S.

5.1. SL2-case

The vector representation V (�1) = C2 is minuscule. The weights in this represen-
tation are given by �1 and −�1 = w0�1. There is a unique choice of reduced word 
s• = s• = (1) of w0 ∈ W , which gives rise to the chains of decorated flags:

AR = A1

AL = A0

w0

A0 = AR

A1 = AL

w0

We have [w0�1]+ = 0 and [�1]+ = �1. Then by the formula (4.4), we get

Δ11(g) = Δ�1,�1(g) =
Δ1(A1,A1)

h(AL,AR)�1h(AR,AL)�1
= Δ1(A1,A1)

A1
inA

1
out

,

Δ12(g) = Δ�1,w0�1(g) =
Δ1(A0,A1)

h(AL,AR)0h(AR,AL)�1
= Δ1(A0,A1)

A1
in

,

Δ21(g) = Δw0�1,�1(g) =
Δ1(A1,A0)

h(AL,AR)�1h(AR,AL)0
= Δ1(A1,A0)

A1
out

,

Δ22(g) = Δw0�1,w0�1(g) =
Δ1(A0,A0)

h(AL,AR)0h(AR,AL)0
= Δ1(A0,A0).

Thus the Wilson line matrix g[c] ∈ SL2(O(A×
SL2,Σ)) is collectively given by

g[c] =

⎛
⎜⎜⎜⎝

Δ1(A1,A1)
A1

inA
1
out

Δ1(A0,A1)
A1

in

Δ1(A1,A0)
A1

out
Δ1(A0,A0)

⎞
⎟⎟⎟⎠ . (5.1)
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Δ1(A1,A1)

Δ1(A0,A1)

Δ1(A1,A0)

A1
in A1

out

Δ1(A0,A0)

Δ1(A0,A1)

Δ1(A1,A0)

A1
in A1

out

Fig. 8. The two clusters in O(Confout
in ASL2 ) related by a single mutation.

The clusters corresponding to the two ideal triangulations are shown in Fig. 8.
Recall the skein model Asl2,Σ

∼= S 1
Σ[∂−1] given by Muller [32], where the cluster vari-

ables are identified with ideal arcs, and the clusters correspond to the ideal triangulations. 
In this language, the matrix (5.1) is written as

.

Here the inverse of an ideal arc is shown in blue.

5.2. SL3-case

The vector representation V (�1) = C3 is minuscule. The weights in this representa-
tion are given by �1, r1�1 = �2 −�1 and r2r1�1 = −�2 = w0�1. Let us choose the 
reduced word s• = s• = (1, 2, 1) of w0 ∈ W , which gives rise to the following chains of 
decorated flags:

A3

A2

A1

A0AL =

AR =
r∗1

r∗2

r∗1

A0

A1

A2

A3 = AL

= AR

r1

r2

r1

Then the matrix entries of the simple Wilson line g[c] in V (�1) are computed as follows:
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Δ11(g[c]) = Δ�1,�1(g[c]) =
Δ1(A3,A3)

h(AR,AL)�∗
1h(AL,AR)�1

= Δ1(A3,A3)
A1

inA
1
out

,

Δ12(g[c]) = Δ�1,r1�1(g[c]) =
Δ1(A2,A3)

h(AR,AL)�∗
1h(AL,AR)�2

= Δ1(A2,A3)
A1

inA
2
out

,

Δ13(g[c]) = Δ�1,w0�1(g[c]) =
Δ1(A0,A3)
h(AR,AL)�∗

1
= Δ1(A0,A3)

A1
in

,

Δ21(g[c]) = Δr1�1,�1(g[c]) =
Δ1(A3,A2)

h(AR,AL)�∗
2h(AL,AR)�1

= Δ1(A3,A2)
A2

inA
1
out

,

Δ22(g[c]) = Δr1�1,r1�1(g[c]) =
Δ1(A2,A2)

h(AR,AL)�∗
2h(AL,AR)�2

= Δ1(A2,A2)
A2

inA
2
out

,

Δ23(g[c]) = Δr1�1,w0�1(g[c]) =
Δ1(A0,A2)
h(AR,AL)�∗

2
= Δ1(A0,A2)

A2
in

,

Δ31(g[c]) = Δw0�1,�1(g[c]) =
Δ1(A3,A0)
h(AL,AR)�1

= Δ1(A3,A0)
A1

out
,

Δ32(g[c]) = Δw0�1,r1�1(g[c]) =
Δ1(A2,A0)
h(AL,AR)�2

= Δ1(A2,A0)
A2

out
,

Δ33(g[c]) = Δw0�1,w0�1(g[c]) = Δ1(A0,A0) = Δ1(A0,A0).

Thus the Wilson line matrix g[c] ∈ SL3(O(A×
SL3,Σ)) is collectively given by

g[c] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ1(A3,A3)
A1

inA
1
out

Δ1(A2,A3)
A1

inA
2
out

Δ1(A0,A3)
A1

in

Δ1(A3,A2)
A2

inA
1
out

Δ1(A2,A2)
A2

inA
2
out

Δ1(A0,A2)
A2

in

Δ1(A3,A0)
A1

out

Δ1(A2,A0)
A2

out
Δ1(A0,A0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.2)

The clusters to which the cluster variables appearing above belong are shown in Fig. 9, 
as well as the mutation sequences relating them. Here we use the fact that the two words 
(· · · st · · · ) and (· · · ts · · · ) give rise to the same cluster for s �= t. The corresponding 
transformations of dashed diagonals connecting the decorated flags are shown in Fig. 10.

Recall the skein model studied in [24]. For any marked surface as in Section 3.1, the 
first author and W. Yuasa realized the quantum cluster algebra A q

sl3,Σ quantizing Asl3,Σ
inside the skew-field of fractions of a certain sl3-skein algebra S q

sl3,Σ consisting of sl3-webs 

(i.e., oriented trivalent graphs whose vertices are either sinks or sources ), and 
shown the inclusion S q

sl3,Σ[∂
−1] ⊆ A q

sl3,Σ. Here S q
sl3,Σ[∂

−1] denote the localized skein 
algebra along the boundary sl3-webs. It implies S 1

sl3,Σ[∂
−1] ⊆ Asl3,Σ at the classical 

specialization q = 1 ∈ C.
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Δ1(A0,A3)Δ2(A1,A3)

= Δ2(A0,A3)

Δ1(A2,A3)

= Δ1(A1,A3)

Δ1(A3,A3)

Δ1(A3,A1)

= Δ1(A3,A2)

Δ1(A3,A0)

Δ2(A2,A3)

= Δ2(A3,A3)

= Δ2(A3,A2)

Δ2(A3,A0)

= Δ2(A3,A1)

1, 2, 1, 1, 2, 1

Δ1(A0,A3)Δ2(A1,A3)

= Δ2(A0,A3)

Δ1(A2,A3)

= Δ1(A1,A3)

Δ1(A2,A2)

Δ1(A3,A1)

= Δ1(A3,A2)

Δ1(A3,A0)

Δ2(A2,A2)

= Δ2(A2,A3)

Δ2(A3,A0)

= Δ2(A3,A1)

1, 2, 1, 1, 2, 1 ∼ 1, 1, 2, 2, 1, 1

Δ1(A0,A3)Δ2(A0,A2)

= Δ2(A0,A3)

Δ1(A0,A1)

= Δ1(A0,A2)

Δ1(A2,A2)

= Δ1(A1,A1)

Δ1(A2,A0)

= Δ1(A1,A0)

Δ1(A3,A0)

Δ2(A1,A1)

= Δ2(A0,A0)

Δ2(A3,A0)

= Δ2(A2,A0)

1, 1, 2, 2, 1, 1 ∼ 1, 2, 1, 1, 2, 1

Δ1(A0,A3)Δ2(A0,A2)

= Δ2(A0,A3)

Δ1(A0,A1)

= Δ1(A0,A2)

Δ1(A0,A0)

Δ1(A2,A0)

= Δ1(A1,A0)

Δ1(A3,A0)

Δ2(A1,A0)

= Δ2(A0,A0)

= Δ2(A0,A1)

Δ2(A3,A0)

= Δ2(A2,A0)

1, 2, 1, 1, 2, 1

Fig. 9. Some clusters in O(Confout
in ASL3 ) and the mutation sequences relating them. Here the frozen vari-

ables/vertices are omitted, and the mutated vertices are shown in orange.

On the other hand, if the marked surface Σ has at least two marked points, then 
we have Asl3,Σ = Usl3,Σ = O(A×

SL3,Σ) by Theorem 1. Moreover, one can verify that 
each entry of the matrix (5.2) comes from the localized skein algebra S 1

sl3,Σ[∂
−1] by 

comparing the clusters in Fig. 9 and the construction in [24, Section 5]. Explicitly, we 
have
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A1

A0

A0
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A3
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r∗2

r∗1

r1

r2

r1

1, 2, 1, 1, 2, 1

A3

A2

A1

A0

A0

A1

A2

A3

r∗1

r∗2

r∗1

r1

r2

r1

1, 2, 1, 1, 2, 1

=

A3

A2

A1

A0

A0

A1

A2

A3

r∗1

r∗2

r∗1

r1

r2

r1

1, 1, 2, 2, 1, 1

A3

A2

A1

A0

A0

A1

A2

A3

r∗1

r∗2

r∗1

r1

r2

r1

1, 1, 2, 2, 1, 1

=

A3

A2

A1

A0

A0

A1

A2

A3

r∗1

r∗2

r∗1

r1

r2

r1

1, 2, 1, 1, 2, 1

A3

A2

A1

A0

A0

A1

A2

A3

r∗1

r∗2

r∗1

r1

r2

r1

1, 2, 1, 1, 2, 1

Fig. 10. The transformations of dashed lines connecting the decorated flags corresponding to the mutation 
sequences in Fig. 9. The flipped diagonals are shown in orange, which are corresponding to mutations.

.

Here the inverse of a boundary sl3-web is shown in blue. Then by the same line of 
argument as Section 4.5, we see that the inclusion Usl3,Σ ⊂ S 1

sl3,Σ[∂
−1] holds. Thus we 

get S 1
sl3,Σ[∂

−1] = Asl3,Σ = Usl3,Σ, which confirms [24, Conjecture 3] at the classical 
level.

5.3. Sp4-case

The vector representation V (�1) = C4 of Sp4 is minuscule. The weights in this 
representation are given by

�1, r1�1 = �2 −�1, r2r1�1 = �1 −�2, w0�1 = −�1.
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By convention, we choose the symplectic form to be

J :=

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠

which determines the vector representation Sp4 ∼= Sp(C4, J). In this case, we need to 
use both of the reduced words s• = (1, 2, 1, 2) and ŝ• = (2, 1, 2, 1) of w0 ∈ W in order 
to obtain all the matrix coefficients in V (�1). They give rise to the chains of decorated 
flags

AL = A4 r2−→ A3 r1−→ A2 r2−→ A1 r1−→ A0 = AR,

AL = Â4 r1−→ Â3 r2−→ Â2 r1−→ Â1 r2−→ Â0 = AR,

respectively. Similarly, the words s• = (1, 2, 1, 2) and ŝ• = (2, 1, 2, 1) give rise to the 
bottom chains (Al) and (Âl), respectively. Similarly to the SL2- and SL3-cases, we can 
compute the Wilson line matrix g[c] ∈ Sp4(O(A×

Sp4,Σ)) and get

g[c] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ1(A4,A4)
A1

inA
1
out

Δ1(Â3,A4)
A1

inA
2
out

Δ1(A2,A4)
A1

inA
1
out

Δ1(A0,A4)
A1

in

Δ1(A4, Â3)
A2

inA
1
out

Δ1(Â3, Â3)
A2

inA
2
out

Δ1(A2, Â3)
A2

inA
1
out

Δ1(A0, Â3)
A2

in

Δ1(A4,A2)
A1

inA
1
out

Δ1(Â3,A2)
A1

inA
2
out

Δ1(A2,A2)
A1

inA
1
out

Δ1(A0,A2)
A1

in

Δ1(A4,A0)
A1

out

Δ1(Â3,A0)
A2

out

Δ1(A2,A0)
A1

out
Δ1(A0,A0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.3)

The investigation of the clusters to which the cluster variables appearing in this expres-
sion belong is left to the reader. Apart from the An-cases, the choice of distinguished 
vertices vT of a triangulation is crucial: we remark here that the cluster for the double 
reduced word s = (1, 2, 1, 2, 2, 1, 2, 1) corresponds to the decorated triangulation shown 
in the left of Fig. 11, whose underlying weighted quiver is shown in the right (see [23, 
Appendix B] for our convention on weighted quivers).

The skein model for the case is studied in [25]. For any marked surface, the quantum 
cluster algebra A q

sp4,Σ quantizing Asp4,Σ is realized inside the skew-field of fractions 
of a certain sp4-skein algebra consisting of sp4-webs. An sp4-web is represented by a 
trivalent graph with two types of edges and (corresponding to the fundamental 
representations V (�1) and V (�2) respectively), and with trivalent vertices of the form 

in the interior.
Similarly to the sl3-case, we have an inclusion S q

sp4,Σ[∂
−1] ⊆ A q

sp4,Σ after localizing 
along the boundary sp4-webs. Here S q

sp4,Σ denotes the Zq-form of the sp4-skein algebra 
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∗

∗

s•

ŝ•

2

2

2

2

2

2

2

Fig. 11. The decorated triangulation corresponding to the double reduced word s = (1, 2, 1, 2, 2, 1, 2, 1) (left) 
and the underlying weighted quiver (right).

introduced in [25] (namely, S Zq

sp4,Σ in the notation there). It implies S 1
sp4,Σ[∂

−1] ⊆ Asp4,Σ
at the classical specialization q = 1 ∈ C.

Again, each entry of the matrix (5.2) comes from the localized skein algebra 
S 1

sp4,Σ[∂
−1]. Explicitly, we have

.

Then by exactly the same line of argument as in the sl3-case, we get S 1
sp4,Σ[∂

−1] =
Asp4,Σ = Usp4,Σ.

6. Supplements to Section 4.2

6.1. Amalgamation of upper cluster algebras

Lemma 6.1. Let U be an upper cluster algebra having a cluster i = ({Ai}i∈I , ε) with
isolated variables, namely a subset J ⊂ I such that εij = 0 for all j ∈ J and i ∈ I. Then 
the quotient of U by the ideal generated by Aj − 1 for j ∈ J is the upper cluster algebra 
U � having the seed obtained from i by deleting the data for j ∈ J .



T. Ishibashi et al. / Advances in Mathematics 431 (2023) 109256 37

A1

A2A3

A4

A5 A6

A1

A2.h2A3.h3

A4

A5.h5 A6.h6

Fig. 12. The change of decorations with n = 6 and J = {2, 3, 5, 6}.

Proof. It is easy because U = U � ⊗C[A±1
j | j ∈ J ] in this case. �

Fix a decorated triangulation T of Σ. Let Λ ⊂ e(T ) be a subset of diagonals so 
that we obtain a collection of disks with marked points when cutting along them. Let 
A×

G,Σ[Λ] ⊂ A×
G,Σ be the open subspaces such that for every edge in Λ, its associated pair 

of decorated flags is generic. Let iT [Λ] be the seed obtained from T by freezing all the 
mutable vertices that are placed on the diagonals in Λ. We are going to prove:

Proposition 6.2. O(A×
G,Σ[Λ]) = U (iT [Λ]).

Lemma 4.6 is covered as the special case Λ = e(T ) \ {E}.

Proof. Let N be the number of disks obtained when cutting Σ along the diagonals in Λ. 
We shall prove Proposition 6.2 via induction on N ≥ 0. The case N = 0 is trivial. For 
N ≥ 1, let D be an obtained disk that contains a boundary edge of Σ. Let Σ� ⊂ Σ be 
the marked surface obtained by cutting off D from Σ. The decorated triangulation T of 
Σ naturally induces that of Σ�, which is denoted by T �. Similarly, we define the spaces 
A×

G,Σ� [Λ] ⊂ A×
G,Σ� and the seed iT � [Λ]. By induction, we have

O(A×
G,Σ� [Λ]) = U (iT ′ [Λ]).

We label the marked points of D from 1 to n in clockwise order, with the edge {1, n}
being a boundary interval of Σ. For i = 2, . . . , n, we color the edge {i − 1, i} of D red 
if it is glued with either an edge of Σ� or another edge {j − 1, j} of D with j < i. Let 
J be the set of indices i such that {i − 1, i} is red. See Fig. 12 for an illustration of the 
coloring scheme.

We define the cutting map

φ : A×
G,Σ[Λ]×HJ −→ A×

G,Σ� [Λ]×A×
G,D,

([L, α], {hj}j∈J ) �−→ ([L�, α�], (A�
1, . . . ,A�

n)).

Here [L�, α�] is the restriction of decorated twisted local system [L, α] from Σ to Σ�. 
When restricting [L, α] to D, we obtain a n-tuple (A1, . . . , An), and set
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A�
2

A�
1

A�
4

A�
5

A�
3 A2

A1

D Σ�

E�

E
φ−1

A2

A1

g.A�
4

g.A�
5

g.A�
3

D Σ�

E

, h

Fig. 13. The gluing map φ−1. Here h ∈ H is uniquely chosen so that h(A�
1, A�

2.h
−1) = h(A1, A2). Then 

g.(A�
1, A�

2.h
−1) = (A1, A2) for a unique g ∈ G.

A�
j :=

�
Aj .hj if j ∈ J ;
Aj otherwise.

Conversely, given the data ([L�, α�], (A�
1, . . . , A�

n)), one can recursively determine hj for 
j ∈ J such that after rescaling each A�

j by h−1
j , the h-distance for the pair of decorated 

flags for every red edge coincides with the one that it is glued with. Gluing them back 
produces the preimage of ([L�, α�], (A�

1, . . . , A�
n)) before φ. For example, Fig. 13 is the 

gluing map along one edge. Hence, the map φ is an isomorphism.
The decorated triangulation T induces a decorated triangulation of D, which further 

gives rise to a cluster seed iD of A×
G,D. By Lemma 4.5, we have O(A×

G,D) = U (iD). By 
[20, Theorem 9.17], every cluster variable A in iD is homogeneous with respect to the 
Hn-actions. Denote by λ(A) := (λ1, . . . , λn) its weight, so that

A(A1.h1, . . . ,An.hn) = A(A1, . . . ,An) ·
n�

i=1
hλi
i .

The coordinate ring O(HJ) can be regarded as the upper cluster algebra U triv
m with 

isolated m := |S| · |J | vertices and cluster variables h�s
j for j ∈ J and s ∈ S.

Let A be a cluster variable in iT ′ [Λ] � iD. Under the induced isomorphism

φ∗ : O(A×
G,Σ� [Λ])⊗O(A×

G,D) ∼−→ O(A×
G,Σ[Λ])⊗O(HJ), (6.1)

we get

φ∗(A) =
�
A if A belong to iT ′ [Λ],
A ·

�
j∈J h

λ(A)j
j if A belongs to iD.

We claim that φ∗ is a quasi-isomorphism in the sense of Fraser [16]. Namely, φ∗ rescales 
the cluster variables by Laurent monomials of frozen variables in such a way that the 
unfrozen cluster Poisson variables for algebras on both sides of (6.1) associated with the 
seeds induced by T are the same. Indeed, following the geometric description of cluster 
Poisson charts on the moduli spaces PG,Σ given in [20], the unfrozen cluster Poisson 
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variables are invariant under the rescaling of decorated flags by h ∈ H. Therefore, the 
claim follows directly.

As a consequence, the extension of φ∗ to the fields of rational functions preserves the 
upper cluster algebras:

φ∗ : U (iT ′ [Λ] � iD) ∼−→ U (iT [Λ])⊗U triv
m . (6.2)

By the induction assumption, we have U (iT ′ [Λ] � iD) = O(A×
G,Σ� [Λ]) ⊗ O(A×

G,D). 
Therefore we get U (iT [Λ]) ⊗ U triv

m = O(A×
G,Σ[Λ]) ⊗ O(HJ ) by (6.1) and (6.2). Then 

by applying Lemma 6.1 to the isolated variables h�s
j in U triv

m , we get O(A×
G,Σ[Λ]) =

U (iT [Λ]) as desired. �

6.2. Stratifications of AG,Σ

Our purpose is to prove that AT ,E1,E2
G,Σ ⊂ AG,Σ has codimension ≥ 2. Along the way, we 

also obtain formulae for codimensions of the subspaces in more general stratifications of 
AG,Σ obtained by prescribing w-distances along arcs and boundary intervals. Recall that 
the dimension of a quotient stack X = [X/G] is defined to be dimX := dimX − dimG.

Notation 6.3. For an oriented ideal arc α on Σ, let A+
α (resp. A−

α ) denote the decorated 
flag assigned to the initial (resp. terminal) marked point of α. We endow each boundary 
interval with the orientation induced from the boundary.

Fix two diagonals E1, E2 of an ideal triangulation T , and endow them arbitrary 
orientations. For u, v ∈ W , let Au,v

G,Σ ⊂ A×
G,Σ be the subspace such that w(A+

E1
, A−

E1
) = u, 

w(A+
E2

, A−
E2

) = v. Then we have

AT ,E1,E2
G,Σ = �

u �=w0; v �=w0

Au,v
G,Σ.

We are going to prove:

Theorem 6.4. We have dimAG,Σ − dimAu,v
G,Σ = 2l(w0) − l(u) − l(v) for all u, v ∈ W . In 

particular, AT ,E1,E2
G,Σ has codimension ≥ 2.

It turns out to be useful to include the following more general subspaces into consid-
eration:

Definition 6.5.

• Given a tuple w = {wE} ∈ WB(Σ), let

Aw
G,Σ ⊂ AG,Σ
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denote the subspace such that w(A+
E , A

−
E) = wE for each E ∈ B(Σ). For w0 =

{w0} ∈ WB(Σ) that assigns the longest element to each boundary interval, we have 
A×

G,Σ = Aw0
G,Σ.

• Given a collection C of disjoint oriented ideal arcs in Σ and a tuple vC = {vα} ∈ W C , 
let

AG,Σ[C;vC ] ⊂ AG,Σ

denote the subspace such that w(A+
α , A−

α ) = vα for each α ∈ C.

Furthermore, let us write Aw
G,Σ[C; vC ] := Aw

G,Σ ∩ AG,Σ[C; vC ]. The original subspace of 
our interest is Au,v

G,Σ = Aw0
G,Σ[E1, E2; u, v].

Proposition 6.6. Let w = {wE} ∈ WB(Σ). If Σ is a polygon, then we assume that there 
exists E0 ∈ B(Σ) such that wE0 = w0. Then dimAG,Σ − dimAw

G,Σ =
�

E∈B(Σ)(l(w0) −
l(wE)). In particular, A×

G,Σ ⊂ AG,Σ is open dense.

It is proved in Section 6.2.2 below, based on a relation to the braid varieties.
Fix an oriented ideal arc α and an element vα ∈ W . Cutting the surface Σ along α, we 

obtain a new marked surface Σ�, where α is splitted into two boundary intervals α�, α��, 
where α� is the one following the boundary orientation. Then we consider the cutting 
map

cutα : Aw
G,Σ[α; vα] → Aw�

G,Σ� , (6.3)

where w� := w ∪ {vα, v−1
α } under the identification B(Σ�) = B(Σ) ∪ {α�, α��}, vα (resp. 

v−1
α ) being assigned to α� (resp. α��). The image of cutα is characterized by the closed 
condition

h(A+
α� ,A−

α�) = h(A−
α�� ,A+

α��) (6.4)

Proposition 6.7. Each fiber of cutα is isomorphic to Gvα , where Gu denotes the stabilizer 
of the pair ([U+], u.B+) for u ∈ W . In particular if vα = w0, then cutα is an isomorphism 
onto its image.

It is proved in Section 6.2.1 below, where we explicitly write down the presentation 
of cutα on an atlas by fixing a generating system on Σ.

These two propositions might be of independent interest. Assuming them, let us first 
complete the proof of Theorem 6.4.

Proof of Theorem 6.4. Let us consider the cutting maps

Au,v
G,Σ = AG,Σ[E1, E2;u, v]

cutE1−−−−→ Aw�

G,Σ� [E2; v]
cutE2−−−−→ Aw��

G,Σ�� ,
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where Σ� := Σ \E1, Σ�� := Σ�\E2, and E1 (resp. E2) is splitted into two boundary intervals 
E�

1, E
��
1 in Σ� (resp. E�

2, E
��
2 in Σ��). The elements w� = {u, u−1}, w�� = {u, u−1, v, v−1}

are the ones naturally inherited via the cutting.
Recall that the image of the cutting map has the constraint (6.4). Then from Propo-

sitions 6.6 and 6.7, we get

dimAu,v
G,Σ = Aw�

G,Σ� [E2; v]− dimH + dimGu

= (Aw��

G,Σ�� − dimH + dimGv)− dimH + dimGu

= dimAw��

G,Σ�� − 2 dimH + dimGu + dimGv

= (dimAG,Σ�� − 2(2l(w0)− l(u)− l(v)))− 2 dimH + dimGu + dimGv

Observe that dimA×
G,Σ�� − 2 dimH = dimA×

G,Σ by the second statement of Proposi-
tion 6.7, and that dimAG,X = dimA×

G,X for X = Σ, Σ�� by the second statement of 
Proposition 6.6. We also have

dimGw = dim(U+ ∩ wU+w−1) = l(w0)− l(w) (6.5)

for any w ∈ W [36, Section 8.3]. Thus we get

dimAu,v
G,Σ = dimAG,Σ − 2(2l(w0)− l(u)− l(v)) + (l(w0)− l(u)) + (l(w0)− l(v))

= dimAG,Σ − (2l(w0)− l(u)− l(v)),

as desired. �

6.2.1. Proof of Proposition 6.7
Here are preparatory discussions. We may assume that Σ is connected, without loss 

of generality. Recall from Lemma 3.7 the presentation AG,Σ = [AG,Σ/G], where AG,Σ is 
a quasi-affine G-variety that can be identified with Homtw(π1(T �Σ, ξ), G).

More precisely, such an identification is provided if we fix a system Carc of arcs in T �Σ
from the basepoint ξ to the boundary intervals. Let us further specify a collection Cloop
of loops in Σ based at x := π(ξ) that generate π1(Σ, x). See Fig. 14. Choosing framings 
of these loops (i.e., lifts of them to T �Σ), we get a splitting π1(Σ, x) → π1(T �Σ, ξ) of the 
exact sequence (3.3), and hence an isomorphism

Homtw(π1(T �Σ, ξ), G) ∼= GCloop = G−χ(Σ)+1.

Let us call such a collection C := Carc ∪ Cloop a generating system. Below we work on the 
atlases AG,Σ ∼= GCloop ×AM

G by choosing an appropriate generating system C for a given 
α. The atlases of the relevant moduli spaces are denoted by Aw

G,Σ ⊂ AG,Σ, and so on.

Proof of Proposition 6.7. The proof is devided into the three cases.
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ξ

Fig. 14. A generating system C = Carc ∪ Cloop that determines an isomorphism AG,Σ ∼= GCloop × AM
G . Here 

the framings of curves are omitted.

α

c1 c2

ξ

A1 A2

cutα

Σ

c

ξ

A1 A2

ρ(c1)−1.A1 ρ(c2).A2

Σ�

Fig. 15. The choice of curves: Case 1.

Case 1: Σ� is connected, and α connects different boundary components of Σ. Choose 
the curves shown in the left in Fig. 15, and extend it to a generating system C on Σ by 
choosing other curves disjointly from α. The curves disjoint from α naturally descend 
to Σ�. Together with the curves shown in the right of Fig. 15, they form a generating 
system C� on Σ�.

Note that rankπ1(Σ�) = rankπ1(Σ) −1. We have an embedding ι : π1(Σ�, x) → π1(Σ, x)
given by ι(c) := c2 ∗ c1 and ι(d) := d for d ∈ C�

loop \ {c}. It induces a projection

ι∗ : Homtw(π1(T �Σ, ξ), G) → Homtw(π1(T �Σ�, ξ), G),

which is a principal G-bundle. Indeed, we have ι∗ρ(c) = ρ(c2)ρ(c1) and hence the G-
action

(ρ(c1), ρ(c2)) �→ (gρ(c1), ρ(c2)g−1), g ∈ G (6.6)

parametrizes the fiber over ρ ∈ Homtw(π1(T �Σ�, ξ), G). Then the relevant components of 
the presentation �cutα : Aw

G,Σ[α; vα] → Aw�

G,Σ� of (6.3) are given by

Homtw(π1(T �Σ, ξ), G)×A2
G → Homtw(π1(T �Σ�, ξ), G)×A4

G,
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Fig. 16. The choice of curves: Case 2. Here δ can be written as a product of other loops in C.

(ρ;A1,A2) �→ (ι∗ρ;A1,A2, ρ(c1)−1.A1, ρ(c2).A2).

Observe that the G-action (6.6) preserves the A4
G-component if and only if g ∈

Stab(A1, A2) ⊂ G. Hence the fiber of �cutα equals Stab(A1, A2), which is isomorphic 
to Gu.

Case 2: Σ� is connected, and α connects the same boundary component C of Σ. In this 
case, one can find a handle that contains α as shown in Fig. 16. (Indeed, if we shrink 
the boundary component C to a puncture p, α becomes a based loop αp at p. If αp was 
non-essential, i.e., belonged to the kernel of the intersection form, then it would cut Σ
into a disconnected surface, which contradicts to our assumption. Then it is a standard 
argument in topology to find such a handle.)

Choose the curves shown in the left in Fig. 16, and extend it to a generating system 
C on Σ by choosing other curves disjointly from α. The curves disjoint from α naturally 
descend to Σ�. Together with the curves shown in the right of Fig. 16, they form a 
generating system C� on Σ�.

Note that rankπ1(Σ�) = rankπ1(Σ) −1. We have an embedding ι : π1(Σ�, x) → π1(Σ, x)
given by ι(c1) := b ∗ a ∗ b−1, ι(c2) := b ∗ a ∗ b−1 ∗ δ and ι(d) := d for d ∈ C�

loop \ {c1, c2}. 
It induces a projection

ι∗ : Homtw(π1(T �Σ, ξ), G) → Homtw(π1(T �Σ�, ξ), G),

which is a principal G-bundle. Indeed, we have ι∗ρ(c1) = ρ(b)ρ(a)ρ(b)−1 and ι∗ρ(c2) =
ρ(b)ρ(a)ρ(b)−1ρ(δ); hence the G-action

(ρ(a), ρ(b)) �→ (g−1ρ(a)g, ρ(b)g), g ∈ G (6.7)

parametrizes the fiber over ρ ∈ Homtw(π1(T �Σ�, ξ), G). Then the relevant components of 
the presentation �cutα : Aw

G,Σ[α; vα] → Aw�

G,Σ� of (6.3) are given by

Homtw(π1(T �Σ, ξ), G)×A2
G → Homtw(π1(T �Σ�, ξ), G)×A4

G,

(ρ;A1,A2) �→ (ι∗ρ;A1,A2, ρ(b).A1, ρ(b).A2).
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Fig. 17. The choice of curves: Case 3.

Observe that the G-action (6.7) preserves the A4
G-component if and only if g ∈

Stab(A1, A2) ⊂ G. Hence the fiber of �cutα equals Stab(A1, A2), which is isomorphic 
to Gu.

Case 3: Σ� is disconnected. Let Σ� = Σ1 � Σ2 be the decomposition into connected 
components, where Σ1, Σ2 are connected marked surfaces. Choose the basepoint x on α. 
Then π1(Σ, x) = π1(Σ1, x) ∗ π1(Σ2, x). We can choose the generating system C on Σ so 
that they do not cross α, as shown in Fig. 17. It induces a generating system C� on Σ�, 
where the two arcs connecting to the endpoints of α are doubled.

Let Aw

G,Σ[α; vα] ⊂ Aw
G,Σ[α; vα] denote the subspace such that (A+

α , π(A−
α )) =

([U+], u.B+). Since any point (ρ, λ) ∈ Aw
G,Σ[α; vα] can be translated into such a con-

figuration by the G-action, we have

Aw
G,Σ[α; vα] = [Aw

G,Σ[α; vα]/G] = [Aw

G,Σ[α; vα]/Gu].

A similar argument shows

Aw�

G,Σ� = [Aw�

G,Σ/(G×G)] = [Aw�

G,Σ/(Gu ×Gu)].

Observe that Aw

G,Σ[α; vα] is isomorphic via �cutα to the closed subspace of Aw�

G,Σ charac-
terized by the condition h(A+

α� , A−
α�) = h(A−

α�� , A+
α��). Identifying these spaces, we have

cutα : [Aw

G,Σ[α; vα]/Gu] → [Aw

G,Σ[α; vα]/(Gu ×Gu)],

which has the fiber (Gu ×Gu)/Gu
∼= Gu. The assertion is proved. �

6.2.2. Proof of Proposition 6.6
The knowledge on the braid varieties is useful below. We refer the reader to [6] for 

details. Here we introduce a stacky variant of them. Given a positive braid word β =
(s1, . . . , sl) with s1, . . . , sl ∈ S, the associated braid stack is defined to be the quotient 
stack
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X(β) :=
�
{(A0,B1, . . . ,Bl−1,Bl) ∈ AG × Bl

G |

w(Bi,Bi−1) = rsi for i = 1, . . . , l; w(B0,Bl) = δ(β)}/G
�
.

Here δ(β) ∈ W denotes the Demazure product. A configuration in X(β) is illustrated as

Bl−1 · · · B1

Bl A0.

sl

sl−1 s2

s1

δ(β)

We call Bl
δ(β)←−−− A0 the bottom side of the configuration. If δ(β) = w0, then the G-action 

is free and we can uniquely translate the generic pair (A0, Bl+1) to the standard pinning 
([U+], B−). Hence

X(β) ∼= {(B1, . . . ,Bl−1) ∈ Bl−1
G | w(Bi−1,Bi) = rsi for i = 1, . . . , l, B0 := B+,Bl := B−}

is an affine algebraic variety. In this case, it is known that dimX(β) = |β| − l(w0) [12, 
Theorem 20], where |β| = l is the length of β.

In general, if δ(β) = w ∈ W , the pair (A0, Bl+1) can be translated to the position 
([U+], w.B+), whose stabilizer subgroup is Gw. Hence we get

X(β) ∼=
�
{(B1, . . . ,Bl−1) ∈ Bl−1

G | w(Bi−1,Bi) = rsi

for i = 1, . . . , l, B0 := B+,Bl := w.B0}/Gw

�

We again know the dimension of the affine algebraic variety before quotient by [12, 
Theorem 20], and we get

dimX(β) = |β| − l(w)− dimGw = |β| − l(w0). (6.8)

Let us drop the condition on the relative position between B0 and Bl, defining

X(β) :=
�
{(A0,B1, . . . ,Bl−1,Bl) ∈ AG × Bl

G |

w(Bi,Bi−1) = rsi for i = 1, . . . , l}/G
�
.

Note that before quotient by G, the space is isomorphic to AG × A|β|, since a pair of 
flags of w-distance rs for s ∈ S can be translated into the position (B+, xs(t)rs.B+) for 
some t ∈ A. Therefore

dimX(β) = dimAG + |β| − dimG = |β| − l(w0). (6.9)
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A0

A1

A2
E0

r1r2r1 r1r2

�B5 A0π(A2) =

�B1�B2�B3�B4

r1

r2r1r2

r1

w0

=

π(A1)

Fig. 18. A map from Aw
G,Σ to X(β). Here Σ is a triangle, and w = (wE0 , wE1 , wE2 ) = (w0, r1r2, r1r2r1).

Case 1: Σ is a k-gon (k ≥ 3). Enumerate the boundary intervals as E0, E1, . . . , Ek−1 in 
this counter-clockwise order so that wE0 = w0. Choose a reduced word s(i) of wEi

for 
i = 1, . . . , k − 1. Then the concatenation

β := s(1)s(2) . . . s(k − 1)

is a positive braid word of length l =
�k−1

i=1 l(wi) such that δ(β) = w0. Let A0 be the 
decoration assigned to the terminal endpoint of E0. Then we have an isomorphism

Aw
G,Σ

∼−→ X(β)×Hk−1,

[A0, . . . ,Ak−1] �→ ([A0, �B1, . . . , �Bl−1], h(A0,A1), . . . , h(Ak−2,Ak−1)).

See Fig. 18. Here for each pair (Bi−1, Bi) with i = 1, . . . , k − 1, we take the sequence 
of interpolating flags with their distances given by s(i), and denote by �B1, . . . , �Bl−1 the 
resulting sequence from B0 to Bk−1. The bottom side is Bk−1

w0←−− A0. Observe that the 
data [A0, A1, . . . , Ak−1] can be uniquely recovered from [A0, B1, . . . , Bk−1] and h(Ai−1, Ai)
for i = 1, . . . , k − 1. It follows that

dimAw
G,Σ = dimX(β) + (k − 1) rankG =

k−1�
i=1

l(wi)− l(w0) + (k − 1) rankG

by (6.8). The open dense part A×
G,Σ corresponds to wEi

= w0 for all i = 1, . . . , k − 1. 
Therefore

dimAG,Σ − dimAw
G,Σ = dimA×

G,Σ − dimAw
G,Σ =

k−1�
i=1

(l(w0)− l(wEi
)),

as desired.

Case 2: Σ is not a polygon. This case can be reduced to the polygon case, as follows. 
Let ∂Σ =�b−1

ν=0 ∂ν . Choose a special point mν ∈ ∂ν for ν = 1, . . . , b −1, and a cut system



T. Ishibashi et al. / Advances in Mathematics 431 (2023) 109256 47

m0

m1

Fig. 19. A cut system C of Σ, which consists of 2g loops based at m0 and b − 1 arcs connecting m0 to mν , 
ν = 1, . . . , b − 1.

mβ

α = α0

m0

E

E0

C = {α, β}

cutC

ρ(βα).Am0

ρ(α).Am0

Am0

Am

wE wE0

vαα�
0

vβv−1
α

v−1
β

Fig. 20. The cutting map cutC. In this example, we get two braid words β(w, vC ; α�
0) =

s(vβ)s(v−1
α )s(v−1

β )s(wE)s(wE0 ) and β(w, vC; E0) = s(vα)s(vβ)s(v−1
α )s(v−1

β )s(wE), where s(w) for w ∈
W is an arbitrary reduced word.

C as shown in Fig. 19. The collection C consists of 2g + b − 1 > 0 curves. By cutting Σ
along the curves in C, we get a polygon Π with 4g+2(b − 1) + |M| sides. Let us consider 
the subspace Aw

G,Σ[C; vC ] ⊂ Aw
G,Σ, where vC = {vα}α∈C ∈ W C and recall Definition 6.5. 

Let us consider the composite of cutting maps along the arcs in C:

cutC :=
�
α∈C

cutα : Aw
G,Σ[C; vC ] → AwC

G,Π, (6.10)

where wC := w ∪ {vα, v−1
α | α ∈ C} is naturally inherited via the cutting, the pair {v±α }

being assigned to the two boundary intervals arising from α. See Fig. 20. Observe that 
the image Im(cutC) ⊂ AwC

G,Π is characterized by the closed condition (6.4), one for each 
α ∈ C. By Proposition 6.7, the fiber of cutC is isomorphic to the product 

�
α∈C Gvα .

Choose arbitrary reduced words of w and vC . We further choose a side α�
0 of the 

polygon Π which comes from a curve α0 ∈ C. Then we get a braid word β(w, vC ; α�
0) by 

reading off the reduced words assigned to the sides of Π except for α�
0 along the boundary 

orientation of Π.
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Then we get an embedding

Im(cutC) �→ X(β(w,vC ;α�
0))×H2g+b−1+|M|−1. (6.11)

From this embedding, we can compute

dimAw
G,Σ[C; vC ] ≤

�
α∈C

dimGvα + (2g + b− 1 + |M| − 1) rankG+ dimX(β(w,vC ;α�
0)).

(6.12)

In particular, when wα�
0
= w0 = δ(β(w, vC ; α�

0)), we get an isomorphism

Im(cutC)
∼−→ X(β(w,vC ;α�

0))×H2g+b−1+|M|−1. (6.13)

In this case, we get

dimAw
G,Σ[C; vC ] =

�
α∈C

dimGvα + (2g + b− 1 + |M| − 1) rankG+ dimX(β(w,vC ;α�
0)).

(6.14)

Let v0 := {w0}α∈C ∈ W C . We have the following Lemma.

Lemma 6.8.

(1) Fixing vC = v0 to be the longest, we get

dimA×
G,Σ[C;v0]− dimAw

G,Σ[C;v0] = dimX(β(w0,v0;α�
0))− dimX(β(w,v0;α�

0))

=
�

E∈B(Σ)

(l(w0)− l(wE)).

In particular, the subspace A×
G,Σ[C; v0] ⊂ AG,Σ[C; v0] is open dense.

(2) Fixing any distance w ∈ WB(Σ), we get

dimAw
G,Σ[C;v0]− dimAw

G,Σ[C;vC ] ≥ 0

Therefore the subspace Aw
G,Σ[C; v0] ⊂ Aw

G,Σ has the maximal dimension.

Proof. (1): The first equality follows from (6.14). Since the w-distances on the boundary 
intervals are set to be the longest, we have δ(β(w, vC ; α�

0)) = w0. Then the second 
equality follows from (6.8).

(2): We apply (6.14) to compute dimAw
G,Σ[C; v0] and (6.12) to dimAw

G,Σ[C; vc]. By 
(6.8) and (6.9), we get



T. Ishibashi et al. / Advances in Mathematics 431 (2023) 109256 49

dimAw
G,Σ[C;v0]− dimAw

G,Σ[C;vC ] ≥ dimX(β(w,v0;α�
0))− dimX(β(w,vC ;α�

0))

−
�
α∈C

dimGvα

=|β(w,v0;α�
0)| − |β(w,vC ;α�

0)| −
�
α∈C

(l(w0)− l(vα)).

Then the claim follows from

|β(w,v0;α�
0)| − |β(w,vC ;α�

0)| = (l(w0)− l(vα0)) + 2
�

α∈C\{α0}
(l(w0)− l(vα)),

where notice that the pair {vα, v−1
α } necessarily appears along the braid word 

β(w, vC ; E0). �

Now let us complete the proof of Proposition 6.6. By Lemma 6.8 (2), it suffices to 
compute the codimension

dimAG,Σ − dimAw
G,Σ = dimAG,Σ[C;v0]− dimAw

G,Σ[C;v0].

Then by Lemma 6.8 (1), it can be computed as

dimAG,Σ − dimAw
G,Σ = dimAG,Σ[C;v0]− dimAw

G,Σ[C;v0]

= dimA×
G,Σ[C;v0]− dimAw

G,Σ[C;v0] =
�

E∈B(Σ)

(l(w0)− l(wE)),

as desired.
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