
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

A General Approach for Constrained Robotic
Coverage Path Planning on 3D Freeform Surfaces

Sean McGovern and Jing Xiao, Fellow, IEEE

Abstract— There are many industrial robotic applications
which require a robot manipulator’s end-effector to fully cover a
3D surface region in a constrained motion. Constrained surface
coverage in this context is focused on placing commonly used
coverage patterns (such as raster, spiral, or dual-spiral) onto
the surface for the manipulator to follow. The manipulator must
continuously satisfy surface task constraints imposed on the end-
effector while maintaining manipulator joint constraints. While
there is substantial research for coverage on planar surfaces,
methods for constrained coverage of 3D (spatial) surfaces are
limited to certain (parametric or spline) surfaces and do not
consider feasibility systematically given manipulator and task
constraints. There is a lack of fundamental research to address
the general problem: given a manipulator, a 3D freeform surface,
and task constraints, whether there exists a feasible continuous
motion plan to cover the surface, and if so, how to produce
a uniform coverage path that best satisfies task constraints.
In this paper, we introduce a general approach to address this
fundamental but largely open coverage problem. We have applied
our approach to example 3D freeform surface coverage tasks in
simulation and real world environments with a 7-DOF robotic
manipulator to demonstrate its effectiveness.

Note to Practitioners—This paper was motivated by the
constrained coverage path planning problem on 3D freeform
surfaces for many industrial applications, such as painting, spray
coating, abrasive blasting, polishing, shotcreting, etc. It provides
a principled and general approach that includes an automatic
robotic system to find feasible robotic end-effector paths for
covering a 3D freeform surface with some interaction from
a human worker who provides key parameters related to the
specific task without being an expert in robotics. Therefore, the
approach enables a human worker who only has the domain
knowledge of a specific coverage task to operate the general and
automatic robotic system effectively for completing the task.

Index Terms— Manufacturing automation, constrained cov-
erage path planning (CPP), manipulator motion planning,
computational geometry.

I. INTRODUCTION

THE use of robots for surface coverage applications
is common in many industries including those of

Manuscript received 10 December 2022; revised 2 May 2023 and
17 August 2023; accepted 5 September 2023. This article was recommended
for publication by Associate Editor V. Villani and Editor P. Rocco upon
evaluation of the reviewers’ comments. This work was supported in part
by the U.S. Army Research Laboratory under Contract W911NF1920108
and in part by the NSF NRT under Grant 1922761. (Corresponding author:
Sean McGovern.)

The authors are with the Robotics Engineering Department, Worcester Poly-
technic Institute, Worcester, MA 01609 USA (e-mail: smmcgovern@wpi.edu;
jxiao2@wpi.edu).

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TASE.2023.3313228.

Digital Object Identifier 10.1109/TASE.2023.3313228

automobiles, furniture, aircraft, construction, agricultural,
and appliances. Industrial manipulator coverage applications
(such as spray coating/painting, abrasive blasting, polishing,
shotcrete, laser ablation, etc.) require a manipulator’s end-
effector to traverse the entire surface once while satisfying
task criteria in terms of application thickness, cycle time, and
material waste [1], [2], [3], [4], [5], [6], [7], [8], [9]. The
quality of production is usually determined by manipulator
tool coverage uniformity and how it was applied on the
surface (i.e. angle of approach, surface offset, etc.). Manual
generation of a continuous and even coverage tool path on a
3D freeform surface is complex, time consuming, ad hoc, and
difficult to optimize. It also requires the human operator to
have substantial knowledge of robotic manipulation. With the
need for rapid and efficient production and repairs in related
industries, it has become essential to enable automated and
optimal robotic coverage on 3D freeform surfaces [10], [11].

A. Related Literature

Related literature can be clustered in four categories: (1)
robotic coverage path planning, (2) robotic constrained surface
coverage, (3) surface uv mapping, (4) human-robot interfaces
in industry, as detailed below.

1) Coverage Path Planning: Coverage path planning is
about finding a robot path to traverse a region to achieve
certain desired coverage. Most general coverage path planning
(CPP) methods are intended for 2D planar surfaces, commonly
online, and for mobile robots [12], [13], [14], [15], [16].
There is also work exploring unknown environments [17].
Many methods for CPP on 3D surfaces are focused on sensor
coverage for aerial or submersible robots (i.e. view planning)
[18], [19], [20]; however, these are generally discontinuous
and nonuniform coverage paths. Some methods proposed for
agriculture [21], [22] attempt to make uniform coverage paths
on 3D landscapes; nonetheless, these applications do not need
to consider manipulator constraints.

2) Constrained Surface Coverage: Here the problem is
concerned with enabling the motion of a robot manipulator
constrained on the 3D surface for coverage. Previous methods
intended for industrial manipulator coverage applications are
limited to certain types of 3D surfaces, such as parametric
or spline surfaces, and can produce unevenly spaced coverage
paths [2], [3], [4], [5], [23], [24], [25]. Uniform coverage is
necessary for optimal satisfaction of task requirements (e.g.,
uniform thickness) [15]. Furthermore, these methods are often
focused on some specific tasks and not general, and they do
not address the feasibility of continuous coverage.

1545-5955 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1262-5422

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

There is substantial work on constrained manipulator
motion planning [26], [27], [28], [29], [30], which focuses
on finding a feasible path connecting two configurations
while the end-effector remains constrained; however, these
do not consider surface coverage and assume a feasible path
already exists. A feasible constrained coverage path over a
surface may not exist given certain manipulator and task
constraints. In [39], we introduced a general method to inform
on coverage path feasibility, which uses a uv space gen-
erated from parametric surface parameters to represent task
constraints on 3D parametric surfaces. However, it is often
difficult and not always possible to represent freeform surfaces
with parametric equations. There is little work on uv space
generation on 3D freeform surfaces for constrained surface
coverage.

3) Surface uv Mapping: uv mapping for 3D surfaces
is an area of interest mostly within the field of computer
graphics. Texture mapping is a process in computer graphics
which maps diffuse colors, normals, displacement, and other
shading parameters onto a 3D polygon mesh from a 2D
planar uv region. Generally, the main use of uv mapping for
computer graphics is efficient storage of texture signals in a
2D image or to place an image in the 2D uv space for 3D
mapping [31].

Creating a texture map involves manually separating the
3D mesh into segments that are unwrapped onto a 2D pla-
nar surface, effectively planarizing the 3D mesh. Seams are
created when a 3D mesh is separated into segments that are
unwrapped. The presence of seams and multiple mesh seg-
ments in the uv space introduces problems of discontinuities
along the seams. Color transitions between the two mesh
segments can be visible [32], [33]. In robotic constrained
coverage of 3D freeform surfaces, uv mapping is useful for
the generation of a coverage path pattern, which requires a
seamless uv representation. However, there is no prior work
on that.

4) Human-Robot Interfaces in Industry: Many applications
require some human interface with a robotic system. Tra-
jectory and tooling methods for human-robot interaction in
certain applications have been developed [34]. This interface
or communication can occur physically through either touch
or through non-physical communication such as gesturing or
voice. Graphics interfaces have also been developed to help
workers understand the needed input for the robot to complete
complex tasks [35]. However, previous constrained surface
coverage methods do not address how to include a human
interface.

B. Contributions of This Paper

In this paper, we introduce a general approach to address
the following fundamental problem: given a manipulator, a
3D freeform surface, and task constraints, how to enable a
human worker, who is a task expert but not trained in robotics,
to use automatic algorithms to determine the feasibility for the
end-effector to traverse the entire surface continuously while
maintaining the task and manipulator constraints, and if it is
feasible, produce an evenly spaced, continuous coverage path

Fig. 1. Comparing two different ways of discretization along a curve C .

that best satisfies task constraints. Our approach consists of
the following contributions:

• a human-assisted method for automatic generation of uv

grids on 3D freeform surfaces,
• a method for coverage feasibility checking of 3D freeform

surfaces covered by uv grids,
• a method for automatic placement of a coverage pattern

on the uv grid of a 3D freeform surface and mapping of
the pattern from the uv grid to the Cartesian space,

• a method to find automatically a feasible coverage path
of the manipulator to follow the coverage pattern.

The rest of the paper is as follows. In Section II, we provide
an overview of our general approach. In Sections III-VI,
we describe the generation of uv space and grids for 3D
freeform surfaces, method for feasibility checking to satisfy
task and manipulator constraints, placement of a coverage
pattern on a freeform surface through its uv grid, and gen-
eration of feasible coverage paths for the robot manipulator
to follow the coverage pattern, respectively. We present the
testing results in simulation and in real world environments in
Section VII and conclude the paper in Section VIII.

II. OVERVIEW OF METHODOLOGY

Our general approach consists of four stages, which we
briefly introduce in this section: (A) generating a uv space
and grid on a 3D freeform surface, (B) constrained coverage
feasibility checking, (C) putting a coverage pattern on a
freeform surface, and (D) coverage path singularity detection
and avoidance.

A. Generating uv Grid on 3D Freeform Surfaces

Previous work for coverage path planning on 3D sur-
faces [2], [3], [4], [5], [23], [24], [25] relied on Cartesian axes
as references for coverage pattern spacing. This can result in
uneven discretization of the surface, as illustrated in Fig. 1(a).

We consider three general types of 3D freeform surfaces
in this paper, as defined in Section III. For those general
types, we can define the uv space directly on the freeform
surface and discretize it to generate a grid of evenly spaced
cells, uv-cells. Our idea is to let the uv parameters be curve
length parameters along the surface to achieve even spacing of
the freeform surface along a curve, as illustrated in Fig. 1(b).
Section III provides the details.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

MCGOVERN AND XIAO: GENERAL APPROACH FOR CONSTRAINED ROBOTIC CPP ON 3D FREEFORM SURFACES 3

B. Continuous Coverage Feasibilty Checking

Coverage feasibility refers to the manipulator’s end-effector
path satisfying continuously both task and manipulator con-
straints, which depends on manipulator kinematics and surface
parameters, while covering an entire surface. Violation of
manipulator constraints causes either no solution for inverse
kinematics or singularity configurations that prevent the end-
effector to move smoothly along the surface.

In general, the position and orientation constraints on the
manipulator or its end-effector are either equality or inequal-
ity constraints: Equality constraints on application surface
coverage include end-effector offset and uniform thickness,
which in turn constrain the end-effector position and velocity;
Inequality constraints include limits on tool angle to surface,
which constrain the end-effector orientation, manipulator joint
limits, which constrain the joint positions, and velocity change
limits, which constrain both the end-effector and manipulator
trajectories.

Our previous coverage feasibility algorithm in [39] applies
to parametric surfaces and checks that constraints are satisfied
continuously while the end-effector visits every surface uv-cell
once. To avoid expensive inverse kinematic calculations, our
approach searches for the existence of a feasible end-effector
path between uv-cells in the manipulator’s joint space.

In this paper, for feasibility checking regarding freeform
surfaces, we extend the algorithm by deriving constraints on
3D polygonal meshes and improve the algorithm to make end-
effector joint space search more efficient based on information
from the manipulator Jacobian, as described in Section IV.

C. Placing Coverage Pattern on the uv Grid

If the feasibility check determines that a feasible continuous
coverage path exists for a 3D freeform surface given the task
and manipulator constraints, a coverage pattern is placed on
the uv grid and mapped to the Cartesian space to facilitate
coverage motion determination. Coverage patterns such as
raster scans or Archimedean spirals are generally used for
constrained surface coverage applications due to their constant
separation between adjacent turns, thus resulting in uniform
coverage [1], [7].

Section V describes the selection of coverage patterns based
on raster scans and how to put such a pattern on the uv grid
of the surface.

D. Coverage Path Singularity Detection and Avoidance

Given that a feasible coverage path exists (from feasibility
checking) and a coverage pattern, our system next generates
the end-effector’s coverage path that satisfies the position and
orientation constraints. The initial end-effector position can
be determined by applying an offset d from the surface (as
required by the position task constraint), and the initial end-
effector orientation can be determined as the optimal tool
angle to surface (usually the surface normal, as required by
the orientation constraint). An initial end-effector path can
be created in terms of the sequence of end-effector positions
and orientations corresponding to the centers of uv-cells
along the coverage pattern. However, such an initial path

Fig. 2. Illustrates the sequential progression of the four stages in our
general approach: (A) generation of a uv-grid on a 3D freeform surface,
(B) constrained coverage feasibility checking, (C) coverage pattern placement
on the uv-grid, and (D) coverage path singularity detection and avoidance.

may not be feasible, and our system finds a feasible path by
detecting singularities along the initial path and modifying the
end-effector configurations mainly through altering the end-
effector orientations to avoid singularities.

Section VI presents our coverage path singularity detection
and avoidance methods.

Figure 2 shows the overview of these stages in our general
approach.

III. GENERATING uv SPACE AND GRID FOR
3D FREEFORM SURFACES

In this section, we first introduce three freeform surface
types. We then discuss the human worker interface to identify
the freeform surface type and key parameters for automatic
generation of the uv grids. Next, we derive the uv space gen-
eration for each surface type and finally explain discretization
of the uv space into a grid.

A. Freeform Surface Types

We consider a 3D polygon mesh representation of a phys-
ical freeform surface, S. The physical surface of an object
can be scanned using modern 3D scanning technology and
approximated as a 3D polygon mesh, which is the most
common way to represent a general surface when there is no
other more precise model. Additionally, S must fit within the
workspace of a robotic arm to allow the end-effector to cover
the surface. A large surface may be segmented to small S’s
using hierarchical methods as done in [36] and [37].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 3. Illustrations of 3D freeform surface types (embedded polygon meshes). Curve C0 for each definition is highlighted in yellow. (a) Freeform surface
of translation along the z axis. (b) Freeform surface of rotation about the z axis. (c) Freeform surface of translation (on the xy plane) and rotation (about axis
parallel to the z axis).

We define and consider the following three types of general
3D freeform surfaces that can be generated from some trans-
formation of a planar, non self-intersecting freeform curve C ,
along or about some axis, called A (see Fig. 3),

• Surface of translation (SoT): translation of C , along A.
• Surface of rotation (SoR): rotation of C , about A.
• Surface of translation and rotation (SoTR): combina-

tions of SoTs and SoRs from a single C , such that all
rotation axes of C are parallel to A and all translation
axes of C are on a plane normal to A.

The curve C can be known or approximated from the input
of a human worker.

Note that the above surface types share an important prop-
erty that curve C is theoretically the same along each axis of
translation or about each axis of rotation1. For a SoTR, the
surface can be a continuous combination of translations and
rotations of curve C , which may occur simultaneously, as long
as the rotation axis remains in the same direction, and the
translation axis is always orthogonal to the rotation axis. The
above surfaces can capture many surfaces in the real world.

B. Interactive Determination of Key Parameters

Our simulation interface provides a human worker, who is
a task-domain expert but not a robotics expert, with a visual
and numerical representation of the spatial and orientation
arrangement between the surface S and the manipulator.
We denote S f as the coordinate frame of S. The human
worker may adjust the position and orientation of S f with
respect to the manipulator base (world frame), thus changing
the arrangement between S and the manipulator. Additionally,
S f is positioned by the human worker with respect to surface
mesh vertices to facilitate automatic generation of the uv grid.
Fig. 4(a) shows the interface (numerical sliders) and visual
display for manipulating S f .

To enable automatic uv grid generation, the human worker
first determines the surface S as one of the three types defined.
Then, they align the (blue) z-axis of the surface frame S f with
axis A, and our underlying automatic system helps the human

1Practically, for a freeform surface mesh, C is approximated as a concate-
nation of (short) straight-line segments as the result of the triangle mesh and
can be slightly different at different locations on the surface mesh.

Fig. 4. Illustration of simulation interface for human worker to interactively
determine key parameters to facilitate automatic uv space generation.

worker to verify if S f is placed accurately by showing the
resulting curve C (highlighted in yellow). Fig. 4(b) shows an
inaccurate placement of S f , where the curve C is too short,
and Fig. 4(c) shows the accurate placement of S f .

C. Automatic Generation of uv Space

We now describe automatic generation of uv space for
the three types of freeform surfaces, surface of translation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

MCGOVERN AND XIAO: GENERAL APPROACH FOR CONSTRAINED ROBOTIC CPP ON 3D FREEFORM SURFACES 5

(SoT), surface of rotation (SoR), and surface of translation and
rotation (SoTR), in turn. For each type of surface, the surface
coordinate frame S f is set such that the z axis is along the
axis A, as shown in Fig. 3. The v coordinates are defined
along the curve C , recalling that the curve C remains the
same theoretically during translation and rotation to form the
surface. The starting v coordinate is at one end point of C .
The u coordinates are defined along curves perpendicular to C .
The following describes how to obtain the [u, v] coordinates
for all vertices of the triangle mesh for each type of surface.
uv Space for SoT:

Let C0 be the curve C on the xy plane at the beginning of
translation (obtained by the human worker) with z0.

Our algorithm sweeps (i.e., translates) a plane perpendicular
to the z axis from z0 to increase z value, starting from
the xy plane. The sweeping pauses at every triangle vertex
encountered and records the z value as zi , i = 1, . . . , m.
Our algorithm then obtain the corresponding curve Ci as the
intersection of the xy plane with surface S at zi .

Let (xi, j , yi, j , zi, j) be the coordinates of the j th triangle
vertex on the curve Ci , j = 0, . . . , ni . These points share the
same u coordinate:

ui, j = zi . (1)

For j = 1, . . . , ni , let 1xi, j = xi, j − xi, j−1 and 1yi, j =

yi, j − yi, j−1. We can compute vi, j by initializing vi,0 = 0 and:

vi, j = vi, j−1 +

√
1x2

i, j + 1y2
i, j , j = 1, . . . , ni . (2)

Thus,

vi, j =

j∑
k=1

√
1x2

i,k + 1y2
i,k . (3)

uv Space for SoR:
We denote the angle of rotation as φ and radius (i.e. vertex

distance from axis of rotation) as r(z), which is an unknown
function of z due to the freeform curve C . Let C0 indicate the
curve C on the plane of φ = φ0.

Now, by increasing φ and rotating the corresponding plane
(which goes through the z axis), our method pauses the
rotating plane at every triangle vertex encountered and records
the φ value as φi , i = 1, . . . , n. Our algorithm then obtains the
corresponding curve Ci as the intersection of the plane with
surface S at φi .

Let (xi, j , yi, j , z j) be the local coordinates of the j th triangle
vertex on the curve Ci with Ci , for j = 0, . . . , ni . We compute
its u coordinate as:

ui, j = r(z j) · φi . (4)

For j = 1, . . . , ni , let 1z j = z j − z j−1 and 1r j = r j − r j−1.
We can compute vi, j by initializing vi,0 = 0:

vi, j = vi, j−1 +

√
1z2

j + 1r2
j , j = 1, . . . , ni . (5)

Thus,

vi, j =

j∑
k=1

√
1z2

j + 1r2
j . (6)

uv Space for SoTR:

In this case, all rotation axes are parallel to the z-axis, and
all translation axes are orthogonal to the z-axis. Let C0 be on
plane P that also includes the z axis.

The SoTR surface and the xy plane intersects at curve
U , which intersects C0 at point p0. Our method sweeps the
plane P along U while maintaining it perpendicular to U at
each point2, and the sweeping pauses at every triangle vertex
encountered on S by P and records the Cartesian position
of the intersection point with U . Let pi indicate the i th
intersection point between the swept P and U , and let the
corresponding C curve be Ci , for i = 1, . . . , m.

Let (xi, j , yi, j , zi, j) be the coordinates of the j th triangle
vertex on the curve Ci , for j = 0, . . . , ni . For i = 1, . . . , m, let
1 j xi, j = xi, j−xi−1, j and 1 j yi, j = yi−1, j−yi, j . By initializing
u0, j = 0, we can compute the u coordinate of the point as:

ui, j = ui−1, j +

√
1 j x2

i + 1 j y2
i , i = 1, . . . , m. (7)

Thus,

ui, j =

i∑
k=1

√
1 j x2

k + 1 j y2
k . (8)

Now, Let 1i xi, j = xi, j −xi, j−1, 1i yi, j = yi, j −yi, j−1, 1i zi, j =

zi, j − zi, j−1, j = 1, . . . , ni . By initializing vi,0 = 0, we can
compute the v coordinate of the point as:

vi, j = vi, j−1 +

√
1i x2

i, j + 1i y2
i, j + 1i z2

i, j , j = 1 . . . , ni .

(9)

Thus,

vi, j =

j∑
k=1

√
1i x2

i,k + 1i y2
i,k + 1i z2

i,k . (10)

D. Automatic Discretization of uv Space

For every triangle T on the surface S, its vertex with
position τi = [τi x , τiy, τi z]

T , i = 1, 2, 3, now has uv coordi-
nates [τiu, τiv]

T . Note that the uv coordinates at each of those
points are real numbers as computed above, even though those
discrete points are indexed by integers.

Additionally, for any other point s inside the triangle, its
coordinates of either Cartesian space or uv space can be found
based on its distance to one of the triangle vertices. Let ps
indicates point s’s position in the Cartesian space, point s’s
barycentric coordinates, wi , can be found from the following
equations:

ps = 6iwiτi , 0 ≤ wi ≤ 1, 6iwi = 1. (11)

From the barycentric coordinates, the point s’s uv-space coor-
dinates [u, v] can be determined. In general, the Barycentric
coordinates wi ’s can be used to find either Cartesian or
uv-space coordinates of a point inside a triangle from the
corresponding vertex coordinates of the triangle.

To discretize the uv space into a grid with uniform cells, let
1u and 1v be the desired dimensions of an uv-cell. We denote
a uv-cell with the cell center coordinates [u j , vk], where j and

2by translation or rotation or simultaneous translation and rotation depend-
ing if the surface portion is SoT or SoR or both.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

k are integer indices for the discretization, even though the uv-
space coordinates u j and vk are real numbers from the original
continuous space.

IV. FEASIBILITY CHECKING

In this section, we first introduce a general position and ori-
entation constraint formulation and next present an improved
joint-space feasibility checking algorithm, which in turn deter-
mines end-effector coverage path feasibility.

A. Task Constraint Equations Regarding 3D Freeform
Surfaces

In general, the end-effector’s position and orientation task
constraints are related, in that the distance constraint from
the end-effector position to the surface S should be measured
along the end-effector approach vector, which is determined by
the end-effector’s orientation task constraint. In [40], the end-
effector’s position and orientation constraints were introduced
independently, which prohibited deviations of the approach
vector from the optimal surface normal in order to satisfy the
end-effector position constraint (to maintain constant offset)
with respect to the surface. As the result, it was difficult
to handle transitions around sharp edges and vertices (see
Fig. 5(a)).

In order to achieve smoother transitions around edges and
vertices of a 3D freeform surface (in polygonal mesh) during
surface traversal (see Fig. 5(b)), this paper considers interre-
lated position and orientation task constraints as follows.

We denote the end-effector position in Cartesian space with
respect to the surface coordinate frame as p and the end-
effector approach vector as the unit vector a (along the z axis
of the end-effector), such that:

a = [r13, r23, r33]
T , (12)

where r∗∗ is from the rotation matrix R of the manipulator
end-effector. A task constraint is imposed on the end-effector
such that its position must be offset from the surface at a
distance d along the approach vector a, satisfying

p + d · a = p′, (13)

where p′ is the position of a point on the surface S. The
approach vector a must also satisfy the orientation constraint:

−b · a ≤ cos α, (14)

where 0 ≤ α ≤ ϵ is the allowable approach angle deviation
from the surface normal, b.

Let p′ be on the uv-cell [u j , vk], which is on a triangle T
of the surface with vertex positions τ1, τ2, and τ3. Using the
task constraint of Eq. (13), we have

p + d · a = 6iwiτi , 0 ≤ wi ≤ 1, 6iwi = 1, (15)

which expresses the task constraint on the corresponding end-
effector position p in terms of τi’s.

Fig. 5. Illustration to compare the effects of (a) position and orientation
constraints defined independently, which causes large orientation shift around
surface edges, and (b) position constraint defined along the approach vector a,
i.e., related to the orientation constraint, which allows for smooth orientation
change around surface edges.

B. Joint-Space Task Constraints and Feasibility Checking

With end-effector position p expressed in terms of the
triangle parameters of the uv-cell [u j , vk] and the angle α as
in equations (13)-(15), we can relate an n-dimensional robotic
manipulator’s link parameters, l, and joint variables, q, directly
to the task constraint equations using forward kinematics to
obtain joint space task constraints:

f (l, q) = c(u j , vk, T , α). (16)

The manipulator joint configurations that satisfy the
joint space task constraints Eq. (16) form what we call
a J -manifold. We can discretize the J -manifold into an
n-dimensional grid, where each cell, called a J -cell, corre-
sponds to a joint configuration q. The distance between two
neighboring J -cell joint configurations is dq such that each
joint variable’s value qi in q is increased or decreased by δq
or remains the same to reach its neighboring J -cell. Thus,
a given J -cell has 3n

−1 neighboring J -cells. Through forward
kinematics a J -cell corresponds to a feasible end-effector
configuration, an E-cell with position p and orientation R.
We denote the space of all E-cells as the E-mani f old.

An E-cell with position p maps to a point on the surface
with position p′, by Eq. (13), and p′ can be converted to
uv space (see Section III). Note that multiple E-cells with
different a (approach) vectors may map to the same surface
position p′ or the same uv coordinates. Mappings between
the J -manifold, E-manifold, and the uv grid are illustrated in
Fig. 6.

Our coverage feasibility checking algorithm in Algorithm
1 explores the uv grid, using a tree search, reaching every
uv-cell once. Starting from an initial uv-cell, uv1, which
inversely maps to a J -cell, jc1, the algorithm stores neighbor
uv-cells in Neighbors and randomly generates a none-zero
dq by randomly assigning a value from {−δq, 0, δq} for each
joint. It calls Algorithm 2 to search the J -manifold moving
through neighboring J -cells, until a corresponding E-cell is
reached, which maps inside a neighboring uv-cell (i.e. the
uv-cell with its center closest to the corresponding uv point of
that E-cell), and establish that there is a neighboring feasibility
continuity of the manipulator to cover the two uv-cells.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

MCGOVERN AND XIAO: GENERAL APPROACH FOR CONSTRAINED ROBOTIC CPP ON 3D FREEFORM SURFACES 7

Fig. 6. Illustration showing the conversion from J -manifold (left), to the
E-manifold (center), and then to the uv grid (right). The corresponding regions
in each manifold are shown in the same blue/green colors.

Algorithm 1 Continuity Check on uv Grid
Global Neighbors;
Input uv1 and corresponding jc1;
Initialize Tree T at uv1;
Initialize graph G containing all uv-cells with no edges;
T , G = TREESEARCH(T , G, jc1);
if G is a connected component then

return “∃ feasible path”
else

return “no feasible path”
end
procedure TREESEARCH T , G, jc:
From jc get corresponding uv-cell called uv;
Neighbors = unvisited neighbor uv-cells of uv;
repeat:
Randomly generate none-zero dq;
call Algorithm 2 with jc, dq, which returns continuity
between uv and a neighbor uvN and the corresponding
J -cell jcN ;
Neighbors =Neighbors - {uvN };
if continui ty then

Add edge between uv and uvN if uvN is not in G;
if uvN is not in T then

Add uvN as child to uv in T ;
T , G = TREESEARCH(T , G, jcN)

end
end
until Neighbors = ∅;
return T , G;

We make the Algorithm 2’s joint space search more efficient
by allowing the search to continue in a direction, dq, instead of
a random direction for each J -cell transition, thus narrowing
the search space. If following a direction dq, the search
reaches a joint configuration q that satisfies joint space task
constraints, then dq is used again until the constraints are no
longer satisfied. Once these constraints are no longer satisfied,
dq is adjusted using the Jacobian matrix J(q) to identify the
order of joint variable qi which least affects the resulting
change dx in the end-effector configuration. Starting with
the least significant joint variable, the adjustment procedure
generates a new value that is not previously used for that joint
in dq, trying to obtain a new dq that is close to the previous
dq in the hope of satisfying joint space task constraints with as
little deviation from the original search direction as possible.

Algorithm 2 Continuity Check on J -Manifold Between
Neighboring uv-Cells
procedure CONT jc, dq:
repeat:
From dq find the neighbor jc′ of jc;
if jc′ satisfies joint-space task constraints and joint limits
then

E-cell ec is obtained from jc via forward kinematics;
dx = J(q) · dq;
From ec and dx, obtain next E-cell ecN ;
By mapping ec and ecN to the uv space, get the
direction from uv to a neighbor uvN ;
if uvN ∈ Neighbors then

if uvN is reached then
continui ty = true; jcN = jc′;
return continui ty, uvN , and jcN ;

end
call CONT(jc′, dq)

end
end
Adjust dq and find an unchecked neighbor J -cell jc′;
until there is no valid J -cell transition from jc;
continui ty = f alse;
return continui ty, uvN , jcN ;

This process continues in Algorithm 1 until every reachable
uv-cell pair continuity is checked via a tree search and a uv

space connectivity graph, G, is built based on neighboring
feasibility continuity results. If the resulting graph is a single
connected component, we determine that there is at least one
end-effector path that can cover the surface S continuously
while maintaining constraints.

This search process is essentially a depth-first search (DFS)
in the joint space. It takes full advantage of the information
from the Jacobian matrix to explore the most likely path first.
This is why the search with DFS can be more efficient than
with breadth-first search (BFS). DFS also has the well-known
advantage of space efficiency over BFS.

The worst case time complexity of the uv grid search
depends on the worst case time complexity of the feasibility
search between two adjacent uv-cells. The worst case time
complexity of the DFS is O(bm), where b is the maximum
branching factor and m is the maximum depth of search.
b ≤ 3n

− 1, where n is the degrees of freedom of the
manipulator. Usually, b ≪ 3n

− 1 because (1) not all joints
move during the transition from one uv-cell to an adjacent
one, and (2) many joint configurations cause a violation of
constraints. m depends on the joint limits and the value of δq .
Essentially, if δq is used to discretize the high-dimensional
joint space into a hyper-grid, m is bounded by the number of
J -cells. Thus, the worst-case time complexity of the uv grid
search algorithm is O(N · bm), where N is the number of uv-
cells. The actual running time for feasibility check between
two adjacent uv-cells takes just a few milliseconds.

The DFS search within the manipulator’s joint space
persists until it reaches the adjacent center of the uv-cell or
exhaustively explores all viable joint configurations. Given
that this is a comprehensive exploration of the joint space,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 7. Illustration showing examples of suitable and non-suitable raster scan
start direction for uv grid surface.

the search is complete and will provide a feasible solution if
it exists.

V. PUTTING COVERAGE PATTERN ON uv GRID

The convexity of a flattened (planar) uv space, as shown in
Fig. 7, can be first used to decide whether a coverage pattern
can be applied, since for some concave region, certain cov-
erage patterns cannot provide uninterrupted coverage for the
entire surface. If no coverage pattern can provide uninterrupted
surface coverage, the surface can be decomposed into smaller
and preferably convex regions [41], [42] so that each smaller
region can be covered by a desired coverage pattern. Alterna-
tively, other 2D CPP methods [12], [13], [14], [15], [16] could
be adapted to design a coverage pattern in the uv space.

A common raster pattern is a set of parallel, straight “scan”
lines which are separated perpendicularly by a distance, ω, and
connected at their ends in an alternating manner. We denote
the direction of the lines as the start direction. Reference [40]
shows how to create a raster pattern on the uv grid with
a horizontal start direction. In general, we can determine if
a start direction will result in a raster coverage pattern that
covers the surface uninterrupted by using a systematic check
on the scan lines. If each scan line intersects the surface
boundaries only twice, then that start direction is suitable for
the uv grid surface (see Fig. 7). If not, the start direction is
rotated to a new direction, and the test is repeated. The lines
are shortened to fit within the surface boundaries with end
points connected in an alternating manner.

We denote UV as a coverage pattern on the uv grid with
uvi being the i th uv point of the pattern such that UV =

[uv1, uv2, . . . , uvM]. Each uvi indicates a center of a uv-cell;
uvi and uvi+1 indicates centers of neighboring uv cells, for
1 ≤ i < M . Note that the UV coverage pattern should only
cross between uv-cells which are connected in the connectivity
graph of the uv grid.

We denote H as the coverage pattern UV expressed in
Cartesian coordinates, with hi being the position of uvi on
the pattern such that H = [h1, h2, . . . , hM].

VI. COVERAGE PATH SINGULARITY DETECTION
AND AVOIDANCE

Let {R1, R2, . . . , RM} denote a sequence of end-effector ori-
entations, such that Ri is the rotation matrix of the manipulator
initialized with the end-effector’s z-axis along the normal bi of

Algorithm 3 Manipulator Path Planner
Initialize end-effector orientation sequence
{R1, R2, . . . , RM};
Initialize joint-space path Q = {q1, q2, . . . , qM};
i = 2; count = 0;
while i ≤ M do

check joint-space singularity and Cartesian-space
singularity from qi−1 to qi :
while Singularity at qi−1 ≤ q∗

≤ qi and count < K
do

for j = 0 to i − 1 do
smooth the orientation Ri− j if needed to
reduce the difference to the orientation
R(i− j)−1 while satisfying the orientation
constraint and update pi− j accordingly to
satisfy position constraint;
update qi− j based on the updated pi− j ;

end
count++;

end
if no singularity then

i++;
else

exit with “no feasible solution”;
end

end
output Q;

the triangle that contains the i th waypoint uvi of the coverage
pattern. This is to best satisfy the orientation task constraint.

We compute the end-effector’s position pi corresponding to
each waypoint uvi with position hi in the Cartesian space as:

pi = hi−d · ai , (17)

where ai is the third column of Ri .
Now we initialize the end-effector coverage path P, s.t.

P = [E1, E2, . . . , EM], where Ei , for i = 1, . . . , M , is a
homogeneous transformation matrix consisting of position pi
and rotation matrix Ri . P can correspond to multiple paths in
the joint space. A joint-space solution will be returned by an
inverse kinematics solver, based on some optimization criteria
(such as minimum joint distance, collision avoidance, and even
some specific task constraints on the joints). We denote Q
as such a solution, which is the sequence of corresponding
joint states of P, with qi being the i th joint state on the path
such that Q = [q1, q2, . . . , qM]. Note that, which joint-space
solution is used does not really affect the task solution, because
the Cartesian-space path P will remain the same.

If a feasible coverage path exists (as determined in
Section IV), it does not mean the generated initial path
P is a feasible coverage path. The following subsections
describe singularity detection on initial coverage path P, and
if singularities are detected, how we alter path P to avoid
singularities and best satisfy task constraints.

A. Singularity Detection

Even if the surface S is placed within the robot’s workspace,
depending on the shape and size of S, there can be internal

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

MCGOVERN AND XIAO: GENERAL APPROACH FOR CONSTRAINED ROBOTIC CPP ON 3D FREEFORM SURFACES 9

Fig. 8. Polygon mesh of four different freeform surfaces.

Fig. 9. Initial curve C highlighted in yellow for each surface.

singularities to prevent the manipulator from following the
initial path. Two kinds of singularities have to be considered:
joint space singularities and Cartesian space singularities.

We refer to joint space singularities along a joint space path
as those configurations that exceed a certain joint limit, which
result in failures of motion/trajectory planning. We refer to
Cartesian space singularities along a Cartesian space path as
those end-effector configurations that cannot be reached with
the imposed task constraints.

Our method checks the end-effector path P for such sin-
gularities through the corresponding manipulator joint space
path Q. As in [38], linear interpolation is performed between
joint configurations qi and qi+1, for i = 1, . . . , M , on path Q,

such that:

qi j
= qi + j · ϵ · (qi+1 − qi), j = 1, 2, . . . (18)

for a small ϵ. Forward kinematics yields corresponding Carte-
sian configurations. If the end-effector position pi j

satisfies
|pi j

− pi+1| > |pi j−1
− pi+1|, then a singularity occurs;

otherwise, there is no singularity at pi j
. The joint-space path

between qi and qi+1 should result in end-effector positions
where pi j

is closer to pi+1 than pi j−1
, otherwise a singularity

exists between qi and qi+1.

B. Singularity Avoidance

For every singularity encountered along the path (either a
joint space singularity or a Cartesian space singularity), our
planner alters the end-effector orientations in a neighborhood
of the singularity configuration, called orientation smoothing,
until a singularity free path is obtained.

For each singularity encountered along the end-effector
initial coverage path P, say at the i th waypoint, our method
re-orients the end-effector approach vector ai− j closer to that
of the previous waypoint’s approach vector a(i− j)−1 with:
ai− j =

av

∥av∥
, where av =

(ai− j+a(i− j)−1)

2 , for j = 0 to i − 1. The
path can be smoothed up to N times, where the difference
between neighboring approach vectors are reduced to 2−N

original difference. Satisfaction of task constraints are checked
after orientation smoothing at each point. The worst case time
complexity for each smoothing processes is O(M) and the
total algorithm execution time is proportional to how many
singularities are detected along the initial coverage path P.

The complete manipulator path planner is shown in
Algorithm 3, which alters the initial manipulator path to create
a singularity free path, satisfying equality task constraints, and
best satisfying inequality task constraints. If it is not possible
to create such a path under the current coverage pattern,
the planner returns “no feasible solution”. Another coverage
pattern can be tried.

VII. IMPLEMENTATION AND RESULTS

To test our approach, we used Solidworks to generate a
polygon mesh of a Curvy (SoT), Cone (SoR), Vase (SoR), and
Corner (SoTR) surface (see Fig. 8), containing 68, 32, 3743,
and 9200 triangle faces respectively. We used a Franka Emika
Panda manipulator which contains seven revolute joints, with
the joint vector q = [θ1, θ2, . . . , θ7]

T and link parameters l =
[d1, d3, a4, a5, d5, a7] = [0.3, 0.3, 0.08,-0.08, 0.3, 0.08](m).

Fig. 9 shows the results of interactive placement of the
surface frame and determination of the C curve in the virtual
environment. Fig. 10 gives a flattened view of the resulting uv

grid for each surface; a raster coverage pattern (red) overlayed
on the top. The resulting initial coverage paths are shown in
Fig. 11.

Fig. 11 (b) shows the results of a coverage pattern that was
generated on a cone surface using our method. This pattern
is not trivial to generate using other methods but is easily
generated and evenly spaced using our uv grid. The “vertical”
raster pattern is straight near the center yet spiral on either
side. This is a simple example to demonstrate that using the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 10. Generated uv grid (blue) with applied raster coverage patterns UV (red) on each freeform surface.

TABLE I
NUMBER OF SINGULARITIES FIXED BY PATH PLANNER

uv grid generated by our method, non-trivial coverage patterns
can be produced on 3D freeform surfaces.

Table I presents the number of singularities fixed by Alg. 3
for each surface in three spatial arrangements relative to the
robot.

Table II shows the corresponding results of the coverage
paths and executed trajectories. The coverage path for the
first spatial arrangement for each surface is shown in the
accompanying video.

For each surface, the first spatial arrangement resulted in
no singularities for the end-effector coverage path. These
arrangements are within a more desirable workspace of the
given manipulator. The other spatial arrangements resulted in
singularities, most likely a result of joint values nearing the
manipulator joint limits. Our orientation smoothing method
outlined in Alg. 3 successfully smoothed the coverage path
orientations within task constraints and produced a feasible
path for each spatial arrangement.

The attached video first shows the Panda manipulator
traversing the coverage pattern (in red) for the Curvy, Cone,

Fig. 11. Raster scan coverage patterns on different surfaces.

Vase, and Corner surface in the virtual environment and then
shows the real Panda manipulator traversing the coverage
pattern on the 3D printed Corner surface. Fig. 12 gives
snapshots of the virtual Panda manipulator traversing a surface

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

MCGOVERN AND XIAO: GENERAL APPROACH FOR CONSTRAINED ROBOTIC CPP ON 3D FREEFORM SURFACES 11

TABLE II
COVERAGE PATH/TRAJECTORY RESULTS

Fig. 12. Snapshots of the Panda manipulator moving along a coverage pattern
(red) on the Curvy (SoT) surface.

coverage pattern along the curvy (SoT) surface (as shown in
accompanying video). Note the distance between raster scans,
ω, is larger in the video than as shown in Fig. 11 to reduce
the coverage execution time.

Note that we placed a different coverage pattern in the
demo of Fig. 12 from the one shown in Fig. 11(a). Both are
valid coverage patterns. This shows that our method can place
different coverage patterns on a freeform surface with ease.

A. Discussion

A human worker can divide a surface into segments
that align with the primitive surface definitions discussed in
Section III through the simulation interface. In this way, a lot
of surfaces in real-world applications can be nicely represented
and handled by our approach. However, for extremely rugged
and irregular surfaces, such as the surface of a complex
sculpture, there can be too many segments for our method
to be practical.

In Fig. 10, we flattened the uv space and used straight-
line axes to represent u and v to produce the 2D view. Note
that this 2D view results in some distortion of the polygon
meshes, which do not exist in the 3D surface. Our seamless
representation of the surface uv space enables the use of
common 2D coverage patterns on it.

Other suitable 2D coverage patterns can be applied depend-
ing on the resulting uv grid to cover the surface. For example,
for the SoT example surface, we applied two raster scan
coverage patterns as shown in Fig. 11(a) and Fig. 12. The
key point is that our generation of the uv grid allows evenly
spaced application of (different) coverage patterns.

To produce a smooth coverage along a uniform coverage
pattern on the surface S, the corresponding end-effector path
P has non-uniform transitions from one configuration to the
next. This is a result of Eq. (17), which relates the position
and orientation constraints, such as the end-effector’s position
offset from the surface along its approach direction. This is
important to produce a smooth and uniform surface coverage
(application).

VIII. CONCLUSION

This paper introduced a general robotic approach for smooth
and even coverage of 3D freeform surfaces of three types
represented in polygonal mesh. For a given surface and a
robot manipulator, it consists of all the necessary steps to
assist a task-domain operator who is not a robotics expert
to automatically (1) check the feasibility and (2) if feasible,
generate a feasible and smooth coverage robot motion to
provide even coverage of the surface that satisfies the task
and manipulator constraints. One key aspect for ensuring
even coverage is our novel method to automatically generate
a uv grid of uniform cells directly on a freeform surface.
We considered general task constraints in terms of related
position and orientation constraints on a manipulator end-
effector. Our automatic feasibility checking algorithm ensures
the existence of a feasible manipulator path through efficient
joint-space search and facilitates efficient planning of such a
path following a coverage pattern on the uv grid. Our path
planner finds a feasible manipulator path for a given coverage
pattern through an orientation smoothing method.

The introduced methods have been implemented and tested
on example surfaces and demonstrated the effectiveness of our
general approach.

Future research includes expanding the approach to enable
effective division of an arbitrary freeform surface into those
well-defined surface types and the division of a large surface
into patches, such that each patch allows feasible coverage by a
continuous coverage motion. Applying the general approach to
specific tasks, such as spraying, can further test the approach.

REFERENCES

[1] C. Chen et al., “A novel spiral trajectory for damage component recov-
ery with cold spray,” Surf. Coatings Technol., vol. 309, pp. 719–728,
Jan. 2017.

[2] W. Chen, J. Liu, Y. Tang, and H. Ge, “Automatic spray trajectory
optimization on Bezier surface,” Electronics, vol. 8, no. 2, pp. 168–184,
2019.

[3] M. V. Andulkar and S. S. Chiddarwar, “Incremental approach for
trajectory generation of spray painting robot,” Ind. Robot, Int. J., vol. 42,
no. 3, pp. 228–241, May 2015.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[4] H. Chen, W. Sheng, N. Xi, M. Song, and Y. Chen, “CAD-based
automated robot trajectory planning for spray painting of free-form
surfaces,” Ind. Robot, Int. J., vol. 29, no. 5, pp. 426–433, Oct. 2002.

[5] T. Girbacia, F. Girbacia, and G. Mogan, “Virtual planning of robot tra-
jectories for spray painting applications,” Appl. Mech. Mater., vol. 658,
pp. 632–637, Oct. 2014.

[6] G. Trigatti, P. Boscariol, L. Scalera, D. Pillan, and A. Gasparetto, “A new
path-constrained trajectory planning strategy for spray painting robots,”
Int. J. Adv. Manuf. Technol., vol. 98, pp. 2287–2296, Oct. 2018.

[7] H. Chen, T. Fuhlbrigge, and X. Li, “A review of CAD-based robot path
planning for spray painting,” Ind. Robot, Int. J., vol. 36, no. 1, pp. 45–50,
Jan. 2009.

[8] G. Liu, X. Sun, Y. Liu, T. Liu, C. Li, and X. Zhang, “Automatic
spraying motion planning of a shotcrete manipulator,” Intell. Service
Robot., vol. 15, no. 1, pp. 115–128, Mar. 2022.

[9] X. Ye, L. Luo, L. Hou, Y. Duan, and Y. Wu, “Laser ablation manipulator
coverage path planning method based on an improved ant colony
algorithm,” Appl. Sci., vol. 10, no. 23, pp. 8641–8660, 2020.

[10] V. Champagne and D. Helfritch, “Critical assessment 11: Structural
repairs by cold spray,” Mater. Sci. Technol., vol. 31, no. 6, pp. 627–634,
Apr. 2015.

[11] A. Moridi, S. M. H. Gangaraj, S. Vezzu, and M. Guagliano, “Number of
passes and thickness effect on mechanical characteristics of cold spray
coating,” Proc. Eng., vol. 74, pp. 449–459, Jan. 2014.

[12] C. H. Chen and K. T. Song, “Complete coverage motion control of
a cleaning robot using infrared sensors,” in Proc. IEEE Int. Conf.
Mechatronics, Taipei, Taiwan, Jul. 2005, pp. 543–548.

[13] T.-K. Lee, S.-H. Baek, Y.-H. Choi, and S.-Y. Oh, “Smooth coverage
path planning and control of mobile robots based on high-resolution grid
map representation,” Robot. Auto. Syst., vol. 59, no. 10, pp. 801–812,
Oct. 2011.

[14] J. Song and S. Gupta, “ε∗: An online coverage path planning algorithm,”
IEEE Trans. Robot., vol. 34, no. 2, pp. 526–533, Apr. 2018.

[15] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robot. Auton. Syst., vol. 61, no. 12, pp. 1258–1276, 2013.

[16] C. S. Tan, R. Mohd-Mokhtar, and M. R. Arshad, “A comprehensive
review of coverage path planning in robotics using classical and heuristic
algorithms,” IEEE Access, vol. 9, pp. 119310–119342, 2021.

[17] A. Bouman et al., “Adaptive coverage path planning for effecient
exploration of unknown environments,” in Proc. Int. Conf. Intell. Robots
Syst. (IROS), Kyoto, Japan, 2022, pp. 11916–11923.

[18] K. Schmid, H. Hirschmuller, A. Domel, I. Grixa, M. Suppa, and
G. Hirzinger, “View planning for multi-stereo 3D reconstruction using
an autonomous multicopter,” J. Intell. Robotic Syst., vol. 65, nos. 1–4,
pp. 309–323, 2012.

[19] E. N. Johnson and J. G. Mooney, “A comparison of automatic nap-of-
the-earth guidance strategies for helicopters,” J. Field Robot., vol. 31,
no. 4, pp. 637–653, Jul. 2014.

[20] M. Na, H. Jo, and J.-B. Song, “CAD-based view planning with globally
consistent registration for robotic inspection,” Int. J. Precis. Eng. Manuf.,
vol. 22, no. 8, pp. 1391–1399, Aug. 2021.

[21] J. Jin and L. Tang, “Coverage path planning on three-dimensional
terrain for arable farming,” J. Field Robot., vol. 28, no. 3, pp. 424–440,
May 2011.

[22] L. C. Santos, F. N. Santos, E. J. S. Pires, A. Valente, P. Costa,
and S. Magalhães, “Path planning for ground robots in agriculture:
A short review,” in Proc. IEEE Int. Conf. Auto. Robot Syst. Competitions
(ICARSC), Apr. 2020, pp. 61–66.

[23] P. Atkar, H. Choset, A. Rizzi, and E. Acar, “Exact cellular decomposition
of closed orientable surfaces embedded in R,” in Proc. Int. Conf. Robot.
Autom. (ICRA), Seoul, (South) Korea, 2001, pp. 699–704.

[24] T. Yang, J. V. Miro, Q. Lai, Y. Wang, and R. Xiong, “Cellular decom-
position for nonrepetitive coverage task with minimum discontinuities,”
IEEE/ASME Trans. Mechatronics, vol. 25, no. 4, pp. 1698–1708,
Aug. 2020.

[25] P. Atkar, H. Choset, and A. Rizzi, “Towards optimal coverage of 2-
dimensional surfaces embedded in R: Choice of start curve,” in Proc.
IROS, Taipei, Taiwan, 2003, pp. 3581–3587.

[26] Z. Kingston, M. Moll, and L. Kavraki, “Decoupling constraints from
sampling-based planners,” in Proc. Int. Symp. Robot. Res., Puerto Varas,
Chile, 2017, pp. 1151–1178.

[27] M. Stilman, “Task constrained motion planning in robot joint space,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., San Diego, CA, USA,
Nov. 2007, pp. 3074–3081.

[28] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipula-
tion planning on constraint manifolds,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2009, pp. 625–632.

[29] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints
by rapidly exploring manifolds,” IEEE Trans. Robot., vol. 29, no. 1,
pp. 105–117, Feb. 2013.

[30] T. McMahon, S. Thomas, and N. M. Amato, “Sampling-based motion
planning with reachable volumes: Theoretical foundations,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2014, pp. 6514–6521.

[31] C. Yuksel, S. Lefebvre, and M. Tarini, “Rethinking texture mapping,”
Comput. Graph. Forum, vol. 38, no. 2, pp. 535–551, May 2019.

[32] B. Purnomo, J. D. Cohen, and S. Kumar, “Seamless texture atlases,”
in Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Process.,
Jul. 2004, pp. 65–74.

[33] N. Aigerman, R. Poranne, and Y. Lipman, “Seamless surface mappings,”
ACM Trans. Graph., vol. 34, no. 4, pp. 1–13, Jul. 2015.

[34] S. Robla-Gómez, V. M. Becerra, J. R. Llata, E. González-Sarabia,
C. Torre-Ferrero, and J. Pérez-Oria, “Working together: A review on safe
human–robot collaboration in industrial environments,” IEEE Access,
vol. 5, pp. 26754–26773, 2017.

[35] M. C. Bingol and O. Aydogmus, “Practical application of a safe
human–robot interaction software,” Ind. Robot, Int. J. Robot. Res. Appl.,
vol. 47, no. 3, pp. 359–368, Jan. 2020.

[36] P. N. Atkar, A. Greenfield, D. C. Conner, H. Choset, and A. A. Rizzi,
“Hierarchical segmentation of surfaces embedded in R3 for auto-body
painting,” in Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain,
Apr. 2005, pp. 572–577.

[37] C. Cao, J. Zhang, M. Travers, and H. Choset, “Hierarchical coverage
path planning in complex 3D environments,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2020, pp. 3206–3212.

[38] A. Saric, J. Xiao, and J. Shi, “Robotic surface assembly via contact state
transitions,” in Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE), Madison,
WI, USA, Aug. 2013, pp. 954–959.

[39] S. McGovern and J. Xiao, “Efficient feasibility checking on continuous
coverage motion for constrained manipulation,” in Proc. IEEE 17th Int.
Conf. Autom. Sci. Eng. (CASE), Lyon, France, Aug. 2021, pp. 189–195.

[40] S. McGovern and J. Xiao, “UV grid generation on 3D freeform surfaces
for constrained robotic coverage path planning,” in Proc. IEEE 18th
Int. Conf. Autom. Sci. Eng. (CASE), Mexico City, Mexico, Aug. 2022,
pp. 1503–1509.

[41] L. Nielson, I. Sung, and P. Nielson, “Convex decomposition for a
coverage path planning for autonomous vehicles: Interior extension of
edges,” Sensors, vol. 19, no. 19, pp. 4165–4179, 2019.

[42] M. Ramesh, F. Imeson, B. Fidan, and S. Smith, “Optimal partitioning
of non-convex environments for minimum turn coverage planning,” in
Proc. IROS, Kyoto, Japan, 2022, pp. 4529–4536.

Sean McGovern received the M.S. degree in
robotics engineering from Worcester Polytechnic
Institute, Worcester, MA, USA, in 2016, and the
M.S. degree in computer science from the Georgia
Institute of Technology, Atlanta, GA, USA, in 2021.
He is currently pursuing the Ph.D. degree in robotics
engineering with Worcester Polytechnic Institute.

Jing Xiao (Fellow, IEEE) received the Ph.D. degree
in computer, information, and control engineering
from the University of Michigan, Ann Arbor, MI,
USA. She is currently the Deans’ Excellence Pro-
fessor, the William B. Smith Distinguished Fellow
of Robotics Engineering, a Professor of Computer
Science, and the Head of the Robotics Engineering
Department, Worcester Polytechnic Institute (WPI).
She joined WPI from the University of North Car-
olina at Charlotte. Her current research interests
include robotics, haptics, and intelligent systems.

She has coauthored a monograph, held one patent, and published extensively
in major robotics journals, conferences, and books. She was a recipient of
the 2015 Faculty Outstanding Research Award of the College of Computing
and Informatics, University of North Carolina at Charlotte.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on August 10,2024 at 11:32:46 UTC from IEEE Xplore. Restrictions apply.

