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ABSTRACT

Increasingly, the Internet of Things (IoT) is evolving toward an
architecture consisting of sensing and actuation devices commu-
nicating with edge computers and storage systems. These “edge
deployments” localize communication, computation, and storage
for security, increased efficiencies (e.g. lower latency response),
and reliability. In settings where electrical power infrastructure is
lacking, however, these deployments typically rely on renewable
energy and battery storage for power.

In this paper, we investigate power-optimizing scheduling for
IoT communication in edge deployments that compose battery-
powered sensors. We focus on radio communication since it is
often the largest component of the sensor battery budget in edge
deployments. We model radio communication between sensors and
co-located base stations using their distance, bandwidth availabil-
ity, and duty cycle for data transmission. We present three heuris-
tic approaches that allocate radio bandwidth to minimize sensor
power consumption. We consider both shared and decentralized
battery infrastructure. We empirically analyze these approaches in
terms of performance and computational efficiency and present a
methodology for using these techniques to inform configuration
and management of energy-efficient edge deployments.
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1 INTRODUCTION

The Internet of Things (IoT) describes a computing fabric that
enables ordinary, physical objects to sense, analyze, actuate, and
control their environment automatically. To enable this, [oT deploy-
ments increasingly consist of co-located computational and sensing
devices that interoperate at the “edge” of the network. Edge com-
puting provides low-latency request response, enhanced reliability,
failure resiliency, reduced bandwidth use, and improved security
and privacy, versus the centralized, cloud-direct model [16].

Edge deployments consist of devices with a wide range of ca-
pabilities, radio technologies, and resource constraints depending
on the physical environments in which they are embedded and
the workloads they support. This heterogeneity makes edge de-
ployments very complex and challenging to design and allocate
resources efficiently. Moreover, these challenges are compounded
when electrical power infrastructure is lacking, forcing their re-
liance on renewable energy and battery storage for power. As such,
novel approaches to resource management are needed to aid IoT de-
ployment configuration and resource scheduling for such settings.

Toward this end, we investigate a new approach for designing
edge deployments that compose battery-powered sensors. Recent
research has shown that it is possible to formulate IoT scheduling
problems (e.g. for resource allocation, energy optimization, improv-
ing QoS, etc.) as multi-objective, numerical optimization problems
and to use optimization software (i.e., solvers) to efficiently produce
possible solutions [1, 7, 20, 32, 33]. In this work, we use multi-
objective optimization to efficiently allocate radio bandwidth to
sensors in an edge deployment to minimize power consumption. We
focus on radio communication because it is a primary consumer of
power for wireless sensor networks that are remotely deployed and
spatially distributed [17, 22, 24] - key characteristics (cf. Section 3)
of the edge deployments that we target.

We model the communication between sensors and co-located
access points using their distance, the total available bandwidth,
and the period of time used by the sensors for data transmission, i.e.
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their duty cycle. We investigate three popular heuristic approaches:
MIDACO [1], a Mixed Integer Programming (MIP) and Mixed Inte-
ger Non-Linear Programming (MINLP) solver, Z3 [7] a Satisfiability
Modulo Theory (SMT) solver, and a Genetic Algorithm (GA) that
we specifically designed for this project. The heuristics allocate
radio bandwidth to devices placed at different distances from the
access point such that the worst case energy use is minimized. We
consider per-node and shared battery infrastructure and empiri-
cally compare the approaches using different experimental settings.
We evaluate the impact of limiting computational budget and the
use of different device duty cycles (which impose deadlines on data
transfer completion). Finally, we present a methodology for using
these techniques to guide energy efficient, configuration planning
and sensor placement for remote, edge-based IoT deployments.

Our results show that MIDACO outperforms SMT and GA, and
that SMT outperforms GA in terms of solution quality. In our study,
MIDACO is also always able to generate feasible solutions, even
with very limited computational effort budgets. However, in some
cases where the computation effort budget is limited, SMT is able to
find better solutions compared to MIDACO. It is just not possible to
predict whether SMT will do so for a specific deployment and effort
budget. This result indicates that it is “best” to expend a fraction of
the available computational budget on SMT and if it fails to find a
feasible solution in using that fraction, invoke MIDACO with the
remainder. We also find that this approach can be used to size of the
battery infrastructure for a given deployment and that infeasible
solutions can be intelligently adjusted (adapting sensor placement
or duty cycle) while minimizing power use.

2 RELATED WORK

Past work has focused on resource allocation for wireless sensor
networks (WSNs) [30, 31, 36]. Federated Learning [35] is a promis-
ing technology that couples bandwidth and power management to
design communication-efficient systems. The authors of [20, 32, 33]
show that numerical optimization solvers can be used effectively for
scheduling resources, optimizing energy use, and improving quality
of service for edge systems. Our work differs from this past work in
that we use independent objectives (versus sum-weighted) to min-
imize power consumption and we show how to use solver-based
solutions to co-design power infrastructure and IoT deployments
(sensor placement and duty cycle) at the edge.

We investigate three popular heuristics for allocating radio band-
width to sensors in an edge deployment, such that power con-
sumption is minimized. They include MIDACO [1], Z3 [7], and
a custom genetic algorithm (GA; cf. Section 3.3.3). MIDACO is a
numerical high-performance solver for single- and multi-objective
optimization. MIDACO is based on a derivative-free, evolutionary
hybrid algorithm that treats the objective and constraint functions
as a black-box which may contain critical function properties like
non-linearity, non-convexity, discontinuities, or stochastic noise.

Satisfiability Modulo Theories (SMT) solvers can also be used for
constraint solving and optimization. They are used for application
scheduling [2, 3, 5, 25, 28], resource allocation for the edge-cloud
continuum [5, 11, 21, 28], and network optimization in Wireless
Sensor Networks (WSNs) and Software Defined Networks(SDNs)
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for time sensitive applications [8, 12, 21, 27]. SMT is also consid-
ered a competitive alternative [4, 12, 25] to Mixed Integer Program-
ming(MIP)/Mixed Integer Linear Programming (MILP) solvers (like
MIDACO). SMT allows for more flexibility in constraint declaration
compared to MIP/MILP solvers [4, 5, 12, 25]. We evaluate the use
of the Z3 [7] SMT solver in this paper, and empirically compare its
performance against MIDACO and GA.

Similarly, Gosh et al. explore the use of the optimization in a
Satisfiability Modulo Convex Optimizer (SMC) using the Z3 SMT
solver for WSNs in [12]. In this prior work, the authors compare Z3
against the CPLEX MILP solver [6], for synthesizing “pop up” IoT
networks which are temporary, short lived WSNs used during crisis
events [9]. They target constraints for coverage, visibility, and con-
nectivity. They also investigate how to scale the solvers to construct
larger networks hierarchically, and perform power optimization by
controlling the number of sleeps/wake up cycles. While we also
explore topics on sensor placement and power optimization, our
approach differs in both target application and placement forma-
tion. Our focus is on permanent deployments for remote and highly
resource constrained settings, as well as on tools that help deploy-
ment operators size their battery and renewable power generation,
while minimizing worst case energy across deployments.

For more permanent sensor network deployments, the authors
of [8, 23, 27] optimize node placement using network coverage
and connectivity and conserve energy by manipulating sleep/wake
cycles (similar to Gosh). In [23], the authors use a hybrid approach
that combines mathematical modeling and Genetic Algorithms
(GA) to do so. In our work, we optimize energy use across an
edge deployment by focusing on radio communication (distance
and payload size) and use the solutions to guide configuration of
energy-efficient edge deployments.

3 EDGE DEPLOYMENT OPTIMIZATION

Edge environments for IoT applications vary widely. The focus
of our work is on edge deployments that can be characterized
as hard to reach/maintain, intermittently disconnected (from the
Internet/cloud), large scale in terms of spatial layout, containing
various obstacles (trees, vehicles, people etc.), with heterogeneous,
resource constrained sensors and a small number of resource rich
edge computers (aka base stations). The sensors (and in some cases
the base stations) rely on solar energy and battery storage for
electrical power (particularly for operation in darkness). These edge
deployments are typical of digital agriculture, sustainable ecology
(e.g. wildfire and animal monitoring), and intelligent infrastructure
(e.g. smart roadways, bridges, and buildings).

Our model of operation is inspired by real-world remote deploy-
ments that our group maintains as part of the UCSB SmartFarm
project [10, 15, 18, 29]. In this setting, sensors monitor the environ-
ment, periodically transmit their data on a duty cycle over radio
links to one or more base stations, and deactivate (e.g. go into “deep
sleep”) to conserve battery power between duty cycles.

These deployments are employed by farms for a dynamically
changing set of purposes related to precision agriculture, requiring
them to be periodically updated for different use cases (by humans
or ground robots). The base station is often grid-powered and part of
a resource rich edge cloud (with intermittent Internet connectivity)
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that is sited on-farm in an outbuilding. In this work, however, we
also explore the use case where the base station or stations are also
solar and battery powered using off-grid power infrastructure with
greater capacity than the infrastructure supporting the sensors. The
sensor nodes are battery powered and each sensor can have its own
battery or multiple sensors can draw from a shared battery (both
alternatives are charged via solar power).

A key challenge of these deployments is the need to co-design the
IoT device network with the power infrastructure which can impose
incompatible constraints. The goal of our work is to develop tools
that simplify this co-design process for edge deployments consisting
of sensors, a communication access point, and base station that
executes a deployment planning tool.

Toward this end, we present a model for radio communication
between the sensors nodes and base stations in an edge deployment.
We use multi-objective numerical optimization to allocate the band-
width to sensors in a way that minimizes power consumption of
the sensors in the deployment. Our approach is unique in that we
use it to facilitate comparison of popular optimization approaches
as well as to support the co-design of power infrastructure, sensor
placement, and data delivery for edge deployments.

We employ two objective functions that we believe are useful in
these settings. The first, called min-max, minimizes the maximum
energy consumption, max{Ef }, in each data transfer cycle t. The
objective corresponds to deployments in which each sensor node
has its own battery and our goal is to minimize the maximum
energy draw by any individual node. The second, called min-sum,
minimizes the total energy consumption, Y’ Ef , in each cycle of
data transfer t. This objective corresponds to deployments that
use a shared power source (e.g. a single solar powered battery
infrastructure that each node uses as their power source).

3.1 System Model and Optimization Problem

The system model consists of a set of N nodes, each of which com-
municates using wireless radio communication with a single access
point. Each node is assigned a data size D that it must transmit to
the access point, and a distance d that gives its physical distance
from the access point. All nodes share a common duty cycle during
which time they must begin and complete the transfer of the data
assigned to them. Each node can be configured to use a fraction of
a total fixed bandwidth budget available during a duty cycle and to
adjust it’s signal power according to the assigned fraction.

Inspired by our SmartFarm micro-climate monitoring deploy-
ments [14, 15, 18, 29], the execution model is one in which all
sensors “wake up” simultaneously (so that readings are time corre-
lated), transmit sensor readings over a radio communication link
to the access point during a fixed duty cycle, and then “sleep” to
conserve battery power until the start of the next duty cycle. Both
the sensor and access point placement are known a priori, as is the
amount of data that must be communicated in each duty cycle.

This system model gives rise to the following optimization prob-
lem. Given a set of nodes with assigned data transfer requirements
and distances from the access point, what is the apportionment of
bandwidth that minimizes the signal power each node must expend
to transfer its data within the duration of a specified duty cycle?
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3.2 Data Transmission Model

To model the wireless communication scenario, we use the path-
loss function [13] shown in Equation 1 to calculate the influence of
distance for each sensor i.

PL; = 38.77 + 16.7 * logyy d; + 18.2 * log, fi (1)

In Equation 1, d; is the distance (the units are meters) between
sensor i and the base station, whereas f; is the frequency (we set
this to 5.9 GHz in this work) of the transmission signal. The units
of path loss computed by Equation 1 are decibels (db). Parameters,
such as 38.77, 16.7, and 18.2, are from the experiences in [13].

The acceptance signal power, in decibel-milliwatts (dbm), is given
by Equation 2 where P; is the wireless signal power (in the range
of 0.1 to 21 dbm) per the wireless standard [13].

)

Note that db and dbm are on a log scale making the units of P; dbm.

P; = P; - PL;.

Converting P; to milliwatts (mw) using Equation 3

,oon
P/ =101 (3)
allows the computation of the signal-to-noise ratio (SNR) for each
node using Equation 4

7

P.
SNR; = : (4)
Ny * B;
where N is the power of environment noise, and it equals 107114

mw [19]. Given the Signal-Noise-Ratio (SNR;) and Bandwidth (B;
in Mhz), the transmission speed of sensor i, T'S;, is computed using
the Shannon equation shown in Equation 5.

TS; = B; *log, (1+SNR;) (5)

Dividing the data size D; transmitted by each sensor i by TS; yields
the transmission time for sensor i:
D;
TT = —L.

TS, (6)

When determining bandwidth allocations, we specify that TT; must
be less than or equal to the deadline imposed by the duty cycle for
the deployment for all sensors. Finally, sensor energy consumption
i is obtained via:

Pi
0

Ei =TT; % 10T (7)

It is worth noting that there is a trade-off between P; and TT;. If B;
is fixed, then when P; increases TT; decreases. If P; is fixed, then the
allocation of B; is non-linear. Thus, in terms of the data transmission
model, the problem of determining the values of B; and P; that yield
a minimized set of E; values, subject to the constraint that all TT;
are less than or equal to a fixed deadline (imposed by a given duty
cycle), is an optimization problem we must solve.

3.3 Optimization Solvers

We define two different optimization problems for determining a
bandwidth allocation that minimizes power usage. The first, termed
min-max, is shown in Equation 8. It minimizes the maximum value
of E; for a set of sensors. This objective function corresponds to
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a deployment in which each sensor has its own separate power
source that can be exhausted (e.g. a battery).

F(0) = max{E;}, (8)

The second function, termed min-sum is given by Equation 9. It
uses the sum of E; as an objective function.

F(O) = sum{E;}. o)

This function represents the case where the set of sensors share
a common power source that can be exhausted. We investigate
three approaches for minimizing F(O): mixed-integer non-linear
programming, satisfiability modulo theories (SMT), and a genetic

algorithm (GA).

3.3.1 MIDACO. MIDACO is a commercial solver for numerical
optimization that is based on the Ant Colony algorithm [26], which
can be applied to continuous non-linear optimization (NLP) prob-
lems, discrete/integer (IP) optimization problems, and mixed integer
(MINLP) problems [1]. In our scenario, a deployment is specified
as a set of data transmission requirements D;, a set of distances d;
and a deadline for a set of sensors indexed by i which is an integer
value in the range 1 to N. We then minimize F(O) as specified by
Equation 8 or Equation 9.

To do so, we formulate a set of internal constraints that any
feasible solution (i.e. one that meets the deadline) must also obey.
These internal constraints are shown in Equation 10.

G(0) = By + By + ... + By — total bandwidth

G(1) = deadline - TTy
(10)

G(i) = deadline — TT;,
where G(0)=0 and other G()>0. N is the number of sensors.

3.3.2 SMT and Z3. Z3, as an SMT solver, includes limited capabili-
ties for determining the satisfiability of constraints that require the
evaluation of numerical variables. In particular, the support in Z3
for log functions, exponentiation, and real-valued variables either
performs poorly or is non-existent. Z3 only includes optimization
capabilities for equational constraints that are linear [4]. Thus, to
use Z3 for optimizing energy usage, we must transform the real-
valued, non-linear problem formulation described in the previous
subsection into an integer-valued, linear problem.

Equation 11 shows a discretized integer representation of P;. We
limit the range of signal power values that the access point and
sensors can adopt to the range 0.01 to 21 dbm. We then multiply
this value by 100 so that it is expressed as an integer with a value
between 1 and 2100. Equation 12 captures the total bandwidth
budget (shown as an internal constraint in the MIDACO formulation
in Equation 10) as an independent and explicit constraint for the
SMT formulation.

To capture the inverse relationship between a signal power and
bandwidth allocation shown in Equations 1 through 5, we add a
constraint that forces the solver to minimize the maximum sig-
nal power P; while, at the same time, maximizing the minimum
bandwidth B; for all sensors, as shown in Equations 13 and 14,
respectively. Similarly, for the objective of minimizing the sum of
energy usage, we substitute Equations 15 for Equation 13 in the
constraint set to compute min-sum.
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Because Z3 cannot evaluate non-linear, real-valued, log functions,
it cannot incorporate a deadline constraint because it cannot solve
Equations 1 through 6. However, it is able to find multiple unique
solutions for a single constraint problem. We exploit this feature to
“search” the constraint space for the best solution (the one with the
lowest energy objective function value).

To do so, we run the solver until it finds a solution and then
apply Equations 1 through 6 to the resulting values to determine
if the solution meets the deadline. We also compute F(O) using
Equation 7 for the solution. If the solution meets the deadline, it
is saved in a set of feasible solutions. If it does not, but its F(O)
value is lower than the F(O) value of a previous infeasible solution,
it is saved as the “best” infeasible solution. We then continue the
solver and repeat the process for the next solution it finds. The
search terminates after either 900 iterations (the maximal case) or
a fixed time limit (cf. Section 4). We explore the use of feasible and
infeasible solutions in Section 5.

1< P; <2100, 1 < B; <100 (11)
N
ZB,— == total bandwidth 12)
i=1
VN Pmax > Pi, minimize(Pmax) (13)
Vfilein > Bj, maximize(Bmin) (14)
N
minimize(z P;) (15)
i=1

This search process can be improved by adding an additional
constraint that captures the influence of the data size d; that each
sensor must send and the distance D; from the access point for
each sensor. Specifically, we would like the solver to avoid solutions
where nodes sending large amounts of data that are located far from
the access point are assigned less bandwidth than nodes closer to
the access point with smaller data transfer requirements. There
may be many such solutions that satisfy the constraints but result
in infeasible (and poor) allocations.

To guide the solver toward better solutions in the space, we add
a “weighting” constraint that creates a relationship between the
product of the data size and distance and the sum of the signal
power and allocated bandwidth. Equation 16 shows this “guidance”
constraint. Note that this is the only constraint in the SMT for-
mulation that relates bandwidth allocation B; to signal power P; —
without it the solver is free to find solutions that assign values to
these variables independently. As such, it constitutes a linear multi-
objective function for Z3 to optimize. We also use a Z3 feature that
prioritizes Pareto-optimal solutions to multi-objective functions in
its solution search [4]. Doing so ensures that the relationship in
Equation 16 is favored by Z3.

VN (D; * d; < Dip1 #dip1 = B+ P; < B + Pit1)

(16)

This optimization to the constraint search introduces additional
complexity, however. Using Pareto priority, Z3 can return repeated
solutions when it cycles through all of the Pareto points the solver
can find. When the solver returns repeated solutions, we introduce
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a “soft” constraint that allows it to consider additional possible
solutions. When the solver stops and offers a repeated solution, we
compute a target P; for each node based on the d;, D; values for the
node from the deployment and the B; in the current (and repeated)
solutions. We then add the soft constraint shown in Equation 17
if target P; satisfies the constraint shown in Equation 11. The soft
constraint forces Z3 internally to search for new solutions using
Pareto priority but in the course of that search, if it can find a lower
value for the power as an optimal point, it can select it even if it
violates the soft constraint. Thus the soft constraint allows Z3 to
make an “up-hill’ climb in the search space in its search for Pareto
optimal solutions.

#target P; computed using Equations 1 through 6
#from the values of Bj, Dj,d;
(add sof't) P; > target P;

17)

3.3.3  Genetic Algorithm. We also developed a custom Genetic Al-
gorithm (GA) for comparison in this study given it is a widely
used heuristic-based optimization approach. In our GA formulation,
bandwidth {B;} and signal power {P;} are represented as separate
chromosomes. The GA first creates a group of random chromo-
somes as parents and crosses each father in the group with a ran-
dom mother. A cross is performed by selecting a random position
for each chromosome and concatenating the mother with the father
using this position. For example, a child bandwidth chromosome
using random position k consists of father bandwidth items B;—Bj
followed by mother bandwidth items By, —By for list length n. Af-
ter the crossing, the sum of child bandwidth may differ from the
total bandwidth. We update the items to conform to this constraint.
Specifically, we compute A = sum{child_B;} — total bandwidth. If
A > 0, we select a random item in the child_B; and subtract 1 from
it (if A < 0, we add 1). We repeat this process A — 1 times.

After crossing, we perform mutation to introduce chromosome
diversity. We choose a random number p € (0,1) and use it to
mutate the child items. For bandwidth, if 0.5 < p < 0.85, we do not
mutate. If 1 > 0.85, we left-rotate the items one position. If y < 0.5,
we subtract 1 from the maximum item and add 1 to the minimum
item in child_P;. For power, we use a different range for A € (0, 1).
For each item in child_P;, if 0 < A < 0.15, there is no mutation.
When 0.15 < A < 0.6, we add add or subtract 1 to/from child_P;
using a 50-50 probability and we only update the value if doing so
results in a value that is in the range (0.1 dbm, 21 dbm). Similarly,
we mutate each item +0.1 and +0.01, when A is in the range (0.6,
0.85) and (0.85, 1), respectively.

4 SOLVER EVALUATION

The overall goal of this investigation is to develop a tool for aiding
deployment design in remote IoT settings (cf. Section 5). Doing so
requires the use of a solver that is capable of optimizing the band-
width allocation among sensors so that the energy they consume is
minimized. In this section, we evaluate three different solvers: MI-
DACO, Z3 (SMT), and a genetic algorithm (GA) written specifically
for this project. In evaluating the solvers, we wish to determine
which solver provides the highest quality solution (i.e. the band-
width allocation that minimizes energy consumption) and also to
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investigate the relationship between solution quality and the com-
putational effort (measured in CPU time required by a solver to
find the solution).

4.1 Solver Evaluation Experimental Setup

All of the experiments were run using an AMD Ryzen 7 5800H
@3.20 GHz CPU with 16GB RAM and 4 cores. For the mixed-integer
programming solver, we use MIDACO Version 6.0 under a commer-
cial license, for SMT, we use Z3 Version 4.12.2, which is available
as open source from [34], and we developed the genetic algorithm
as a bespoke approach specifically for this paper.

To explore solver efficacy, we generate a set of 100 randomized
deployments and compare the solvers using this set as an input.
Each deployment in the set consists of 10 sensor nodes, where
anode’s data transmission requirement is drawn from a uniform
distribution on the interval (50, 150) and its distance from the access
point is drawn from a uniform distribution on the interval (50, 200).
For a specific individual deployment, we measure solution quality
as the energy resulting either from minimizing the min-max or the
min-sum objective function.

In all experiments, the units of data transmission size are megabits,
the distance units are meters, and we measure energy consumption
in millijoules (m]J). When reporting aggregate solution quality sta-
tistics (e.g. minimum, maximum, mean), we set a fixed duty cycle
(the units are seconds) for the 10 nodes and aggregate over the 100
randomized deployments.

Finally, to capture the “effort” each solver requires to create a
solution, we define the “computational effort budget” to be the
maximum wall-clock time the solver is allowed to use to compute a
solution. A solver may use less than this budget, but not more. We
define an “infinite” computational effort budget to be 5 hours.

Note that it is possible to generate a deployment for which there
is no allocation of bandwidth that will allow all 10 nodes to finish
transmission within the specified duty cycle. It is also possible that
a solution exists, but that a solver is not able to “find” it within
its computation effort budget. Finally, it is possible that multiple
solutions exist, in which case, we expect that the solver will return
the “best” one (i.e. the one that minimizes the objective function).
We term a solution that allows all 10 nodes to complete transmission
before the end of the duty cycle a “feasible” solution. We select the
100 deployment evaluation set such that all 100 deployments have
feasible solutions given a 2 second duty cycle (however, a particular
solver may not be able to generate a feasible solution for all 100
deployments).

4.2 Unlimited Solver Computational Effort

Figure 1 shows the efficacy of each solver for the 100-deployment
test set with respect to the min-max objective function (cf. Equation
8): a practically unlimited computational effort budget, and a 3-
second duty cycle. In the figure, the best (lowest) maximum energy,
mean energy, and minimum energy were generated by the MIDACO
solver. The SMT solver generated solutions that were somewhat
less energy efficient, and the GA solutions were less efficient than
the SMT solutions. This comparison illustrates the effectiveness
of using a high-quality, commercial solver over perhaps a more
intuitive constraint-based approach (SMT) or a solution that is



CF ’24, May 7-9, 2024, Ischia, Italy

= *2 I # midaco_min_max_best
£ 4 - smt_min_max_best
e .
S I ¥ ga_min_max_best
o
2.65

g
a 2.17)
g _| 1.87) 1.82
Q 2 1.57,
© 1.36,
>
on
—
(5}
<
s}

0 |

maximum mean minimum

max energy mMaX energy max energy

Figure 1: The figure compares the solvers for the min-max
objective function and an unlimited computational effort
budget. The y-axis is maximum energy consumption over
the 10 nodes (in mJ) and x-axis represents the maximum,
mean and minimum of over 100 randomized experiments.
The duty cycle is 3 seconds.
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Figure 2: The figure compares the solvers for the min-sum
objective function and an unlimited computational effort
budget. The y-axis is the maximum energy consumption over
the 10 nodes (in mJ) and x-axis represents the maximum,
mean and minimum of over 100 randomized experiments.
The duty cycle is 3 seconds.

easy to conceive, develop, and debug (GA), given an unconstrained
computational effort budget.

Figure 2 shows the same comparison as depicted in Figure 1, but
for the min-sum objective function (cf. Equation 9). These results
indicate that with “infinite” computational effort, each optimization
technique generates solutions that are approximately equivalent in
terms energy efficiency in each deployment. That is, it is “easier”
to optimize the total energy consumption (i.e min-sum) for the col-
lection of sensors compared to optimizing the energy consumption
for individual sensors (i.e. min-max). As such, this result argues
for deployment architectures in which the power infrastructure is
shared rather than implemented separately for each sensor.

Note that in our experiments, GA substantially underperforms
MIDACO and SMT for the min-max objective function (and all three
are approximately equivalent for the min-sum objective function).
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Figure 3: The figure compares the solvers for the min-max
objective function when each solver is given the same com-
putational effort budget. The y-axis is the average maximum
energy consumption over the 10 nodes (in mJ) and x-axis
represents the computational effort budget used to generate
the corresponding y-axis value. The duty cycle is 3 seconds.

Thus, for brevity, we focus in comparing MIDACO to SMT using
min-max for the remainder of this investigation.

4.3 Limited Solver Computational Effort

We next compare the solvers in terms of their computational ef-
ficiency relative to the energy efficiencies of the solutions they
produce. In these experiments, we limit the computational effort
budget given to each solver and look at the quality of the solutions
that are generated within the budget.

Figure 3 plots the average maximum energy consumption of
the 10 nodes across the 100 deployments in the test set on the y-
axis, as a function of the computational effort budget shown on
the x-axis. Note that SMT is not able to find at least one feasible
solution for all 100 test deployments with a computational effort
budget of less than 17 seconds (the graph only depicts averages
calculated over 100 test deployments). In contrast, MIDACO is
able to find some feasible solution for all 100 deployments using a
computational effort budget of as little as 1 second. Moreover, the
average quality of the solutions (the average energy consumption)
improves rapidly with additional effort budget until approximately
6 seconds, after which the improvement per additional second of
solver computation increases far more slowly until it is near zero.

Overall, the figure illustrates the average “efficiency” of the MI-
DACO and SMT solvers in terms of solution quality. That is, as each
solver is given more computational effort budget the quality of
the solution improves (i.e. the mean energy consumption is lower).
Moreover, for the same computational effort budget of 17 seconds or
greater, the mean solution quality generated by MIDACO is higher
(i.e. the mean maximum energy consumption is lower) compared
to SMT. Thus in terms of average expected performance against a
fixed computational effort budget, MIDACO is more performant
than SMT.

However, while SMT does not a produces a feasible solution
for all 100 test deployments when the effort budget is less than 17
seconds, it does find feasible solutions for a subset of the 100 test
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Figure 4: The figure compares the solvers for the min-max
objective function when each solver is allowed the same
computational effort. The y-axis is the average maximum
energy consumption over the 10 nodes (in mJ) and x-axis
represents the computational effort budget used to generate
the corresponding y-axis value. The duty cycle is 2.8 seconds.

deployments. Table 1 shows a sample of 5 deployments from the
deployment set. Column 1 shows the deployment index, column
2 shows the maximum energy consumption (in mJ) over the 10
nodes in the deployment and the time (in seconds) taken by MI-
DACO (in parentheses) which was limited to 4 seconds. Column 3
shows the energy consumption (in mJ) and the time (in seconds)
taken by SMT to find its first feasible solution for that particular
experiment. In column 4, we show the “chase” time - the additional
time (in seconds) MIDACO required to find a solution equivalent
or better than the first solution found by SMT shown in column
3. For example, in Exp #11, MIDACO achieved a solution in which
the maximum energy consumption was 6.02 mJ in 4 seconds. SMT
found its first feasible solution, corresponding to a maximum en-
ergy consumption of 2.80 mJ in 6 seconds. MIDACO required an
additional 12seconds to achieve a solution in which the maximum
energy consumption was less than or equal to the 2.80 m] achieved
by SMT.

Thus, when SMT finds a solution with little computational effort
budget, it is can be considerably better than the solution MIDACO
finds with the same computational effort budget. These results
suggest that we can use SMT and MIDACO in concert when the
computational effort is small. Specifically, we devote one half of
the computational effort budget to SMT and the other to MIDACO.
If SMT returns a solution, we compare it to the solution gener-
ated by MIDACO and use the solution that results in less energy
consumption. Otherwise, we use the MIDACO solution.

Finally, the “complexity” of the optimization problem each solver
must solve is roughly proportional to the deadline imposed by the
duty cycle. As duty cycle decreases, feasible solutions become more
“difficult” to find. Figure 3 shows results for a duty cycle of 3 seconds
and Figure 4 shows results for a duty cycle of 2.8 seconds.

Comparing Figures 3 and 4 which show the mean solution quality
(in mJ), SMT is unable to find 100 feasible solutions in less than 35
seconds of solver time with a duty cycle of 2.8 seconds compared to
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Table 1: Solution energy (mJ), solver duration (seconds), and
chase time for 5 specific randomized deployment solutions.

Exp # MIDACO SMT chase sec
solution mJ (sec) | solution m] (sec)

11 6.02 (4) 2.0 (6) 12

51 2.04 (4) 1.99 (1) 11

52 3.21 (4) 2.40 (2) 14

61 2.66 (4) 2.21 (12) 11

76 2.55 (4) 2.25 (<1) 1

17 seconds of solver time when the duty cycle is 3 seconds. When
the solver time is sufficient in both cases, the average quality of
the corresponding solutions is approximately the same. Thus, the
length of the duty cycle affects the ability of SMT to find a feasible
solution with a fixed computational effort budget and shorter duty
cycles require larger budgets.

4.4 Discussion of Solver Comparison

Given the formulation of the optimization problem described in
Section 3, it is perhaps unsurprising that MIDACO is almost always
more effective than SMT. For minimizing maximum energy con-
sumption, the problem is a non-linear mixed integer programming
optimization problem where only one quantity (communication
bandwidth) is integer-valued. MIDACO is a high-quality commer-
cial solution designed specifically for such problems.

What is surprising is that SMT can find a “good” solution with
limited computational effort for some deployments and that solution
may be considerably better than the one generated by MIDACO
with the same effort budget. From a practical perspective, when
the computational effort budget is small, these results militate for
“trying” SMT for a given deployment using some fraction of the
effort budget to possibly generate a “good” feasible solution. And
then giving the remainder of the budget to MIDACO (which is
sure to generate a feasible solution) to exploit the strengths of each
solver.

5 SOLVER-AIDED DEPLOYMENT DESIGN

The results discussed in Section 4 for a randomized test set indicate
that the MIDACO solver is generally more performant (in terms of
solution quality) compared to SMT or GA for the min-max objective
function. In this section, we outline our use of a solver to aid in
deployment planning.

Our overall approach is for the deployment engineer or mainte-
nance staff member to generate a list of data transfer requirements
(one per sensor node), a set of distances between each node and
the access point, and a duty cycle. Solving the min-max or min-sum
problem yields a list of signal power requirements and bandwidth
allocated to each sensor for each duty cycle.

From this information, the battery “drain” (in units of power)
required by each node in the deployment can be computed by
multiplying the energy required by the length of the duty cycle and
computing how many duty cycles take place during the worst case
hours of darkness. Using the charging rate and the worst-case hours
of available solar, it is possible to size the solar capacity to match
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or slightly exceed the battery drain such that both are minimal. At
present, deployment engineers typically overprovision the power
infrastructure in these settings using the manufacturer-reported
rates and maximal energy use by all devices. Using a solver-based
approach, the expense and infrastructure footprint, compared to a
maximal approach, can be reduced.

For example, consider the deployment transfer requirements
and distances shown in Equation 19. For a 3-second duty cycle,
the MIDACO solver generates the energy consumption estimates
shown in Equation 20 for the 10 sensors using the min-max objective
function. Converting mJ to Watts (W) for a 3 second duration (the
length of the duty cycle) yields the value in Equation 21 for each
duty cycle. In California (at one of our test site locations), the longest
nighttime duration in 2024 will be 14.12 hours (on December 23).
The battery drain for each sensor due to communication, then, is
the product of the values shown in Equation 21 and the number
of 3-second duty cycles that will take place during the hours of
darkness. As an example, if the sensors are “awake” for a 3-second
duty cycle every minute, the batteries must sustain 848 duty 3-
second cycles in 14.12 hours. Multiplying the values in Equation 21
by 848 would yield the battery drain, in Watt-seconds, that the
battery must sustain and recharge in every diurnal cycle due to
communication.

5.1 Making Infeasible Solutions Feasible

It is also possible to adapt our methodology to cases where the solver
cannot find a feasible solution. As discussed in Section 4, longer
duty cycles (at the possible expense of additional battery capacity)
improves optimization performance. However if the deployment
functionality depends on a specific duty cycle for which the solver
yields no feasible solution, it still may be possible to employ our
approach. In particular, if the sensor nodes can be moved closer
to the access point or the amount of data they are required to
transfer per duty cycle can be reduced, it is possible to take the
“best” infeasible solution and adjust either the distances or the
transfer sizes to make that solution feasible.

For example, consider again the deployment configuration shown
in Equation 19, the min-max objective function, and a duty cycle of
2 seconds. The MIDACO solver does not generate a feasible solution
for this deployment using an unlimited computational effort budget
(and SMT does not either). However, it does allow us to rank the
infeasible solutions in terms of the objective function and the “best”
of the infeasible solutions is shown in Equation 18. This solution
is infeasible because the first and fourth sensors in the list cannot
complete their communication transfers within the 2-second duty
cycle. That is, in Equation 18, the first and fourth sensor completes
their data transfer in 2.53 and 2.08 seconds, which is longer than
the 2-second duty cycle.

energy(mJ) = [2.58,1.67,1.33,2.13, 1.55,
1.6,1.17,1.99,1.55, 1.34]

transfer_time(s) = [2.53,1.63,1.30, 2.08, 1.51,
1.56,1.14,1.94,1.51,1.31]

(18)

We initially focus on changing the size of the data, to satisfy the
duty cycle constraint. In Equation 6, we keep the value of deadline
as 2 seconds, the data size as an unknown variable to solve for, and
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the transmission speed is the transmission speed we derive from
Equations 1 through 5. Here, we use the values of signal power and
bandwidth from the “best” infeasible solution and keep the same
distance value from Equation 19 for sensor 1 and sensor 4. After
deriving the transmission speeds for each sensor, we solve for the
data sizes that can satisfy the duty cycle constraint, using the other
values from “best” infeasible solution generated by MIDACO. This
means the worst case energy consumption is still minimized to
the extent it could be by the “best” infeasible solution MIDACO
generated. Using this adjustment generates data size values shown
in Equation 22. Note that a comparison of Equation 22 to the data
list in Equation 19 for sensors 1 and 4 indicates that reducing the
data transfer of sensor 1 from 106 megabits to 86.76 megabits, and
sensor 4 from 133 megabits to 127.33 megabits creates a feasible
solution for a duty cycle of 2s.

Alternatively, if the data size cannot be changed, but the sensor
can be moved, it is possible to perform a similar adjustment for
distance using Equation 1. This process of derivation is a bit more
involved as we start backwards from Equation 6 to calculate the
target transmission speed that would meet the duty cycle constraint
of 2 seconds, i.e the transmission time would be 2 seconds and the
data size would be the same as the input (from Equation 19) for
sensors 1 and 4.

Consider sensor 1 as an example. From its target transmission
speed, we can derive the value of the target SNR using Equation 5.
Here we keep the bandwidth value B; as the value from the “best”
infeasible solution generated from by solver. Using this value, we
derive the target P: from Equation 4 and then calculate the target
P; from Equation 3. Finally we calculate the path loss (PL;) for

sensor 1 from Equation 2, keeping target P; from the previous
equation and the signal power P; as the value received from the
“best” infeasible solver solution. We substitute the value for path
loss in Equation 1 and solve the equation for dj, the distance value
for sensor 1. The same steps apply for sensor 4 as well.

The modified distance values are shown in Equation 23. As with
adjusting the data requirements, we can compare Equation 23 to the
distance list in Equation 19 for sensors 1 and 4. We find that moving
sensor 1 from 156 meters from the access point to 86.76 meters, and
sensor 4 from 67 meters to 58.74 meters, creates a feasible solution
for a duty cycle of 2 seconds.

While in this example, only two values exceed the deadline im-
posed by the duty cycle, there can be situations where multiple
values can exceed the deadline (up to all of the sensors may need
data or distance modifications to reach the deadline). The method-
ology works for either scenario as the data size transfer, distance
are independent across sensors (i.e. changing a value in one does
not impact the value of another).

data(MB) = [106,91, 136, 133,121, 96, 113, 85, 78, 52]

19
distance(m) = [156,97, 29,67, 55,75, 35,199, 184, 178] (19)

energy(m]) = [1.74,1.67,1.75,1.70, 1.67,

(20)
1.60, 1.64, 1.67, 1.75, 1.75]
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power(W) = [0.58,0.56,0.58,0.57, 0.56,

(21)
0.53,0.55,0.56, 0.58, 0.58]

new_data(MB) = [83.77,91, 136, 133,121, 96, 113, 85,78, 52] (22)

new_dist(m) = [86.76, 97, 29, 58.74, 55, 75, 35, 199, 184, 178] (23)

Thus, for those applications where the duty cycle cannot be
extended and the solver cannot find a feasible solution, the deploy-
ment engineer can choose to move sensors or to recode sensors
to transfer less data per duty cycle (or to move some and recode
others) in the “best” infeasible solution to create a feasible one. If
the engineer’s goal is to make the smallest possible change to the
deployment that is infeasible, understanding whether changing
data transfer or distance requires a larger perturbation.

These results illustrate how solver-aided deployment design can
be used to “co-design” a deployment. In the cases where a deploy-
ment results in a feasible solution, the power infrastructure capacity
that is necessary can be directly computed. When no feasible so-
lutions can be found, the approach allows a deployment engineer
to understand what duty cycle (and resulting power infrastructure
capacity) is feasible (by experimentally extending the duty cycle).
When an acceptable duty cycle cannot be found, the engineer can
use the method to determine a feasible solution from the best in-
feasible solution. Thus, when there is a choice, it is possible to
determine whether changing the data payload for one or more
sensors or moving one or more sensors (or some combination) will
perturb the deployment less and fit the goals of the deployment
best. Engineers can then make informed decisions about how to
change a deployment to meet the objectives.

6 CONCLUSIONS

In this paper, we study the problem of optimizing edge deployments
using wireless network allocation between sensors and a wireless
access point, such that the energy required to facilitate communi-
cation is minimized. We define a non-linear optimization problem
that minimizes radio energy used by a set of sensors based on the
amount of data transmitted by each sensor to a wireless access point
and its distance from the access point. Additionally, we investigate
three methods for solving this optimization problem and detail how
the problem must be formulated to fit the requirements of each.

Our results show that a commercial mixed-integer non-linear
programming solver (MIDACO) is generally more effective than
both an SMT solver (Z3 in this study) and a bespoke genetic algo-
rithm. However, for a specific deployment, SMT can produce the
best solution with the least amount of computational budget even
though it is not possible to predict a priori whether it will produce
any solution at all. We also find that for randomized deployments,
infeasible solutions are often “close” to feasible ones. Thus, in a
practical system, when a solver is unable to generate a feasible solu-
tion, it is possible to modify the best infeasible solution to produce
a feasible one using only small perturbations.

Finally, this work illustrates the process of co-design that is neces-
sary for remote IoT in which the sensing and actuation functionality,
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the networking functionality, the electrical power infrastructure,
and spatial infrastructure placement must all be designed together.
It also outlines the practical considerations associated with building
tooling to facilitate this co-design process for edge deployments.

This work has been supported in part by NSF award CNS-2107101
and by Norwegian Research Council DILUTE award 262854/F20
and AirQMan award 322473.
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