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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS IN
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Abstract. We prove Besov boundary regularity for solutions of the homogeneous Dirichlet
problem for fractional-order quasi-linear operators with variable coe�cients on Lipschitz domains ⌦
of Rd. Our estimates are consistent with the boundary behavior of solutions on smooth domains and
apply to fractional p-Laplacians and operators with finite horizon. The proof exploits the underlying
variational structure and uses a new and flexible local translation operator. We further apply these
regularity estimates to derive novel error estimates for finite element approximations of fractional
p-Laplacians and present several simulations that reveal the boundary behavior of solutions.
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1. Introduction. In recent years, fractional-order and, more generally, nonlocal
operators have received a great deal of attention in applied sciences and engineering.
This is mainly because such operators arise in jump processes modeling the ubiquitous
phenomenon of anomalous di↵usion [45]. In this vein, the fractional Laplacian, an
outstanding nonlocal operator, arises as a limit of a long-jump random walk [50].
Among other applications of nonlocal operators, we mention finance [22, 42], ground-
water solute transport [9], and biological systems with binding, crowding, or trapping,
such as electrodi↵usion of ions within nerve cells [40, 41].

For problems with a variational structure, finite element methods provide the best
approximation in the energy norm, and are amenable to an analysis with low regularity
conditions. In our setting, the latter is fundamental because solutions of fractional-
order problems generically develop algebraic boundary layers. Solution regularity
estimates in the Sobolev scale are a key ingredient to prove a priori convergence rates
for the finite element discretization of such problems.

However, most progress in that direction and most computational studies have
been limited to either linear or semi-linear problems. This paper deals with fractional-
order quasi-linear operators. We prove elliptic regularity estimates up to the boundary
of the domain, which is only assumed to be bounded and Lipschitz. The model op-
erator we consider is the so-called (p, s)-fractional Laplacian (s 2 (0,1), p 2 (1,1)),
but our theory is also valid for a broader class of operators, including operators
with finite horizon. In this regard, we remark that our regularity estimates for
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4007

finite-horizon operators are even new for linear problems. As an application of our
regularity estimates, we consider direct finite element discretization of the problems
under study and prove convergence rates in the energy norm.

Let us make precise the problem setting in this paper. Let ⌦ ⇢ Rd (d � 1)
be a bounded, Lipschitz domain, s 2 (0,1), and p 2 (1,1). We consider energy
functionals whose domain is the fractional-order Sobolev space fW s

p
(⌦), namely func-

tions in W
s

p
(Rd) that vanish in ⌦c := Rd

\ ⌦. More precisely, for a given function

G : Rd
⇥ Rd

⇥ R ! (0,1), with (x, y,⇢) 7! G(x, y,⇢), and f 2 (fW s

p
(⌦))0, we are

interested in minimizers of the energy

F(u) :=

ZZ

Q⌦

G

✓
x, y,

u(x)� u(y)

|x� y|s

◆
1

|x� y|d
dydx� hf,ui.(1.1)

Above, h·, ·i stands for the duality pairing between (fW s

p
(⌦))0 and fW s

p
(⌦) and

Q⌦ := (Rd
⇥Rd) \ (⌦c

⇥⌦c).

Specific requirements on G are listed in Hypothesis 2.11 below. The Gateaux di↵er-
ential of F at u is given by A : fW s

p
(⌦)! (fW s

p
(⌦))0,

Au(x) :=

Z

Rd


G⇢

✓
x, y,

u(x)� u(y)

|x� y|s

◆
�G⇢

✓
y,x,

u(y)� u(x)

|x� y|s

◆�
1

|x� y|d+s
dy,

(1.2)

where G⇢ denotes the derivative of G with respect to ⇢. For the moment, let us
assume that G satisfies the relation G(x, y,⇢) =G(y,x,�⇢) for a.e. x, y,⇢. While this
assumption allows us to write the minimization problem in a strong form in a concise
fashion, it is not necessary for our theoretical results. Under this additional condition,
we have G⇢(x, y,⇢) =�G⇢(y,x,�⇢) for a.e. x, y,⇢ and we can write

Au(x) := 2

Z

Rd

G⇢

✓
x, y,

u(x)� u(y)

|x� y|s

◆
1

|x� y|d+s
dy.(1.3)

Minimizers of (1.1) are weak solutions of the homogeneous Dirichlet problem for
the operator A:

⇢
Au= f in ⌦,
u= 0 in ⌦c

.
(1.4)

We assume standard hypotheses on G in order to apply the direct method in the
calculus of variations. As a prototypical example, we consider G(x, y,⇢) = Cd,s,p

2p |⇢|
p

with Cd,s,p defined below. Then, G⇢(x, y,⇢) =
Cd,s,p

2 |⇢|
p�2

⇢, and

Au(x) = (��)s
p
u(x) :=Cd,s,p

Z

Rd

|u(x)� u(y)|p�2(u(x)� u(y))

|x� y|d+sp
dy(1.5)

is the so-called fractional (p, s)-Laplacian (or fractional p-Laplacian of order s). We
define the normalizing constant Cd,s,p as

Cd,s,p =
s(1� s)p �(ps+d

2 ) 22s�2

⇡
d�1

2 �( (p�2)s+3
2 )�(2� s)

.(1.6)
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4008 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

This choice is somewhat arbitrary, but for p = 2 it allows us to recover the inte-
gral fractional Laplacian, which is the pseudodi↵erential operator with symbol |⇠|2s.
Moreover, for every smooth function v 2 C

1
c
(Rd) we have the asymptotic behaviors

[15, 43, 23]

lim
s!0+

(��)s
p
v= |v|

p�2
v, lim

s!1�
(��)s

p
v=�r · (|rv|

p�2
rv).(1.7)

We also point out that the integral in (1.5) needs to be understood in the principal
value sense if s� 1� 1

p
.

Another way to write the operator in (1.5) is

(��)s
p
u(x) = 2

Z

Rd

✓
|u(x)� u(y)|

|x� y|s

◆p�2 (u(x)� u(y))

|x� y|d+2s
dy,(1.8)

which suggests that, heuristically, one can understand the fractional (p, s)-Laplacian
as a weighted fractional Laplacian of order s, with a weight ( |u(x)�u(y)|

|x�y|s )
p�2. This is

analogous to the local case, for which the p-Laplacian (��)pu := �div(|ru|
p�2

ru)
can be regarded as a Laplacian with weight |ru|

p�2. The Dirichlet problem for the
local p-Laplacian arises in a number of models of physical processes, including non-
Newtonian fluids [6], turbulent flows in porous media [26], and global climate modeling
[27]. We refer the reader to [8] for a historical account and other applications of this
operator, and to [7, 19, 33] for its numerical treatment.

The representation (1.8) also shows that the operator (1.5) corresponds to a de-
generate di↵usion if p > 2 and to a singular one if p < 2. We refer the reader to
[18] for several motivations for considering nonlinear operators like (1.5), to [46] for a
thorough discussion about existence and regularity results for problems driven by the
fractional (p, s)-Laplacian, and to [24] for a monotone finite di↵erence scheme with
consistency error estimates for C4 functions and applications to the Cauchy problem
for such an operator.

Depending on whether the resulting operator A in (1.2) is degenerate or singular,
our regularity estimates are somewhat di↵erent from one another. The main result of
our paper is Theorem 3.4, which derives Besov regularity estimates for weak solutions
to (1.4) under suitable assumptions on the nonlinearity G (see Hypothesis 2.11 below).
Applied to the (p, s)-Laplacian (1.5), such a theorem reads as follows.

Theorem A (maximal Besov regularity). Let ⌦ be a bounded Lipschitz domain,
s2 (0,1), p2 (1,1), p0 = p

p�1 , and let u2fW s

p
(⌦) be a weak solution to (1.4) with the

operator A given by (1.5).

If p� 2 and f 2B
�s+ 1

p0

p0,1 (⌦), then u2 Ḃ
s+ 1

p
p,1 (⌦) and

kuk
Ḃ

s+ 1

p
p,1 (⌦)

. kfk

1

p�1

B

�s+ 1

p0
p0,1 (⌦)

.(1.9)

If p < 2 and f 2B
�s+ 1

2

p0,1 (⌦), then u2 Ḃ
s+ 1

2

p,1 (⌦) and

kuk
Ḃ

s+1

2
p,1 (⌦)

. kfk

2�p
p�1

W
�s
p0 (⌦)

kfk
B

�s+1

2

p0,1 (⌦)
.(1.10)

The hidden constants in (1.9) and (1.10) depend on d, s, p, and ⌦.

These Besov estimates extend classical ones [47, Theorems 2 and 2’] to the
fractional setting. To check optimality, we consider the prototypical 1d-function
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4009

v(x) = x
s

+, which mimics the boundary behavior of solutions of (1.4) for the op-
erator (1.5); cf. [5, 36, 37, 38]. A simple calculation using second di↵erences shows
that v 2B

s+1/p
p,1 (⌦) for all p 2 (1,1), which reveals that (1.9) is optimal while (1.10)

is suboptimal. Moreover, by a simple embedding argument, (1.9) and (1.10) give rise
to Sobolev regularity estimates (cf. Corollary 3.5). Here, we only state the result
applied to the (p, s)-Laplacian.

Corollary 1.1 (maximal Sobolev regularity). Let the assumptions of Theo-

rem A be satisfied. For p2 [2,1) and f 2B
�s+1/p0

p0,1 (⌦), then

kuk
fW

s+ 1

p
�"

p (⌦)
. "

�
1

p kfk

1

p�1

B

�s+ 1

p0
p0,1 (⌦)

is valid provided "2 (0, s+ 1/p). If p2 (1,2) and f 2B
�s+1/2
p0,1 (⌦), then

kuk
fW

s+1

2
�"

p (⌦)
. "

�
1

p kfk

2�p
p�1

W
�s
p0 (⌦)

kfk
B

�s+1

2

p0,1 (⌦)

holds provided "2 (0, s+ 1/2).

For p = 2, this estimate turns out to be consistent with well-known optimal
regularity for solutions to the Dirichlet problem for the integral fractional Laplacian
on smooth domains; cf. [1, 35, 51]. Importantly, our estimates are valid for Lipschitz
domains and in that sense generalize the ones derived in [4, 12] to a quasi-linear
setting. Additionally, our estimates are valid under general conditions on the function
G. In this vein, we point out [32], where, for a class of nonlinear operators related to
the ones in this work, analysis is performed in fractional-order Orlicz–Sobolev spaces
and Hölder regularity estimates are derived for Dirichlet problems on bounded C

1,1

domains.
Finally, the maximal Besov regularity estimates and the continuity properties of

the solution operator in case f 2 W
�s

p0 (⌦) = (fW s

p
(⌦))0 imply the continuity of the

solution operator in intermediate spaces (cf. Corollary 3.8). For the (p, s) Laplacian,
we obtain the following.

Corollary 1.2 (regularity pickup for rough data). Let the assumptions of The-
orem A be satisfied, and let ✓ 2 (0,1). Then, the solution operator f 7! u is bounded
between the following spaces:

if p� 2 and f 2W
�s+ ✓

p0

p0 (⌦) ) u2fW s+ ✓
p

p (⌦);

if 1< p< 2 and f 2W
�s+ ✓

2

p0 (⌦) ) u2fW s+ ✓
2

p0 (⌦).

The paper is organized as follows. Section 2 collects preliminary material about
function spaces and Lipschitz domains, introduces a flexible local translation operator
that plays an instrumental role in our derivation of regularity estimates, specifies the
assumptions we require on the energy, and discusses the use of localized translations
in the proof of regularity of energy minimizers. Section 3 contains the core of the
paper, and studies the regularity of solutions through the derivation of suitable energy
bounds. It also discusses the extension of the technique to operators with finite horizon
and truncated Laplacians in the linear setting. Section 4 proposes and analyzes a finite
element discretization of problems of the form (1.4), and exploits (1.9) and (1.10) to
prove error bounds for all p 2 (1,1). Finally, section 5 exhibits some numerical
experiments that explore the accuracy of this approach and the boundary behavior
of solutions to the (p, s)-Laplacian (1.5) and linear truncated Laplacians.
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4010 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

2. Notation and assumptions. This section establishes the notation and col-
lects some preliminary results. We provide some discussion on function spaces and
Lipschitz domains. We analyze function space characterizations by means of transla-
tion operators, discuss the relation between these translations and the regularity of
minimizers of (1.1), and introduce a suitable localized translation operator to derive
regularity estimates. Finally, we make explicit assumptions on the energy, discuss
some of their consequences, and comment on how they apply to the model operator
(1.5).

Given a, b2R, we write a. b if a cb for some nonessential constant c. The value
of such a constant may vary from one occurrence to another. When emphasizing the
dependency of the constant c, we retain the notation a  cb. If a . b and b . a, we
write a' b.

2.1. Sobolev and Besov spaces. Here, we briefly review some important facts
about Sobolev and Besov spaces. We follow the notation from [12] and refer the
reader to that work for further details.

Given � 2 (0,1) and p2 [1,1), we consider the zero-extension Sobolev space

fW �

p
(⌦) :=

�
v 2W

�

p
(Rd) : supp v⇢⌦

 
;

this is a Banach space furnished with the norm

kvkfW�
p (⌦) := |v|W�

p (Rd) =

✓
Cd,s,p

2

ZZ

Rd⇥Rd

|v(x)� v(y)|p

|x� y|d+�p
dxdy

◆1/p

.

Because functions in fW �

p
(⌦) vanish in ⌦c, the integrand above vanishes on ⌦c

⇥ ⌦c

and one can e↵ectively compute the integral over Q⌦ = (Rd
⇥Rd) \ (⌦c

⇥⌦c).
We define Besov spaces by real interpolation. Given a pair of compatible Banach

spaces (X0,X1), u2X0 +X1, and t > 0, we consider the K-functional

K(t, u) := inf {ku0kX0
+ tku1kX1

: u= u0 + u1, u0 2X0, u1 2X1} .(2.1)

For ✓ 2 (0,1) and q 2 [1,1], we define the interpolation spaces
⇥
X0,X1

⇤
✓,q

:= {u2X0 +X1 : kuk(X0,X1)✓,q <1},

where

kuk[X0,X1]✓,q :=

( h
q✓(1� ✓)

R
1

0 t
�(1+✓q)

|K(t, u)|q dt
i1/q

if 1 q <1,

sup
t>0 t

�✓
|K(t, u)| if q=1.

(2.2)

The normalization factor q✓(1 � ✓) in (2.2) guarantees the correct scalings in the
limits ✓! 0, ✓! 1 and q!1; see [44, Appendix B] for a detailed proof in the case
of interpolation between Sobolev spaces with integrability index 2. Because we are
interested in spaces with di↵erentiability order between zero and two, given p2 [1,1)
we let X0 :=L

p(⌦), X1 :=W
2
p
(⌦), � 2 (0,2), and q 2 [1,1] to define the Besov spaces

B
�

p,q
(⌦) :=

⇥
L
p(⌦),W 2

p
(⌦)
⇤
�/2,q

, Ḃ
�

p,q
(⌦) := {v 2B

�

p,q
(⌦) : supp v⇢⌦}.

By reiteration, we have the following result regarding interpolation of Besov spaces
(cf. [10, Theorem 6.4.5]): given �0 6= �1, 1 p, q0, q1, r1, and 0< ✓< 1,

�
B

�0

p,q0
(⌦),B�1

p,q1
(⌦)
�
✓,r

=B
�

p,r
(⌦), where �= (1� ✓)�0 + ✓�1.(2.3)
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4011

Importantly, we have B
�

p,p
(⌦) =W

�

p
(⌦) for all p 2 [1,1), � 2 (0,2) \ {1}. In the

case � = 1, we only have the equality B
1
2,2(⌦) = H

�(⌦), while B
1
p,p

(⌦) ⇢ W
1
p
(⌦) if

p < 2 and B
1
p,p

(⌦) � W
1
p
(⌦) if p > 2; cf. [3, section 7.67]. Moreover, we have the

following inclusions between Besov spaces on bounded Lipschitz domains [49, section
3.2.4, section 3.3.1]:

B
�

p,q0
(⌦)⇢B

�

p,q1
(⌦), if �> 0, 1 p1, 1 q0  q1 1;

B
�1

p,q1
(⌦)⇢B

�0

p,q0
(⌦) if 0< �0 < �1, 1 p1, 1 q0, q1 1.

We are interested in making precise the statement about inclusion of a higher-order
Besov space with integrability index p 2 [1,1) and second parameter q = 1 into
a lower-order Sobolev space with the same integrability index. Concretely, the next
lemma shows the scaling of the continuity constant.

Lemma 2.1 (embedding). Let ⌦⇢Rd be a bounded Lipschitz domain, p2 [1,1),
� 2 (0,2) \ {1}, and "2 (0,2� �). Then, B�+"

p,1
(⌦)⇢W

�

p
(⌦) with

kvkW�
p (⌦) 

✓
�(2� �)1+

"
�

"

◆ 1

p

kvk
B

�+"
p,1(⌦) 8v 2B

�+"

p,1
(⌦).(2.4)

Proof. We exploit the characterization of Besov and fractional-order Sobolev spa-
ces as interpolation spaces between integer-order Sobolev spaces. More precisely, if
the K-functional corresponds to interpolation between the spaces X0 = L

p(⌦) and
X1 =W

2
p
(⌦), we recall the norm definitions

kvk
B

�+"
p,1(⌦) = sup

t>0

⇣
t
�

�+"
2 |K(t, v)|

⌘
,

and

kvk
p

W�
p (⌦) =

p�(2� �)

4

Z
1

0
t
�1��p

2 |K(t, v)|pdt

for � 2 (0,2)\{1}, according to the remark following (2.3). We split the integral above
as the sum of the integrals between 0 and N and between N and 1, with N > 0 to
be chosen. A straightforward calculation gives

Z
N

0
t
�1��p

2 |K(t, v)|pdt sup
t>0

t
�

(�+")p
2 |K(t, v)|p

Z
N

0
t
�1+ "p

2 dt=
2N

"p
2

"p
kvk

p

B
�+"
p,1(⌦)

.

Additionally, for any v 2 B
�+"

p,1
(⌦) and t � 0, we choose the trivial decomposition

v= v+ 0 in (2.1) to obtain

|K(t, v)| kvkLp(⌦)  kvkW�
p (⌦).

This gives rise to

Z
1

N

t
�1��p

2 |K(t, v)|pdt kvk
p

W�
p (⌦)

Z
1

N

t
�1��p

2 dt=
2N�

�p
2

p�
kvk

p

W�
p (⌦),

and thus

kvk
p

W�
p (⌦) 

�(2� �)N
"p
2

2"
kvk

p

B
�+"
p,1(⌦)

+
(2� �)N�

�p
2

2
kvk

p

W�
p (⌦).
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4012 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

It now su�ces to fix N such that (2��)N��p
2

2 = 1
2 , namely N = (2��)

2

�p , and kick back
the last term in the right-hand side above to arrive to the desired estimate (2.4).

Given p 2 [1,1], we denote by p
0 its conjugate exponent, namely p

0 = p

p�1 . For

� 2 (0,1) and p, q 2 (1,1], we consider W�1
p

(⌦) := (fW 1
p0(⌦))0, define

B
��

p,q
(⌦) :=

�
L
p(⌦),W�1

p
(⌦)
�
�,q

,

and point out that we have the duality [12]

Ḃ
�

p0,q0(⌦) = (B��

p,q
(⌦))0.

It is common practice to furnish Besov spaces with equivalent norms based on
L
p-norms of di↵erence quotients, instead of the interpolation norm. Given ⇢> 0,

⌦⇢ := {x2⌦ : dist(x,@⌦)> ⇢}, ⌦⇢ := {x2Rd : dist(x,⌦)< ⇢},

and a set of admissible directions D⇢Rd, typically a ball, we denote

|v|B�
p,q(⌦;D) :=

 
q�(2� �)

Z

D

kvh � 2v+ v�hk
q

Lp(⌦|h|)

|h|d+q�
dh

!1/q

for p, q 2 [1,1) while for q=1 we let

|v|B�
p,1(⌦;D) := sup

h2D

kvh � 2v+ v�hkLp(⌦|h|)

|h|�
,

where vh(x) := v(x+ h) is the translation with vector h 2 Rd. It is well known that,
if D is a ball, then the norm k · kLp(⌦) + | · |B�

p,q(⌦;D) is equivalent to the Besov norm
k·kB�

p,q(⌦) defined through interpolation [3, Theorem 7.47]. Moreover, [12, Proposition
2.2] shows that balls D can be replaced by suitable convex cones in the definition of
Besov seminorms for q = 1. More precisely, let us assume D ⇢ Rd is bounded and
star-shaped with respect to the origin. We say that D generates Rd if there exists
⇢0(D)> 0 such that for every ⇢ ⇢0(D) and every h2D⇢(0), the ball of radius ⇢ and
center 0, there exists {hj}

d

j=1 ⇢D [ (�D) satisfying

h=
dX

j=1

hj ,

dX

j=1

|hj | c|h|(2.5)

with a constant c > 0 only dependent on D.
Let us briefly comment on the use of d vectors in the last definition. Since 02D,

one could set hj = 0 if needed. The worst case is the one in which {v1, . . . , vd} forms
a basis of Rd and D = {�vi : � 2 [0,1], i = 1, . . . , d}: in such a case, in general one
must take combinations with d vectors in (2.5).

We are mostly interested in the case in which D is a convex cone generating
Rd. In that case, one can e↵ectively take combinations with two vectors in (2.5).
Indeed, because D has nonempty interior one can take h1 2 int(D) and ⇢0 such that
D⇢0

(h1)⇢D. Then, h2 := h1+h2D for every h2D⇢0
(0), and this is precisely (2.5).

The following equivalence is proved in [12, Proposition 2.2].
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4013

Proposition 2.2 (Besov seminorms using cones). Let D be a convex cone gener-
ating Rd and let B ⇢Rd be a ball. If � 2 (0,2) and p2 [1,1), then for every function
v : Rd

!R we have |v|B�
p,1(⌦;D) ' |v|B�

p,1(⌦;B).

We will decompose ⌦ into overlapping balls and apply Proposition 2.2 to subdo-
mains ! made of intersections of such balls with ⌦. The convex cone D will depend on
! and will be dictated by the Lipschitz property of ⌦. However, we will omit writing
D in B

�

p,q
(!) for simplicity of notation but without compromising clarity.

We can estimate higher-order Besov norms, possibly of order higher than one,
in terms of di↵erence quotients of Besov norms of order less than one. We ex-
press this instrumental reiteration property as follows and refer the reader to [12,
Proposition 2.1].

Proposition 2.3 (reiteration of Besov seminorms). Let ! ⇢ Rd be a bounded
Lipschitz domain, s 2 (0,1), p, q 2 [1,1], � 2 (0,1], and let D be a set generating Rd

and star-shaped with respect to the origin. Then,

|v|
B

s+�
p,q (!) .

 Z

D

|v� vh|
q

W s
p (!)

|h|d+q�
dh

!1/q

, q 2 [1,1),

|v|
B

s+�
p,1(!) . sup

h2D

1

|h|�
|v� vh|W s

p (!).

2.2. Lipschitz domains. We next briefly state a few well-known but relevant
results regarding Lipschitz domains in Rd.

Definition 2.4 (admissible outward vectors). For every x0 2 Rd and ⇢ 2 (0,1],
we define the set of admissible outward vectors

O⇢(x0) = {h2Rd : |h| ⇢, (D2⇢(x0) \⌦) + th⇢⌦c
, 8t2 [0,1]}.

An important fact about bounded Lipschitz domains is that they satisfy a uniform
cone property. This can be stated in the following fashion [34, section 1.2.2].

Proposition 2.5 (uniform cone property). If ⌦ is a bounded Lipschitz domain,
then there exist ⇢ 2 (0,1], ✓ 2 (0,⇡], and a map n : Rd

! S
d�1 such that, for every

x2Rd,

C⇢(n(x),✓) := {h2Rd : |h| ⇢, h · n� |h| cos✓}⇢O⇢(x).

Besov seminorms can be equivalently written as sums of norms over partitions,
as long as the partitions have some overlap. We refer the reader to [12, Lemma 2.6].

Lemma 2.6 (localization). Let p, q 2 [1,1] and � 2 (0,2). Let {Dj}
J

j=1 be a finite
covering of ⌦ by balls of radius ⇢, Dj = D⇢(xj). Then, v 2 B

�

p,q
(⌦) if and only if

v
��
⌦\Dj

2B
�

p,q
(⌦\Dj) for all j = 1, . . . , J , and

kvk
p

B�
p,q(⌦) '

JX

j=1

kvk
p

B�
p,q(⌦\Dj)

.(2.6)

Moreover, for �� ⇢, let {Dj}
J

j=1 be a finite covering of ⌦� and let v : Rd
!R be such

that supp(v)⇢⌦. Then, v 2 Ḃ
�

p,q
(⌦) if and only if v

��
Dj

2B
�

p,q
(Dj) for all j = 1, . . . , J ,

and

kvk
p

Ḃ�
p,q(⌦)

' |v|
p

Ḃ�
p,q(⌦)

'

JX

j=1

|v|
p

B�
p,q(Dj)

.(2.7)

The equivalence constants above depend on s, p, q,⌦ and the covering chosen.
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4014 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

2.3. Localized translation operator. Our next goal is to construct a smooth
operator that resembles a translation around a certain given point x0 2 Rd, while it
coincides with the identity away from x0. Such localized translation operator plays an
instrumental role in our derivation of regularity estimates.

Given x0 and ⇢, we fix a cut-o↵ function � such that 0 � 1, �⌘ 1, on the ball
D⇢(x0) of radius ⇢ centered at x0, supp(�)⇢D2⇢(x0). Given h2Rd, we define

Thv(x) := v
�
x+ h�(x)

�
=
�
v � Sh

�
(x),(2.8)

where the map Sh := I + h� is defined from Rd to Rd. We restrict our consideration
to |h| small enough such that the Jacobian of Sh satisfies

1

2
I 4rSh = I + h⌦r�4 2I.(2.9)

Thus Sh is a one-to-one mapping from D2⇢(x0) to D2⇢(x0). It is also one-to-one from
Rd to Rd and coincides with the identity in D2⇢(x0)c.

In [47, 12], the localized translation operator eThv := �vh+(1��)v was employed
instead. The translation operator Th in (2.8) is somewhat more flexible than eTh, in
the sense that it gives rise to cleaner regularity estimates in which a priori one gains
one full derivative; compare the right-hand side in (3.5) below with the one in [12,
formula (3.3)]. This leads to a simpler bootstrapping argument than in [12]. We
return to this point in Remark 3.3 below.

Remark 2.7 (properties of Sh and S
�1
h

). Some important properties of the trans-
formations Sh and S

�1
h

follow immediately from their definitions. We have the in-
equalities

|Sh(x)� x|. |h|, 8x2Rd
,(2.10)

|det(rSh(x))� 1|. |h|, 8x2Rd
,(2.11)

����
|x� y|

|Sh(x)� Sh(y)|
� 1

����. |h|, 8x, y 2Rd
.(2.12)

Analogous properties also hold for S�1
h

.

Remark 2.8 (boundedness of translations). Clearly, the operator Th in (2.8) is
bounded from L

p(Rd) to L
p(Rd) and, more in general, from W

k

p
(Rd) to W

k

p
(Rd) for

every k 2N. Therefore, it is also bounded from B
�

p,q
(Rd) to B

�

p,q
(Rd) for any noninte-

ger �> 0. Moreover, if h2O⇢(x0) is an admissible outward vector (cf. Definition 2.4)
and v 2 Ḃ

�

p,q
(⌦), we have

x2⌦c
\D2⇢(x0) : 0 �(x) 1) Sh(x) = x+ h�(x)2⌦c

) Thv(x) = 0,

x2⌦c
\D2⇢(x0) : �(x) = 0) Thv(x) = v(x) = 0.

Therefore, Th is also a bounded operator from Ḃ
�

p,q
(⌦) to Ḃ

�

p,q
(⌦).

Lemma 2.9 (moduli of continuity). Given ⇢ > 0, x0 2 Rd, and a function � as
above, we consider the localized translation operator Th given in (2.8) with h 2 Rd

such that (2.9) holds. Then, for all p, q 2 [1,1] and � 2 (0,1) we have

kv� ThvkLp(D2⇢(x0)) . |h|
�
kvkB�

p,q(D2⇢(x0)) 8v 2B
�

p,q
(D2⇢(x0)).(2.13)

Moreover, for all r > 0 and � 2 [0,1], we have

kv� ThvkBr
p,q(D2⇢(x0)) . |h|

�
kvk

B
r+�
p,q (D2⇢(x0))

8v 2B
r+�

p,q
(D2⇢(x0)).(2.14)
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4015

Proof. In the first place, the boundedness of Th : Lp(D2⇢(x0)) ! L
p(D2⇢(x0))

yields

kv� ThvkLp(D2⇢(x0)) . kvkLp(D2⇢(x0)) 8v 2L
p(D2⇢(x0)),

while a standard calculation, exploiting the fact that Thv� v has a vanishing trace in
D2⇢(x0), gives

kv� ThvkLp(D2⇢(x0)) . |h|krvkLp(D2⇢(x0)) 8v 2W
1
p
(D2⇢(x0)).(2.15)

Estimate (2.13) follows by interpolation.
We next consider higher-order derivatives. Given a positive integer k and ↵ with

|↵|= k, a direct calculation gives, for any su�ciently smooth v and x2D2⇢(x0),

|(D↵
v) � Sh(x)�D

↵ (v � Sh(x))|. |h|k�kCk(Rd)

X

0<|↵0|k

���D↵
0
v
�
� Sh(x)

��.

Consequently, applying (2.15) to (D↵
v) � Sh, we deduce

kv� ThvkWk
p (D2⇢(x0)) = kv� v � ShkWk

p (D2⇢(x0))



X

0|↵|k

k(D↵
v)�Sh�D

↵ (v�Sh)kLp(D2⇢(x0))+k(D↵
v)�Sh�D

↵
vkLp(D2⇢(x0))

. |h|

X

0<|↵0|k+1

kD
↵

0
vkLp(D2⇢(x0))  |h|kvk

W
k+1

p (D2⇢(x0))
.

By using the boundedness of Th on W
k

p
(Rd) and interpolation, we deduce that

kv� ThvkWk
p (D2⇢(x0)) . |h|

�
kvk

B
k+�
p,q (D2⇢(x0))

8v 2B
k+�

p,q
(D2⇢(x0))

for � 2 (0,1). Finally, we obtain (2.14) by combining this estimate with (2.3).

Remark 2.10. The only properties of Sh we exploited in the previous lemma
are the fact that it maps D2⇢(x0) onto D2⇢(x0), and that the resulting translation
operator Thv = v � Sh is stable in W

k

p
(D2⇢(x0)) and satisfies properties like (2.15).

Thus, the same arguments can be applied to the translation operator v � S
�1
h

. In
particular, we have

kv� v � S
�1
h

kWk
p (D2⇢(x0)) . |h|

�
|v|

B
k+�
p,q (D2⇢(x0))

8v 2B
k+�

p,q
(D2⇢(x0))

for � 2 (0,1), and

kv� v � S
�1
h

kBr
p,q(D2⇢(x0)) . |h|

�
kvk

B
r+�
p,q (D2⇢(x0))

8v 2B
r+�

p,q
(D2⇢(x0))

for r > 0,� 2 [0,1].

2.4. Assumptions on the energy. We recall the energy (1.1),

F(u) =

ZZ

Q⌦

G

✓
x, y,

u(x)� u(y)

|x� y|s

◆
1

|x� y|d
dydx� hf,ui.

Here, we list the conditions we require on this functional, discuss some consequences
of these conditions, and show how they apply to the problems we are interested in.

Hypothesis 2.11. The function G : Rd
⇥ Rd

⇥ R ! (0,1) satisfies the following
conditions.
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4016 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

1. Convexity. The function ⇢ 7!G(x, y,⇢) is uniformly convex for each x, y 2Rd.
2. Space continuity. There exists � 2 (0,1] such that G is �-Hölder continuous

with respect to the space variables: for all x, y,x0
, y

0
2Rd, and ⇢2R,

|G(x, y,⇢)�G(x0
, y

0
,⇢)|C(|x� x

0
|
� + |y� y

0
|
�)|⇢|p.(2.16)

3. p-growth. There exists some p2 (1,1) such that, for all x, y 2Rd, G(x, y,⇢) is
di↵erentiable with respect to ⇢ with

|G(x, y,⇢)|C|⇢|
p
, |G⇢(x, y,⇢)|C|⇢|

p�1
.(2.17)

4. Monotonicity. There exists ↵ > 0 such that, if 2  p < 1 in the p-growth
condition, then for all x, y,2Rd and ⇢,⇢0 2R,

(G⇢(x, y,⇢)�G⇢(x, y,⇢
0))(⇢� ⇢

0)� ↵|⇢� ⇢
0
|
p
,

while if 1< p< 2, then for all x, y,2Rd and ⇢,⇢0 2R,

(G⇢(x, y,⇢)�G⇢(x, y,⇢
0))(⇢� ⇢

0)� ↵|⇢� ⇢
0
|
2
��|⇢|+ |⇢

0
|
��p�2

.

5. Continuity. There exists c > 0 such that, if 2  p < 1 in the p-growth
condition, then

|G⇢(x, y,⇢)�G⇢(x, y,⇢
0)| c|⇢� ⇢

0
|
��|⇢|+ |⇢

0
|
��p�2

8x, y,2Rd
, ⇢,⇢

0
2R,

while if 1< p< 2, then

|G⇢(x, y,⇢)�G⇢(x, y,⇢
0)| c|⇢� ⇢

0
|
p�1

8x, y,2Rd
, ⇢,⇢

0
2R.

Remark 2.12 (symmetry). While not strictly needed for our purposes, the follow-
ing assumption is practical for the analysis and applies to a general class of operators.

6. Symmetry. The function G is symmetric with respect to the space variables
and with respect to ⇢,

G(x, y,⇢) =G(y,x,⇢), G(x, y,⇢) =G(x, y,�⇢), 8x, y 2Rd
,⇢2R.

Under this symmetry assumption, the operator A associated with the energy
minimization problem becomes (1.3); otherwise, it takes the form (1.2).

Remark 2.13 (monotonicity). The monotonicity hypothesis above implies the
following estimates for the operator A in (1.2). If 2 p <1, there exists ↵> 0 such
that, for all u, v 2fW s

p
(⌦),

hAu�Av,u� vi � ↵ku� vk
p

fW s
p (⌦)

;(2.18)

hence A is p-coercive in fW s

p
(⌦). Instead, if 1 < p < 2, one can proceed as for the

classical p-Laplacian (see, for example, [33, Lemme 5.2 and Proposition 5.2]) to show
that for all u, v 2fW s

p
(⌦)

hAu�Av,u� vi � ↵ku� vk
2
fW s

p (⌦)

⇣
kukfW s

p (⌦) + kvkfW s
p (⌦)

⌘p�2
,(2.19)

whence A is 2-coercive on bounded sets in fW s

p
(⌦):

hAu�Av,u� vi �C(R)ku� vk
2
fW s

p (⌦)
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4017

provided kukfW s
p (⌦),kvkfW s

p (⌦)  R. It is worth realizing that (2.18) cannot hold for

p < 2 and G smooth and convex [47, Remark 2.1]. This fact is responsible for the
dichotomy between (1.9) and (1.10) and reveals that our variational approach, which
hinges on (2.19) for p < 2, cannot improve upon (1.10).

Remark 2.14 (continuity). The continuity hypothesis implies that the operator A
satisfies the following bounds: if p2 (1,2], then for all u, v 2fW s

p
(⌦),

kAu�Avk
W

�s
p0 (⌦) Cku� vk

p�1
fW s

p (⌦)
,(2.20)

while if p2 [2,1), then for all u, v 2fW s,p(⌦),

kAu�Avk
W

�s
p0 (⌦) C

⇣
kukfW s

p (⌦) + kvkfW s
p (⌦)

⌘p�2
ku� vkfW s

p (⌦).(2.21)

Remark 2.15 (solution operator). The uniform convexity of G yields existence
and uniqueness of weak solutions: given f 2W

�s

p0 (⌦), the problem

uf 2fW s

p
(⌦) hAuf , vi= hf, vi 8v 2fW s

p
(⌦),(2.22)

admits a unique solution, where

hAu, vi=

ZZ

Rd⇥Rd

eG
✓
x, y,

u(x)� u(y)

|x� y|s

◆
(u(x)� u(y))(v(x)� v(y))

|x� y|d+2s
dxdy

and eG(x, y,⇢) := G⇢(x, y,⇢)/⇢. Testing (2.22) with v = uf (or, equivalently, setting
v⌘ 0 in (2.18)–(2.19)), we immediately reach the stability estimate

kufkfW s
p (⌦) 

1

↵
1

p�1

kfk

1

p�1

W
�s
p0 (⌦)

.(2.23)

We now assess the continuity properties of the solution operator f 7! uf . If we assume

kfk
W

�s
p0 (⌦) K, then uf satisfies kufkfW s

p (⌦) 
�
K

↵

� 1

p�1 in view of (2.23). This shows

that, denoting

BK := {f 2W
�s

p0 (⌦) : kfk
W

�s
p0 (⌦) K},

and using (2.19), the solution operator defined on BK is Lipschitz continuous:

kuf � ugkfW s
p (⌦)  c(K)kf � gk

W
�s
p0 (⌦)(2.24)

for p2 (1,2). In contrast, if p2 [2,1), then the solution map is Hölder continuous on
W

�s

p0 (⌦) because of (2.18):

kuf � ugkfW s
p (⌦) 

1

↵
1

p�1

kf � gk

1

p�1

W
�s
p0 (⌦)

.(2.25)

Fractional (p, s)-Laplacians. For p 2 (1,1) we consider G(x, y,⇢) = Cd,s,p

2p |⇢|
p in

(1.1), which gives rise to (1.5). It is clear that the parameter p in this definition
corresponds to the parameter p in Hypothesis 2.11, and therefore the convexity and
p-growth conditions (2.17) hold. Moreover, because G is independent of the space
variables, it is trivially symmetric with respect to x, y, and we can take � = 1 in
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4018 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

(2.16). The monotonicity and continuity assumptions are satisfied because of the
following auxiliary identities [33, section 5]: for all a, b2R, we have

��|a|p�2
a� |b|

p�2
b
��
⇢

C|a� b|
p�1 if 1< p 2,

C|a� b|(|a|+ |b|)p�2 if 2 p <1,

and
�
|a|

p�2
a� |b|

p�2
b
�
(a� b)�

⇢
↵|a� b|

2(|a|+ |b|)p�2 if 1< p 2,
↵|a� b|

p if 2 p <1.

Therefore, the Hypothesis 2.11 covers fractional (p, s)-Laplace operators (1.5).

2.5. Regularity of functionals. Inspired by [47], we introduce a notion of
regularity of functionals that measures their sensitivity with respect to a family of
perturbations.

Definition 2.16 ((T,D,�)-regularity). Let V be a Banach space, K ⇢ V , and
� > 0. Given a family of maps Th : K ! K, with h varying on a given set D ⇢ Rd

,

we say that a functional F is (T,D,�)-regular on K if, for all v 2K,

!(v) = !(v;F , T,D,�) := sup
h2D

F(Thv)�F(v)

|h|�
<1.

Remark 2.17 (subadditivity). The modulus ! of (T,D,�)-regularity is subadditive
with respect to the F-argument:

!(v;F1 +F2, T,D,�) !(v;F1, T,D,�) + !(v;F2, T,D,�).(2.26)

Thus, in order to prove the (T,D,�)-regularity of F1 + F2, it su�ces to show the
regularity of each of the two functionals separately.

A key consequence of the monotonicity assumption in Hypothesis 2.11 is the
following estimate [47, Theorem 1, Corollary 1, and E3].

Lemma 2.18 (regularity and minimizers). Let x0 2 Rd, ⇢ > 0, and h 2 O⇢(x0).
Consider translation operators Th : fW s

p
(⌦) ! fW s

p
(⌦) as in (2.8). If u solves (1.4)

weakly, the functional F defined in (1.1) satisfies Hypotheses 2.11, and it is (T,D,�)-
regular on fW s

p
(⌦) for some �> 0, then the following hold:

• If p� 2, then

↵ku� Thuk
p

fW s
p (⌦)

 p!(u)|h|�.(2.27)

• If 1< p< 2, then

↵ku� Thuk
2
fW s

p (⌦)
C(p)

⇣
kukfW s

p (⌦) + kThukfW s
p (⌦)

⌘2�p

!(u)|h|�.(2.28)

Let us explain the crucial role of Lemma 2.18 in the proof of regularity of solutions,
and how localized translations come into play. Let D⇢(x0) be a ball with center
x0 2 ⌦ and radius ⇢ satisfying Proposition 2.5 (uniform cone property), and let
D = C⇢(n(x0),✓). For p 2 [2,1) we combine Proposition 2.3 (reiteration of Besov
seminorms) with (2.27) to obtain

|u|
p

B
s+�/p
p,1 (D⇢(x0))

. sup
h2D

|u� uh|
p

W s
p (D⇢(x0))

|h|�
(2.29)

. sup
h2D

ku� Thuk
p

fW s
p (⌦)

|h|�
. !(u;F , T,D,�)
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4019

for � 2 (0,1]. Instead for p2 (1,2), combining Proposition 2.3 with (2.28) yields

|u|
2
B

s+�/2
p,1 (D⇢(x0))

. sup
h2D

ku� Thuk
2
fW s

p (⌦)

|h|�
(2.30)

.
⇣
kukfW s

p (⌦) + kThukfW s
p (⌦)

⌘2�p

!(u;F , T,D,�).

This shows that proving that F satisfies Definition 2.16 ((T,D,�)-regularity) for some
� 2 (0,1] gives rise to local regularity of solutions.

3. Regularity. In this section we obtain regularity estimates for solutions to
(2.22). For that purpose, we analyze the regularity of the functional F in (1.1) in the
sense of Definition 2.16, and exploit the crucial property that the operator Th (2.8) is
locally a translation and Thv 2

fW s

p
(⌦) for all v 2fW s

p
(⌦).

We split the energy in (1.1) as F =FG �F1, with

FG(u) :=

ZZ

Rd⇥Rd

G

✓
x, y,

u(x)� u(y)

|x� y|s

◆
1

|x� y|d
dydx,(3.1)

F1(u) := hf,ui

and recall that, by the subadditivity property (2.26), we can treat the two terms
separately.

3.1. Regularity of the functionals. As a first step towards deriving regularity
estimates for minimizers of (1.1), we prove the regularity of F1 and FG with respect
to the family of admissible outward vectors; cf. Definition 2.4. We begin with an
estimate on the linear part of the functional.

Proposition 3.1 (regularity of F1). Let q 2 (1,1], p 2 (1,1), p0 = p/(p� 1),
� 2 (0,1], and t 2 (�1,�). If f 2 B

t

p0,q0(⌦), then F1 is (T,O⇢(x0),�)-regular in

Ḃ
��t

p,q
(⌦) for all x0 2⌦, ⇢> 0. Namely, for all v 2 Ḃ

��t

p,q
(⌦)

sup
h2O⇢(x0)

F1(Thv)�F1(v)

|h|�
. kfkBt

p0,q0 (D2⇢(x0)\⌦)kvkB��t
p,q (D2⇢(x0))

.(3.2)

Proof. We split the proof into three steps depending on the range of t. Let
� 2 (0,1], r� 0, and v 2 Ḃ

r+�

p,q
(⌦).

1. Case t 2 (�1,0]: We use (2.8) to write Thv = v � Sh with Sh = I + h�, and
recall that supp(�)⇢D2⇢(x0), so that v� Thv 2 Ḃ

r

p,q
(D2⇢(x0)). We thus obtain

F1(Thv)�F1(v) = hf,Thv� vi  kfk
B

�r
p0,q0 (D2⇢(x0)\⌦)kThv� vk

Ḃr
p,q(D2⇢(x0))

.

Next, we resort to (2.14) to deduce

kThv� vkBr
p,q(D2⇢(x0))  |h|

�
kvk

B
r+�
p,q (D2⇢(x0))

,

which implies for all v 2 Ḃ
r+�

p,q
(⌦)

|F1(Thv)�F1(v)|. |h|
�
kfk

B
�r
p0,q0 (D2⇢(x0)\⌦)kvkBr+�

p,q (D2⇢(x0))
.(3.3)

This establishes (3.2) upon setting r=�t.
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4020 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

2. Case t = � < 1: Next, we prove an inequality similar (3.2), but having
t = � in the left-hand side and the L

p-norm of v in the right-hand side. Let f 2

B
�

p0,q0(D2⇢(x0)\⌦) and change variables to write
Z

⌦
f(x)v(Sh(x))dx=

Z

Sh(⌦)
f(S�1

h
(x))v(x)|detrS

�1
h

(x)|dx,

whence

|F1(Thv)�F1(v)|=

�����

Z

D2⇢(x0)\⌦

⇥
f(S�1

h
(x))|detrS

�1
h

(x)|� f(x)
⇤
v(x)dx

�����

. kvkLp(D2⇢(x0))k(1� |detrS
�1
h

|)(f � S
�1
h

)k
Lp0 (D2⇢(x0)\⌦)

+ kvkLp(D2⇢(x0))kf � S
�1
h

� fk
Lp0 (D2⇢(x0)\⌦),

because (1 � |detrS
�1
h

|)(f � S
�1
h

) and f � S
�1
h

� f vanish on D2⇢(x0)c. We use
Remark 2.7 (properties of Sh and S

�1
h

) and Lemma 2.9 (moduli of continuity) to
deduce

|F1(Thv)�F1(v)|. |h|
�
kfkB�

p0,q0 (D2⇢(x0)\⌦)kvkLp(D2⇢(x0)).(3.4)

3. Case t2 (0,�), � < 1: Since the mapping (f, v)!F1(Thv)�F1(v) is bilinear,
we may interpolate between (3.3) with r= 0 and (3.4), with the same p and q in both
expressions, to infer that (3.2) holds as well in this case.

4. Case t2 (0,�), �= 1: We proceed as in Step 2. to derive the bound

|F1(Thv)�F1(v)|. |h|kfkW 1

p0 (D2⇢(x0)\⌦)kvkLp(D2⇢(x0))

and interpolate between this inequality and

|F1(Thv)�F1(v)|. |h|kfk
Lp0 (D2⇢(x0)\⌦)kvkW 1

p (D2⇢(x0))

to conclude.

Next, we prove the regularity of the non-linear term FG, defined in (3.1).

Proposition 3.2 (regularity of FG). Let s 2 (0,1) and assume that G satisfies
Hypothesis 2.11 for some p2 (1,1) and � 2 (0,1]. Then, the functional FG : fW s

p
(⌦)!

R defined in (3.1) is (T,O⇢(x0),�)-regular in fW s

p
(⌦) for all x0 2 ⌦, ⇢ > 0. Namely,

for all v 2fW s

p
(⌦) it holds that

sup
h2O⇢(x0)

FG(Thv)�FG(v)

|h|�
.
ZZ

QD2⇢(x0)

|v(x)� v(y)|p

|x� y|d+sp
dydx,(3.5)

where QD2⇢(x0) := (D2⇢(x0)⇥Rd)[ (Rd
⇥D2⇢(x0)).

Proof. The change of variables (x, y) 7! (S�1
h

(x), S�1
h

(y)) =: (xh, yh) leads to

FG(Thv)�FG(v) =

ZZ

Rd⇥Rd

G

⇣
x, y,

Thv(x)�Thv(y)
|x�y|s

⌘
�G

⇣
x, y,

v(x)�v(y)
|x�y|s

⌘

|x� y|d
dydx

=

ZZ

Rd⇥Rd

G

⇣
xh, yh,

v(x)�v(y)
|xh�yh|

s

⌘

|xh � yh|
d

J(x, y)dydx

�

ZZ

Rd⇥Rd

G

✓
x, y,

v(x)� v(y)

|x� y|s

◆
1

|x� y|d
dydx,
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4021

where J(x, y) := |det(rS
�1
h

(x))det(rS
�1
h

(y))| for conciseness. We further split

FG(Thv)�FG(v) = I + II + III,

with

I :=

ZZ

Rd⇥Rd

G

⇣
xh, yh,

v(x)�v(y)
|xh�yh|

s

⌘
�G

⇣
xh, yh,

v(x)�v(y)
|x�y|s

⌘

|xh � yh|
d

J(x, y)dydx,

II :=

ZZ

Rd⇥Rd

G

⇣
xh, yh,

v(x)�v(y)
|x�y|s

⌘
�G

⇣
x, y,

v(x)�v(y)
|x�y|s

⌘

|xh � yh|
d

J(x, y)dydx,

III :=

ZZ

Rd⇥Rd

G

✓
x, y,

v(x)� v(y)

|x� y|s

◆✓
J(x, y)

|xh � yh|
d
�

1

|x� y|d

◆
dydx.

We observe that, because Sh is a one-to-one mapping on Rd that coincides with
the identity over D2⇢(x0)c, all the integrals above need to be computed on the set
QD2⇢(x0) = (D2⇢(x0)⇥Rd)[ (Rd

⇥D2⇢(x0)).
We first estimate I. Using (2.11), we have |J(x, y)|. 1. Applying the Mean Value

Theorem we have, for some t2 (0,1) and w := (v(x)� v(y))( t

|xh�yh|
s + 1�t

|x�y|s
),

����G
✓
xh, yh,

v(x)� v(y)

|xh � yh|
s

◆
�G

✓
xh, yh,

v(x)� v(y)

|x� y|s

◆����

 |G⇢(xh, yh,w)||v(x)� v(y)|

����
1

|xh � yh|
s
�

1

|x� y|s

���� .

Using (2.12), we deduce

|w|. |v(x)� v(y)|

|x� y|s
,

1

|xh � yh|
d
. 1

|x� y|d
, and

����
1

|xh � yh|
s
�

1

|x� y|s

����.
|h|

|x� y|s
.

By the growth condition (2.17), we have

|G⇢(xh, yh,w)|. |w|
p�1 . |v(x)� v(y)|p�1

|x� y|s(p�1)
,

and putting together these estimates, it follows that

|I|. |h|

ZZ

QD2⇢(x0)

|v(x)� v(y)|p

|x� y|d+sp
dydx.(3.6)

Next, we resort to the �-Hölder continuity of G with respect to the space variables
(2.16), use (2.10) and (2.11), and obtain

|II|.
ZZ

QD2⇢(x0)

�
|xh � x|

� + |yh � y|
�
� |v(x)� v(y)|p

|x� y|d+sp
dydx

. |h|
�

ZZ

QD2⇢(x0)

|v(x)� v(y)|p

|x� y|d+sp
dydx.

(3.7)

Finally, we bound III. By (2.11), we have J(x, y) = 1 +O(|h|) and, as above, (2.12)
yields | 1

|xh�yh|
d �

1
|x�y|d

|. |h|

|x�y|d
. Thus, we derive

����
J(x, y)

|S
�1
h

(x)� S
�1
h

(y)|d
�

1

|x� y|d

����.
|h|

|x� y|d
.
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4022 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

Therefore, combining this with (2.17), that gives
���G
⇣
x, y,

v(x)�v(y)
|x�y|s

⌘��� . |v(x)�v(y)|p

|x�y|sp
,

and we obtain

|III| . |h|

ZZ

QD2⇢(x0)

|v(x)� v(y)|p

|x� y|d+sp
dydx.(3.8)

Collecting (3.6), (3.7), and (3.8), we deduce

|FG(Thv)�FG(v)|. |h|
�

ZZ

QD2⇢(x0)

|v(x)� v(y)|p

|x� y|d+sp
dydx

and conclude the proof.

Remark 3.3 (translation operator). The estimate (3.5) depends crucially on the
structure of the translation operator (2.8). Indeed, localizing through a composition
enabled us to perform a simple argument based on change of variables. In contrast, if
one aims to exploit the convexity of the functional FG by using a translation operator
of the form eTh = �vh+(1��)v for a suitable cuto↵ �, as in [47, 12], then one obtains
a less accurate estimate where the right-hand side involves higher-order norms of u
[12, Proposition 3.2].

3.2. Regularity of solutions. We are now in position to prove the regularity
of minimizers of the energy (1.1) under Hypothesis 2.11. We first prove estimates
in the Besov scale, and afterwards derive estimates in Sobolev norms by using em-
beddings. Finally, we show how to accommodate the theory to include finite-horizon
operators. In what follows, we use the word maximal to refer to estimates that yield
the highest regularity one can expect via our variational approach. As we stated in
the introduction, our maximal estimates are optimal for p� 2, albeit suboptimal for
p < 2.

Theorem 3.4 (maximal Besov regularity). Let ⌦ be a bounded Lipschitz domain,
s2 (0,1), G : Rd

⇥Rd
⇥R! (0,1) satisfy Hypothesis 2.11, with p2 (1,1), � 2 (0,1],

and u2fW s

p
(⌦) be a weak solution to (1.4).

If p� 2 and f 2B
�s+ �

p0

p0,1 (⌦), then u2 Ḃ
s+ �

p
p,1 (⌦) and

kuk
Ḃ

s+ �
p

p,1 (⌦)
. kfk

1

p�1

B

�s+ �
p0

p0,1 (⌦)

.(3.9)

If p < 2 and f 2B
�s+ �

2

p0,1 (⌦), then u2 Ḃ
s+ �

2

p,1 (⌦) and

kuk
Ḃ

s+ �
2

p,1 (⌦)
. kfk

2�p
p�1

W
�s
p0 (⌦)

kfk
B

�s+ �
2

p0,1 (⌦)
.(3.10)

The hidden constants in (3.9) and (3.10) depend on d, s, p,⌦, and G.

Proof. Let � = �

p0 if p� 2 and � = �

2 if p < 2. We first observe that problem (1.4)

is well-posed, because f 2B
�s+�

p0,1 (⌦)⇢W
�s

p0 (⌦) and, according to (2.23), we have

kukfW s
p (⌦) . kfk

1

p�1

W
�s
p0 (⌦)

. kfk

p0
p

B
�s+�
p0,1 (⌦)

.(3.11)

We split the proof into three steps.
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4023

1. Because ⌦ is a Lipschitz domain, by Proposition 2.5 (uniform cone property)
there exist ⇢, ' such that C⇢(n(x),') ⇢ O⇢(x) for all x 2 Rd. We consider a finite
covering of ⌦⇢ by balls Dj = D(xj ,⇢) of radius ⇢, j = 1, . . . , J . By the localization
estimate (2.7), it su�ces to bound Besov seminorms over each of the balls Dj .

We consider one of the balls Dj in the covering and set Cj = C⇢(n(xj),'). Impor-
tantly, if h2 Cj we can guarantee that Thu2fW s

p
(⌦).

Let � 2 (0,�] and t2 (�1,�); our proof will use suitable bounds on the (T,Cj ,�)-
regularity modulus of F . We exploit the subadditivity of this functional, and Propo-
sitions 3.1 (regularity of F1) with q=1 and 3.2 (regularity of FG)):

!(u;F , T,Cj ,�) !(u;FG, T,Cj ,�) + !(u;F1, T,Cj ,�)

.
ZZ

QD2⇢(xj)

|u(x)� u(y)|p

|x� y|d+sp
dydx+ kfkBt

p0,1(D2⇢(xj)\⌦)kukB��t
p,1(D2⇢(xj))

.
(3.12)

In view of (2.29) and (2.30), using (3.11) we deduce

|u|
q

B
s+�/q
p,1 (Dj)

. kfk

q�p
p�1

W
�s
p0 (⌦)

!(u;F , T,Cj ,�)(3.13)

provided q := max{2, p}. We next distinguish between p 2 [2,1) and p 2 (1,2), and
employ (3.12) and (3.13) with t=�s+ �/q

0.
2. Case p2 [2,1). Upon choosing q= p in (3.12), we deduce

|u|
p

B
s+�/p
p,1 (Dj)

.
ZZ

QD2⇢(xj)

|u(x)� u(y)|p

|x� y|d+sp
dydx+ kfkBt

p0,1(D2⇢(xj)\⌦)kukB��t
p,1(D2⇢(xj))

.

Adding over j for 1 J , and using Lemma 2.6 (localization), specifically (2.6) for the
right-hand side and (2.7) for the left-hand side, we obtain

kuk
p

Ḃ
s+�/p
p,1 (⌦)

. kuk
p

fW s
p (⌦)

+ kfkBt
p0,1(⌦)kukḂ��t

p,1(⌦)

for all � 2 (0,�], t2 (�1,�), where the hidden constant depends on J . We now replace
the first term on the right-hand side via the stability bound (3.11). This suggests the
choices t=�s+ �

p0 < � � and yields the bound

kuk
p

Ḃ
s+�/p
p,1 (⌦)

C1kfk
p
0

B
�s+�/p0
p0,1 (⌦)

+C2kfk
B

�s+�/p0
p0,1 (⌦)

kuk
Ḃ

�+s��/p0
p,1 (⌦)

(3.14)

for suitable constants C1,C2 > 0 depending on d, s, p,⌦, J , and G. We observe that
the di↵erentiability index �+ s��/p

0 of u on the right-hand side gives a larger index
s + �/p on the left-hand side provided �  �. We thus view (3.14) as a recursion
relation and set �0 = 0, and for k� 0 let �= �k+1 2 (0,�] and

s+
�k

p
= �+ s�

�

p0
) �k+1 :=

�k

p
+
�

p0
.

This implies �k = �

⇣
1� 1

pk

⌘
and shows that �k 2 (0,�) and �k � t= �k + s� �/p

0
�

s > 0 for all k� 1, as desired. We claim that

kuk
Ḃ

s+�k/p
p,1 (⌦)

⇤kkfk

1

p�1

B

�s+ �
p0

p0,1 (⌦)

(3.15)
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4024 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

for some uniformly bounded constants ⇤k for k� 0. We argue by induction. We first
note that (3.11) and the continuity of the embedding fW s

p
(⌦)⇢ Ḃ

s

p,1
(⌦) yield

kuk
Ḃs

p,1(⌦) ⇤0kfk

1

p�1

B

�s+ �
p0

p0,1 (⌦)

for some ⇤0 := ⇤0(d, s, p,⌦); hence (3.15) is true for k = 0. We next set � = �k+1 in
(3.14) to arrive at

kuk
p

Ḃ
s+�k+1

/p
p,1 (⌦)



✓
C1kfk

1

p�1

B
�s+�/p0
p0,1 (⌦)

+C2kuk
Ḃ

s+�k/p
p,1 (⌦)

◆
kfk

B
�s+�/p0
p0,1 (⌦)

 (C1 +C2⇤k)kfk
p
0

B
�s+�/p0
p0,1 (⌦)

.

This shows that (3.15) holds for ⇤k+1 := (C1 + C2⇤k)1/p; it remains to prove that
such a sequence is bounded. Let ⇤ := max{⇤0, (p0C1 +C

p
0

2 )1/p}. We obviously have
⇤0 ⇤ and, if ⇤k ⇤, applying Young’s inequality we obtain

⇤p

k+1 =C1 +C2⇤k C1 +C2⇤C1 +
C

p
0

2

p0
+

⇤p

p


1

p0

⇣
p
0
C1 +C

p
0

2

⌘
+

⇤p

p
⇤p

.

Thus, replacing ⇤k by ⇤ and letting k!1, we have �k ! � and deduce the desired
estimate (3.9) for p2 [2,1).

3. Case p 2 (1,2). We choose q = 2 in (3.13) and t = �s+ �/2 in (3.12). After
squaring, summing up over j for 1 j  J , and Lemma 2.6 (localization), we end up
with

kuk
2
Ḃ

s+�/2
p,1 (⌦)

. kfk

2�p
p�1

W
�s
p0 (⌦)

✓
|u|

p

fW s
p (⌦)

+ kfk
B

�s+�/2

p0,1 (⌦)
kuk

Ḃ
�+s��/2
p,1 (⌦)

◆

for all � 2 (0,�] such that � + s� �/2 > 0; the hidden constant depends on J . We
next resort to (3.11) to obtain the following counterpart of (3.14):

kuk
2
Ḃ

s+�/2
p,1 (⌦)



✓
C1kfk

p
0

W
�s
p0 (⌦)

+C2kfk
B

�s+�/2

p0,1 (⌦)
kuk

Ḃ
�+s��/2
p,1 (⌦)

◆
kfk

2�p
p�1

W
�s
p0 (⌦)

(3.16)

for all � 2 (0,�] and with constants C1 and C2 that do not depend on u or f .
We now proceed as in Step 2 to exploit the improvement of the di↵erentiability

index from the right-hand side to the left one in (3.16). To this end, we set �0 =
0,�k+1 = � 2 (0,�] and rewrite

�+ s�
�

2
= s+

�k

2
) �k+1 =

� + �k

2
8k� 0.

This yields �k = �(1 � 2�k), which satisfies the restrictions �k 2 (0,�), �k � t =
�k + s�

�

2 � s > 0 for all k� 1, and �k ! �. We prove by induction that

kuk
Ḃ

s+
�k
2

p,1 (⌦)
⇤kkfk

2�p
p�1

+2�k

W
�s
p0 (⌦)

kfk
1�2�k

B
�s+ �

2

p0,1 (⌦)
8k� 0,(3.17)
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4025

with a uniformly bounded constant ⇤k. We first note that, according to (3.11) and
the continuity of the embedding fW s

p
(⌦)⇢ Ḃ

s

p,1
(⌦), we have

kuk
Ḃs

p,1(⌦) ⇤0kfk

1

p�1

W
�s
p0 (⌦)

for some ⇤0 := ⇤0(d, s, p,⌦), whence (3.17) is true for k = 0. Suppose that (3.17)
holds for some k, and set �= �k+1 in (3.16) to obtain

kuk
2

Ḃ
s+�k+1

/2
p,1 (⌦)



✓
C1kfk

p
0

W
�s
p0 (⌦)

+C2kfk
B

�s+�/2

p0,1 (⌦)
kuk

Ḃ
s+�k/2
p,1 (⌦)

◆
kfk

2�p
p�1

W
�s
p0 (⌦)



✓
C1kfk

2�2�k

W
�s
p0 (⌦)

+C2⇤kkfk
2�2�k

B
�s+�/2

p0,1 (⌦)

◆
kfk

2(2�p)
p�1

+2�k

W
�s
p0 (⌦)



⇣
C1C

2�2�k

3 +C2⇤k

⌘
kfk

2�2�k

B
�s+�/2

p0,1 (⌦)
kfk

2(2�p)
p�1

+2�k

W
�s
p0 (⌦)

,

where C3 := C3(⌦, d, s, p,�) is the constant of the continuous embedding W
�s

p0 (⌦) ⇢

B
�s+�/2
p0,1 (⌦). Since 1  2 � 2�k

 2, we have C
2�2�k

3  max{C3,C
2
3} =: C4, which

gives rise to (3.17) with constant

⇤k+1 := (C1C4 +C2⇤k)
1/2

.

It only remains to show that ⇤k  ⇤ for some ⇤ > 0 and all k � 0. Let ⇤ :=
max{⇤0, (2C1C4 +C

2
2 )

1/2
}; then the same argument as in Step 2 is also valid in this

setting. Finally, estimate (3.10) follows by letting k!1.

Theorem 3.4 gives the maximal Besov regularity one can expect via our varia-
tional approach for solutions to problem (1.4). We recall that (3.9) is optimal while
(3.10) is suboptimal for the 1d profile (1 � x

2)s+ in ⌦ = (�1,1). This is due to the
Hypothesis 2.11 (monotonicity) for p2 (1,2), which cannot be improved for a function
⇢ 7!G(·, ·,⇢) convex and di↵erentiable [47, Remark 2.1].

One can immediately deduce Sobolev regularity by combining Theorem 3.4 with
Lemma 2.1 (embedding). Even though such a lemma is stated for the spaces B�+"

p,1
(⌦)

and W
�

p
(⌦), the proof for the zero-extension spaces Ḃ�+"

p,1
(⌦) and fW �

p
(⌦) follows by

the same arguments.

Corollary 3.5 (maximal Sobolev regularity). Let the assumptions of Theo-

rem 3.4 be satisfied. For p2 [2,1) and f 2B
�s+�/p

0

p0,1 (⌦) then

kuk
fW

s+ �
p

�"

p (⌦)
. "

�
1

p kfk

1

p�1

B

�s+ �
p0

p0,1 (⌦)

(3.18)

is valid provided "2 (0, s+ �/p). If p2 (1,2) and f 2B
�s+�/2
p0,1 (⌦) then

kuk
fW

s+ �
2

�"
p (⌦)

. "
�

1

p kfk

2�p
p�1

W
�s
p0 (⌦)

kfk
B

�s+ �
2

p0,1 (⌦)
(3.19)

holds provided "2 (0, s+ �/2).

Remark 3.6 (interior Sobolev regularity). Estimates (3.18) and (3.19) are valid
up to the boundary of the domain. The obstruction to higher regularity is due to
boundary behavior. In the superquadratic case p � 2, and for the (p, s)-fractional
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4026 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

Laplacian (1.5)—that gives rise to � = 1 in Hypothesis 2.11—reference [16] derives
the following higher-order interior regularity provided f 2W

s

p0(⌦):

if s
p� 1

p+ 1
, then u2

\

">0

W
s

p+1

p�1
�"

p,loc
(⌦),

if s >
p� 1

p+ 1
, then u2W

1
p,loc

(⌦) and ru2

\

">0

W
s
p+1

p �
p�1

p �"

p,loc
(⌦).

We point out that if s <
1
2 �

1
2p , estimate (3.18) is actually stronger than the first

statement above.
The recent reference [28] sharpens the results from [16] and obtains Calderón–

Zygmund-type estimates for problems with coe�cients with vanishing mean oscillation
near the diagonal x = y. Succinctly, in our setting, the results from [28] yield the
implication

f 2L
p
0
(⌦) ) u2

\

">0

W
min{sp0

,1}�"

p,loc
(⌦) (p� 2).

When � = sp
0
 1, this is close to our estimate (3.18). If in addition sp

0
< �  1, then

the case p� 2 with ✓= sp
0
/� in Corollary 3.8 below yields the regularity u2fW sp

0

p
(⌦).

While [28] considers a broader class of coe�cients than we do, our results also concern
boundary regularity; we also refer the reader to [39] for Hölder regularity estimates
up to the boundary for quasilinear operators with measurable coe�cients.

The technique in Theorem 3.4 also allows one to derive regularity estimates in
Besov spaces with a lower-order di↵erentiability index whenever f is less regular
than in such a theorem. We shall not consider this procedure, but rather prove a
lower regularity pickup by using interpolation theory. For that purpose, we need the
following nonlinear interpolation estimate (cf. [48, Théorème I.1]).

Proposition 3.7 (nonlinear interpolation). Let A0 ⇢ A1, B0 ⇢ B1 be Banach
spaces, U ⇢ A1 a nonempty open set, and T : U ! B1 a function that maps A0 \ U

into B0. Let us assume that there exist constants c0, c1 such that

kTfkB0
 c0kfk

↵0

A0
8f 2A0 \U,

kTf � TgkB1
 c1kf � gk

↵1

A1
8f, g 2U,

for some ↵0 > 0, ↵1 2 (0,1]. Then, if ✓ 2 (0,1) and q 2 [1,1], T maps (A0,A1)✓,q
into (B0,B1)⌘,r, where

1�⌘

⌘
= ↵1

↵0

1�✓

✓
and r=max{1, q

(1�⌘)↵0+⌘↵1

}.

Corollary 3.8 (regularity pickup for rough data). Let ⌦ be a bounded Lipschitz
domain, let G : Rd

⇥Rd
⇥R! (0,1) satisfy Hypothesis 2.11, with p2 (1,1), � 2 (0,1],

and let ✓ 2 (0,1). Then, the solution operator f 7! u is bounded between the following
spaces:

if p� 2 and f 2W
�s+✓

�
p0

p0 (⌦) ) u2fW s+✓
�
p

p (⌦);

if 1< p< 2 and f 2W
�s+✓

�
2

p0 (⌦) ) u2fW s+✓
�
2

p0 (⌦).

Proof. The proof follows by a direct application of Proposition 3.7. For p� 2, we
combine (3.9) and (2.25), while for 1< p< 2 we combine (3.10) and (2.24).

3.3. Operators with finite horizon. Thus far, we have obtained regularity
estimates under Hypothesis 2.11. In particular, that hypothesis dictates the smooth-
ness, growth, and behavior at x = y of G(x, y,⇢). However, such global behavior
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4027

constraints can be significantly relaxed to incorporate, for instance, finite-horizon
operators. For simplicity, we now assume G takes the form

G(x, y,⇢) =
1

2p
 

✓
|x� y|

�

◆
|⇢|

p
,(3.20)

where 1 < p <1 and  : [0,1)! [0,1) is a given function. In case  is supported
in the unit interval [0,1], the parameter � > 0 above is the horizon of the resulting
operator

A�u(x) :=

Z

Rd

 

✓
|x� y|

�

◆
|u(x)� u(y)|p�2(u(x)� u(y))

|x� y|d+sp
dy.(3.21)

Let us assume that  2 L
1(Rd). Then, the choice (3.20) trivially fulfills condi-

tions convexity, p-growth, and continuity; moreover, we note it satisfies the symmetry
condition. The only two missing assumptions from Hypothesis 2.11 in this setting
are space continuity and monotonicity. At this point, we can define the energy norm
induced by G,

|||v||| := hA�v, vi
1

p =

✓
1

2

ZZ

Rd⇥Rd

 

✓
|x� y|

�

◆
|v(x)� v(y)|p

|x� y|d+sp
dydx

◆ 1

p

,

and realize that it satisfies

|||v|||

✓
k kL1(Rd)

Cd,s,p

◆ 1

p

kvkfW s
p (⌦) 8v 2fW s

p
(⌦),(3.22)

where Cd,s,p is the constant given in (1.6).
Some form of nondegeneracy is needed in order to have a reverse inequality to

(3.22). We assume there exists some r > 0 such that  � 0 > 0 on the interval [0, r].
This implies the following property.

4’. Local monotonicity. There exists ↵> 0 such that for all x, y 2Rd with |x�y|

r� and all ⇢,⇢0 2R,

(G⇢(x, y,⇢)�G⇢(x, y,⇢
0))(⇢� ⇢

0)� ↵|⇢� ⇢
0
|
p if p� 2,

(G⇢(x, y,⇢)�G⇢(x, y,⇢
0))(⇢� ⇢

0)� ↵|⇢� ⇢
0
|
2
||⇢|+ |⇢

0
||
p�2 if 1< p< 2.

Lemma 3.9 (nondegeneracy). Let  �  0 > 0 on the interval [0, r]. Then, there
exists a constant C =C(d, p, s,⌦, r, 0, �) such that

kvkfW s
p (⌦) C |||v||| 8v 2fW s

p
(⌦).(3.23)

Proof. We invoke the localization estimate of [29, Lemma 7], which reads
ZZ

DR(0)⇥DR(0)

|v(x)� v(y)|p

|x� y|d+sp
dydx



✓
3R

r�

◆p(1�s) ZZ

DR(0)⇥DR(0)

|v(x)� v(y)|p

|x� y|d+sp
�{|x�y|r�} dydx,

and is valid for all R> r� > 0 and s2 (0,1). This implies
ZZ

DR(0)⇥DR(0)

|v(x)� v(y)|p

|x� y|d+sp
dydx

2(3R)p(1�s)

(r�)p(1�s) 0
|||v|||

p
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4028 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

regardless of whether or not the support of  is compact. Given v 2fW s

p
(⌦), we use

this bound with R> 0 su�ciently large so that ⌦⇢DR(0) and dist(⌦,@DR(0))�
R

2 ,
exploit the fact that |x� y|�

R

2 for all x 2⌦ and y 2DR(0)c, and integrate in polar
coordinates to get

kvk
p

fW s
p (⌦)

=
Cd,s,p

2

ZZ

DR(0)⇥DR(0)

|v(x)� v(y)|p

|x� y|d+sp
dydx

+Cd,s,p

ZZ

DR(0)⇥DR(0)c

|v(x)|p

|x� y|d+sp
dydx


(3R)p(1�s)

Cd,s,p

(r�)p(1�s) 0
|||v|||

p +
2spCd,s,p!d�1

spRsp
kvk

p

Lp(⌦),

where !d�1 = |Sd�1
| denotes the (d � 1)-dimensional measure of the unit sphere

Sd�1 = @D1(0) in Rd. We next use the well-known Poincaré inequality

kvkLp(⌦) C(⌦, p)kvkfW s
p (⌦) 8v 2fW s

p
(⌦),

and take R> 0 su�ciently large such that

2spCd,s,p!d�1

spRsp
kvk

p

Lp(⌦) 
1

2
kvk

p

fW s
p (⌦)

8v 2fW s

p
(⌦),

to obtain a constant C =C(d, p, s,⌦, r, 0, �) such that (3.23) holds.

By combining (3.22) and (3.23), we deduce that the energy norm |||·||| is equivalent
to the fW s

p
(⌦)-norm. Consequently, the Dirichlet problem for the operator A� defined

in (3.21) is well-posed in fW s

p
(⌦) uniformly in s: if f 2W

�s

p0 (⌦), there exists a unique

u2fW s

p
(⌦) satisfying

hA�u, vi= hf, vi 8v 2fW s

p
(⌦),

and we have the stability bound kukfW s
p (⌦) . kfk

W
�s
p0 (⌦).

Another consequence of the equivalence between the energy norm |||·||| and the
fW s

p
(⌦)-norm is that the variational approach of sections 3.1 and 3.2 hinges on the

regularity of F1 and FG and still applies in this context regardless of the support of
 . We state this next.

Corollary 3.10 (operator with Hölder continuous  ). Let  in (3.20) be glob-
ally �-Hölder continuous with � 2 (0,1] and satisfy  �  0 > 0 on the interval [0, r]
for r > 0. Then the maximal regularity estimates (3.9) for 2  p <1 and (3.10) for
1< p< 2 are valid regardless of the support of  .

Remark 3.11 (tempered fractional Laplacians). Besides being applicable to finite-
horizon operators with �-Hölder continuous kernel, the previous result is valid for
a family of tempered fractional p-Laplacians. Concretely, we let � = 1

�
> 0 and

 (⇢) = e
��⇢ to obtain

A�u(x) :=

Z

Rd

|u(x)� u(y)|p�2(u(x)� u(y))

e�|x�y| |x� y|d+sp
dy.

In the linear setting (p = 2), this operator arises from the study of tempered Lévy
flights and has been investigated for example in [25]. For the homogeneous Dirichlet
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4029

problem associated to the operator A� above, the regularity estimates in Theorem 3.4
are valid with � = 1.

Finite-horizon operators in practice usually involve a discontinuous function  

such as the characteristic function of [0, r]. This does not fit within the preceding the-
ory but maximal Besov regularity is still valid, at least for linear operators, provided
 is Hölder in a neighborhood of the origin. We explore this next, but before we point
out that even local regularity seems excessive, an interesting question to investigate.

We need to make the following local regularity assumption to compensate for the
lack of space continuity hypothesis of G.

20. Local regularity. There exists r > 0 such that  is of class C� on the interval
[0, r] for some � 2 (0,1], and  � 0 > 0 on [0, r].

Theorem 3.12 (linear finite-horizon operator with discontinuous  ). Let  sat-
isfy the previous local regularity assumption with some � 2 (0,1]. If G(x, y,⇢) is of the
form (3.20) with p= 2, then the following maximal regularity holds:

kuk
Ḃ

s+ �
2

2,1 (⌦)
. kfk

B
�s+ �

2

2,1 (⌦)
.(3.24)

Proof. We resort to a perturbation argument. We proceed in several steps.
1. Perturbation: Let e 2 C

� [0,1) coincide with  on [0, r] and rewrite the
equation A�u= f with u= 0 in ⌦c as

eA�u= f +
� eA�u�A�u

�
= ef.

The operator B� := eA� �A� is a convolution operator that reads as follows in terms
of the function ' := e � , which vanishes on [0, r]:

B�u(x) =

Z

Rd

'

⇣
|z|

�

⌘
u(x)� u(x� z)

|z|d+2s
dz =Ku(x) + k ⇤ u(x).

Above, k(z) ='
�
|z|

�

�
|z|

�d�2s and K =
R
Rd k(z)dz <1 because  2L

1(Rd).
2. Properties of B�: B� : Ḃt

2,1(⌦)!B
t

2,1(Rd) is a linear bounded operator

kB�ukḂt
2,1(⌦) . kuk

Ḃ
t
2,1(⌦) 80< t< 1.

It su�ces to examine k ⇤ u, which, using its linear structure and Young’s inequality
with K = kkkL1(Rd), yields

kk ⇤ u(·+ h)� k ⇤ ukL2(Rd) Kku(·+ h)� ukL2(Rd) 8h2Rd
.

Consequently, we deduce the asserted estimate from

kB�u(·+ h)�BukL2(Rd)

|h|t
K

ku(·+ h)� ukL2(Rd)

|h|t
80< t< 1.

3. Regularity of functionals: Combining the local estimate (3.2) of Proposition 3.1
(regularity of F1) for ef , the argument of Theorem 3.4 (maximal regularity) leading
to (3.12) and (3.14) yields the following estimate for any � 2 (0,�] and t2 (�s,�):

kuk
2
Ḃ

s+�/2
2,1 (⌦)

. kfk
2
B

t
2,1(⌦) + kfkBt

2,1(⌦)kukB��t
2,1(⌦) + kB�ukBt

2,1(⌦)kukB��t
2,1(⌦),
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4030 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

where we have used the definition of ef and Step 2 to obtain the last term. To be able
to iterate this estimate we observe that kB�ukBt

2,1(⌦) . kB�ukBt+2✏
2,1 (⌦) for any ✏ > 0

and to simplify the subsequent derivation we take ✏= s

2 so that t+2✏= t+ s > 0. We
thus have kB�ukBt

2,1(⌦) . kuk
B

t+2✏
2,1 (⌦) and

kuk
2
Ḃ

s+�/2
2,1 (⌦)

. kfk
2
B

t
2,1(⌦) + kfkBt

2,1(⌦)kukB��t
2,1(⌦) + kuk

B
t+s
2,1(⌦)kukB��t

2,1(⌦).(3.25)

4. Preliminary regularity: We now claim that u2 Ḃ

�
2

2,1(⌦) with

kuk
Ḃ

�
2

2,1(⌦)
. kfk

B
�s+ �

2

2,1 (⌦)
.(3.26)

If s� �

2 this is straightforward, because of the stability bound kuk eHs(⌦) . kfkH�s(⌦)

and the continuity of the embedding eHs(⌦)⇢ Ḃ
�/2
2,1(⌦).

In the case s <
�

2 , we iterate (3.25). We set �0 := 0 and

�k+1 := �k +
s

2
.(3.27)

In the first few iterations we could have 0 < �k  �s + �

2 , in which case we set
� := 2�k+1 = s+ 2�k 2 [s,� � s] ⇢ (0,�] and t := �k = ��s

2 2 [0, �2 ) ⇢ (�s,�). This
choice of parameters yields �� t= t+ s= s+ �k, whence (3.25) reads

kuk
2

Ḃ
s+�k+1

2,1 (⌦)
. kfk

2
B

t
2,1(⌦) + kfkBt

2,1(⌦)kukB
s+�k
2,1 (⌦)

+ kuk
2
B

s+�k
2,1 (⌦)

.

Additionally, continuity of the embedding B
�s+ �

2

2,1 (⌦)⇢B
t

2,1(⌦), gives

kuk
2

Ḃ
s+�k+1

2,1 (⌦)
. kfk

2

B
�s+ �

2

2,1 (⌦)
+ kuk

2
B

s+�k
2,1 (⌦)

,

and the bound kuk
Ḃ

s+�k
2,1 (⌦)

. kfk
B

�s+ �
2

2,1 (⌦)
valid for k= 0 implies

kuk
Ḃ

s+�k+1

2,1 (⌦)
. kfk

B
�s+ �

2

2,1 (⌦)
,

for as long as �k  �s+ �

2 . Moreover, because �k+1 = �k +
s

2 , we have a regularity
improvement by the fixed amount s

2 in each iteration. Therefore, after a finite (but
s-dependent) number k⇤ of iterations, we reach �k⇤ >�s+ �

2 and deduce the validity
of the regularity bound (3.26).

5. Final regularity: We now assume (3.26) and define the new sequence

�0 := 0, �k+1 :=
�

4
+
�k

2
) �k =

�

2

✓
1�

1

2k

◆
!

�

2
.

We fix � = �k + �

2 2 (0,�] and t = �s + �

2 2 (�s,�) in (3.25), and note that
s+ �/2 = s+ �k+1, �� t= s+ �k, and t+ s= �

2 , to arrive at

kuk
2

Ḃ
s+�k+1

2,1 (⌦)
. kfk

2

B
�s+ �

2

2,1 (⌦)
+ kfk

B
�s+ �

2

2,1 (⌦)
kuk

B
s+�k
2,1 (⌦)

+ kuk
B

�
2

2,1(⌦)
kuk

B
s+�k
2,1 (⌦)

.

Using (3.26), we get

kuk
2

Ḃ
s+�k+1

2,1 (⌦)


 
C1kfk

B
�s+ �

2

2,1 (⌦)
+C2kuk

B
s+�k
2,1 (⌦)

!
kfk

B
�s+ �

2

2,1 (⌦)
,
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4031

with constants C1,C2 depending on ⌦, d, and s. We finally proceed as in the proof of
Theorem 3.4 (maximal Besov regularity) to show

kuk
Ḃ

s+�k+1

2,1 (⌦)
⇤kfk

B
�s+ �

2

2,1 (⌦)

for a finite number ⇤> 0. We trivially have kuk
Ḃ

s+�0

2,1 (⌦)
⇤0kfk

B
�s+�/2
2,1 (⌦)

for some

⇤0(d, s,⌦)> 0. We define ⇤k+1 := (C1 +C2⇤k)1/2 and realize that

kuk
Ḃ

s+�k+1

2,1 (⌦)
⇤k+1kfk

B
�s+ �

2

2,1 (⌦)
.

Since ⇤k+1  max{⇤0, (2C1 + C2)1/2} =: ⇤, passing to the limit k ! 1, the desired
estimate (3.24) follows immediately.

Remark 3.13 (quasi-linear operators with discontinuous  ). Theorem 3.12 is lim-
ited to the linear setting p = 2. Our proof consists in regarding the operator A�

as a linear perturbation of an operator eA� with a globally regular kernel. However,
for p 6= 2, the nonlinear nature of the problem implies that the di↵erence between
A� and eA� is not a convolution operator and hence our approach must be adjusted.
Nevertheless, we expect a similar regularity to hold.

Remark 3.14 (truncated fractional Laplacians). Estimate (3.24) holds whenever
 is locally �-Hölder continuous at the origin. Consequently, it applies with � = 1 to
(linear) truncated fractional Laplacians [17]

Au(x) :=C(d, s, �)

Z

D�(x)

u(x)� u(y)

|x� y|d+2s
dy,

for which  (⇢) = �[0,1](⇢).

In the same fashion as Corollary 3.5, the following maximal Sobolev regularity
holds for operators of the form (3.21) and, in particular, for linear truncated fractional
Laplacians and tempered fractional p-Laplacians.

Corollary 3.15 (maximal Sobolev regularity). Under the hypothesis of either
Corollary 3.10 for any p 2 (1,1) or Theorem 3.12 for p= 2, for all "> 0 su�ciently
small and q=max{2, p} there holds

kuk
fW

s+ �
q

�"

p (⌦)
. "

�
1

p kfk

q�p
p�1

W
�s
p0 (⌦)

kfk

1

q�1

B

�s+ �
q0

p0,1 (⌦)

.

4. Approximation. As an application of our regularity estimates, we consider
discretizations of the problem (1.4) by means of the finite element method with piece-
wise linear continuous functions. From now on, we assume that G satisfies Hypothe-
sis 2.11.

Let h0 > 0; for h 2 (0, h0], we let Th denote a triangulation of ⌦, i.e., Th = {T}

is a partition of ⌦ into simplices T of diameter hT and h=maxT2Th hT . We assume
the family {Th}h>0 to be shape-regular, namely,

� := sup
h>0

max
T2Th

hT

⇢T
<1,

where ⇢T is the diameter of the largest ball contained in T . We take elements to be
closed sets.
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4032 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

Let Nh be the set of interior vertices of Th, N be its cardinality, and {'i}
N

i=1

be the standard piecewise linear Lagrangian basis, with 'i associated to the node
xi 2Nh. With this notation, the set of discrete functions is

eVh :=

(
v :Rd

!R : v 2C0(Rd), v=
NX

i=1

vi'i

)
,

where v is trivially extended by zero outside ⌦. It is clear that eVh ⇢ fW s

p
(⌦) for all

s2 (0,1), p2 (1,1). Therefore, we consider a direct finite element discretization and
seek uh 2 eVh such that

ZZ

Rd⇥Rd

eG
✓
x, y,

uh(x)� uh(y)

|x� y|s

◆
(uh(x)� uh(y))(vh(x)� vh(y))

|x� y|d+2s
dxdy= hf, vhi

(4.1)

for all vh 2 eVh, where we recall that eG(x, y,⇢) = G⇢(x, y,⇢)/⇢. Clearly, uh solves
(4.1) if and only if it is the minimizer of the restriction of the convex functional F
from (1.1) over the linear space eVh; existence of discrete solutions follows immediately.
Moreover, if we take vh = uh in (4.1), then we immediately obtain the discrete stability
bound

kuhkfW s
p (⌦) . kfk

1

p�1

W
�s
p0 (⌦)

.(4.2)

4.1. Localization and interpolation estimates. The seminorm | · |W s
p (Rd) is

nonlocal and, consequently, is nonadditive with respect to domain partitions. To
localize it, we first define the star (or patch) of a set A2⌦ by

S
1
A
:=
[�

T 2 Th : T \A 6= ;
 
.

Given T 2 Th, the star S
1
T

of T is the first ring of T and the star S
2
T

of S1
T

is the
second ring of T . We have the following localization estimate, which can be proved
with the same arguments as in [30, 31]:

|v|
p

W s
p (⌦) 

X

T2Th

"Z

T

Z

S
1

T

|v(x)� v(y)|p

|x� y|d+sp
dy dx+C(d,�)

2p

sph
sp

T

kvk
p

Lp(T )

#
(4.3)

for all v 2W
s

p
(⌦).

This localization of fractional-order seminorms implies that, in order to prove
global interpolation estimates in W

s

p
(⌦), it su�ces to produce over the set of patches

{T ⇥ S
1
T
}T2Th plus local, zero-order contributions.

We point out, however, that clearly if one wants to have a zero-extension norm
on the left-hand side in (4.3), then interactions between ⌦ and ⌦c must be accounted
for in the right-hand side. For that purpose, following [13], we introduce the extended
stars

eS1
T
:=

⇢
S
1
T

if T \ @⌦= ;,

DT otherwise,

where DT = DChT (xT ) is the ball of center xT and radius ChT , with xT being the
barycenter of T , and C = C(�) a shape regularity dependent constant such that
S
1
T
⇢DT . The extended second ring eS2

T
of T is given by

eS2
T
:=
[�eS1

T 0 : T 0
2 Th, T

0
\ S

1
T
6= ;
 
.
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QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 4033

The localization of the W
s

p
(Rd)-seminorm reads [13, Lemma 4.1]

kvk
p

fW s
p (⌦)

= |v|
p

W s
p (Rd) 

X

T2Th

"Z

T

Z

eS1

T

|v(x)� v(y)|p

|x� y|d+sp
dy dx+C(d,�)

2p

sph
sp

T

kvk
p

Lp(T )

#(4.4)

for all v 2fW s

p
(⌦).

Our use of (4.4) will be restricted to v being an interpolation error; in such a
case, v has vanishing means over elements and thus we can estimate the scaled L

p

contributions in terms of local W s

p
seminorms by using Poincaré inequalities. We

consider a suitable (such as Clément or Scott–Zhang) quasi-interpolation operator,

⇧h :fW s

p
(⌦)!Vh,

which is stable in W
s

p
(⌦) and for which one can prove the following local approxima-

tion estimates (see, for example, [2, 14, 21]):

kv�⇧hvkLp(T ) C h
pr

T
|v|

p

W r
p (S1

T )
,(4.5)

Z

T

Z

eS1

T

|(v�⇧hv)(x)� (v�⇧hv)(y)|p

|x� y|d+sp
dy dxC h

p(r�s)
T

|v|
p

W r
p (eS2

T )

for all T 2 Th, s2 (0,1), r 2 (s,2], v 2W
r

p
(eS2

T
), where C =C(⌦, d, s,�).

Combining (4.4) and (4.5), we deduce localized interpolation error estimates.

Proposition 4.1 (localized interpolation estimates). Let s 2 (0,1), p 2 (1,1),
r 2 (s,2], and ⇧h : fW s

p
(⌦) ! Vh be a quasi-interpolation operator as above. If

v 2fW r

p
(⌦), then

kv�⇧hvk
p

fW s
p (⌦)

C

 
X

T2Th

h
p(r�s)
T

|v|
p

W r
p (eS2

T )

! 1

p

,(4.6)

where C =C(⌦, d, s,�).

4.2. Error estimates in fW
s

p(⌦). We next derive some error estimates for the
finite element solutions discussed in section 4. We borrow techniques from the finite
element analysis of classical (local) quasi-linear problems. The technique presented
in [33] or [20, section 5.3] exploits the continuity and monotonicity of the operator,
but not the fact that u and uh solve respective minimization problems. Compared
to those works, Chow [19] obtains improved rates for the classical p-Laplacian. The
following theorem adapts the approach from [19] to the nonlocal setting.

Theorem 4.2 (error estimates). Let ⌦ be a bounded Lipschitz domain, assume
that G satisfies Hypothesis 2.11, let p 2 (1,1), � 2 (0,1] be as in such assumptions,
and let p0 = p

p�1 . Assume f 2B
�s+�

p0,1 (⌦), where � =max{�/p0,�/2}. Let u and uh be
the respective solutions of (2.22) and (4.1). Then, if p2 (1,2], it holds that

ku� uhkfW s
p (⌦) . inf

vh2Vh

ku� vhk
p/2
fW s

p (⌦)
. h

�p
4 | logh|

1

2 .(4.7)

On the other hand, if p2 [2,1), we have the error bound

ku� uhkfW s
p (⌦) . inf

vh2Vh

ku� vhk
2/p
fW s

p (⌦)
. h

2�

p2 | logh|
2

p2 .(4.8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

2/
24

 to
 1

29
.2

.1
9.

10
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



4034 J. P. BORTHAGARAY, W. LI, AND R. H. NOCHETTO

Proof. For any v 2fW s

p
(⌦), using either (2.19) or (2.18), we write

F(v)�F(u) =

Z 1

0
hF

0(u+ t(v� u))�F
0(u), v� uidt

=

Z 1

0
hA(u+ t(v� u))�Au, t(v� u)i

dt

t

�

8
<

:

C

p
ku� vk

2
fW s

p (⌦)

⇣
kukfW s

p (⌦) + ku� vkfW s
p (⌦)

⌘p�2
, if p2 (1,2],

↵

p
ku� vk

p

fW s
p (⌦)

, if p2 [2,1).

In addition, if we use either (2.20) or (2.21), we obtain

F(v)�F(u) =

Z 1

0
hA(u+ t(v� u))�Au, t(v� u)i

dt

t



8
<

:

C

p
ku� vk

p

fW s
p (⌦)

, if p2 (1,2],
C

p
(kukfW s

p (⌦) + ku� vkfW s
p (⌦))

p�2
ku� vk

2
fW s

p (⌦)
, if p2 [2,1).

The proof now follows easily. Indeed, for any vh 2 Vh ⇢ fW s

p
(⌦), we have, for

p2 (1,2],

c(kukfW s
p (⌦) + ku� uhkfW s

p (⌦))
p�2

ku� uhk
2
fW s

p (⌦)
F(uh)�F(u)

F(vh)�F(u) cku� vhk
p

fW s
p (⌦)

.

By the stability estimates (2.23) and (4.2), we have

kukfW s
p (⌦) + ku� uhkfW s

p (⌦) . kfk

1

p�1

W
�s
p0 (⌦)

. kfk

1

p�1

B
�s+�
p0,1 (⌦)

and therefore

ku� uhkfW s
p (⌦) . ku� vhk

p/2
fW s

p (⌦)
8vh 2Vh,

which proves the first inequality in (4.7).
Similar considerations yield, for p2 [2,1),

ku� uhk
p

fW s
p (⌦)

. (kukfW s
p (⌦) + ku� vhkfW s

p (⌦))
p�2

ku� vhk
2
fW s

p (⌦)
8vh 2Vh,

and thus the first inequality in (4.8) holds.
We now set vh =⇧hu and use the stability of ⇧h infW s

p
(⌦), the quasi-interpolation

estimate (4.6), and the regularity bounds (3.18) or (3.19) to conclude

ku� uhkfW s
p (⌦) .

8
<

:

ku� vhk
p/2
fW s

p (⌦)
. h

�p
4
�

"p
2 "

�
1

2 , if p2 (1,2],

ku� vhk
2/p
fW s

p (⌦)
. h

2�

p2
�

2"
p "

�
2

p2 , if p2 [2,1),

for "> 0 su�ciently small. The result follows by setting "= | logh|�1.
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5. Computational exploration. This section presents several numerical ex-
periments for the Dirichlet problem (1.4). We use the finite element discretization
discussed in section 4 on either quasi-uniform or shape-regular graded meshes Th

with grading parameter µ� 1 satisfying

hT ⇡

⇢
C(�)hµ

, T \ @⌦ 6= ;,

C(�)h dist(T,@⌦)(µ�1)/µ
, T \ @⌦= ;,

(5.1)

for every T 2 Th. We refer the reader to [11] for further details on this grading strategy
and additional computational experiments.

5.1. Fractional (p, s)-Laplacians. Throughout this section, we consider the
energy minimization problem (1.1) with G(x, y,⇢) = Cd,s,p

2p |⇢|
p for p 2 (1,1), which

gives rise to the fractional (p, s)-Laplace operator (1.5).

Example 5.1 (boundary behavior). We let ⌦= (�0.5,0.5)2 \ [0,0.5)⇥ (�0.5,0] be
an L-shaped domain and f = 1, and investigate the boundary behavior of numerical
solutions. From the analytical results for the linear problem (p = 2), we expect the
solution to have a boundary behavior of the type

u(x)⇡ dist(x,@⌦)↵(s,p).

We estimate the power ↵(s, p) near di↵erent points on @⌦: the mid-point of one of
the edges (0,0.5), a convex corner (�0.5,0.5), and the reentrant corner (0,0). We
compute the numerical solutions on the graded mesh with µ= 2 and 9467 free nodes,
and fit the power ↵(s, p) using mesh points near the boundary points mentioned
above, specifically along the normal direction near the edge mid-point and along the
bisectors of the angles near the corners. We report the results we obtain in Table 1 and
Table 2 for p= 3 and p= 1.75, respectively.

Despite the limited mesh resolution, near the edge mid-point, we observe ↵(s, p)⇡
s for both p= 3 and p= 1.75. This is consistent with the behavior shown in [36, 37] for
domains satisfying an exterior ball condition. In addition, we notice that ↵(s, p)> s

near the convex corner, ↵(s, p)< s near the reentrant corner, and the deviation from
s is larger when p= 1.75 compared to p= 3.

Example 5.2 (convergence rates). Consider the square domain ⌦ = (�0.5,0.5)2

and f = 1. Since f is smooth, Corollary 3.5 (maximal Sobolev regularity) gives

Table 1
Example 5.1: Exponents ↵ = ↵(s, p) of boundary asymptotics u(x) ⇡ dist(x,@⌦)↵ for p = 3,

di↵erent values of fractional order s, and three qualitatively distinct boundary points.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Edge mid-point 0.11 0.21 0.31 0.41 0.51 0.61 0.70 0.80 0.90
Convex corner 0.09 0.22 0.35 0.49 0.64 0.79 0.94 1.11 1.29
Reentrant corner 0.06 0.16 0.24 0.31 0.39 0.46 0.54 0.62 0.70

Table 2
Example 5.1: Exponents ↵ = ↵(s, p) of boundary asymptotics u(x) ⇡ dist(x,@⌦)↵ for p = 1.75,

di↵erent values of fractional order s, and three qualitatively distinct boundary points.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Edge mid-point 0.10 0.21 0.31 0.41 0.51 0.60 0.70 0.79 0.89
Convex corner 0.11 0.27 0.46 0.66 0.86 1.07 1.29 1.51 1.76
Reentrant corner 0.07 0.12 0.17 0.23 0.29 0.35 0.42 0.49 0.57
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Table 3
Example 5.2: Convergence rates on uniform meshes for p = 1.75,3 and di↵erent values of s.

They indicate that the theoretical rates in Theorem 4.2 (error estimates) might be suboptimal.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p= 3 0.326 0.335 0.333 0.329 0.328 0.329 0.335 0.357 0.494
p= 1.75 0.558 0.552 0.555 0.561 0.569 0.583 0.607 0.658 0.790

u 2 fW s+1/p�"

p (⌦) for p � 2 and u 2 fW s+1/2�"

p (⌦) for 1 < p  2. We compute
numerical solutions for p = 3, p = 1.75, and di↵erent values of s on quasi-uniform
meshes, and examine convergence rates in the energy norm. Since the exact solutions
u are unknown, we use kuh � uh/2kfW s

p (⌦) as a proxy for kuh � ukfW s
p (⌦). Table 3

summarizes our findings.
The rates are approximately 1/p ⇡ 0.33 for p = 3 except for the case s = 0.9,

where we believe the discrepancy is due to the proxy solution not being su�ciently
refined in comparison to the rest of the experiments. Although the rate 1/p is larger
than the theoretical rate 2/p2 of (4.8) in Theorem 4.2 (error estimates), we point out
that it is consistent with the best approximation error

inf
vh2Vh

ku� vhkfW s
p (⌦) . h

1/p
| logh|1/p.

This indicates that, instead of the regularity of u, the suboptimal rates in the theory
might be a consequence of the suboptimal power 2/p in the error estimate of (4.8)

ku� uhkfW s
p (⌦) . inf

vh2Vh

ku� vhk
2/p
fW s

p (⌦)
.

Similarly, for p = 1.75, we observe that the rates are approximately 1/p ⇡ 0.57
except for s= 0.7,0.8,0.9, where we believe the meshes are not fine enough to deliver
accurate rates. This indicates that instead of the regularity u2fW s+1/2�"

p (⌦) proved
in Corollary 3.5, the solution u in this example might satisfy u 2 fW s+1/p�"

p (⌦). In
addition, the power p/2 in the error estimate (4.7) of Theorem 4.2,

ku� uhkfW s
p (⌦) . inf

vh2Vh

ku� vhk
p/2
fW s

p (⌦)
,

might not be optimal as well. These two reasons together lead to the theoretical
suboptimal rate p/4 of (4.7).

5.2. Linear operators with finite horizon. We consider the operator A�u

defined in (3.21) and let p= 2, which gives rise to the linear fractional Laplacian with
finite horizon and variable di↵usivity.

Example 5.3 (truncated fractional Laplacian in 1D). Consider ⌦= (�1,1), p= 2,
� = 0.2, f = �

2�2s

1�s
, and  = �[0,1], where �I is the characteristic function of I. The

resulting operator is the truncated fractional Laplacian we discussed in Remark 3.14.
We first compute numerical solutions for di↵erent s using a mesh graded according to
(5.1) with h= 2�12

, µ= 2 to investigate the boundary behavior of solutions. Figure
1 displays the solutions we obtained for several values of s.

Assuming the solutions have an algebraic boundary behavior

u(x)⇡ dist(x,@⌦)↵(s),
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-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 1. Example 5.3: Numerical solutions of linear operator with finite horizon for di↵erent
values of s.

Table 4
Example 5.3: Boundary exponents ↵(s) for di↵erent values of s. They confirm u(x)⇡ dist(x,@⌦)s.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

↵(s) 0.10 0.19 0.29 0.39 0.49 0.60 0.70 0.80 0.90

Table 5
Example 5.3: Optimal convergence rates on uniform meshes for di↵erent values of s.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rate 0.530 0.508 0.500 0.498 0.497 0.498 0.498 0.498 0.501

we estimate ↵(s) numerically in Table 4. We clearly observe ↵(s)⇡ s; this is the same
as for the fractional Laplacian (��)s.

Next, we measure convergence rates for di↵erent s on uniform meshes for h from
2�8 to 2�12. Since we do not know a closed formula for the solution u, we use
kuh � uh/2k eHs(⌦) as a proxy for kuh � uk eHs(⌦) and present the rates in terms of h in
Table 5. We observe the convergence rates are about 0.5 for all s, in agreement with
the regularity u2 eHs+ 1

2
�"(⌦) proved in Corollary 3.15 (maximal Sobolev regularity)

and a standard best-approximation argument.
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Finance, 7 (2004), pp. 303–335, https://doi.org/10.1142/S0219024904002463.

[43] V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem con-
cerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002),
pp. 230–238, https://doi.org/10.1006/jfan.2002.3955.

[44] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univer-
sity Press, 2000.

[45] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent devel-
opments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37
(2004), pp. R161–R208, https://doi.org/10.1088/0305-4470/37/31/R01.

[46] S. Mosconi and M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems,
in Bruno Pini Mathematical Analysis Seminar 2016, Bruno Pini Math. Anal. Semin. 7,
Univ. Bologna, Alma Mater Stud., Bologna, Italy, 2016, pp. 147–164.
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