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TGF-p blockade drives a transitional effector phenotype in T cells reversing SIV latency

and decreasing SIV reservoirs in vivo
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One-sentence summary:
TGF-B blockade drives an effector phenotype in immune cells leading to SIV latency reversal and

enhanced immune responses in vivo.
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Abstract

HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting
immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic
dosing of anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirm the latency reversal
properties of in vivo TGF- blockade, decrease viral reservoirs and stimulate immune responses.
Treatment of eight female, SIV-infected macaques on ART with four 2-weeks cycles of galunisertib
leads to viral reactivation as indicated by plasma viral load and immunoPET/CT with a $4Cu-
DOTA-F(ab').-p7D3-probe. Post-galunisertib, lymph nodes, gut and PBMC exhibit lower cell-
associated (CA-)SIV DNA and lower intact pro-virus (PBMC). Galunisertib does not lead to
systemic increase in inflammatory cytokines. High-dimensional cytometry, bulk, and single-cell
(sc)RNAseq reveal a galunisertib-driven shift toward an effector phenotype in T and NK cells
characterized by a progressive downregulation in TCF1.

In summary, we demonstrate that galunisertib, a clinical stage TGF-B inhibitor, reverses SIV
latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing

immune responses in vivo in absence of toxicity.
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Introduction

Interruption of antiretroviral therapy (ART) leads to rapid rebound of viremia in the vast majority
of people living with HIV-1 (PLWH) due to the establishment of a persistent HIV-1 reservoir early
after infection® 2. A key mechanism of this persistence is the ability of HIV-1 to enter a state of
virological latency characterized by the silencing of viral gene expression and/or lack of viral
proteins translation® 4. This allows the virus to remain invisible to the immune system and latently
infected cells to survive and proliferate by homeostatic or antigen-driven proliferation® ©. Of note,
the viral reservoir was initially thought to be stable. However, recent evidence suggests that
stochastic HIV reactivation under ART occurs, and selective killing is favored in cells bearing
replication competent virus integrated in transcriptionally active sites within the genome”: 8 °.
Hence, integration site, but especially the activation status of the infected cells profoundly
influences HIV-1 persistence.

Ongoing efforts to achieve a functional cure for HIV-1 are directed towards supplementing ART
with immunotherapies targeting the viral reservoir. Such strategies, under the umbrella of “shock
and kill”, aim to reactivate the replication competent reservoir and eliminate latently infected cells
by viral cytopathic effects or immune-mediated killing ' ''. However, these strategies have thus
far failed to achieve a reduction of the viral reservoir or post-ART virologic control in either the
clinic or preclinical models. This is mainly due to the low inducibility of latent proviruses and the
heterogeneity of the mechanisms of persistence' '3 415 |In contrast, therapeutic vaccination
strategies focused on enhancing HIV/SIV-specific responses have had some discreet measure
of success'®. However, currently, no single strategy leads simultaneously to latency reversal and
stimulation of effective immune responses.

The HIV life cycle and HIV’s ability to replicate efficiently are especially dependent on the
activation status of the infected cells. In this context, significant advances have been made to
directly activate immune cells through non-canonical pathways in order to promote HIV latency

reversal'’. However, the activation and differentiation of immune cells is intrinsically linked to
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cellular metabolism®®. Indeed, signaling pathways that govern immune cell differentiation and
activation such as mTOR and Wnt/B-catenin, not only have been implicated in regulating HIV
latency® 2021 but are also critical regulators of cell metabolism??. The metabolic status of an
infected cell, in turn, plays a critical role in its ability to support latency reactivation and viral
production® 23,

In this context, recent evidence suggests that TGF-B plays a critical role in the regulation of
immune cell activation and metabolic reprogramming?* 2% 26, Specifically, in the context of CD8* T
cells, TGF-B has been shown to suppress mTOR signaling preserving the metabolic fithess of
memory CD8* T cells?®> and stem-like antigen specific CD8* T cells through its modulation of
Whnt/B-catenin factor TCF126 27, TCF1 and the mTOR pathway are also critical to T cell
differentiation and responsible for the transition from activated effector cells to resting memory
cells during LCMV infection?? 26, The regulation of quiescence in CD8* T cells that follows
continuous TGF-B stimulation is critical to the transition to a memory phenotype and it is driven
by specific metabolic changes that are linked to decreased glycolytic activity, more efficient
mitochondrial respiration, and long-term survival?s 26,

Similarly, in the context of NK cells, TGF-B has been implicated in decreasing their baseline
metabolism driving lower expression of markers of NK cytotoxic activity?2.

While TGF-B-mediated suppression of TCR and IL-2 signaling were shown to lead to lower CD4*
T cell activation following cognate antigen recognition in older studies?* 2°, more recent work using
CD4* T cell-specific deletion of the TGF-B receptor demonstrated an even more profound effect
of TGF-B on all stages of CD4* T cell activation, proliferation and cytotoxic response to LCMV
than in CD8* T cells®. However, little is known on the specific role of TGF-B in regulating the
transition to and from memory and effector phenotypes in CD4* T cells and how this may be
associated with TGF-B-driven changes in CD4* T cell metabolism. Moreover, TGF-f regulates the
expression of CD103 and other surface and intracellular factors essential of T cell residency in

mucosal tissues®' 32 33, Hence, TGF-B is considered the master regulator of mucosal immunity34.
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We and others have recently demonstrated that TGF-p regulates HIV-1 latency in primary CD4*
T cells ex vivo and in vivo®: %6.37_ Latency reversal was detected in a non-human primate (NHP)
model of HIV infection following a short treatment with a clinical stage TGF-f inhibitor, galunisertib
(LY2157299)%. In that study, we documented latency reversal particularly at the level of the gut
mucosal tissue using the #4Cu-anti-gp120 Faby(7D3) probe and immuno-PET/CT. We further
validated the ability of immune-PET/CT to identify sites of viral reactivation and replication in the
gut by performing tissue resection in hot areas of the gut identified by PET followed by
confirmatory PCR for vYDNA/RNA and vVRNAscope®.

Herein, we demonstrate how treatment with galunisertib with a 2-week on, 2-week off regiment
that mimics the therapeutic regimen employed in the clinic in phase 1 and 2 trials of solid tumors3®
40 leads to profound transcriptional and functional changes in immune cells in the absence of
overt toxicity or increased systemic inflammation. Importantly, we observed a shift toward a
transitional effector phenotype in CD4* T cells and other immune cells both systemically and in
the lymph nodes. This shift was accompanied by, and likely responsible for, increased viral
reactivation in SlV-infected, ART treated macaques documented by molecular techniques and
PET/CT images. At the end of the treatment with galunisertib, we detected lower viral reservoir
levels, including total and intact proviral DNA in both PBMC, gut and lymph nodes and significantly

higher immune responses.

RESULTS

2-weeks on-off therapeutic regiment with galunisertib leads to viral reactivation SIV
infected, ART-treated macaques.

To confirm galunisertib-driven HIV/SIV latency reversal and investigate the underlying
mechanisms, 8 Indian origin rhesus macaques (Macaca Mulatta, Mamu-AO1-, -B08, -B17-, all
females) were infected intravenously with 300 TCID50 of the barcoded SIVmac239M2. We

initiated ART treatment (daily co-formulated Tenofovir [PMPA], Emtricitabine [FTC] and
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Dolutegravir [DTG]) on week 6 post-infection (pi). A 2-week on, 2-week off therapeutic cycle with
galunisertib (20mg/Kg twice/daily orally) started at week ~35pi and continued for a total of 4 cycles
(Fig 1A and Table S1). ART was discontinued 3 weeks after the last galunisertib dose, and the
macaques were followed for 6 weeks after ART discontinuation. Median peak plasma viral load
(pVL) was 108 copies/mL at week 2pi. Given the synergistic activity of anti-PD1 and anti-TGF-3
therapies in cancer*' 42, a rhesus anti-PD1 antibody was administered at 5mg/kg before the 3
and 4% cycle to 2 macaques (08M156 and A6X003). However, no differences were noted for these
2 macaques in any of the parameters we measured, and the data were pooled.

Full suppression to undetectable levels (pVL LOD 15 copies/mL) was achieved in 3 out of the 8
macaques at week 10pi. In the other 5 macaques, pVL fell below 65 copies/mL by week 22pi with
a single blip of 400 copies/mL in A8T010 at week 29pi (Fig 1B). Following the start of the
galunisertib treatment, pVLs increased in 7 out of 8 macaques from a single peak over
undetectable in 08M171 and A8L057 to several peaks and up to 10% copies/mL in the other
macaques. Of note pVLs in A8T010 and A8R095 was undetectable for over 5 weeks before,
respectively, blips of up to 102 copies/mL were detected following galunisertib treatment initiation
(Fig 1B). More frequent blips were noted during the first 2 cycles with galunisertib compared to
cycles 3 and 4 (Fig 1C). However, 08M171 and A8L057 did not experience a pVL increase until
the 4% cycle.

Importantly, in support of the pVL data above, we documented viral reactivation also using
immunoPET/CT. The 8 Cu-anti-gp120 Fab(7D3) probe was injected 24hrs before each scan and
scans performed before the first and after the last galunisertib dose in each cycle. As shown in
Fig 2, Fig S1 and Movies S1-S8, the PET signal visibly increased in different tissue areas after
cycle 2 (in A8R095, 08M156, A8L014 and A8T010) or at the beginning of cycle 3 (in A6X003,
08M134 and A8L057). In 08M171 we observed an increase in the gut area only at the beginning
of cycle 2. An unforeseen issue with probe stability in cycle 3 led to exclusion of the last 2 scans

of 08M171 from the analysis (Fig S1, 08M171 infection, treatment and scan were offset compared
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to the other macaques). A corresponding increase in mean standard uptake values (SUV) was
detected in the gastrointestinal area and axillary lymph nodes (Fig 2B) and was significant in cycle
3 compared to before cycle 1 (BC1). In these anatomical areas (ROls in Fig S2 and Movies 9-
10), SUV increases likely correspond to increases in viral replication as demonstrated in previous
studies*® 44, APET signal increase was also noted in the area of the vertebral column (spine) and
nasal associated lymphoid tissues (NALT). However, neither cerebrospinal fluid (CSF) nor bone
marrow (BM) or NALT tissue were collected during the study, and we have no prior validation of
the specificity of the signal in these anatomical locations. Hence, whether this signal corresponds
to increased viral replication and whether this occurs in the vertebral bones or cerebrospinal fluids
remains to be determined. No SUV increase was present at the level of the spleen or kidney,
where probe accumulation and background signal likely masked any specific signal. However, a
significant increase in SUV was detected in the liver (Fig 2B). Similar increases in PET signal are
also evident when considering the SUV Total in these anatomical areas (Fig S3A). Moreover,
blood pool activity (BPA) also increased during the 3 cycle (Fig S3B). Whether this was due to
galunisertib-specific effects on probe pharmacokinetics, changes in viral antigen or probe-antigen
kinetics remains to be determined. However, when the mean SUV was normalized for BPA in the
gut, axillary lymph nodes and spine, the signal increase in the 3™ cycle was lost, but an increase
during the first cycle became evident (Fig S3C). Of note, the non-BPA normalized SUVmean
increase in the gut and lymph node areas in most cases followed an increase in cell-associated
VRNA detected, respectively, in colorectal biopsies and fine needle aspirates (FNA) at the same

time points during treatment (Fig S4).

Decreased viral reservoir in absence of systemic inflammation after 4 cycles with
galunisertib
To determine the impact of galunsiertib on SIV reservoir, we measured CA-vDNA in PBMC,

colorectal biopsies and lymph nodes (LN). A significant decrease in CA-vDNA was detected in all
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tissues between week 35pi (beginning of cycle 1, BC1) and week 49pi (after/end of cycle 4, AC4)
for gut and LN, and between week 35pi (BC1) and end of cycle 3 (AC3) for PBMC (Fig 3A, AC4
not measured for PBMC and Fig S5A). In the gut and LN (right axillary), decreases ranged from
a Log to 1/3 of a Log (gut: median 0.77; range: 0.33 - 0.94 fold LN: median: 0.93; range: 0.33-
0.98 fold decrease). In the PBMC the decrease was slightly less pronounced with a median half
Log decrease (median: 0.58; range 0.28 - 0.88 fold decrease). However, the comparison for the
PBMCs was between week ~35 and week ~45 (end of cycle 3, AC3) instead of the end of all 4
cycles, because a snap frozen pellet was not available at the end of cycle 4 for PBMCs. The SIV
reservoir in PBMCs was also monitored by SIV-IPDA (intact proviral DNA assay) comparing
before cycle 1 (BC1) to the end of cycle 4 (AC4). Of note, we observed significant decreases of
both total and intact provirus by SIV-IPDA. Intact provirus declined similarly to the CA-vDNA with
a median of half Log (median: 0.53; range: 0-0.71 fold decrease).

In contrast, no decline in CA-vDNA was detected in the PBMCs of a group of 4 macaques infected
intravenously with the same stock of SIVmac239M2 for a separate study. These 4 macaques
were placed on ART on week 6pi as in our study. However, they were infected several months
after our study and samples collected at similar time points varied in their availability. No decline
in CA-vDNA was detected under ART, between weeks 28 and 52pi (untreated group, Fig S5B).
This suggests that the decline in CA-DNA in our study was not due to ART alone. However, in
absence of an appropriate control group, it is not possible to be determine with confidence the
relative contribution of ART and galunisertib to the decline.

Importantly, we found no significant changes in any of the clinical variables (chemistry and
hematology, Supplementary Data 1 and 2) measured before, during and after the galunisertib
therapy. Moreover, we observed no changes in the concentrations of inflammatory chemokines
and cytokines measured in plasma before and after the first 2 treatment cycles and at the end of

the last cycle (Fig 3C). The only difference in cytokine and chemokine levels after galunisertib
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treatment was a small increase in IL-10 detected at the end of the last cycle compared to before

treatment (Fig S5C).

Galunisertib treatment drives an effector phenotype in T and NK cells.

The phenotype of PBMCs before and after Galunisertib treatment was monitored by high-
parameter flow cytometry of T and NK cell subsets and phenotype (Table S2). Classical subsets
and single-color analysis of MFI revealed a substantial increase in the expression of CD95 and a
profound consistent decrease in TCF1 expression in CD4* T cells that continued throughout the
treatment (Fig 4A). In contrast, a small decrease in CD62L after the first cycle, reverted to baseline
during the following cycles. The frequency of naive cells, defined as CD95- within CD4* T cells,
decreased in parallel with the increase in CD95 (gating strategy in Fig S6). Interestingly, there
was no change in the expression of CCR7 or CD28 within CD95* CD4* T cells (Fig 4B). Hence,
the frequency of central memory and effector memory as defined by CD95 and CD28 or CCR7
did not change (Supplementary Data 3). The levels of T-bet did not change significantly (Fig S7A).
However, we detected a downregulation of the gut homing receptor integrin a437 and a decrease
in the levels of granzyme B (GRZB, Fig S7A). Of note, the expression of activation markers CD69,
HLA-DR and Ki67 remained mostly unchanged, with the exception of an increase in HLA-DR at
the beginning of cycle 2 compared to before galunisertib (Fig 4C). Interestingly, the effect of
Galunisertib on CD8* T cells was not as pronounced as it was on CD4* T cells. No significant
increase was detected in CD95 expression and TCF1 downregulation reached significance only
at the end of the treatment (Fig 4D). Markers of cell activation like HLA-DR, Ki67 and CD69 did
not change (Fig 4D and Fig S7B). However, we detected a significant decrease in T-Bet at the
beginning of cycle 2 (BC2) compared to before treatment (BC1). Finally, in contrast to CD4* T
cells, the decrease in GRZB was more pronounced at several time points during treatment and
there was a sustained significant increase in CCR7 expression in memory CD8* T cells (Fig 4E).

Interestingly, the expression of PD1 on both CD4* T cells and CD8* T cells either did not change
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or was slightly downregulated. Importantly, the frequency of PD1* CD101* (TCF1'°%) exhausted
memory CD8* T cells*® did not change (Fig S7B). Finally, within NKG2A* CD8* NK cells, there
was a pronounced increase in CD16 expression and an initial increase in the proliferation marker
Ki67 (AC1 vs BC1; Fig 4F).

High-dimensional data visualization with tSNE and clustering analysis with FlowSOM#*é confirmed
the results of the classical analysis. We performed tSNE and FlowSOM after data clean up with
FlowClean and normalization with the SwiftReg algorithm*’. We performed two analyses. One
analysis compared before (BC1) and after the last cycle (AC4) only (Fig 4G and Fig S8A). A
second analysis was performed on all time points (Fig S8B and S8C). When we compared only
BC1 and AC4, the PhenoGraph clustering algorithm identified 36 populations. FlowSOM with 36
populations identified 6 populations of CD4* T cells, 6 of CD8" T cells and 4 of NK cells
(NKG2AMsh CD8*; Fig S8A). The remaining populations were likely monocytes and other minor
subsets. Direct comparison of each population revealed a decrease in Pop 31 (naive CD8 T cells)
and Pop 30 (central memory Ki67* CD8* T cells) and an increase in Pop 2 and 3 (effector and
central memory CD4* T cells). Finally, there was a decrease in HLA-DR high Pop0 and an
increase in CD16"9" NKG2A- Pop14 (Fig 4H and S8A). Visual inspection of the tSNE plots (Fig
4G) revealed 3 areas mostly occupied by cells in the post-galunisertib AC4 group (New1, 2 and
3) which were characterized by high levels of CD16 and GRZB (New 3 is likely NK cells). In
contrast, 3 areas mostly occupied by cells in the pre-galunisertib group BC1 (Old1, 2 and 3) were
characterized by high levels of TCF1 and low CD95, confirming the finding of the classical
analysis. Analysis of all time points with phenograph-derived 38 populations in FlowSOM
recapitulated findings obtained with the classical analysis and the BC1 AC4 comparison with no

additional insights (Fig 4l).

Galunisertib treatment in vivo increases pTreg while decreasing pTfh

10
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The frequencies of circulating Tregs and Tfh cells were monitored with an established flow
cytometry panel*® 49 after the first and third cycle of galunisertib. The frequency of all CD4* Tregs
(CD25Me" FoxP3*; gating in Fig S9) and CD8* Tregs increased after the first cycle and remained
higher until the end of the 3" cycle, while CCR4* Treg were proportionally higher at the end of the
treatment compared to before (Fig 4J). In contrast, circulating Tfh (CXCR5* PD1*; gating in Fig
S9) were lower at the end of the Galunisertib treatment both within total and central memory CD4*
T cells (Fig 4J). Finally, the expression of CD39 (ecto-nucleotide triphosphate
diphosphohydrolase 1), which tracks within extracellular adenosine and immunosuppressive

effects, was lower on total and central memory CD4* T cells (Supplementary Data 3 and Fig 4J,

respectively).

Bulk RNAseq of PBMC and single-cell (sc)RNAseq analysis of LN confirm a profound shift
toward effector phenotype.

In our previous studies, we determined that 6hrs after galunisertib treatment in naive macaques
there was an upregulation of the AP1 complex (JUN and FOS) and several genes encoding
ribosomal proteins in CD4* T cells*. To understand early and later effect of galunisertib in the
context of SIV infection, in the current study we performed bulk RNAseq of PBMC isolated 1hr
after the first administration of galunisertib in cycle 1 and at the end of the 15t 2-weeks cycle. We
found 640 genes significantly modulated (FDR<0.05; abs(log. FC(Fold Change))>2) in PBMC just
1hr after the first dose of galunisertib. The maijority (457 genes) were downregulated (Fig 5A).
Gene set enrichment analysis (GSEA) revealed an upregulation of the oxidative phosphorylation
(OXPHOS; Enrichment Scores (ES) 0.58 FDR=0.048) and the reactive oxygen (ES 0.55
FDR=0.075) pathways among the Hallmark genet sets (Fig 5A and S10). Among the Biocarta
sets, there was an enrichment in the electron transport chain (ETC; ES 0.84 FDR=0.132) and a

downregulation of the circadian (ES -0.81 FDR=0.163) pathways (Fig 5A and S10). Finally, among

11
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the top modulated genes (by FC), we identified several genes encoding for soluble transporters,
while classical activation markers like CD69 and CD38 were downregulated (Fig S10B). An early
engagement of metabolic pathways was confirmed by enrichment analysis of significant DEG with
Metascape®® with an upregulation of adipogenesis, OXPHOS and fatty acid metabolism (Fig
S10C). Of note, 2 weeks after the beginning of galunisertib, metabolic pathways were still among
the most enriched upregulated pathways in PBMCs (Fig 5B and Fig S11A). Among the top
upregulated genes there were CD44, CCRS5, several integrins and GRZA and GRZB (Fig S11B).
Finally, we performed bulk RNAseq of rectal biopsy tissue before and after the first cycle with
galunisertib (Fig 5C). There were only 51 differentially expressed genes (DEGs; FDR<0.05;
log2FC=2). GSEA analysis of all DEGs (FDR<0.05) revealed the G2_M_DNA replication pathway
highly enriched (ES 0.97 FDR=0.012) within the Hallmark set. Among the most interesting
changes, we observed a pronounced downregulation of integrin 7, in contrast to an increase in
integrin oE (CD103; Fig 6C), suggesting that TGF-B-driven increase in oE>" may be driven by
non-canonical TGF-B pathway signaling not blocked by galunisertib.

To clarify the impact of galunisertib at the single cell level and in lymphoid tissues, we also
performed scRNAseq analysis of cells isolated from LNs before (right axillar) and after (right or
left inguinal) the first cycle (Fig 6). Dimensionality reduction and clustering analysis with PCA and
uniform manifold approximation and projection (UMAP)>2 was performed to visualize the data (Fig
6A). However, cells were classified based only on gene expression (Fig 6B and C). We first
classified major subsets: T cells (38,705 cells), B cells (31,385 cells), NK cells (1,628 cells),
macrophages (285) and cells expressing both CD19 and CD3 (942 T/B cells) (Fig 6A shows this
classification over UMAP). Then we classified only CD4* and CD8* T cell subsets (Fig 6C and
S12A) and B/T subsets including naive and germinal center (GC) B cells and Tth cells (Fig S12B
and S12C). Cell number for all these subsets did not change with treatment (Fig S13). However,

differential gene expression analysis of T cells revealed an upregulation of members of the AP1
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complex, CD69, B2 macroglobulin and RPL13 among the most upregulated genes (Fig 6D).
Moreover, it confirmed a downregulation of TCF1 at the transcriptional level (TCF7 gene; Fig 6D).
Gene enrichment analysis revealed again Myc_targets_ V1, OXPHOS and mTORC1 as the most
enriched hallmark pathways (Fig 6E). Of note, among gene ontology cellular processes, RNA
processing was the most highly enriched pathway, followed by intracellular transport and catabolic
processes following right after (Fig S14A) confirming an increase in translation and metabolism
within these cells.

Since we noticed substantial differences in the impact of galunisertib on CD4* T cells compared
to CD8* T cells by flow, we focused the analysis on these subsets. In CD4* T cells we found only
25 DEGs with a log2FC=0.15, while 34 DEGs were in CD8* T cells with more downregulated
genes in the CD8* T cells compared to the CD4* T cells. The AP1 complex and TCF7 were again
upregulated and downregulated respectively in both CD4* (Fig 6F) and CD8* T cells (Fig 6G).
However, STAT1 was more strongly downregulated in CD4* T cells. Enrichment analysis showed
once again upregulation of Myc_targets V1, OXPHOS and mTORC1 pathways in both CD4* and
CD8* T cells (Fig 6H and Fig S14B). Interestingly, the most enriched set among in Biocarta was
the HIV-Nef pathway (Fig 61) demonstrating the relevance of these galunisertib-driven changes
to HIV cell cycle and transcription (highly enriched KREB pathway as well). The 2" most enriched
Biocarta pathway was TCR signaling, linking galunisertib to cell activation. Next, we analyzed
changes in gene expression in Tfh cells. In this subset we obtained a similar number of DEG as
in other T cells and myc_targets_V1 was still the most enriched hallmark pathway (Fig S14C and
D). In B cells, the AP1 complex was again prominently upregulated, together with CD83, CD69
and MAMU-DR. Of note, more genes were modulated in B cells (44 genes with a log2,FC=0.15
and 18 with logFCO0.2) than in T cells with some differences in enriched pathways (Fig S14F).
Similar genes were modulated in GC B cells and naive B cells with several more DEGs in naive
B cells than in GC cells (Fig S15A and B). Finally, 144 genes were modulated in NK cells and 39

genes in macrophages (Fig S15C and D; log.FC=0.15). GRZB was prominently upregulated, but
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CD44 downregulated. In macrophages genes were mostly downregulated including TCF7L2 and
KLF4 suggesting an increase in inflammatory phenotype and decrease in M2 polarization® (Fig

S15D).

Galunisertib increases SIV-specific responses and changes barcode distribution

In order to understand how galunisertib affected immune cell function and SIV-specific responses,
we stimulated PBMC with 15-mer SIV peptides from SIVmac239 gag, pol and env for 24hrs on
antibody coated Elispot plates. Because of sample availability, we probed before and after the
first cycle and after the 3™ galunisertib cycle only. Interestingly, by the end of the 3™ cycle there
was a significant increase in IFN-y secretion both SIV-specific (particularly against env) and non-
specific (DMSO control). A notable increase in TNF-a release was similar in response to Gag and
non-specifically (Fig 7). In contrast, IL-2 release appeared to increase slightly after the first cycle
(non-significant), but remained unchanged with a slight decrease by the end of the 3 cycle (Fig
7).

In order to understand if these changes in immune responses in combination with latency reversal
and switch toward an effector phenotype may have impacted viral population dynamics, we
analyzed changes in numbers and distribution of the viral barcodes before and after the first 3
treatment cycles. There was no barcode amplification at several time points particularly in the
lymph nodes. However, although there were no significant changes in the number or diversity
(measured as Shannon Entropy; Sh) of barcodes before and after each galunisertib cycle (Fig
S16A and Fig 8A), we found significant changes in barcode frequency distribution in most tissues
and cycles after galunisertib treatment (Fig 8B and S16B). Specifically, the relative proportion of
each barcode changed in all monkeys in all cycles in the rectal biopsies (probably a consequence
of different sampling area), but also for all LN analyzed (except for 08M134 in cycle 1). Of note,

the same LN were sampled at the beginning and after cycle 3 (Table S3). Hence, sampling
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location does not explain the changes barcode distribution. Changes in the proportion of barcodes
were also detected in at least half of the PBMCs after cycle 1 and 2 (cycle 3 not analyzed). Finally,
barcode diversity decreased in plasma post-ATI compared to the time point right before ART (Fig
8C) and barcode distribution significantly changed post-ATl compared to pre-ART in 2 of the 7

macaques that rebounded (Fig S16C).

TCF1 downregulation in CD4* T cells correlates with virological and immunological
endpoints.

In order to explore a possible association between the various virological and immunological
parameters and their changes, we built a correlation matrix with a curated set of variables of
interest or their fold changes. This analysis revealed an association between the decrease in
TCF1 expression in the CD4* T cells and several virological and immunological variables (Fig
8E). Specifically, both the levels of CA-vDNA in the colorectal tissue and the fold increase in gut-
SUV strongly inversely correlated with fold changes in TCF1. Since TCF1 decreased, a larger
decrease in TCF1 was directly proportional to residual vDNA in the gut at the end of cycle 4 and
to the increase in PET signal in the gut (Fig 8D and 8E). A weaker, but still significant association
was also present with CA-vDNA in PBMC at the end of cycle 3 and with the levels of VRNA in the
lymph nodes at the end of the 4" cycle (Fig 8D and S17A). Finally, the decrease in TCF1
correlated with the increase in IFN-y and poly-functional IFN-y/TNF-a releasing cells (cumulative
increase of SIV-specific responses to gag, pol and env; Fig 8D and 8E). Of note, the increase in
PET signal in the gut also correlated with the levels of vDNA in PBMC at the end of cycle 3, vDNA
in gut biopsies and residual CA-vRNA in LN at the end of cycle 4 (Fig S17B). Interestingly, the
levels of residual CA-vRNA in LN also correlated with the increase in IFN-y and poly-functional

IFN-y/TNF-a releasing cells (Pearson r=0.85 and 0.76, respectively). Finally, the residual intact

pro-virus (IPDA) directly correlated with the levels of IFN-y and IFN-y/TNF-a produced in response
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to SIV peptides at the end of cycle 3 (Fig 8D; r= 0.76 and 0.88, respectively). In contrast, the
change in intact provirus trented to correlate inversely with the levels of IFN-y, so that a larger
decrease directly correlated with more IFN—y responses. However, this did not reach significance

(p=0.117, Fig S17C).

Discussion

HIV-1 latency in T cells is maintained through diverse mechanisms that include blocks in
transcriptional elongation, completion, and splicing’. A common characteristic shared by HIV-1
latently infected cells of both T and myeloid cell lineages is their “resting” phenotype'4 54 5556 |n
these cells, an inability to transcribe proviral DNA is linked to a generalized decrease in
transcriptional activity which, in turn, is linked to their metabolic status?3. Cellular metabolism is in
turn influenced by tissue location and environmental cues®’.

TGF-B is released at high level in PLWH and its levels remain high during ART®8 5% 60 The
immunosuppressive activity of TGF-B is well-known. However, the effect of TGF-B signaling in
immune cells is highly context dependent®'. Hence, TGF-f plays different roles according to a cell
differentiation and activation status®'. In CD8* T cells and NK cells, TGF-B was shown to decrease
mTOR activity and preserve cellular metabolism (high mitochondrial activity and spare respiratory
capacity, but reduced mTOR activity) preventing metabolic exhaustion? 26.62. 63 This effect was
linked to survival of antigen-specific CD8* T cells, preservation of their stemness and it was linked
to higher expression of the TCF1 factor?®.

In contrast, in CD4* T cells TGF-B is known to decrease TCR activation?® 64, restrict proliferation
and inhibit cytotoxicity (including granzyme and perforin release) at different stage of infection in
vivo3%: 85, However, the role of TGF-B in the formation and preservation of CD4* T cell memory is
still unclear8'. Moreover, the link between TGF-@ signaling and TCF1 expression in CD4* T cells

is unexplored.
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Here, we used a clinical stage small drug, galunisertib, developed by Eli Lilly and used in several
phase 1 and 1/2 clinical studies against solid cancer3® % 67 to investigate the impact of TGF-B
blockade on SIV latency, SIV reservoir and immune responses. Of note, Eli Lilly did not terminate
galunisertib development program because of toxicity®® °. Indeed, in our studies in macaques,
we observed no adverse events nor changes in chemical or hematological variables. Moreover,
there were no detectable changes in the levels of the 24 inflammatory factors that we probed in
plasma during the treatment. This suggests that this therapeutic approach may be safe in people
living with HIV (PLWH).

The first important finding of our study was the confirmation of our previous report of the latency
reversal properties of TGF-B blockade in vivo3®. Indeed, we found increase in pVL in 7 out of the
8 macaques upon initiation of galunisertib therapy. Although not all macaques were fully
suppressed before treatment, substantial increases in pVL (>10? copies/mL) were noted also in
fully suppressed macaques (08M171, ABR095 and A8L057). Moreover, viral reactivation was
documented in tissues by immunoPET/CT. Importantly, the SUV increase detected post-
galunisertib in gut and LN correlated with CA-vRNA as in our previous studies®® and, interestingly,
it was associated with a decrease in TCF1. However, despite this evidence, the absence of
imaging studies carried out in uninfected, galunisertib-treated macaques require that we interpret
this data with care. This is due mostly to unexpected and, yet unexplained, galunisertib-driven
changes in BPA. Without a better understanding of these changes, it is difficult to determine the
BPA contribution to the PET signal increase in tissues. Yet, an increase in gut and LN SUV is
present even after BPA normalization (although in cycle 1 instead than cycle 3). Since our probe
is a F(ab’)2 and not a whole antibody, we did not expect the probe to be still present in significant
amounts in circulation in a scan performed 24hrs post-probe injection. Nonetheless, galunisertib
may have impacted probe and probe-antigen complex pharmacokinetics or the probe interaction
with increased viral antigen. TGF- is required for vascular barrier function’®. Hence, galunisertib

may have increased vascular permeability. However, this would have driven a major decrease in
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BPA instead than the detected increase. Moreover, significant changes in VEGF-A, a factor critical
to and tracking with vascular permeability”!, were not noted. This, in conjunction with our previous
studies which validated the specificity of the PET signal for areas of enhanced SIV replication in
gut and lymph nodes?® 43 72, demonstrates that the galunisertib-driven increases in SUV were
likely specific, and identified areas of SIV latency reversal at least in gut and lymphoid tissues.
The extent to which the increased signal in the spine and bones recapitulates an increase in SIV
replication at these sites remains to be determined.

Importantly, we observed a decrease in CA-vDNA in all the tissues that cannot be attributed to
ART alone. Indeed, although we did not have a concurrent control group, this decrease was not
present in similar studies conducted in SIVmac239M2 infected macaques on the same ART
regimen, but not treated with galunisertib. Considering studies by other groups with different
models (SIVmac251), they report 2" phase decay of SIV intact provirus (weeks ~32 to ~100pi,
Fig 2B in3) with a t12 of >8 months”3. In contrast, in our study, the intact provirus decreased by 3
fold (median) in a little over 3 months (from week 35pi, BC1 to week 49pi, AC4). Interestingly, this
decrease in intact pro-virus trended toward a direct correlation with IFN-y responses. However,
IFN—y levels also inversely correlated with the absolute value of residual intact provirus,
suggesting that IFN-y responses were driven by residual viral reservoir while, at the same time,
were involved in clearing intact virus. Indeed, the increase in IFN-y and TNF-a also correlated
with residual CA-vRNA in the LN at the end of the treatment. The latter, in turn, was directly
proportional to the increase in gut SUV. This is in line with increased latency reversal explaining
residual viral RNA in lymphoid tissues.

Finally, one of our most intriguing results was the profound downregulation of TCF1 in CD4* T
cells at both the transcriptional and protein levels. Although TCF1 is conventionally viewed as an
effector of the canonical Wnt pathway’# and recently reached notoriety for its role in maintaining

stemness of antigen-specific memory CD8* T cells?® 75, TCF1 has a plethora of functions in T cell
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development and differentiation largely independent of Wnt signaling?2. In CD4* T cells, TCF1
has been implicated in orchestrating all the major Th subsets, including Th1, Th2, Th17 and Tfh’S.
TCF1 is known to control the bifurcation between Th1 and Tfh in favor of Tfh cells’®, while it
negatively regulates Treg development?2. This is in line with our findings of increased Treg and
decreased Tfh, in the midst of a profound downregulation of TCF1. Importantly, TCF1 is
downregulated with increased cellular differentiation and progression toward effector functions in
T cells. T cell activation leads to reduced levels of TCF1 and higher levels of TCF1 are present in
T cells with higher stemness and low anabolic metabolism™. These findings suggest that TCF1
has a critical role in maintaining quiescence in immune cells likely in concert with TGF-3'865, Qur
data reveal that this link may be even more prominent and important in CD4* T cells than in CD8*
T cells. Importantly, the decrease in TCF1 was accompanied with enhancement in other effector
markers such as CD95, CD16 and GRZB (at the transcriptional level) and an increase in the
transcription of AP1 complex. However, there was no clear upregulation of other classical markers
of immune activation such as CD69 and no increase in T cell proliferation (Ki67 expression).
Hence, galunisertib treatment does not appear to lead to classical T cell activation nor to an
increase in a specific terminally differentiated effector subset. Instead, in vivo TGF-$ blockade
seems to primarily change the metabolic state of T cells (and likely other immune cells) increasing
OXPHOS and mitochondrial function. Of note, although glycolysis is essential during cell
activation, mitochondrial pathways are engaged and remodeled early after activation and
OXPHOS upregulation has a pivotal role in the earliest stages of cell activation®.

Hence, we propose a model in which TGF-f inhibition forces cells (particularly CD4* T cells) out
of quiescence to a transitional state where they reinitiate their transcriptional program and are
metabolically ready to be activated. Because of the highly context-dependent effect of TGF-, the
final impact of galunisertib is likely heterogenous and dependent on other intrinsic and extrinsic
cellular stimuli. In absence of direct TCR engagement or other activation stimuli, the majority of

the T cells does not undergo full/classical activation and proliferation following galunisertib
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treatment. Instead, the cells are pushed toward a more effector-like phenotype. This explains our
observation of an enrichment of transient effector or “transitional effector” T cells that, in turn, can
reinitiate viral transcription and more promptly respond to antigenic stimulation. Indeed,
functionally, we demonstrated that the PBMC after galunisertib treatment secrete higher levels of
IFN-y and TNF-a. Interestingly, there was no increase in IL-2 secretion. The link between TGF-3
and IL-2”7 and the critical role of IL-2 in T cell proliferation again suggest that galunisertib
enhances an effector phenotype uncoupled from cellular proliferation. scRNAseq analysis
demonstrated a trend toward an effector phenotype also in other immune cells, such as B cells,
NKs and macrophages. Future studies will need to uncover in depth the effect of TGF-B blockade
on these other immune subsets.

This study has several limitations. The most important limitations are the relatively small number
of macaques and the lack of a concurrent untreated control group. We also could not investigate
in depth the viral kinetics after ART interruption because of the short follow up after ATI. An
additional important limitation is the lack of immunoPET/CT images from an uninfected control
group of macaques treated with galunisertib. This control group may have given us insight on the
impact of galunisertib on the pharmacokinetics of the immunoPET/CT probe in absence of
antigen. Moreover, we did not explore changes in the phenotype or turnover of cells isolated from
gut and lymph nodes and relied solely on transcriptional data for these tissues. Although we found
an association between TCF-1 downregulation, enhanced effector function (IFN-y release) and
measures of latency reversal, a causal link between increased effector phenotype and latency
reversal was not definitively established. Finally, because of sample availability, we could not
dissect the cellular origin of increased IFN-y and TNF-a.

In conclusion, we report that in vivo treatment with a clinical stage small molecule TGF-f inhibitor
drives a transitional effector phenotype in T cells that is likely responsible for increasing the

frequency of spontaneous latency reversal events, stimulating SIV-specific immune responses,
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and decreasing the viral reservoir. Future work will determine whether the galunisertib-driven
enhanced antiviral responses and decreased viral reservoirs can significantly contribute to post-

ART virological control.

METHODS

Study design and Ethics Statement

A total of 8 adult female Indian origin Rhesus macaques (Macaca mulatta; Mamu A*01, B*08 and
B*17 negative) were used for the study described in the manuscript (Table S1). All the macaques
were selected form the colonies bred and raised at the New Iberia Research Center (NIRC),
University of Louisiana at Lafayette. All animal experiments were conducted following guidelines
established by the Animal Welfare Act and the NIH for housing and care of laboratory animals
and performed in accordance with institutional regulations after review and approval by the
Institutional Animal Care and Usage Committees (IACUC) of the University of Louisiana at
Lafayette (2021-8821-002; protocol 8821-01).

Rhesus macaques (n=8 main study + 4 separate non-concomitant study) were infected with 300
TCIDsy of the barcoded SIVmac239M2 stock intravenously and ART (Tenofovir [PMPA] at
20mg/ml, Emtricitabine [FTC] at 40mg/ml and Dolutegravir [DTG] at 2.5mg/ml) was initiated on
week 6 pi. Galunisertib treatment was initiated on week 35 p.i. Powder (MedChemExpress —
MCE, NJ, USA) was dissolved in water and given orally in a treat twice daily at 20mg/kg. 4 cycles
of 2 weeks daily treatment with 2 weeks wash out period were performed. Macaques 08M156
and A6X003 were given the rhesus recombinant antibody (rhesus/human chimeric) anti-PD1
antibody [NIVOR4LALA; comprising silenced rhesus IgG4k constant regions and variable regions
from anti-human PD-1, nivolumab; non-human primates reagents resource, NHPRR; 5mg/kg] at
the beginning of the 3 and 4™ galunisertib cycle.

Blood viral load was monitored biweekly before and during ART and every 3-4 days during

Galunisertib treatment. Colorectal biopsies and LN FNA were collected before and after
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galunisertib treatment. ART was terminated 3 weeks after the last galunisertib dose and
euthanasia and necropsy to harvest tissues were performed at week 58 post infection, tissues

samples were flash frozen, fixed in OCT or Z-fix.

Plasma and Tissue SIV Viral loads (VL)

Blood was collected in EDTA tubes and plasma was separated by density gradient centrifugation
and used for the determination of plasma VL by SIVgag gRT-PCR at NIRC or at Leidos
(Quantitative Molecular Diagnostics Core, AIDS and Cancer Virus Program Frederick National
Laboratory). Tissue VL from snap frozen PBMC pellets, colorectal biopsies and LN FNA were
performed as described in 78 Briefly, tissue viral DNA and RNA loads were measured,
respectively, by gqPCR and gRT-PCR with standard curve method and normalized on Albumin
copy number (for cell-associated viral DNA) and total RNA quantity. DNA and RNA were extracted
from snap frozen tissues using DNeasy/RNeasy blood and tissue kits (Qiagen) following the
manufacturer’s instructions. Primers: SIVgag FW (5-GGTTGCACCCCCTATGACAT-3’), SIVgag
RV (5-TGCATAGCCGCTTGATGGT-3'), SIVProbe (5’-6-FAM-
AATCAGATGTTAAATTGTGTGGGA-3’); macaque Albumin FW (5-
ATTTTCAGCTTCGCGTCTTTTG-3’), RV (5-TTCTCGCTTACTGGCGTTTTCT-3’), Probe: (5'-6-
FAM-CCTGTTCTTTAGCTGTCCGTG-3'. SIV-IPDA was performed on freshly stored PBMC

before cycle 1 and at the end of cycle 4 of galunisertib by Accelevir, Baltimore, MD.

ImmunoPET/CT

ImmunoPET/CT for mapping SIV signals in total body scans were conducted in part as reported
4_The probe consisted of primatized p7D3 anti-env F(ab)'2 coupled with the chelator DOTA and
labeled with Cu®4 just prior to administration to the animals. For probe administration, the animals
were sedated, and a venous catheter was placed into an arm of leg vein to minimize bleeding of

the probe into the tissue surrounding the site of injection. The probe for each animal consisted of
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~1mg of the p7D3 F(ab)’2 labeled with 2-3 mCi of 84Cu. After injection, the animals were allowed
to recuperate in their cage until the next day. At 24 hours, the animals were again anesthetized
with Telazol and the macaque’s body was immobilized in dorsal recumbency on the scanner table.
Scans were conducted in a Phillips Gemini TF64 scanner. The final CT image was compiled from
200 to 300 slices, depending on macaque size.

PET Image analysis was performed using the MIM software. PET/CT fusions were generated
scaled according to calculated Standardized Uptake Values (SUV). The SUV scale for the PET
scans was selected based on the overall signal intensity of the PET scans (whole body), and the
CT scale was selected for optimal visibility of the tissues. All images and maximum image
projections (MIP) were set to the same0-1.5 scale for visual comparisons. Additional details on

MIM analysis are described in Supplemental Methods.

Cell isolation, flow cytometry staining, classical and high-dimensional analysis

Colorectal biopsy tissues were isolated by enzymatic digestion while LN biopsies were passed
through a 70um cell strainer as described in*4. Isolated cells were phenotyped with panels listed
in Supplemental Table S2. FlowJo vs 10.8 was use for both classical and high-dimesional
analysis. PeacoQC, FlowtSNE and FlowSOM plug-ins were used with default settings. SwiftReg
was used for normalization*’. More details on the staining procedures and analysis pipeline in

Supplemental Methods.

Bulk and scRNAseq analysis

For bulk RNAseq, snap frozen PBMC pellets from BC1, 1hr after first Gal dose and AC1 were
used for RNA extraction with the RNeasy kit with on column DNA digestion (Qiagen). Library
preparation was performed using TruSeq Stranded Total RNA with Ribo-Zero Globin and
sequencing was done with an lllumina HiSeq4000 with >20M reads/samples. Sequencing data

was demultiplexed and trimmed using Trimmomatic v0.36 to remove adapters and low-quality
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reads. Trimmed reads were aligned to the Mmul10 reference genome and transcripts quantified
using the Hisat2-StringTie pipeline’. Differential gene expression analysis using the quantified
gene transcripts was performed with DESeq2 R package® comparing the samples attained
before and after galunisertib treatment and controlling for intra-animal autocorrelation.
Differentially expressed genes (DEGs) were analyzed by functional enrichment analysis and gene
set enrichment analysis (GSEA) to identify specific pathways and molecular processes altered by
galunisertib.

The Parse pipeline and Partek software were used for scRNAseq analysis. For bulk RNAseq
features with <100 counts were removed, data normalized and DESeq2 was used to obtain a
DEG list. Genes with a false discovery rate (FDR)-adjusted p-value <0.05 and absolute log- fold-
change (FC) (compared to BC1) above 2 were defined as significantly differentially expressed
(DEG). For scRNAseq analysis cells isolated from lymph nodes before (BC1) and after (AC1)
galunisertib were fixed with the Parse fixation kit, barcoded and sequenced at the NUseq Core.
The Partek software was used for scRNAseq analysis. Cells with 400-8000 features, excluding
features with 0 reads in >99.99 cells, were included. Scran deconvolution was used for
normalization and cell classification was based on gene expression. Hurdle models were used to
compare DEGs in each cell subset before and after galunisertib. See supplemental methods for
a detailed description of scRNAseq analysis and additional control analysis using Seurat R

package with more stringent QC cut-offs and SCTransform normalization.

Plasma cytokines and T cell responses

Cytokines in plasma (at 1:2 dilution) were measured using the NHP Cytokine 24-Plex kit by Meso
Scale Diagnostics (MSD) according to manufacturer instructions. Frozen PBMC collected at week
6 post-infection (pre-ART), right before the first galunisertib administration (BC1), at the end of
cycle 1 (AC1) and at the end of cycle 3 (AC3) were thawed in AIM V medium (Thermo Fisher)

with benzonase (Sigma) and plated on a FluoroSpot (CTL) plate pre-activated with 70% Ethanol
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and IFN-y, TNF-a and IL-2 capture solution. Gag, pol, and env 15-mer peptides (NIH AIDS
Reagents program) were prepared at two times the final concentration of 2.5ug/mL with co-
stimulatory reagents anti-CD28 10ug/mL and anti-CD49d 10ug/mL and added to the cells in CTL-
Test™ Medium. Parallel positive control of PMA (20ng/mL) and ionomycin (200ng/mL) or mock
DMSO solution was also plated with the stimulatory reagents. PBMCs were added at 300,000
cells per well. After 24hrs, the plate was washed, and incubated with detection and tertiary

solutions and shipped to CTL for scanning and QC.

Statistics

GraphPad Prism v10, R and Python were used for statistical analysis and data visualization.
Wilcoxon matched-pairs test and repeated measures ANOVA or mixed effect analysis (when the
data set had missing data) were used to compare the different virological and immunological
variables between baseline (BC1) and a single or multiple post-galunisertib time points. In Prism
the mixed model uses a compound symmetry covariance matrix, and is fit using Restricted
Maximum Likelihood (REML). Cytokine data from MSD assay were first Log transformed, then
normalized by subcolumn/factor in percentage with 0% as smallest value and 100% larger value
in each dataset. Each factor was analyzed separately with ANOVA for repeated measures and
Dunn’s multiple comparison’s post-hoc test and together by principal component analysis (PCA).
Holm-Sidak test was used for multiple comparison correction in all cases, but FlowSOM cluster
comparison where the FDR method was used. Pearson r coefficient was calculated for pairwise
tests of association in a correlation matrix with selected variables. For RNAseq analysis see
above and supplemental methods. For viral population analysis, Shannon Entropy of the viral
barcodes present in each sample was used to measure the diversity of the viral populations (see
supplemental Methods). Chi-squared tests were used in R to compare barcode composition
between before and after cycle time points within a tissue/macaque using paired barcode relative

frequencies. Unless otherwise specified p-value<0.05 was considered statistically significant.
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Data Availability Statement

All relevant data are included in the manuscript or supplemental material. Source data are
provided with this paper in the Source Data file. Raw data files including DICOM image files are
available to be shared upon request to the corresponding author
elena.martinelli@northwestern.edu. All RNA sequencing data originating from this study have

been deposited in NCBI GEO under the accession code: GSE244871.
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FIGURE LEGENDS

Figure 1. Four 2-weeks cycles with galunisertib lead to viral reactivation in blood. A)
Schematic representation of the study and sampling schedule B) Plasma VL in blood for each
macaque throughout the study. The longer black line indicates the period on ART, while the 4
small black lines indicate the start and end of each galunisertib cycle. C) Enlarged plasma VL for
all macaques during galunisertib therapy. Green bars indicate galunisertib cycles. Source data

are provided as a Source Data file. Image from BioRender.

Figure 2. Galunisertib leads to viral reactivation in tissues. A) The ®Cu-DOTA-Fab,(7D3)
probe was injected ~24hrs before PET/CT scan before and at the end of each of the first 3
galunisertib cycles. Representative images from the maximum intensity projections (MIP) of fused
PET and CT scans are shown for a macaque with a major increase at the end of cycle 2 and one
showing increase at the beginning of cycle 3. MIPs were generated using the MIM software, set
to a numerical scale of 0-1.5 SUVbw and visualized with the Rainbow color scale. B) Mean SUV
were calculated for each anatomical area and values analyzed with mixed-effect analysis. Data
from the scans performed at the last 2 time points (BC3 and AC3) in 08M171 were excluded
because of technical issues with the probe. Thicker black line represents the mean. P—values
were calculated for comparison of each time point with the before cycle 1 time point (BC1; AC1=
after cycle 1, BC2= before cycle 2; AC2= after cycle 2; BC3= before cycle 3; AC3= after cycle 3;
Holm-Sidak multiple comparison correction; *p<0.05 **p<0.01 ***p<0.01). Source data are

provided as a Source Data file.

Figure 3. Galunisertib decreases viral reservoir in absence of systemic inflammation. A)
Levels of cell-associated (CA)-vDNA per cell equivalent are shown for the time point before cycle
1 (BC1) and at the end of cycle 3 (AC3) or 4 (AC4) for the respective tissues for all 8 macaques.

B) IPDA data are shown for intact and total provirus for BC1 and AC4 in PBMC for the 8
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macaques. P-values are shown for Wilcoxon matched pair signed-rank non-parametric two-tailed
test comparing before and after galunisertib data from the 8 macaques (*p<0.05 **p<0.01
***p<0.01) C) Heat map of cytokine concentration in plasma at the indicated time point are shown
after Log transformation and normalization. Statistical analysis was run on each factor separately
and together (no significant differences after multiple comparison adjustment). Source data are

provided as a Source Data file.

Figure 4. Galunisertib leads toward effector in T and NK cells, increasing Treg and
decreasing Tfh frequencies. A-F) Geometric mean fluorescent intensities (MFI) of each marker
and frequency of indicated subset within live, singlets CD3* CD4* T cells (A and C) or CD3* CD4*
CD95* T cells (B) or CD8* or CD8* CD95* T cells or NK cells (NKG2A* CD8* CD3- cells) are
shown. Thick black line represents the mean. Changes from baseline (beginning of cycle 1, BC1)
are shown for graphs with at least 1 significant difference (Repeated measures ANOVA with Holm-
Sidak correction for multiple comparisons; *p<0.05 **p<0.01 ***p<0.01). G) tSNE of lymphocyte,
live, singlets events after normalization for BC1 and AC4 (all 8 macaques) with FlowSOM 36
clusters overlaid on tSNE (top left) or heatmap of each markers MFI (right) or heatmap of time
point (blue is BC1 and red is AC4; bottom left) is shown. 6 populations were manually gated on
red or blue areas (red, New1-3 and blue Old1-3). H) Bubble chart displaying changes in AC4 from
BC1 in populations (FlowSOM clusters) characterized by markers MFI in Fig S8A. Color is
proportional to the effect size and size to p-value (Wilcoxon sum rank non-parameter two-tailed
test). I) Bubble chart displaying changes from BC1 at all time points in populations (FlowSOM
clusters) characterized in Fig S8C (ANOVA repeated measures with Holm-Sidak multiple
comparisons correction; *p<0.05 **p<0.01 ***p<0.01). J) Frequency of indicated subset within live,
singlets CD3* CD4* T or CD3* CD4* CD95* CD28* T cells (CM=central memory) or within CD3*

CD8* T cells. Changes from baseline (BC1) are shown (ANOVA repeated measures with Holm-
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Sidak correction for multiple comparisons; *p<0.05 **p<0.01 ***p<0.01). Source data are provided

as a Source Data file.

Figure 5. OXPHOS and other metabolic pathways increase rapidly with TGF- blockade. A-
C) Bulk RNAseq was performed with PBMC from before cycle 1 (24hrs) and 1hrs after the first
dose of galunisertib (A) or after the last dose of cycle 1 (B) and with rectal biopsies collected
before cycle 1 (24hrs) and after the last dose of cycle 1 (C). The number of differentially expressed
genes (DEG) obtained by DESeq2 with an FDR <0.05 and abs(log2FC)>2 are shown in each
respective volcano plot. Enrichment plots are shown after GSEA (with all FDR<0.05 DEGs) for
significantly enriched pathways (top 1 or 2 pathway by ES). C) Lollipop graph of selected DEG of
interest among significantly different genes (FDR<0.05). Source data are provided as a Source

Data file.

Figure 6. scRNAseq of lymph node before and after cycle 1 confirms a switch toward
effector and increased metabolism in all immune subsets with galunisertib. A) UMAP
projection of 93234 cells from lymph nodes collected right before and at the end of cycle 1 from
all 8 macaques (16 samples). Gene-based classification of major immune subset is overlaid on
UMARP. In gray are unclassified cells. B-C) Bubble plots showing expression (mean normalized
counts proportional to the color; size proportional to the percentage of cells) of each marker listed
in each cell subset. Marker listed are those used for classification of major immune subsets (B)
or CD4* and CD8* T cells (C). D) Significantly different genes obtained by Hurdle model
(FDR<0.05; log2FC=0.15) in the T cell subset are shown with color proportional to normalized
counts. E) Significantly enriched pathways (FDR<0.01) in T cells DEGs within the hallmark

collection. F-G) Significantly different genes (FDR<0.05; log2FC=0.15) in the CD4* (F) and CD8*
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(G) T cell subset. H-1) Significantly enriched pathways (FDR<0.01) in CD4* T cells DEGs within

the hallmark (H) and biocarta (I) collections. Source data are provided as a Source Data file.

Figure 7. Galunisertib increases SIV-specific responses. Average spots (from triplicates) per
10 PBMC at the time of ART initiation (pre-ART), before cycle 1 (BC1), after cycle 1 (AC1) and
at the end of cycle 3 (AC3) with galunisertib after 24hrs ex vivo stimulation with 15-mer peptides
(gag, env, pol) or mock (DMSO). Each post-galunisertib time point was compared to BC1 (Mixed
effect analysis adjusted for multiple comparisons with Dunnet post-hoc p-values are shown;
*p<0.05 **p<0.01 ***p<0.001). Bars represent the median with interquartile range as error bars.

Source data are provided as a Source Data file.

Figure 8. TCF1 decrease associates with virological and immunological endpoints. A)
Barcode diversity measure as Shannon Entropy is shown before and after each of the first 3
galunisertib cycles for LN, PBMC and colorectal biopsies. Box-and-whisker plot represents the
median +/- the interquartile range of data from 4 to 8 macaques (all data from macaques with
detectable barcodes were included at each time point for a given tissue; no significant differences
using linear mixed effects models). Blue= before; Red= end of each cycle. B) Bubble plot shows
the results of statistical testing (Chi-squared) for differences in frequency distribution of barcodes
before compared to after, for each of the first 3 cycles of galunisertib for each macaque in the
indicated tissues. Blue indicates significant differences p<0.05. C) Barcode entropy of virus
isolated at the time of ART initiation compared to week 6 post-ATl in plasma (Wilcoxon matched
pairs two-tailed test; *p<0.05). D) Correlation matrix of several key variables of virological or
immunological effect of galunisertib. Color is proportional to Pearson r coefficient. *p<0.05
**p<0.01 ***p<0.001 indicate significant correlations. E) Association between fold increase in

TCF1 (MFI) from BC1 to AC4 with CA-vDNA levels at AC4, change in gut SUV at AC3 compared
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to BC1 and fold increase in IFN-y (AC3 vs BC1). Person r is shown. All correlations have *p<0.05.

Source data are provided as a Source Data file.
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