

1 **TGF- β blockade drives a transitional effector phenotype in T cells reversing SIV latency**
2 **and decreasing SIV reservoirs *in vivo***

3

4 Jinhee Kim¹, Deepanwita Bose^{2†}, Mariluz Araínga^{2†}, Muhammad R. Haque³, Christine M
5 Fennessey⁴, Rachel A Caddell⁵, Yanique Thomas³, Douglas E Ferrell², Syed Ali², Emanuelle
6 Grody^{3,6}, Yogesh Goyal^{3,6,7}, Claudia Cicala⁸, James Arthos⁸, Brandon F Keele⁴, Monica Vaccari^{5,9},
7 Ramon Lorenzo-Redondo^{1,10}, Thomas J Hope³, Francois Villinger² and Elena Martinelli¹

8

9 ¹Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine,
10 Northwestern University, Chicago, IL, USA

11 ²New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA

12 ³Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University,
13 Chicago, IL, USA

14 ⁴AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick
15 MD

16 ⁵Division of Immunology, Tulane National Primate Research Center, Covington LA, USA

17 ⁶Center for Synthetic Biology, Northwestern University, Chicago, IL, USA

18 ⁷Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern
19 University, Chicago, IL, USA

20 ⁸Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National
21 Institutes of Health, Bethesda, MD, USA

22 ⁹Department of Microbiology and Immunology, Tulane University School of Medicine, New
23 Orleans, LA, USA

24 ¹⁰Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute
25 for Global Health, Chicago, IL, USA.

26 [†] Equal contributors

27 *Corresponding author:

29 Elena Martinelli

30 elena.martinelli@northwestern.edu

31

32 **One-sentence summary:**

33 TGF- β blockade drives an effector phenotype in immune cells leading to SIV latency reversal and
34 enhanced immune responses *in vivo*.

35

36 **Abstract**

37 HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting
38 immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic
39 dosing of anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirm the latency reversal
40 properties of *in vivo* TGF- β blockade, decrease viral reservoirs and stimulate immune responses.
41 Treatment of eight female, SIV-infected macaques on ART with four 2-weeks cycles of galunisertib
42 leads to viral reactivation as indicated by plasma viral load and immunoPET/CT with a ^{64}Cu -
43 DOTA-F(ab')₂-p7D3-probe. Post-galunisertib, lymph nodes, gut and PBMC exhibit lower cell-
44 associated (CA-)SIV DNA and lower intact pro-virus (PBMC). Galunisertib does not lead to
45 systemic increase in inflammatory cytokines. High-dimensional cytometry, bulk, and single-cell
46 (sc)RNAseq reveal a galunisertib-driven shift toward an effector phenotype in T and NK cells
47 characterized by a progressive downregulation in TCF1.
48 In summary, we demonstrate that galunisertib, a clinical stage TGF- β inhibitor, reverses SIV
49 latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing
50 immune responses *in vivo* in absence of toxicity.

51

52 **Introduction**

53 Interruption of antiretroviral therapy (ART) leads to rapid rebound of viremia in the vast majority
54 of people living with HIV-1 (PLWH) due to the establishment of a persistent HIV-1 reservoir early
55 after infection^{1, 2}. A key mechanism of this persistence is the ability of HIV-1 to enter a state of
56 virological latency characterized by the silencing of viral gene expression and/or lack of viral
57 proteins translation^{3, 4}. This allows the virus to remain invisible to the immune system and latently
58 infected cells to survive and proliferate by homeostatic or antigen-driven proliferation^{5, 6}. Of note,
59 the viral reservoir was initially thought to be stable. However, recent evidence suggests that
60 stochastic HIV reactivation under ART occurs, and selective killing is favored in cells bearing
61 replication competent virus integrated in transcriptionally active sites within the genome^{7, 8, 9}.
62 Hence, integration site, but especially the activation status of the infected cells profoundly
63 influences HIV-1 persistence.

64 Ongoing efforts to achieve a functional cure for HIV-1 are directed towards supplementing ART
65 with immunotherapies targeting the viral reservoir. Such strategies, under the umbrella of “shock
66 and kill”, aim to reactivate the replication competent reservoir and eliminate latently infected cells
67 by viral cytopathic effects or immune-mediated killing^{10, 11}. However, these strategies have thus
68 far failed to achieve a reduction of the viral reservoir or post-ART virologic control in either the
69 clinic or preclinical models. This is mainly due to the low inducibility of latent proviruses and the
70 heterogeneity of the mechanisms of persistence^{12, 13, 14, 15}. In contrast, therapeutic vaccination
71 strategies focused on enhancing HIV/SIV-specific responses have had some discreet measure
72 of success¹⁶. However, currently, no single strategy leads simultaneously to latency reversal and
73 stimulation of effective immune responses.

74 The HIV life cycle and HIV's ability to replicate efficiently are especially dependent on the
75 activation status of the infected cells. In this context, significant advances have been made to
76 directly activate immune cells through non-canonical pathways in order to promote HIV latency
77 reversal¹⁷. However, the activation and differentiation of immune cells is intrinsically linked to

78 cellular metabolism¹⁸. Indeed, signaling pathways that govern immune cell differentiation and
79 activation such as mTOR and Wnt/β-catenin, not only have been implicated in regulating HIV
80 latency^{19, 20, 21}, but are also critical regulators of cell metabolism²². The metabolic status of an
81 infected cell, in turn, plays a critical role in its ability to support latency reactivation and viral
82 production^{19, 23}.

83 In this context, recent evidence suggests that TGF-β plays a critical role in the regulation of
84 immune cell activation and metabolic reprogramming^{24, 25, 26}. Specifically, in the context of CD8⁺ T
85 cells, TGF-β has been shown to suppress mTOR signaling preserving the metabolic fitness of
86 memory CD8⁺ T cells²⁵ and stem-like antigen specific CD8⁺ T cells through its modulation of
87 Wnt/β-catenin factor TCF1^{26, 27}. TCF1 and the mTOR pathway are also critical to T cell
88 differentiation and responsible for the transition from activated effector cells to resting memory
89 cells during LCMV infection^{22, 26}. The regulation of quiescence in CD8⁺ T cells that follows
90 continuous TGF-β stimulation is critical to the transition to a memory phenotype and it is driven
91 by specific metabolic changes that are linked to decreased glycolytic activity, more efficient
92 mitochondrial respiration, and long-term survival^{25, 26}.

93 Similarly, in the context of NK cells, TGF-β has been implicated in decreasing their baseline
94 metabolism driving lower expression of markers of NK cytotoxic activity²⁸.

95 While TGF-β-mediated suppression of TCR and IL-2 signaling were shown to lead to lower CD4⁺
96 T cell activation following cognate antigen recognition in older studies^{24, 29}, more recent work using
97 CD4⁺ T cell-specific deletion of the TGF-β receptor demonstrated an even more profound effect
98 of TGF-β on all stages of CD4⁺ T cell activation, proliferation and cytotoxic response to LCMV
99 than in CD8⁺ T cells³⁰. However, little is known on the specific role of TGF-β in regulating the
100 transition to and from memory and effector phenotypes in CD4⁺ T cells and how this may be
101 associated with TGF-β-driven changes in CD4⁺ T cell metabolism. Moreover, TGF-β regulates the
102 expression of CD103 and other surface and intracellular factors essential of T cell residency in
103 mucosal tissues^{31, 32, 33}. Hence, TGF-β is considered the master regulator of mucosal immunity³⁴.

104 We and others have recently demonstrated that TGF- β regulates HIV-1 latency in primary CD4 $^{+}$
105 T cells ex vivo and in vivo^{35, 36, 37}. Latency reversal was detected in a non-human primate (NHP)
106 model of HIV infection following a short treatment with a clinical stage TGF- β inhibitor, galunisertib
107 (LY2157299)³⁸. In that study, we documented latency reversal particularly at the level of the gut
108 mucosal tissue using the ^{64}Cu -anti-gp120 Fab $_{2}$ (7D3) probe and immuno-PET/CT³⁵. We further
109 validated the ability of immune-PET/CT to identify sites of viral reactivation and replication in the
110 gut by performing tissue resection in hot areas of the gut identified by PET followed by
111 confirmatory PCR for vDNA/RNA and vRNAscope³⁵.

112 Herein, we demonstrate how treatment with galunisertib with a 2-week on, 2-week off regimen
113 that mimics the therapeutic regimen employed in the clinic in phase 1 and 2 trials of solid tumors^{39,}
114 ⁴⁰, leads to profound transcriptional and functional changes in immune cells in the absence of
115 overt toxicity or increased systemic inflammation. Importantly, we observed a shift toward a
116 transitional effector phenotype in CD4 $^{+}$ T cells and other immune cells both systemically and in
117 the lymph nodes. This shift was accompanied by, and likely responsible for, increased viral
118 reactivation in SIV-infected, ART treated macaques documented by molecular techniques and
119 PET/CT images. At the end of the treatment with galunisertib, we detected lower viral reservoir
120 levels, including total and intact proviral DNA in both PBMC, gut and lymph nodes and significantly
121 higher immune responses.

122

123 **RESULTS**

124 **2-weeks on-off therapeutic regimen with galunisertib leads to viral reactivation SIV** 125 **infected, ART-treated macaques.**

126 To confirm galunisertib-driven HIV/SIV latency reversal and investigate the underlying
127 mechanisms, 8 Indian origin rhesus macaques (*Macaca Mulatta*, Mamu-A01-, -B08, -B17-, all
128 females) were infected intravenously with 300 TCID50 of the barcoded SIVmac239M2. We
129 initiated ART treatment (daily co-formulated Tenofovir [PMPA], Emtricitabine [FTC] and

130 Dolutegravir [DTG]) on week 6 post-infection (pi). A 2-week on, 2-week off therapeutic cycle with
131 galunisertib (20mg/Kg twice/daily orally) started at week ~35pi and continued for a total of 4 cycles
132 (Fig 1A and Table S1). ART was discontinued 3 weeks after the last galunisertib dose, and the
133 macaques were followed for 6 weeks after ART discontinuation. Median peak plasma viral load
134 (pVL) was 10^8 copies/mL at week 2pi. Given the synergistic activity of anti-PD1 and anti-TGF- β
135 therapies in cancer^{41, 42}, a rhesus anti-PD1 antibody was administered at 5mg/kg before the 3rd
136 and 4th cycle to 2 macaques (08M156 and A6X003). However, no differences were noted for these
137 2 macaques in any of the parameters we measured, and the data were pooled.

138 Full suppression to undetectable levels (pVL LOD 15 copies/mL) was achieved in 3 out of the 8
139 macaques at week 10pi. In the other 5 macaques, pVL fell below 65 copies/mL by week 22pi with
140 a single blip of 400 copies/mL in A8T010 at week 29pi (Fig 1B). Following the start of the
141 galunisertib treatment, pVLs increased in 7 out of 8 macaques from a single peak over
142 undetectable in 08M171 and A8L057 to several peaks and up to 10^3 copies/mL in the other
143 macaques. Of note pVLs in A8T010 and A8R095 was undetectable for over 5 weeks before,
144 respectively, blips of up to 10^2 copies/mL were detected following galunisertib treatment initiation
145 (Fig 1B). More frequent blips were noted during the first 2 cycles with galunisertib compared to
146 cycles 3 and 4 (Fig 1C). However, 08M171 and A8L057 did not experience a pVL increase until
147 the 4th cycle.

148 Importantly, in support of the pVL data above, we documented viral reactivation also using
149 immunoPET/CT. The ^{64}Cu -anti-gp120 Fab₂(7D3) probe was injected 24hrs before each scan and
150 scans performed before the first and after the last galunisertib dose in each cycle. As shown in
151 Fig 2, Fig S1 and Movies S1-S8, the PET signal visibly increased in different tissue areas after
152 cycle 2 (in A8R095, 08M156, A8L014 and A8T010) or at the beginning of cycle 3 (in A6X003,
153 08M134 and A8L057). In 08M171 we observed an increase in the gut area only at the beginning
154 of cycle 2. An unforeseen issue with probe stability in cycle 3 led to exclusion of the last 2 scans
155 of 08M171 from the analysis (Fig S1, 08M171 infection, treatment and scan were offset compared

156 to the other macaques). A corresponding increase in mean standard uptake values (SUV) was
157 detected in the gastrointestinal area and axillary lymph nodes (Fig 2B) and was significant in cycle
158 3 compared to before cycle 1 (BC1). In these anatomical areas (ROIs in Fig S2 and Movies 9-
159 10), SUV increases likely correspond to increases in viral replication as demonstrated in previous
160 studies^{43, 44}. A PET signal increase was also noted in the area of the vertebral column (spine) and
161 nasal associated lymphoid tissues (NALT). However, neither cerebrospinal fluid (CSF) nor bone
162 marrow (BM) or NALT tissue were collected during the study, and we have no prior validation of
163 the specificity of the signal in these anatomical locations. Hence, whether this signal corresponds
164 to increased viral replication and whether this occurs in the vertebral bones or cerebrospinal fluids
165 remains to be determined. No SUV increase was present at the level of the spleen or kidney,
166 where probe accumulation and background signal likely masked any specific signal. However, a
167 significant increase in SUV was detected in the liver (Fig 2B). Similar increases in PET signal are
168 also evident when considering the SUV Total in these anatomical areas (Fig S3A). Moreover,
169 blood pool activity (BPA) also increased during the 3rd cycle (Fig S3B). Whether this was due to
170 galunisertib-specific effects on probe pharmacokinetics, changes in viral antigen or probe-antigen
171 kinetics remains to be determined. However, when the mean SUV was normalized for BPA in the
172 gut, axillary lymph nodes and spine, the signal increase in the 3rd cycle was lost, but an increase
173 during the first cycle became evident (Fig S3C). Of note, the non-BPA normalized SUVmean
174 increase in the gut and lymph node areas in most cases followed an increase in cell-associated
175 vRNA detected, respectively, in colorectal biopsies and fine needle aspirates (FNA) at the same
176 time points during treatment (Fig S4).

177

178 **Decreased viral reservoir in absence of systemic inflammation after 4 cycles with**
179 **galunisertib**

180 To determine the impact of galunisertib on SIV reservoir, we measured CA-vDNA in PBMC,
181 colorectal biopsies and lymph nodes (LN). A significant decrease in CA-vDNA was detected in all

182 tissues between week 35pi (beginning of cycle 1, BC1) and week 49pi (after/end of cycle 4, AC4)
183 for gut and LN, and between week 35pi (BC1) and end of cycle 3 (AC3) for PBMC (Fig 3A, AC4
184 not measured for PBMC and Fig S5A). In the gut and LN (right axillary), decreases ranged from
185 a Log to 1/3 of a Log (gut: median 0.77; range: 0.33 - 0.94 fold LN: median: 0.93; range: 0.33-
186 0.98 fold decrease). In the PBMC the decrease was slightly less pronounced with a median half
187 Log decrease (median: 0.58; range 0.28 - 0.88 fold decrease). However, the comparison for the
188 PBMCs was between week ~35 and week ~45 (end of cycle 3, AC3) instead of the end of all 4
189 cycles, because a snap frozen pellet was not available at the end of cycle 4 for PBMCs. The SIV
190 reservoir in PBMCs was also monitored by SIV-IPDA (intact proviral DNA assay) comparing
191 before cycle 1 (BC1) to the end of cycle 4 (AC4). Of note, we observed significant decreases of
192 both total and intact provirus by SIV-IPDA. Intact provirus declined similarly to the CA-vDNA with
193 a median of half Log (median: 0.53; range: 0-0.71 fold decrease).
194 In contrast, no decline in CA-vDNA was detected in the PBMCs of a group of 4 macaques infected
195 intravenously with the same stock of SIVmac239M2 for a separate study. These 4 macaques
196 were placed on ART on week 6pi as in our study. However, they were infected several months
197 after our study and samples collected at similar time points varied in their availability. No decline
198 in CA-vDNA was detected under ART, between weeks 28 and 52pi (untreated group, Fig S5B).
199 This suggests that the decline in CA-DNA in our study was not due to ART alone. However, in
200 absence of an appropriate control group, it is not possible to determine with confidence the
201 relative contribution of ART and galunisertib to the decline.
202 Importantly, we found no significant changes in any of the clinical variables (chemistry and
203 hematology, Supplementary Data 1 and 2) measured before, during and after the galunisertib
204 therapy. Moreover, we observed no changes in the concentrations of inflammatory chemokines
205 and cytokines measured in plasma before and after the first 2 treatment cycles and at the end of
206 the last cycle (Fig 3C). The only difference in cytokine and chemokine levels after galunisertib

207 treatment was a small increase in IL-10 detected at the end of the last cycle compared to before
208 treatment (Fig S5C).

209

210 **Galunisertib treatment drives an effector phenotype in T and NK cells.**

211 The phenotype of PBMCs before and after Galunisertib treatment was monitored by high-
212 parameter flow cytometry of T and NK cell subsets and phenotype (Table S2). Classical subsets
213 and single-color analysis of MFI revealed a substantial increase in the expression of CD95 and a
214 profound consistent decrease in TCF1 expression in CD4⁺ T cells that continued throughout the
215 treatment (Fig 4A). In contrast, a small decrease in CD62L after the first cycle, reverted to baseline
216 during the following cycles. The frequency of naïve cells, defined as CD95⁻ within CD4⁺ T cells,
217 decreased in parallel with the increase in CD95 (gating strategy in Fig S6). Interestingly, there
218 was no change in the expression of CCR7 or CD28 within CD95⁺ CD4⁺ T cells (Fig 4B). Hence,
219 the frequency of central memory and effector memory as defined by CD95 and CD28 or CCR7
220 did not change (Supplementary Data 3). The levels of T-bet did not change significantly (Fig S7A).
221 However, we detected a downregulation of the gut homing receptor integrin $\alpha 4\beta 7$ and a decrease
222 in the levels of granzyme B (GRZB, Fig S7A). Of note, the expression of activation markers CD69,
223 HLA-DR and Ki67 remained mostly unchanged, with the exception of an increase in HLA-DR at
224 the beginning of cycle 2 compared to before galunisertib (Fig 4C). Interestingly, the effect of
225 Galunisertib on CD8⁺ T cells was not as pronounced as it was on CD4⁺ T cells. No significant
226 increase was detected in CD95 expression and TCF1 downregulation reached significance only
227 at the end of the treatment (Fig 4D). Markers of cell activation like HLA-DR, Ki67 and CD69 did
228 not change (Fig 4D and Fig S7B). However, we detected a significant decrease in T-Bet at the
229 beginning of cycle 2 (BC2) compared to before treatment (BC1). Finally, in contrast to CD4⁺ T
230 cells, the decrease in GRZB was more pronounced at several time points during treatment and
231 there was a sustained significant increase in CCR7 expression in memory CD8⁺ T cells (Fig 4E).
232 Interestingly, the expression of PD1 on both CD4⁺ T cells and CD8⁺ T cells either did not change

233 or was slightly downregulated. Importantly, the frequency of PD1⁺ CD101⁺ (TCF1^{low}) exhausted
234 memory CD8⁺ T cells⁴⁵ did not change (Fig S7B). Finally, within NKG2A⁺ CD8⁺ NK cells, there
235 was a pronounced increase in CD16 expression and an initial increase in the proliferation marker
236 Ki67 (AC1 vs BC1; Fig 4F).

237 High-dimensional data visualization with tSNE and clustering analysis with FlowSOM⁴⁶ confirmed
238 the results of the classical analysis. We performed tSNE and FlowSOM after data clean up with
239 FlowClean and normalization with the SwiftReg algorithm⁴⁷. We performed two analyses. One
240 analysis compared before (BC1) and after the last cycle (AC4) only (Fig 4G and Fig S8A). A
241 second analysis was performed on all time points (Fig S8B and S8C). When we compared only
242 BC1 and AC4, the PhenoGraph clustering algorithm identified 36 populations. FlowSOM with 36
243 populations identified 6 populations of CD4⁺ T cells, 6 of CD8⁺ T cells and 4 of NK cells
244 (NKG2A^{high} CD8⁺; Fig S8A). The remaining populations were likely monocytes and other minor
245 subsets. Direct comparison of each population revealed a decrease in Pop 31 (naïve CD8 T cells)
246 and Pop 30 (central memory Ki67⁺ CD8⁺ T cells) and an increase in Pop 2 and 3 (effector and
247 central memory CD4⁺ T cells). Finally, there was a decrease in HLA-DR high Pop0 and an
248 increase in CD16^{high} NKG2A⁻ Pop14 (Fig 4H and S8A). Visual inspection of the tSNE plots (Fig
249 4G) revealed 3 areas mostly occupied by cells in the post-galunisertib AC4 group (New1, 2 and
250 3) which were characterized by high levels of CD16 and GRZB (New 3 is likely NK cells). In
251 contrast, 3 areas mostly occupied by cells in the pre-galunisertib group BC1 (Old1, 2 and 3) were
252 characterized by high levels of TCF1 and low CD95, confirming the finding of the classical
253 analysis. Analysis of all time points with phenograph-derived 38 populations in FlowSOM
254 recapitulated findings obtained with the classical analysis and the BC1 AC4 comparison with no
255 additional insights (Fig 4I).

256

257 **Galunisertib treatment in vivo increases pTreg while decreasing pTfh**

258 The frequencies of circulating Tregs and Tfh cells were monitored with an established flow
259 cytometry panel^{48, 49} after the first and third cycle of galunisertib. The frequency of all CD4⁺ Tregs
260 (CD25^{high} FoxP3⁺; gating in Fig S9) and CD8⁺ Tregs increased after the first cycle and remained
261 higher until the end of the 3rd cycle, while CCR4⁺ Treg were proportionally higher at the end of the
262 treatment compared to before (Fig 4J). In contrast, circulating Tfh (CXCR5⁺ PD1⁺; gating in Fig
263 S9) were lower at the end of the Galunisertib treatment both within total and central memory CD4⁺
264 T cells (Fig 4J). Finally, the expression of CD39 (ecto-nucleotide triphosphate
265 diphosphohydrolase 1), which tracks within extracellular adenosine and immunosuppressive
266 effects, was lower on total and central memory CD4⁺ T cells (Supplementary Data 3 and Fig 4J,
267 respectively).

268

269 **Bulk RNAseq of PBMC and single-cell (sc)RNAseq analysis of LN confirm a profound shift
270 toward effector phenotype.**

271 In our previous studies, we determined that 6hrs after galunisertib treatment in naïve macaques
272 there was an upregulation of the AP1 complex (JUN and FOS) and several genes encoding
273 ribosomal proteins in CD4⁺ T cells⁴⁴. To understand early and later effect of galunisertib in the
274 context of SIV infection, in the current study we performed bulk RNAseq of PBMC isolated 1hr
275 after the first administration of galunisertib in cycle 1 and at the end of the 1st 2-weeks cycle. We
276 found 640 genes significantly modulated (FDR<0.05; abs(log₂FC(Fold Change))>2) in PBMC just
277 1hr after the first dose of galunisertib. The majority (457 genes) were downregulated (Fig 5A).
278 Gene set enrichment analysis (GSEA) revealed an upregulation of the oxidative phosphorylation
279 (OXPHOS; Enrichment Scores (ES) 0.58 FDR=0.048) and the reactive oxygen (ES 0.55
280 FDR=0.075) pathways among the Hallmark genet sets (Fig 5A and S10). Among the Biocarta
281 sets, there was an enrichment in the electron transport chain (ETC; ES 0.84 FDR=0.132) and a
282 downregulation of the circadian (ES -0.81 FDR=0.163) pathways (Fig 5A and S10). Finally, among

283 the top modulated genes (by FC), we identified several genes encoding for soluble transporters,
284 while classical activation markers like CD69 and CD38 were downregulated (Fig S10B). An early
285 engagement of metabolic pathways was confirmed by enrichment analysis of significant DEG with
286 Metascape⁵⁰ with an upregulation of adipogenesis, OXPHOS and fatty acid metabolism (Fig
287 S10C). Of note, 2 weeks after the beginning of galunisertib, metabolic pathways were still among
288 the most enriched upregulated pathways in PBMCs (Fig 5B and Fig S11A). Among the top
289 upregulated genes there were CD44, CCR5, several integrins and GRZA and GRZB (Fig S11B).
290 Finally, we performed bulk RNAseq of rectal biopsy tissue before and after the first cycle with
291 galunisertib (Fig 5C). There were only 51 differentially expressed genes (DEGs; FDR<0.05;
292 log₂FC=2). GSEA analysis of all DEGs (FDR<0.05) revealed the G2_M_DNA replication pathway
293 highly enriched (ES 0.97 FDR=0.012) within the Hallmark set. Among the most interesting
294 changes, we observed a pronounced downregulation of integrin β 7, in contrast to an increase in
295 integrin α E (CD103; Fig 6C), suggesting that TGF- β -driven increase in α E⁵¹ may be driven by
296 non-canonical TGF- β pathway signaling not blocked by galunisertib.
297 To clarify the impact of galunisertib at the single cell level and in lymphoid tissues, we also
298 performed scRNAseq analysis of cells isolated from LNs before (right axillary) and after (right or
299 left inguinal) the first cycle (Fig 6). Dimensionality reduction and clustering analysis with PCA and
300 uniform manifold approximation and projection (UMAP)⁵² was performed to visualize the data (Fig
301 6A). However, cells were classified based only on gene expression (Fig 6B and C). We first
302 classified major subsets: T cells (38,705 cells), B cells (31,385 cells), NK cells (1,628 cells),
303 macrophages (285) and cells expressing both CD19 and CD3 (942 T/B cells) (Fig 6A shows this
304 classification over UMAP). Then we classified only CD4 $^{+}$ and CD8 $^{+}$ T cell subsets (Fig 6C and
305 S12A) and B/T subsets including naïve and germinal center (GC) B cells and Tfh cells (Fig S12B
306 and S12C). Cell number for all these subsets did not change with treatment (Fig S13). However,
307 differential gene expression analysis of T cells revealed an upregulation of members of the AP1

308 complex, CD69, β 2 macroglobulin and RPL13 among the most upregulated genes (Fig 6D).
309 Moreover, it confirmed a downregulation of TCF1 at the transcriptional level (*TCF7* gene; Fig 6D).
310 Gene enrichment analysis revealed again Myc_targets_V1, OXPHOS and mTORC1 as the most
311 enriched hallmark pathways (Fig 6E). Of note, among gene ontology cellular processes, RNA
312 processing was the most highly enriched pathway, followed by intracellular transport and catabolic
313 processes following right after (Fig S14A) confirming an increase in translation and metabolism
314 within these cells.

315 Since we noticed substantial differences in the impact of galunisertib on CD4 $^{+}$ T cells compared
316 to CD8 $^{+}$ T cells by flow, we focused the analysis on these subsets. In CD4 $^{+}$ T cells we found only
317 25 DEGs with a $\log_2FC=0.15$, while 34 DEGs were in CD8 $^{+}$ T cells with more downregulated
318 genes in the CD8 $^{+}$ T cells compared to the CD4 $^{+}$ T cells. The AP1 complex and *TCF7* were again
319 upregulated and downregulated respectively in both CD4 $^{+}$ (Fig 6F) and CD8 $^{+}$ T cells (Fig 6G).
320 However, STAT1 was more strongly downregulated in CD4 $^{+}$ T cells. Enrichment analysis showed
321 once again upregulation of Myc_targets_V1, OXPHOS and mTORC1 pathways in both CD4 $^{+}$ and
322 CD8 $^{+}$ T cells (Fig 6H and Fig S14B). Interestingly, the most enriched set among in Biocarta was
323 the HIV-Nef pathway (Fig 6I) demonstrating the relevance of these galunisertib-driven changes
324 to HIV cell cycle and transcription (highly enriched KREB pathway as well). The 2nd most enriched
325 Biocarta pathway was TCR signaling, linking galunisertib to cell activation. Next, we analyzed
326 changes in gene expression in Tfh cells. In this subset we obtained a similar number of DEG as
327 in other T cells and myc_targets_V1 was still the most enriched hallmark pathway (Fig S14C and
328 D). In B cells, the AP1 complex was again prominently upregulated, together with CD83, CD69
329 and MAMU-DR. Of note, more genes were modulated in B cells (44 genes with a $\log_2FC=0.15$
330 and 18 with $\log_2FC>0.2$) than in T cells with some differences in enriched pathways (Fig S14F).
331 Similar genes were modulated in GC B cells and naïve B cells with several more DEGs in naïve
332 B cells than in GC cells (Fig S15A and B). Finally, 144 genes were modulated in NK cells and 39
333 genes in macrophages (Fig S15C and D; $\log_2FC=0.15$). GRZB was prominently upregulated, but

334 CD44 downregulated. In macrophages genes were mostly downregulated including TCF7L2 and
335 KLF4 suggesting an increase in inflammatory phenotype and decrease in M2 polarization⁵³ (Fig
336 S15D).

337

338 **Galunisertib increases SIV-specific responses and changes barcode distribution**

339 In order to understand how galunisertib affected immune cell function and SIV-specific responses,
340 we stimulated PBMC with 15-mer SIV peptides from SIVmac239 gag, pol and env for 24hrs on
341 antibody coated Elispot plates. Because of sample availability, we probed before and after the
342 first cycle and after the 3rd galunisertib cycle only. Interestingly, by the end of the 3rd cycle there
343 was a significant increase in IFN- γ secretion both SIV-specific (particularly against env) and non-
344 specific (DMSO control). A notable increase in TNF- α release was similar in response to Gag and
345 non-specifically (Fig 7). In contrast, IL-2 release appeared to increase slightly after the first cycle
346 (non-significant), but remained unchanged with a slight decrease by the end of the 3rd cycle (Fig
347 7).

348 In order to understand if these changes in immune responses in combination with latency reversal
349 and switch toward an effector phenotype may have impacted viral population dynamics, we
350 analyzed changes in numbers and distribution of the viral barcodes before and after the first 3
351 treatment cycles. There was no barcode amplification at several time points particularly in the
352 lymph nodes. However, although there were no significant changes in the number or diversity
353 (measured as Shannon Entropy; Sh) of barcodes before and after each galunisertib cycle (Fig
354 S16A and Fig 8A), we found significant changes in barcode frequency distribution in most tissues
355 and cycles after galunisertib treatment (Fig 8B and S16B). Specifically, the relative proportion of
356 each barcode changed in all monkeys in all cycles in the rectal biopsies (probably a consequence
357 of different sampling area), but also for all LN analyzed (except for 08M134 in cycle 1). Of note,
358 the same LN were sampled at the beginning and after cycle 3 (Table S3). Hence, sampling

359 location does not explain the changes barcode distribution. Changes in the proportion of barcodes
360 were also detected in at least half of the PBMCs after cycle 1 and 2 (cycle 3 not analyzed). Finally,
361 barcode diversity decreased in plasma post-ATI compared to the time point right before ART (Fig
362 8C) and barcode distribution significantly changed post-ATI compared to pre-ART in 2 of the 7
363 macaques that rebounded (Fig S16C).

364

365 **TCF1 downregulation in CD4⁺ T cells correlates with virological and immunological**
366 **endpoints.**

367 In order to explore a possible association between the various virological and immunological
368 parameters and their changes, we built a correlation matrix with a curated set of variables of
369 interest or their fold changes. This analysis revealed an association between the decrease in
370 TCF1 expression in the CD4⁺ T cells and several virological and immunological variables (Fig
371 8E). Specifically, both the levels of CA-vDNA in the colorectal tissue and the fold increase in gut-
372 SUV strongly inversely correlated with fold changes in TCF1. Since TCF1 decreased, a larger
373 decrease in TCF1 was directly proportional to residual vDNA in the gut at the end of cycle 4 and
374 to the increase in PET signal in the gut (Fig 8D and 8E). A weaker, but still significant association
375 was also present with CA-vDNA in PBMC at the end of cycle 3 and with the levels of vRNA in the
376 lymph nodes at the end of the 4th cycle (Fig 8D and S17A). Finally, the decrease in TCF1
377 correlated with the increase in IFN- γ and poly-functional IFN- γ /TNF- α releasing cells (cumulative
378 increase of SIV-specific responses to gag, pol and env; Fig 8D and 8E). Of note, the increase in
379 PET signal in the gut also correlated with the levels of vDNA in PBMC at the end of cycle 3, vDNA
380 in gut biopsies and residual CA-vRNA in LN at the end of cycle 4 (Fig S17B). Interestingly, the
381 levels of residual CA-vRNA in LN also correlated with the increase in IFN- γ and poly-functional
382 IFN- γ /TNF- α releasing cells (Pearson $r=0.85$ and 0.76 , respectively). Finally, the residual intact
383 pro-virus (IPDA) directly correlated with the levels of IFN- γ and IFN- γ /TNF- α produced in response

384 to SIV peptides at the end of cycle 3 (Fig 8D; $r= 0.76$ and 0.88 , respectively). In contrast, the
385 change in intact provirus treated to correlate inversely with the levels of IFN- γ , so that a larger
386 decrease directly correlated with more IFN- γ responses. However, this did not reach significance
387 ($p=0.117$, Fig S17C).

388

389 **Discussion**

390 HIV-1 latency in T cells is maintained through diverse mechanisms that include blocks in
391 transcriptional elongation, completion, and splicing¹³. A common characteristic shared by HIV-1
392 latently infected cells of both T and myeloid cell lineages is their “resting” phenotype^{14, 54, 55, 56}. In
393 these cells, an inability to transcribe proviral DNA is linked to a generalized decrease in
394 transcriptional activity which, in turn, is linked to their metabolic status²³. Cellular metabolism is in
395 turn influenced by tissue location and environmental cues⁵⁷.

396 TGF- β is released at high level in PLWH and its levels remain high during ART^{58, 59, 60}. The
397 immunosuppressive activity of TGF- β is well-known. However, the effect of TGF- β signaling in
398 immune cells is highly context dependent⁶¹. Hence, TGF- β plays different roles according to a cell
399 differentiation and activation status⁶¹. In CD8 $^{+}$ T cells and NK cells, TGF- β was shown to decrease
400 mTOR activity and preserve cellular metabolism (high mitochondrial activity and spare respiratory
401 capacity, but reduced mTOR activity) preventing metabolic exhaustion^{25, 26, 62, 63}. This effect was
402 linked to survival of antigen-specific CD8 $^{+}$ T cells, preservation of their stemness and it was linked
403 to higher expression of the TCF1 factor²⁵.

404 In contrast, in CD4 $^{+}$ T cells TGF- β is known to decrease TCR activation^{29, 64}, restrict proliferation
405 and inhibit cytotoxicity (including granzyme and perforin release) at different stage of infection in
406 vivo^{30, 65}. However, the role of TGF- β in the formation and preservation of CD4 $^{+}$ T cell memory is
407 still unclear⁶¹. Moreover, the link between TGF- β signaling and TCF1 expression in CD4 $^{+}$ T cells
408 is unexplored.

409 Here, we used a clinical stage small drug, galunisertib, developed by Eli Lilly and used in several
410 phase 1 and 1/2 clinical studies against solid cancer^{39, 66, 67} to investigate the impact of TGF- β
411 blockade on SIV latency, SIV reservoir and immune responses. Of note, Eli Lilly did not terminate
412 galunisertib development program because of toxicity^{68, 69}. Indeed, in our studies in macaques,
413 we observed no adverse events nor changes in chemical or hematological variables. Moreover,
414 there were no detectable changes in the levels of the 24 inflammatory factors that we probed in
415 plasma during the treatment. This suggests that this therapeutic approach may be safe in people
416 living with HIV (PLWH).

417 The first important finding of our study was the confirmation of our previous report of the latency
418 reversal properties of TGF- β blockade in vivo³⁵. Indeed, we found increase in pVL in 7 out of the
419 8 macaques upon initiation of galunisertib therapy. Although not all macaques were fully
420 suppressed before treatment, substantial increases in pVL ($>10^2$ copies/mL) were noted also in
421 fully suppressed macaques (08M171, A8R095 and A8L057). Moreover, viral reactivation was
422 documented in tissues by immunoPET/CT. Importantly, the SUV increase detected post-
423 galunisertib in gut and LN correlated with CA-vRNA as in our previous studies³⁵ and, interestingly,
424 it was associated with a decrease in TCF1. However, despite this evidence, the absence of
425 imaging studies carried out in uninfected, galunisertib-treated macaques require that we interpret
426 this data with care. This is due mostly to unexpected and, yet unexplained, galunisertib-driven
427 changes in BPA. Without a better understanding of these changes, it is difficult to determine the
428 BPA contribution to the PET signal increase in tissues. Yet, an increase in gut and LN SUV is
429 present even after BPA normalization (although in cycle 1 instead than cycle 3). Since our probe
430 is a F(ab')₂ and not a whole antibody, we did not expect the probe to be still present in significant
431 amounts in circulation in a scan performed 24hrs post-probe injection. Nonetheless, galunisertib
432 may have impacted probe and probe-antigen complex pharmacokinetics or the probe interaction
433 with increased viral antigen. TGF- β is required for vascular barrier function⁷⁰. Hence, galunisertib
434 may have increased vascular permeability. However, this would have driven a major decrease in

435 BPA instead than the detected increase. Moreover, significant changes in VEGF-A, a factor critical
436 to and tracking with vascular permeability⁷¹, were not noted. This, in conjunction with our previous
437 studies which validated the specificity of the PET signal for areas of enhanced SIV replication in
438 gut and lymph nodes^{35, 43, 72}, demonstrates that the galunisertib-driven increases in SUV were
439 likely specific, and identified areas of SIV latency reversal at least in gut and lymphoid tissues.
440 The extent to which the increased signal in the spine and bones recapitulates an increase in SIV
441 replication at these sites remains to be determined.

442 Importantly, we observed a decrease in CA-vDNA in all the tissues that cannot be attributed to
443 ART alone. Indeed, although we did not have a concurrent control group, this decrease was not
444 present in similar studies conducted in SIVmac239M2 infected macaques on the same ART
445 regimen, but not treated with galunisertib. Considering studies by other groups with different
446 models (SIVmac251), they report 2nd phase decay of SIV intact provirus (weeks ~32 to ~100pi,
447 Fig 2B in⁷³) with a $t_{1/2}$ of >8 months⁷³. In contrast, in our study, the intact provirus decreased by 3
448 fold (median) in a little over 3 months (from week 35pi, BC1 to week 49pi, AC4). Interestingly, this
449 decrease in intact pro-virus trended toward a direct correlation with IFN- γ responses. However,
450 IFN- γ levels also inversely correlated with the absolute value of residual intact provirus,
451 suggesting that IFN- γ responses were driven by residual viral reservoir while, at the same time,
452 were involved in clearing intact virus. Indeed, the increase in IFN- γ and TNF- α also correlated
453 with residual CA-vRNA in the LN at the end of the treatment. The latter, in turn, was directly
454 proportional to the increase in gut SUV. This is in line with increased latency reversal explaining
455 residual viral RNA in lymphoid tissues.

456 Finally, one of our most intriguing results was the profound downregulation of TCF1 in CD4 $^+$ T
457 cells at both the transcriptional and protein levels. Although TCF1 is conventionally viewed as an
458 effector of the canonical Wnt pathway⁷⁴ and recently reached notoriety for its role in maintaining
459 stemness of antigen-specific memory CD8 $^+$ T cells^{26, 75}, TCF1 has a plethora of functions in T cell

460 development and differentiation largely independent of Wnt signaling²². In CD4⁺ T cells, TCF1
461 has been implicated in orchestrating all the major Th subsets, including Th1, Th2, Th17 and Tfh⁷⁶.
462 TCF1 is known to control the bifurcation between Th1 and Tfh in favor of Tfh cells⁷⁶, while it
463 negatively regulates Treg development²². This is in line with our findings of increased Treg and
464 decreased Tfh, in the midst of a profound downregulation of TCF1. Importantly, TCF1 is
465 downregulated with increased cellular differentiation and progression toward effector functions in
466 T cells. T cell activation leads to reduced levels of TCF1 and higher levels of TCF1 are present in
467 T cells with higher stemness and low anabolic metabolism⁷⁴. These findings suggest that TCF1
468 has a critical role in maintaining quiescence in immune cells likely in concert with TGF- β ^{18, 65}. Our
469 data reveal that this link may be even more prominent and important in CD4⁺ T cells than in CD8⁺
470 T cells. Importantly, the decrease in TCF1 was accompanied with enhancement in other effector
471 markers such as CD95, CD16 and GRZB (at the transcriptional level) and an increase in the
472 transcription of AP1 complex. However, there was no clear upregulation of other classical markers
473 of immune activation such as CD69 and no increase in T cell proliferation (Ki67 expression).
474 Hence, galunisertib treatment does not appear to lead to classical T cell activation nor to an
475 increase in a specific terminally differentiated effector subset. Instead, *in vivo* TGF- β blockade
476 seems to primarily change the metabolic state of T cells (and likely other immune cells) increasing
477 OXPHOS and mitochondrial function. Of note, although glycolysis is essential during cell
478 activation, mitochondrial pathways are engaged and remodeled early after activation and
479 OXPHOS upregulation has a pivotal role in the earliest stages of cell activation¹⁸.
480 Hence, we propose a model in which TGF- β inhibition forces cells (particularly CD4⁺ T cells) out
481 of quiescence to a transitional state where they reinitiate their transcriptional program and are
482 metabolically ready to be activated. Because of the highly context-dependent effect of TGF- β , the
483 final impact of galunisertib is likely heterogenous and dependent on other intrinsic and extrinsic
484 cellular stimuli. In absence of direct TCR engagement or other activation stimuli, the majority of
485 the T cells does not undergo full/classical activation and proliferation following galunisertib

486 treatment. Instead, the cells are pushed toward a more effector-like phenotype. This explains our
487 observation of an enrichment of transient effector or “transitional effector” T cells that, in turn, can
488 reinitiate viral transcription and more promptly respond to antigenic stimulation. Indeed,
489 functionally, we demonstrated that the PBMC after galunisertib treatment secrete higher levels of
490 IFN- γ and TNF- α . Interestingly, there was no increase in IL-2 secretion. The link between TGF- β
491 and IL-2⁷⁷ and the critical role of IL-2 in T cell proliferation again suggest that galunisertib
492 enhances an effector phenotype uncoupled from cellular proliferation. scRNAseq analysis
493 demonstrated a trend toward an effector phenotype also in other immune cells, such as B cells,
494 NKs and macrophages. Future studies will need to uncover in depth the effect of TGF- β blockade
495 on these other immune subsets.

496 This study has several limitations. The most important limitations are the relatively small number
497 of macaques and the lack of a concurrent untreated control group. We also could not investigate
498 in depth the viral kinetics after ART interruption because of the short follow up after ATI. An
499 additional important limitation is the lack of immunoPET/CT images from an uninfected control
500 group of macaques treated with galunisertib. This control group may have given us insight on the
501 impact of galunisertib on the pharmacokinetics of the immunoPET/CT probe in absence of
502 antigen. Moreover, we did not explore changes in the phenotype or turnover of cells isolated from
503 gut and lymph nodes and relied solely on transcriptional data for these tissues. Although we found
504 an association between TCF-1 downregulation, enhanced effector function (IFN- γ release) and
505 measures of latency reversal, a causal link between increased effector phenotype and latency
506 reversal was not definitively established. Finally, because of sample availability, we could not
507 dissect the cellular origin of increased IFN- γ and TNF- α .

508 In conclusion, we report that *in vivo* treatment with a clinical stage small molecule TGF- β inhibitor
509 drives a transitional effector phenotype in T cells that is likely responsible for increasing the
510 frequency of spontaneous latency reversal events, stimulating SIV-specific immune responses,

511 and decreasing the viral reservoir. Future work will determine whether the galunisertib-driven
512 enhanced antiviral responses and decreased viral reservoirs can significantly contribute to post-
513 ART virological control.

514

515 **METHODS**

516 **Study design and Ethics Statement**

517 A total of 8 adult female Indian origin *Rhesus* macaques (*Macaca mulatta*; Mamu A*01, B*08 and
518 B*17 negative) were used for the study described in the manuscript (Table S1). All the macaques
519 were selected from the colonies bred and raised at the New Iberia Research Center (NIRC),
520 University of Louisiana at Lafayette. All animal experiments were conducted following guidelines
521 established by the Animal Welfare Act and the NIH for housing and care of laboratory animals
522 and performed in accordance with institutional regulations after review and approval by the
523 Institutional Animal Care and Usage Committees (IACUC) of the University of Louisiana at
524 Lafayette (2021-8821-002; protocol 8821-01).

525 Rhesus macaques (n=8 main study + 4 separate non-concomitant study) were infected with 300
526 TCID₅₀ of the barcoded SIVmac239M2 stock intravenously and ART (Tenofovir [PMPA] at
527 20mg/ml, Emtricitabine [FTC] at 40mg/ml and Dolutegravir [DTG] at 2.5mg/ml) was initiated on
528 week 6 p.i. Galunisertib treatment was initiated on week 35 p.i. Powder (MedChemExpress –
529 MCE, NJ, USA) was dissolved in water and given orally in a treat twice daily at 20mg/kg. 4 cycles
530 of 2 weeks daily treatment with 2 weeks wash out period were performed. Macaques 08M156
531 and A6X003 were given the rhesus recombinant antibody (rhesus/human chimeric) anti-PD1
532 antibody [NIVOR4LALA; comprising silenced rhesus IgG4k constant regions and variable regions
533 from anti-human PD-1, nivolumab; non-human primates reagents resource, NHPRR; 5mg/kg] at
534 the beginning of the 3rd and 4th galunisertib cycle.

535 Blood viral load was monitored biweekly before and during ART and every 3-4 days during
536 Galunisertib treatment. Colorectal biopsies and LN FNA were collected before and after

537 galunisertib treatment. ART was terminated 3 weeks after the last galunisertib dose and
538 euthanasia and necropsy to harvest tissues were performed at week 58 post infection, tissues
539 samples were flash frozen, fixed in OCT or Z-fix.

540

541 **Plasma and Tissue SIV Viral loads (VL)**

542 Blood was collected in EDTA tubes and plasma was separated by density gradient centrifugation
543 and used for the determination of plasma VL by SIVgag qRT-PCR at NIRC or at Leidos
544 (Quantitative Molecular Diagnostics Core, AIDS and Cancer Virus Program Frederick National
545 Laboratory). Tissue VL from snap frozen PBMC pellets, colorectal biopsies and LN FNA were
546 performed as described in ⁷⁸. Briefly, tissue viral DNA and RNA loads were measured,
547 respectively, by qPCR and qRT-PCR with standard curve method and normalized on Albumin
548 copy number (for cell-associated viral DNA) and total RNA quantity. DNA and RNA were extracted
549 from snap frozen tissues using DNeasy/RNeasy blood and tissue kits (Qiagen) following the
550 manufacturer's instructions. Primers: SIVgag FW (5'-GGTTGCACCCCTATGACAT-3'), SIVgag
551 RV (5'-TGCATAGCCGCTTGATGGT-3'), SIVProbe (5'-6-FAM-
552 AATCAGATGTTAAATTGTGTGGGA-3'); macaque Albumin FW (5'-
553 ATTTTCAGCTTCGCGTCTTTG-3'), RV (5'-TTCTCGCTTACTGGCGTTTCT-3'), Probe: (5'-6-
554 FAM-CCTGTTCTTAGCTGTCCGTG-3'. SIV-IPDA was performed on freshly stored PBMC
555 before cycle 1 and at the end of cycle 4 of galunisertib by Accelevir, Baltimore, MD.

556

557 **ImmunoPET/CT**

558 ImmunoPET/CT for mapping SIV signals in total body scans were conducted in part as reported
559 ⁴⁴. The probe consisted of primatized p7D3 anti-env F(ab)'2 coupled with the chelator DOTA and
560 labeled with Cu⁶⁴ just prior to administration to the animals. For probe administration, the animals
561 were sedated, and a venous catheter was placed into an arm of leg vein to minimize bleeding of
562 the probe into the tissue surrounding the site of injection. The probe for each animal consisted of

563 ~1mg of the p7D3 F(ab)'2 labeled with 2-3 mCi of ^{64}Cu . After injection, the animals were allowed
564 to recuperate in their cage until the next day. At 24 hours, the animals were again anesthetized
565 with Telazol and the macaque's body was immobilized in dorsal recumbency on the scanner table.
566 Scans were conducted in a Phillips Gemini TF64 scanner. The final CT image was compiled from
567 200 to 300 slices, depending on macaque size.

568 PET Image analysis was performed using the MIM software. PET/CT fusions were generated
569 scaled according to calculated Standardized Uptake Values (SUV). The SUV scale for the PET
570 scans was selected based on the overall signal intensity of the PET scans (whole body), and the
571 CT scale was selected for optimal visibility of the tissues. All images and maximum image
572 projections (MIP) were set to the same 0-1.5 scale for visual comparisons. Additional details on
573 MIM analysis are described in Supplemental Methods.

574

575 **Cell isolation, flow cytometry staining, classical and high-dimensional analysis**

576 Colorectal biopsy tissues were isolated by enzymatic digestion while LN biopsies were passed
577 through a 70 μm cell strainer as described in⁴⁴. Isolated cells were phenotyped with panels listed
578 in Supplemental Table S2. FlowJo vs 10.8 was used for both classical and high-dimensional
579 analysis. PeacoQC, FlowtSNE and FlowSOM plug-ins were used with default settings. SwiftReg
580 was used for normalization⁴⁷. More details on the staining procedures and analysis pipeline in
581 Supplemental Methods.

582

583 **Bulk and scRNAseq analysis**

584 For bulk RNAseq, snap frozen PBMC pellets from BC1, 1hr after first Gal dose and AC1 were
585 used for RNA extraction with the RNeasy kit with on column DNA digestion (Qiagen). Library
586 preparation was performed using TruSeq Stranded Total RNA with Ribo-Zero Globin and
587 sequencing was done with an Illumina HiSeq4000 with >20M reads/samples. Sequencing data
588 was demultiplexed and trimmed using Trimmomatic v0.36 to remove adapters and low-quality

589 reads. Trimmed reads were aligned to the Mmul10 reference genome and transcripts quantified
590 using the Hisat2-StringTie pipeline⁷⁹. Differential gene expression analysis using the quantified
591 gene transcripts was performed with DESeq2 R package⁸⁰ comparing the samples attained
592 before and after galunisertib treatment and controlling for intra-animal autocorrelation.
593 Differentially expressed genes (DEGs) were analyzed by functional enrichment analysis and gene
594 set enrichment analysis (GSEA) to identify specific pathways and molecular processes altered by
595 galunisertib.

596 The Parse pipeline and Partek software were used for scRNAseq analysis. For bulk RNAseq
597 features with <100 counts were removed, data normalized and DESeq2 was used to obtain a
598 DEG list. Genes with a false discovery rate (FDR)-adjusted p-value ≤ 0.05 and absolute \log_2 fold-
599 change (FC) (compared to BC1) above 2 were defined as significantly differentially expressed
600 (DEG). For scRNAseq analysis cells isolated from lymph nodes before (BC1) and after (AC1)
601 galunisertib were fixed with the Parse fixation kit, barcoded and sequenced at the NUseq Core.
602 The Partek software was used for scRNAseq analysis. Cells with 400-8000 features, excluding
603 features with 0 reads in >99.99 cells, were included. Scran deconvolution was used for
604 normalization and cell classification was based on gene expression. Hurdle models were used to
605 compare DEGs in each cell subset before and after galunisertib. See supplemental methods for
606 a detailed description of scRNAseq analysis and additional control analysis using Seurat R
607 package with more stringent QC cut-offs and SCTtransform normalization.

608

609 **Plasma cytokines and T cell responses**

610 Cytokines in plasma (at 1:2 dilution) were measured using the NHP Cytokine 24-Plex kit by Meso
611 Scale Diagnostics (MSD) according to manufacturer instructions. Frozen PBMC collected at week
612 6 post-infection (pre-ART), right before the first galunisertib administration (BC1), at the end of
613 cycle 1 (AC1) and at the end of cycle 3 (AC3) were thawed in AIM V medium (Thermo Fisher)
614 with benzonase (Sigma) and plated on a FluoroSpot (CTL) plate pre-activated with 70% Ethanol

615 and IFN- γ , TNF- α and IL-2 capture solution. Gag, pol, and env 15-mer peptides (NIH AIDS
616 Reagents program) were prepared at two times the final concentration of 2.5 μ g/mL with co-
617 stimulatory reagents anti-CD28 10 μ g/mL and anti-CD49d 10 μ g/mL and added to the cells in CTL-
618 TestTM Medium. Parallel positive control of PMA (20ng/mL) and ionomycin (200ng/mL) or mock
619 DMSO solution was also plated with the stimulatory reagents. PBMCs were added at 300,000
620 cells per well. After 24hrs, the plate was washed, and incubated with detection and tertiary
621 solutions and shipped to CTL for scanning and QC.

622

623 **Statistics**

624 GraphPad Prism v10, R and Python were used for statistical analysis and data visualization.
625 Wilcoxon matched-pairs test and repeated measures ANOVA or mixed effect analysis (when the
626 data set had missing data) were used to compare the different virological and immunological
627 variables between baseline (BC1) and a single or multiple post-galunisertib time points. In Prism
628 the mixed model uses a compound symmetry covariance matrix, and is fit using Restricted
629 Maximum Likelihood (REML). Cytokine data from MSD assay were first Log transformed, then
630 normalized by subcolumn/factor in percentage with 0% as smallest value and 100% larger value
631 in each dataset. Each factor was analyzed separately with ANOVA for repeated measures and
632 Dunn's multiple comparison's post-hoc test and together by principal component analysis (PCA).
633 Holm-Sidak test was used for multiple comparison correction in all cases, but FlowSOM cluster
634 comparison where the FDR method was used. Pearson r coefficient was calculated for pairwise
635 tests of association in a correlation matrix with selected variables. For RNAseq analysis see
636 above and supplemental methods. For viral population analysis, Shannon Entropy of the viral
637 barcodes present in each sample was used to measure the diversity of the viral populations (see
638 supplemental Methods). Chi-squared tests were used in R to compare barcode composition
639 between before and after cycle time points within a tissue/macaque using paired barcode relative
640 frequencies. Unless otherwise specified p-value<0.05 was considered statistically significant.

641

642 **Data Availability Statement**

643 All relevant data are included in the manuscript or supplemental material. Source data are
644 provided with this paper in the Source Data file. Raw data files including DICOM image files are
645 available to be shared upon request to the corresponding author
646 elena.martinelli@northwestern.edu. All RNA sequencing data originating from this study have
647 been deposited in NCBI GEO under the accession code: GSE244871.

648 **Acknowledgements**

649 **General:** We acknowledge the helpful staff at the New Iberia Research Center as well as the help
650 of Dr. Suchitra Swaminathan and the rest of the staff of the Flow Cytometry Core Facility at the
651 Robert H. Lurie Comprehensive Cancer Center of Northwestern University in Chicago. Moreover,
652 we thank the staff of the NUseq Core at Northwestern, and in particular Dr. Ching Man Wai and
653 Matthew Schipma for the help with RNAseq data. Finally, we thank Dr. Lifson and the Leidos staff
654 for viral load measurements as well as Dr. Laird at Accelevir for providing SIV-TILDA results in a
655 timely manner. The content of this publication does not necessarily reflect the views or policies of
656 the Department of Health and Human Services, nor does mention of trade names, commercial
657 products, or organizations imply endorsement by the U.S. Government.

658 **Funding:** This project has been funded by National Institutes of Health grant R56AI157822 and
659 R01AI-176599 to Dr. Martinelli, the resource for NHP immune reagents to Dr. Villinger
660 (R24 OD010947) for probe productions and in part with federal funds from the National Cancer
661 Institute, National Institutes of Health, under Contract No.
662 75N91019D00024/HHSN261201500003I. The Lurie Cancer Center is supported in part by an
663 NCI Cancer Center Support Grant #P30 CA060553.

664

665 **Authors contributions:** EM conceptualized the studies; JK performed and analyzed flow
666 cytometry and immunePET/CT data; DB, MA, DF and SA collected and processed macaque
667 samples; MRH generated vRNA/DNA and Elispot data; RC and MV analyzed Treg/Tfh; YT and
668 TJH contributed to immunePET/CT analysis; EG, YG and EM analyzed RNAseq data; CMF, BK
669 and RLR analyzed barcode data; JA, CC, FV and EM interpreted the data and wrote the
670 manuscript.

671

672 **Competing interests:** The corresponding author's institution, Northwestern University filed a
673 patent application including all the data from the present manuscript. Application number:

674 18/515,196, Filing date: November 20, 2023. Inventor, Elena Martinelli. All other authors declare
675 no competing interests.

676

677 **REFERENCES**

678 1. Gantner P, *et al.* HIV rapidly targets a diverse pool of CD4(+) T cells to establish productive
679 and latent infections. *Immunity* **56**, 653-668 e655 (2023).

680

681 2. Whitney JB, *et al.* Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus
682 monkeys. *Nature* **512**, 74-77 (2014).

683

684 3. Persaud D, Zhou Y, Siliciano JM, Siliciano RF. Latency in human immunodeficiency virus
685 type 1 infection: no easy answers. *J Virol* **77**, 1659-1665 (2003).

686

687 4. Margolis DM, Archin NM. Proviral Latency, Persistent Human Immunodeficiency Virus
688 Infection, and the Development of Latency Reversing Agents. *The Journal of infectious
689 diseases* **215**, S111-S118 (2017).

690

691 5. Wagner TA, *et al.* HIV latency. Proliferation of cells with HIV integrated into cancer genes
692 contributes to persistent infection. *Science* **345**, 570-573 (2014).

693

694 6. Maldarelli F, *et al.* HIV latency. Specific HIV integration sites are linked to clonal expansion
695 and persistence of infected cells. *Science* **345**, 179-183 (2014).

696

697 7. Cohn LB, *et al.* HIV-1 integration landscape during latent and active infection. *Cell* **160**,
698 420-432 (2015).

699

700 8. Einkauff KB, *et al.* Parallel analysis of transcription, integration, and sequence of single HIV-
701 1 proviruses. *Cell* **185**, 266-282 e215 (2022).

702

703 9. Lian X, *et al.* Progressive transformation of the HIV-1 reservoir cell profile over two
704 decades of antiviral therapy. *Cell Host Microbe* **31**, 83-96 e85 (2023).

705

706 10. Singh V, Dashti A, Mavigner M, Chahroudi A. Latency Reversal 2.0: Giving the Immune
707 System a Seat at the Table. *Curr HIV/AIDS Rep* **18**, 117-127 (2021).

708

709 11. Abner E, Jordan A. HIV "shock and kill" therapy: In need of revision. *Antiviral Res* **166**, 19-
710 34 (2019).

711

712 12. Ait-Ammar A, *et al.* Current Status of Latency Reversing Agents Facing the Heterogeneity
713 of HIV-1 Cellular and Tissue Reservoirs. *Frontiers in microbiology* **10**, 3060 (2019).

714

715 13. Yukl SA, *et al.* HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV
716 transcriptional elongation, completion, and splicing. *Sci Transl Med* **10**, (2018).

717

718 14. Siliciano JD, Siliciano RF. Low Inducibility of Latent Human Immunodeficiency Virus Type 1
719 Proviruses as a Major Barrier to Cure. *J Infect Dis* **223**, 13-21 (2021).

720

721 15. Ho YC, *et al.* Replication-competent noninduced proviruses in the latent reservoir increase
722 barrier to HIV-1 cure. *Cell* **155**, 540-551 (2013).

723

724 16. Borducchi EN, *et al.* Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-
725 infected rhesus monkeys. *Nature* **540**, 284-287 (2016).

726

727 17. Nixon CC, *et al.* Systemic HIV and SIV latency reversal via non-canonical NF- κ B
728 signalling in vivo. *Nature* **578**, 160-165 (2020).

729

730 18. O'Sullivan D. The metabolic spectrum of memory T cells. *Immunol Cell Biol* **97**, 636-646
731 (2019).

732

733 19. Crater JM, Nixon DF, Furler O'Brien RL. HIV-1 replication and latency are balanced by
734 mTOR-driven cell metabolism. *Front Cell Infect Microbiol* **12**, 1068436 (2022).

735

736 20. Besnard E, *et al.* The mTOR Complex Controls HIV Latency. *Cell Host Microbe* **20**, 785-797
737 (2016).

738

739 21. Barbian HJ, *et al.* beta-catenin regulates HIV latency and modulates HIV reactivation. *PLoS
740 Pathog* **18**, e1010354 (2022).

741

742 22. Gounari F, Khazaie K. TCF-1: a maverick in T cell development and function. *Nat Immunol*
743 **23**, 671-678 (2022).

744

745 23. Valle-Casuso JC, *et al.* Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir
746 Seeding in CD4(+) T Cells and Offers an Opportunity to Tackle Infection. *Cell Metab* **29**,
747 611-626 e615 (2019).

748

749 24. Oh SA, Li MO. TGF-beta: guardian of T cell function. *Journal of immunology* **191**, 3973-
750 3979 (2013).

751

752 25. Gabriel SS, *et al.* Transforming growth factor-beta-regulated mTOR activity preserves
753 cellular metabolism to maintain long-term T cell responses in chronic infection. *Immunity*
754 **54**, 1698-1714 e1695 (2021).

755

756 26. Hu Y, *et al.* TGF-beta regulates the stem-like state of PD-1+ TCF-1+ virus-specific CD8 T
757 cells during chronic infection. *J Exp Med* **219**, (2022).

758

759 27. Ma C, Zhang N. Transforming growth factor-beta signaling is constantly shaping memory
760 T-cell population. *Proc Natl Acad Sci U S A* **112**, 11013-11017 (2015).

761

762 28. Viel S, *et al.* TGF-beta inhibits the activation and functions of NK cells by repressing the
763 mTOR pathway. *Sci Signal* **9**, ra19 (2016).

764

765 29. Delisle JS, *et al.* The TGF-beta-Smad3 pathway inhibits CD28-dependent cell growth and
766 proliferation of CD4 T cells. *Genes Immun* **14**, 115-126 (2013).

767

768 30. Lewis GM, Wehrens EJ, Labarta-Bajo L, Streeck H, Zuniga EI. TGF-beta receptor maintains
769 CD4 T helper cell identity during chronic viral infections. *J Clin Invest* **126**, 3799-3813
770 (2016).

771

772 31. Nath AP, *et al.* Comparative analysis reveals a role for TGF-beta in shaping the residency-
773 related transcriptional signature in tissue-resident memory CD8+ T cells. *PLoS One* **14**,
774 e0210495 (2019).

775

776 32. Zhang N, Bevan MJ. Transforming growth factor-beta signaling controls the formation and
777 maintenance of gut-resident memory T cells by regulating migration and retention.
778 *Immunity* **39**, 687-696 (2013).

779

780 33. Hirai T, *et al.* Competition for Active TGFbeta Cytokine Allows for Selective Retention of
781 Antigen-Specific Tissue- Resident Memory T Cells in the Epidermal Niche. *Immunity* **54**,
782 84-98 e85 (2021).

783

784 34. Larson C, *et al.* TGF-beta: a master immune regulator. *Expert Opin Ther Targets* **24**, 427-
785 438 (2020).

786

787 35. Samer S, *et al.* Blockade of TGF-beta signaling reactivates HIV-1/SIV reservoirs and
788 immune responses *in vivo*. *JCI Insight* **7**, (2022).

789

790 36. Bergstresser S, Kulpa DA. TGF-beta Signaling Supports HIV Latency in a Memory CD4+ T
791 Cell Based In Vitro Model. *Methods Mol Biol* **2407**, 69-79 (2022).

792

793 37. Chinnapaiyan S, Dutta RK, Nair M, Chand HS, Rahman I, Unwalla HJ. TGF-beta1 increases
794 viral burden and promotes HIV-1 latency in primary differentiated human bronchial
795 epithelial cells. *Scientific reports* **9**, 12552 (2019).

796

797 38. Holmgard RB, *et al.* Targeting the TGFbeta pathway with galunisertib, a TGFbetaRI small
798 molecule inhibitor, promotes anti-tumor immunity leading to durable, complete
799 responses, as monotherapy and in combination with checkpoint blockade. *J Immunother
800 Cancer* **6**, 47 (2018).

801

802 39. Melisi D, *et al.* Safety and activity of the TGFbeta receptor I kinase inhibitor galunisertib
803 plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. *J Immunother
804 Cancer* **9**, (2021).

805

806 40. Wick A, *et al.* Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming
807 growth factor-beta receptor I, in combination with standard temozolomide-based

808 radiochemotherapy in patients with newly diagnosed malignant glioma. *Invest New Drugs*
809 **38**, 1570-1579 (2020).

810

811 41. Martin CJ, *et al.* Selective inhibition of TGFbeta1 activation overcomes primary resistance
812 to checkpoint blockade therapy by altering tumor immune landscape. *Sci Transl Med* **12**,
813 (2020).

814

815 42. Terabe M, *et al.* Blockade of only TGF-beta 1 and 2 is sufficient to enhance the efficacy of
816 vaccine and PD-1 checkpoint blockade immunotherapy. *Oncoimmunology* **6**, e1308616
817 (2017).

818

819 43. Santangelo PJ, *et al.* Whole-body immunoPET reveals active SIV dynamics in viremic and
820 antiretroviral therapy-treated macaques. *Nat Methods* **12**, 427-432 (2015).

821

822 44. Samer S, *et al.* Blockade of TGF- β signaling reactivates HIV-1/SIV reservoirs and immune
823 responses *in vivo*. *bioRxiv*, 2022.2005.2013.489595 (2022).

824

825 45. Im SJ, Konieczny BT, Hudson WH, Masopust D, Ahmed R. PD-1+ stemlike CD8 T cells are
826 resident in lymphoid tissues during persistent LCMV infection. *Proc Natl Acad Sci U S A*
827 **117**, 4292-4299 (2020).

828

829 46. Van Gassen S, *et al.* FlowSOM: Using self-organizing maps for visualization and
830 interpretation of cytometry data. *Cytometry A* **87**, 636-645 (2015).

831

832 47. Rebhahn JA, Quataert SA, Sharma G, Mosmann TR. SwiftReg cluster registration
833 automatically reduces flow cytometry data variability including batch effects. *Commun
834 Biol* **3**, 218 (2020).

835

836 48. Blackburn MJ, *et al.* Regulatory and Helper Follicular T Cells and Antibody Avidity to Simian
837 Immunodeficiency Virus Glycoprotein 120. *J Immunol* **195**, 3227-3236 (2015).

838

839 49. Helmold Hait S, *et al.* Early T Follicular Helper Cell Responses and Germinal Center
840 Reactions Are Associated with Viremia Control in Immunized Rhesus Macaques. *J Virol* **93**,
841 (2019).

842

843 50. Zhou Y, *et al.* Metascape provides a biologist-oriented resource for the analysis of systems-
844 level datasets. *Nat Commun* **10**, 1523 (2019).

845

846 51. Qiu Z, Chu TH, Sheridan BS. TGF-beta: Many Paths to CD103(+) CD8 T Cell Residency. *Cells*
847 **10**, (2021).

848

849 52. Lim HS, Qiu P. Quantifying Cell-Type-Specific Differences of Single-Cell Datasets Using
850 Uniform Manifold Approximation and Projection for Dimension Reduction and Shapley
851 Additive exPlanations. *J Comput Biol* **30**, 738-750 (2023).

852

853 53. Liao X, *et al.* Kruppel-like factor 4 regulates macrophage polarization. *J Clin Invest* **121**,
854 2736-2749 (2011).

855

856 54. Moso MA, *et al.* HIV latency can be established in proliferating and nonproliferating resting
857 CD4+ T cells in vitro: implications for latency reversal. *AIDS* **33**, 199-209 (2019).

858

859 55. Neidleman J, *et al.* Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir.
860 *Elife* **9**, (2020).

861

862 56. Chitrakar A, Sanz M, Maggirwar SB, Soriano-Sarabia N. HIV Latency in Myeloid Cells:
863 Challenges for a Cure. *Pathogens* **11**, (2022).

864

865 57. Pearce EL. Metabolism in T cell activation and differentiation. *Curr Opin Immunol* **22**, 314-
866 320 (2010).

867

868 58. Wiercinska-Drapalo A, Flisiak R, Jaroszewicz J, Prokopowicz D. Increased plasma
869 transforming growth factor-beta1 is associated with disease progression in HIV-1-infected
870 patients. *Viral Immunol* **17**, 109-113 (2004).

871

872 59. Dickinson M, *et al.* Dynamics of Transforming Growth Factor (TGF)-beta Superfamily
873 Cytokine Induction During HIV-1 Infection Are Distinct From Other Innate Cytokines. *Front
874 Immunol* **11**, 596841 (2020).

875

876 60. Liovat AS, *et al.* Acute plasma biomarkers of T cell activation set-point levels and of disease
877 progression in HIV-1 infection. *PLoS One* **7**, e46143 (2012).

878

879 61. Salmond RJ. Regulation of T Cell Activation and Metabolism by Transforming Growth
880 Factor-Beta. *Biology (Basel)* **12**, (2023).

881

882 62. Regis S, Dondero A, Caliendo F, Bottino C, Castriconi R. NK Cell Function Regulation by TGF-
883 beta-Induced Epigenetic Mechanisms. *Front Immunol* **11**, 311 (2020).

884

885 63. Zaiatz-Bittencourt V, Finlay DK, Gardiner CM. Canonical TGF-beta Signaling Pathway
886 Represses Human NK Cell Metabolism. *J Immunol* **200**, 3934-3941 (2018).

887

888 64. Das L, Levine AD. TGF-beta inhibits IL-2 production and promotes cell cycle arrest in TCR-
889 activated effector/memory T cells in the presence of sustained TCR signal transduction. *J
890 Immunol* **180**, 1490-1498 (2008).

891

892 65. Chen W. TGF-beta Regulation of T Cells. *Annu Rev Immunol* **41**, 483-512 (2023).

893

894 66. Yamazaki T, *et al.* Galunisertib plus neoadjuvant chemoradiotherapy in patients with
895 locally advanced rectal cancer: a single-arm, phase 2 trial. *Lancet Oncol* **23**, 1189-1200
896 (2022).

897

898 67. Harding JJ, *et al.* Phase 1b study of galunisertib and ramucirumab in patients with
899 advanced hepatocellular carcinoma. *Cancer Med* **10**, 3059-3067 (2021).

900

901 68. Kelley RK, *et al.* A Phase 2 Study of Galunisertib (TGF-beta1 Receptor Type I Inhibitor) and
902 Sorafenib in Patients With Advanced Hepatocellular Carcinoma. *Clin Transl Gastroenterol*
903 **10**, e00056 (2019).

904

905 69. Melisi D, *et al.* Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of
906 patients with unresectable pancreatic cancer. *Br J Cancer* **119**, 1208-1214 (2018).

907

908 70. Walshe TE, Saint-Geniez M, Maharaj AS, Sekiyama E, Maldonado AE, D'Amore PA. TGF-
909 beta is required for vascular barrier function, endothelial survival and homeostasis of the
910 adult microvasculature. *PLoS One* **4**, e5149 (2009).

911

912 71. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical
913 cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. *J Clin
914 Oncol* **20**, 4368-4380 (2002).

915

916 72. Santangelo PJ, *et al.* Early treatment of SIV+ macaques with an alpha(4)beta(7) mAb alters
917 virus distribution and preserves CD4(+) T cells in later stages of infection. *Mucosal
918 Immunol* **11**, 932-946 (2018).

919

920 73. Fray EJ, *et al.* Antiretroviral therapy reveals triphasic decay of intact SIV genomes and
921 persistence of ancestral variants. *Cell Host Microbe* **31**, 356-372 e355 (2023).

922

923 74. Escobar G, Mangani D, Anderson AC. T cell factor 1: A master regulator of the T cell
924 response in disease. *Sci Immunol* **5**, (2020).

925

926 75. Rutishauser RL, *et al.* TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. *JCI
927 Insight* **6**, (2021).

928

929 76. Choi YS, *et al.* LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating
930 differentiation circuits upstream of the transcriptional repressor Bcl6. *Nat Immunol* **16**,
931 980-990 (2015).

932

933 77. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert
934 naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells.
935 *J Immunol* **178**, 2018-2027 (2007).

936

937 78. Frank I, *et al.* Blocking alpha4beta7 integrin delays viral rebound in SHIVSF162P3-infected
938 macaques treated with anti-HIV broadly neutralizing antibodies. *Sci Transl Med* **13**,
939 (2021).

940

941 79. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of
942 RNA-seq experiments with HISAT, StringTie and Ballgown. *Nat Protoc* **11**, 1650-1667
943 (2016).

944

945 80. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
946 seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

947

948

949

950

951 **FIGURE LEGENDS**

952 **Figure 1. Four 2-weeks cycles with galunisertib lead to viral reactivation in blood.** A)
953 Schematic representation of the study and sampling schedule B) Plasma VL in blood for each
954 macaque throughout the study. The longer black line indicates the period on ART, while the 4
955 small black lines indicate the start and end of each galunisertib cycle. C) Enlarged plasma VL for
956 all macaques during galunisertib therapy. Green bars indicate galunisertib cycles. Source data
957 are provided as a Source Data file. Image from BioRender.

958

959 **Figure 2. Galunisertib leads to viral reactivation in tissues.** A) The ^{64}Cu -DOTA-Fab₂(7D3)
960 probe was injected ~24hrs before PET/CT scan before and at the end of each of the first 3
961 galunisertib cycles. Representative images from the maximum intensity projections (MIP) of fused
962 PET and CT scans are shown for a macaque with a major increase at the end of cycle 2 and one
963 showing increase at the beginning of cycle 3. MIPs were generated using the MIM software, set
964 to a numerical scale of 0-1.5 SUV_{bw} and visualized with the *Rainbow* color scale. B) Mean SUV
965 were calculated for each anatomical area and values analyzed with mixed-effect analysis. Data
966 from the scans performed at the last 2 time points (BC3 and AC3) in 08M171 were excluded
967 because of technical issues with the probe. Thicker black line represents the mean. P-values
968 were calculated for comparison of each time point with the before cycle 1 time point (BC1; AC1= after
969 cycle 1, BC2= before cycle 2; AC2= after cycle 2; BC3= before cycle 3; AC3= after cycle 3;
970 Holm-Sidak multiple comparison correction; *p≤0.05 **p≤0.01 ***p≤0.01). Source data are
971 provided as a Source Data file.

972

973 **Figure 3. Galunisertib decreases viral reservoir in absence of systemic inflammation.** A)
974 Levels of cell-associated (CA)-vDNA per cell equivalent are shown for the time point before cycle
975 1 (BC1) and at the end of cycle 3 (AC3) or 4 (AC4) for the respective tissues for all 8 macaques.
976 B) IPDA data are shown for intact and total provirus for BC1 and AC4 in PBMC for the 8

977 macaques. P-values are shown for Wilcoxon matched pair signed-rank non-parametric two-tailed
978 test comparing before and after galunisertib data from the 8 macaques (*p≤0.05 **p≤0.01
979 ***p≤0.01) C) Heat map of cytokine concentration in plasma at the indicated time point are shown
980 after Log transformation and normalization. Statistical analysis was run on each factor separately
981 and together (no significant differences after multiple comparison adjustment). Source data are
982 provided as a Source Data file.

983

984 **Figure 4. Galunisertib leads toward effector in T and NK cells, increasing Treg and**
985 **decreasing Tfh frequencies.** A-F) Geometric mean fluorescent intensities (MFI) of each marker
986 and frequency of indicated subset within live, singlets CD3⁺ CD4⁺ T cells (A and C) or CD3⁺ CD4⁺
987 CD95⁺ T cells (B) or CD8⁺ or CD8⁺ CD95⁺ T cells or NK cells (NKG2A⁺ CD8⁺ CD3⁻ cells) are
988 shown. Thick black line represents the mean. Changes from baseline (beginning of cycle 1, BC1)
989 are shown for graphs with at least 1 significant difference (Repeated measures ANOVA with Holm-
990 Sidak correction for multiple comparisons; *p≤0.05 **p≤0.01 ***p≤0.01). G) tSNE of lymphocyte,
991 live, singlets events after normalization for BC1 and AC4 (all 8 macaques) with FlowSOM 36
992 clusters overlaid on tSNE (top left) or heatmap of each markers MFI (right) or heatmap of time
993 point (blue is BC1 and red is AC4; bottom left) is shown. 6 populations were manually gated on
994 red or blue areas (red, New1-3 and blue Old1-3). H) Bubble chart displaying changes in AC4 from
995 BC1 in populations (FlowSOM clusters) characterized by markers MFI in Fig S8A. Color is
996 proportional to the effect size and size to p-value (Wilcoxon sum rank non-parameter two-tailed
997 test). I) Bubble chart displaying changes from BC1 at all time points in populations (FlowSOM
998 clusters) characterized in Fig S8C (ANOVA repeated measures with Holm-Sidak multiple
999 comparisons correction; *p≤0.05 **p≤0.01 ***p≤0.01). J) Frequency of indicated subset within live,
1000 singlets CD3⁺ CD4⁺ T or CD3⁺ CD4⁺ CD95⁺ CD28⁺ T cells (CM=central memory) or within CD3⁺
1001 CD8⁺ T cells. Changes from baseline (BC1) are shown (ANOVA repeated measures with Holm-

1002 Sidak correction for multiple comparisons; * $p\leq 0.05$ ** $p\leq 0.01$ *** $p\leq 0.01$). Source data are provided
1003 as a Source Data file.

1004

1005

1006 **Figure 5. OXPHOS and other metabolic pathways increase rapidly with TGF- β blockade. A-**
1007 C) Bulk RNAseq was performed with PBMC from before cycle 1 (24hrs) and 1hrs after the first
1008 dose of galunisertib (A) or after the last dose of cycle 1 (B) and with rectal biopsies collected
1009 before cycle 1 (24hrs) and after the last dose of cycle 1 (C). The number of differentially expressed
1010 genes (DEG) obtained by DESeq2 with an FDR <0.05 and $\text{abs}(\log_2\text{FC})>2$ are shown in each
1011 respective volcano plot. Enrichment plots are shown after GSEA (with all FDR<0.05 DEGs) for
1012 significantly enriched pathways (top 1 or 2 pathway by ES). C) Lollipop graph of selected DEG of
1013 interest among significantly different genes (FDR<0.05). Source data are provided as a Source
1014 Data file.

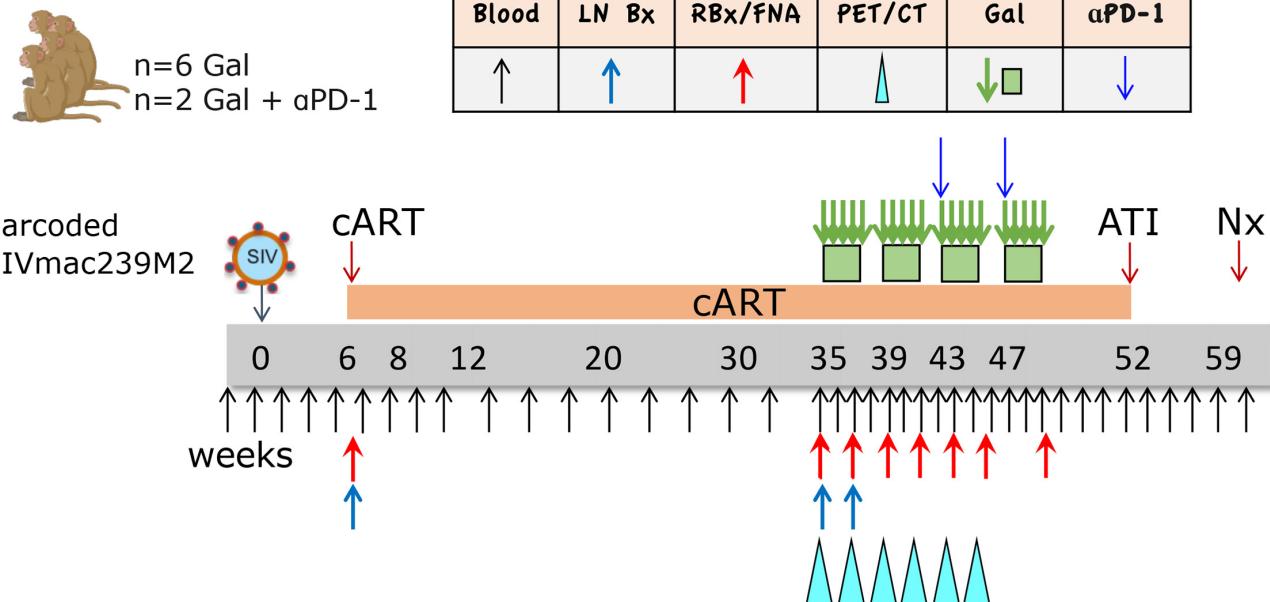
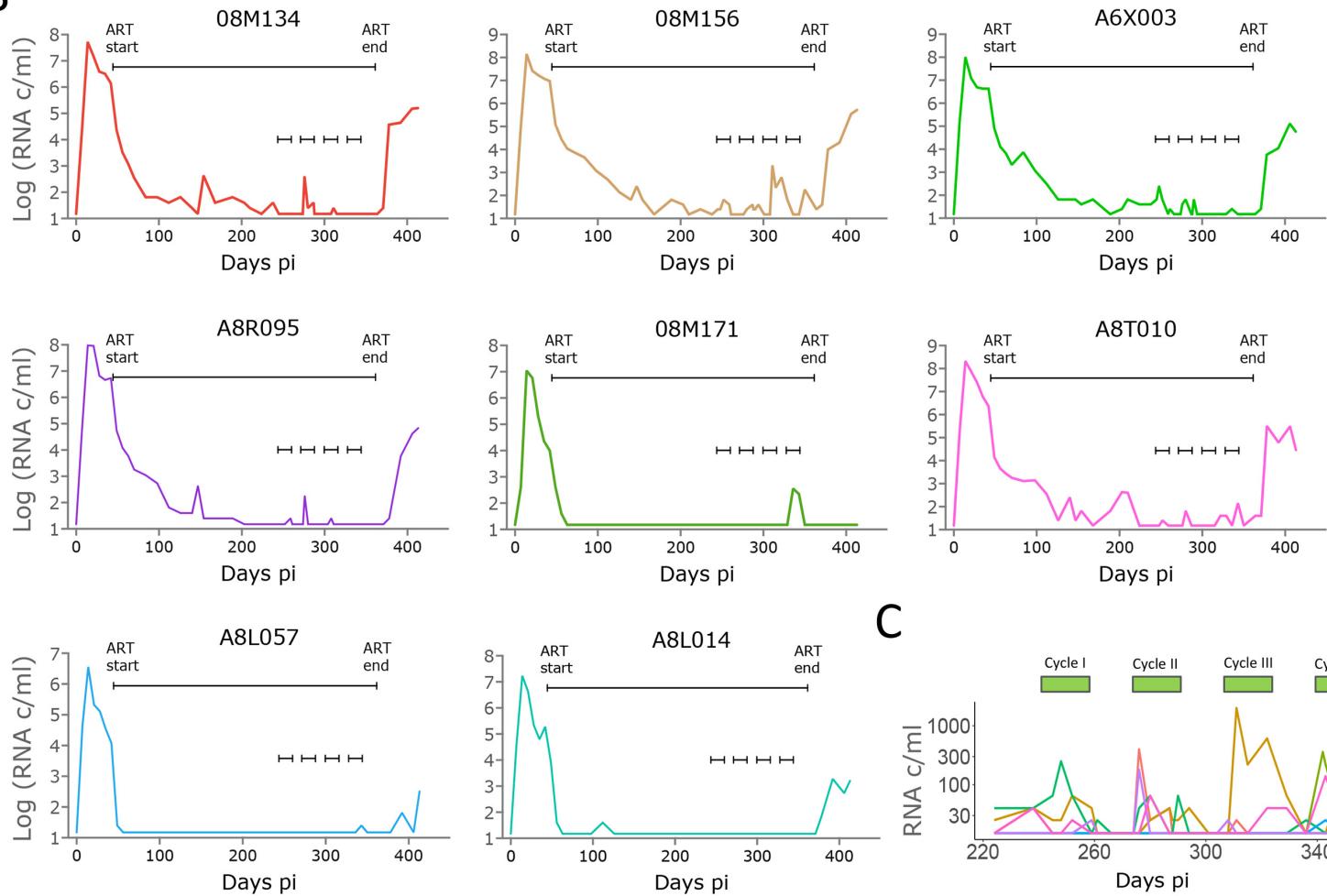
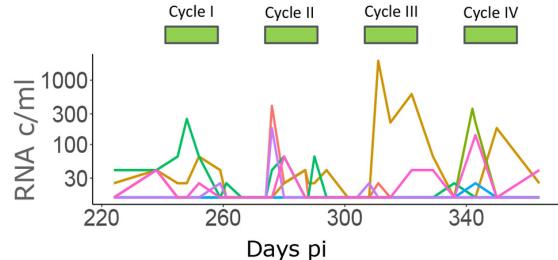
1015

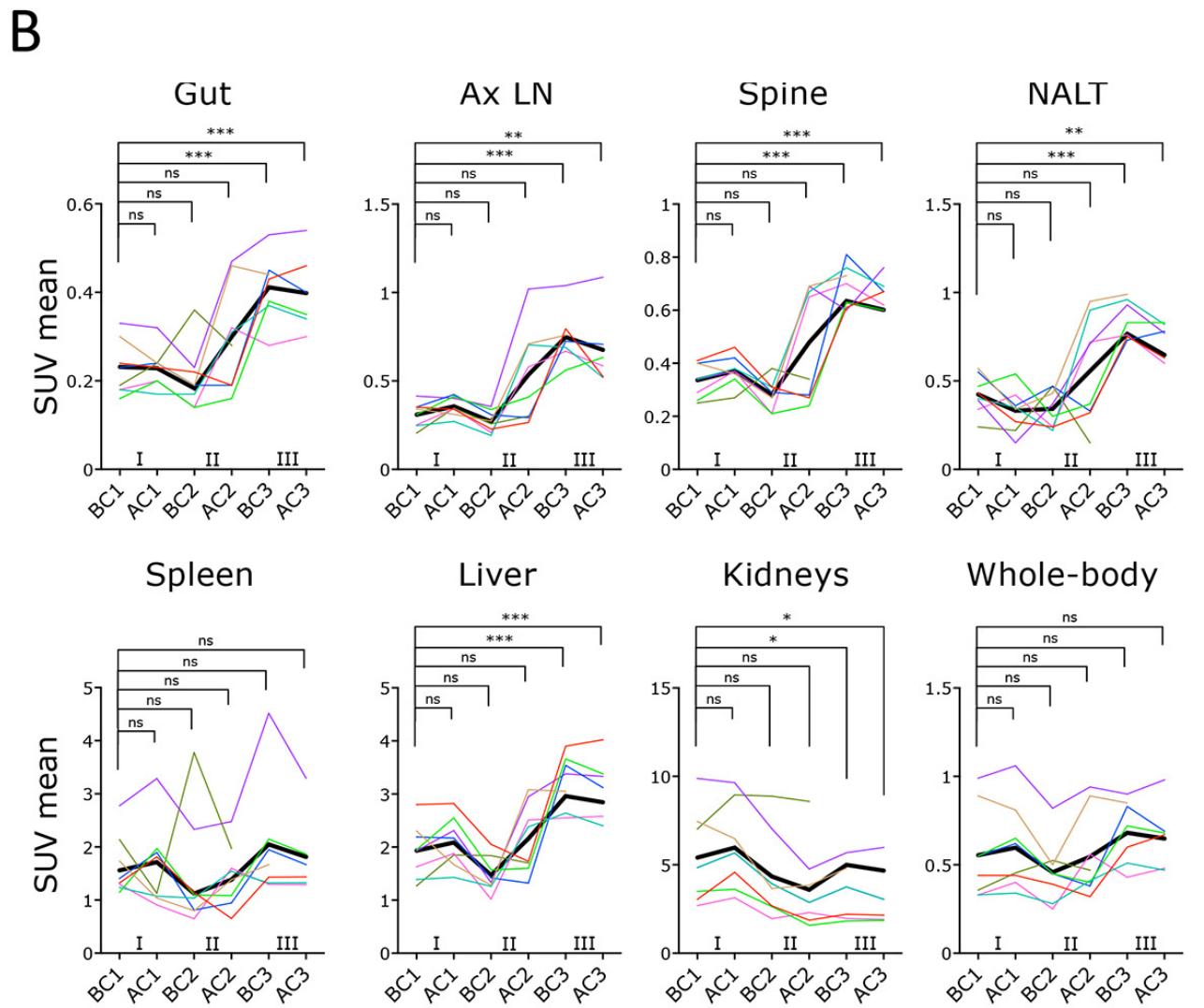
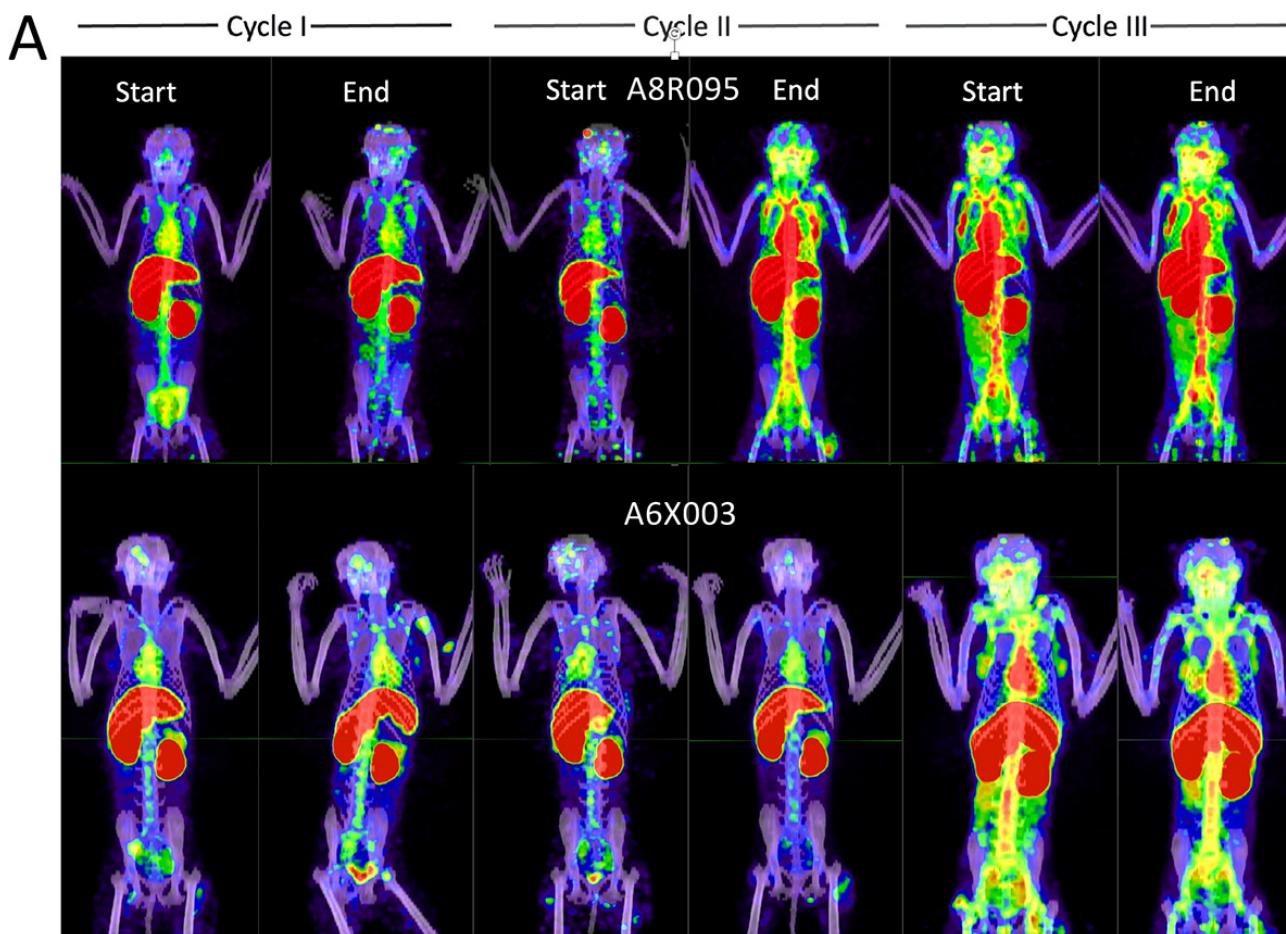
1016 **Figure 6. scRNAseq of lymph node before and after cycle 1 confirms a switch toward**
1017 **effector and increased metabolism in all immune subsets with galunisertib. A)** UMAP
1018 projection of 93234 cells from lymph nodes collected right before and at the end of cycle 1 from
1019 all 8 macaques (16 samples). Gene-based classification of major immune subset is overlaid on
1020 UMAP. In gray are unclassified cells. B-C) Bubble plots showing expression (mean normalized
1021 counts proportional to the color; size proportional to the percentage of cells) of each marker listed
1022 in each cell subset. Marker listed are those used for classification of major immune subsets (B)
1023 or CD4 $^{+}$ and CD8 $^{+}$ T cells (C). D) Significantly different genes obtained by Hurdle model
1024 (FDR<0.05; $\log_2\text{FC}=0.15$) in the T cell subset are shown with color proportional to normalized
1025 counts. E) Significantly enriched pathways (FDR<0.01) in T cells DEGs within the hallmark
1026 collection. F-G) Significantly different genes (FDR<0.05; $\log_2\text{FC}=0.15$) in the CD4 $^{+}$ (F) and CD8 $^{+}$

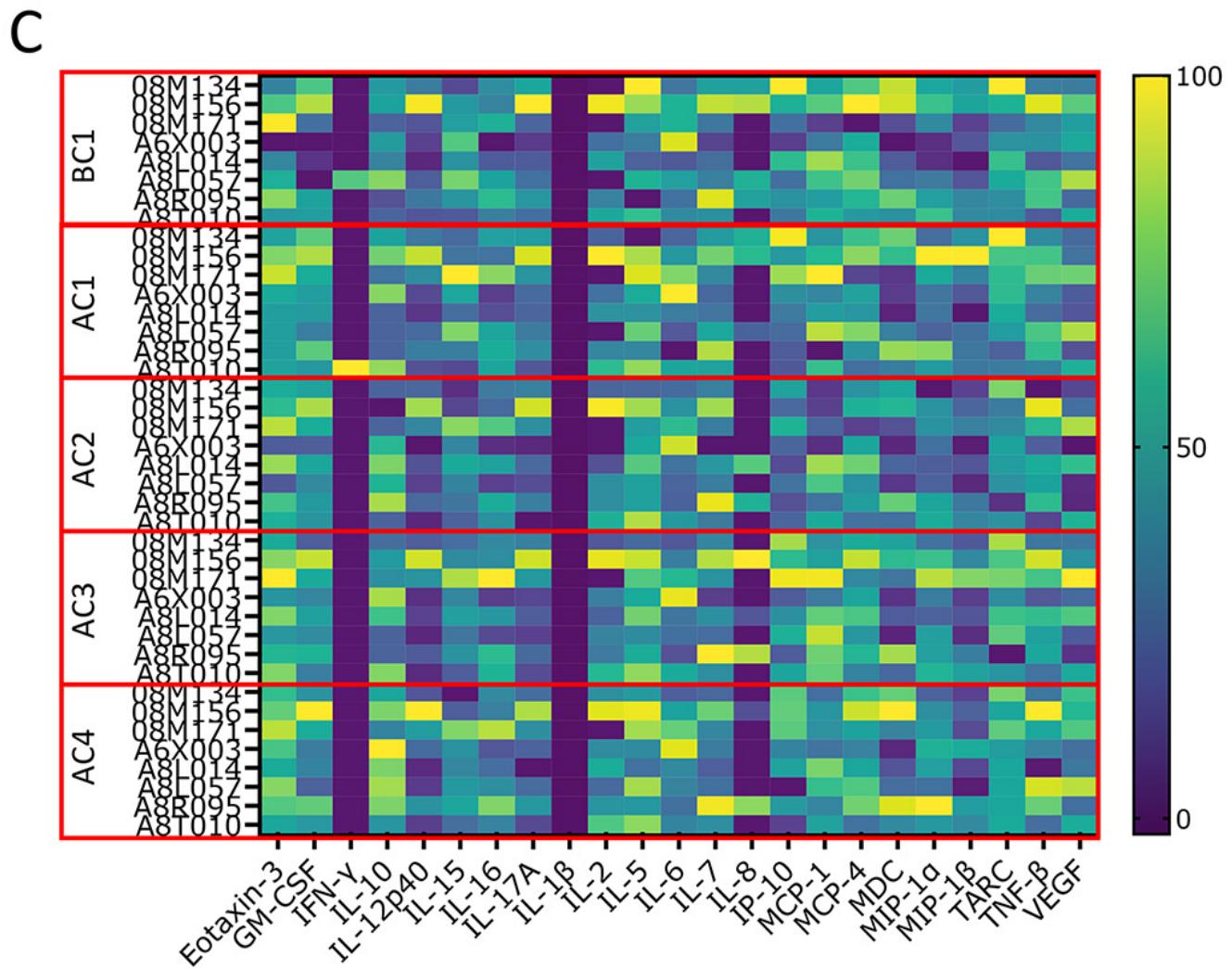
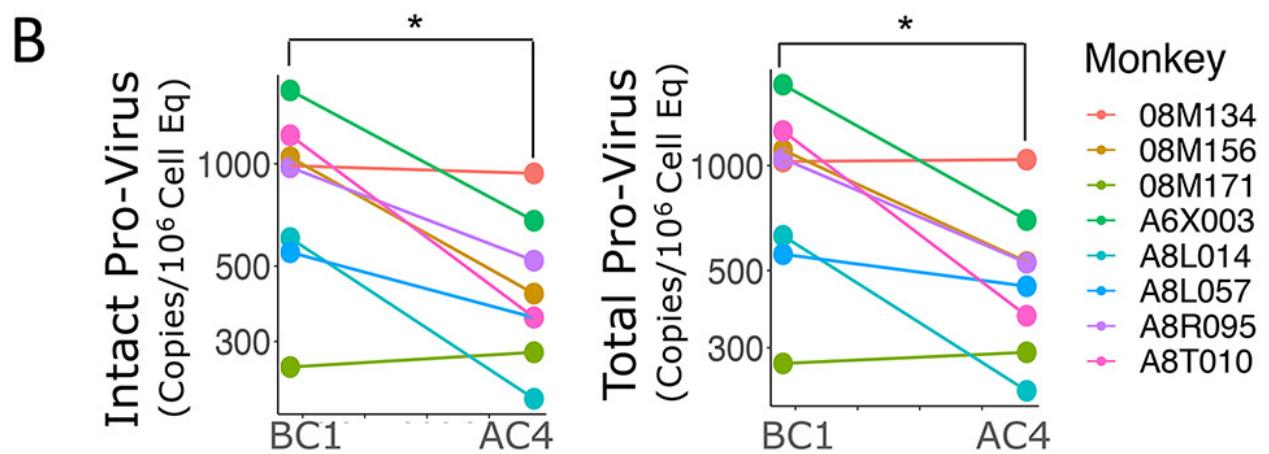
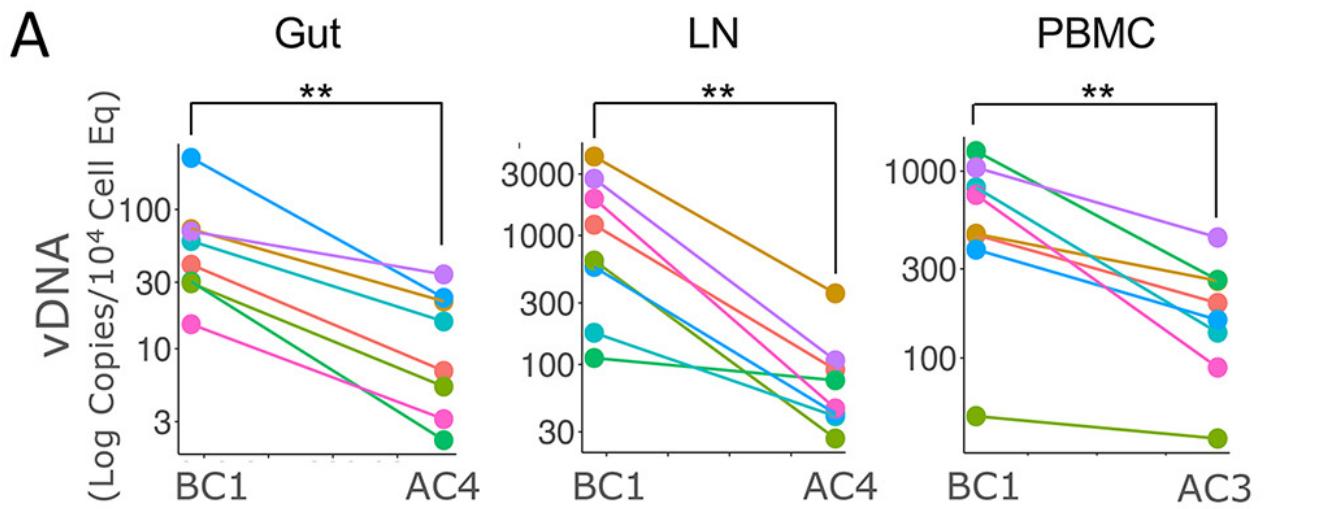
1027 (G) T cell subset. H-I) Significantly enriched pathways (FDR<0.01) in CD4⁺ T cells DEGs within
1028 the hallmark (H) and biocarta (I) collections. Source data are provided as a Source Data file.

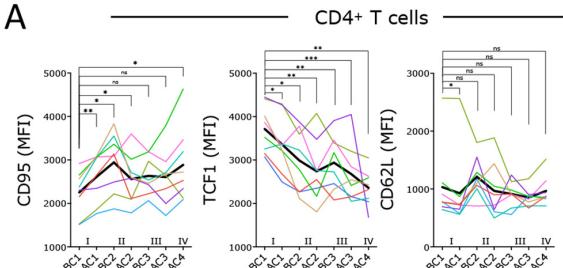
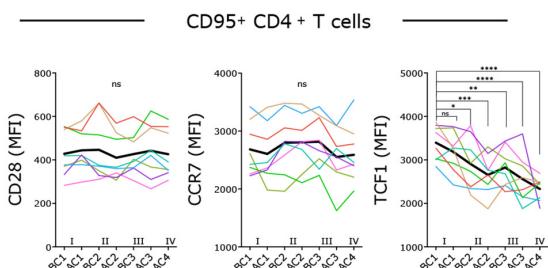
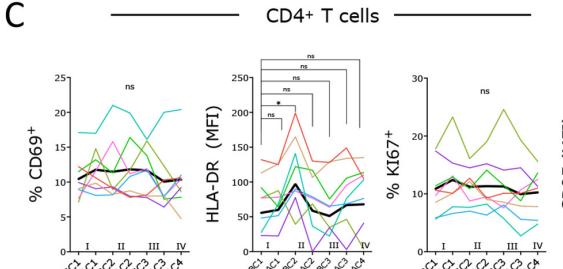
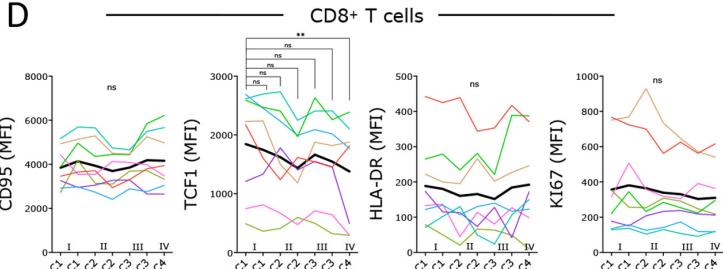
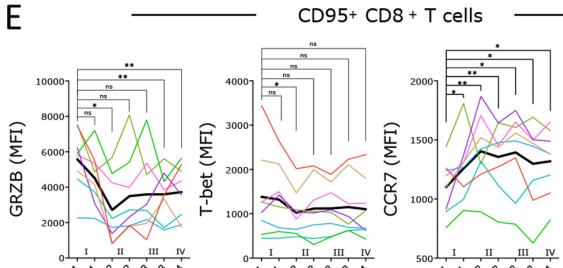
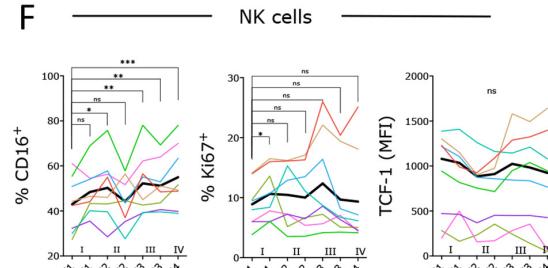
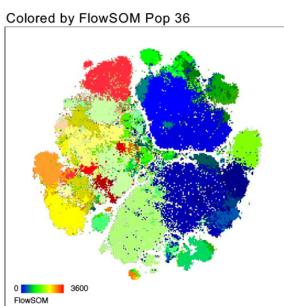
1029

1030 **Figure 7. Galunisertib increases SIV-specific responses.** Average spots (from triplicates) per
1031 10⁶ PBMC at the time of ART initiation (pre-ART), before cycle 1 (BC1), after cycle 1 (AC1) and
1032 at the end of cycle 3 (AC3) with galunisertib after 24hrs ex vivo stimulation with 15-mer peptides
1033 (gag, env, pol) or mock (DMSO). Each post-galunisertib time point was compared to BC1 (Mixed
1034 effect analysis adjusted for multiple comparisons with Dunnet post-hoc p-values are shown;
1035 *p≤0.05 **p≤0.01 ***p≤0.001). Bars represent the median with interquartile range as error bars.
1036 Source data are provided as a Source Data file.

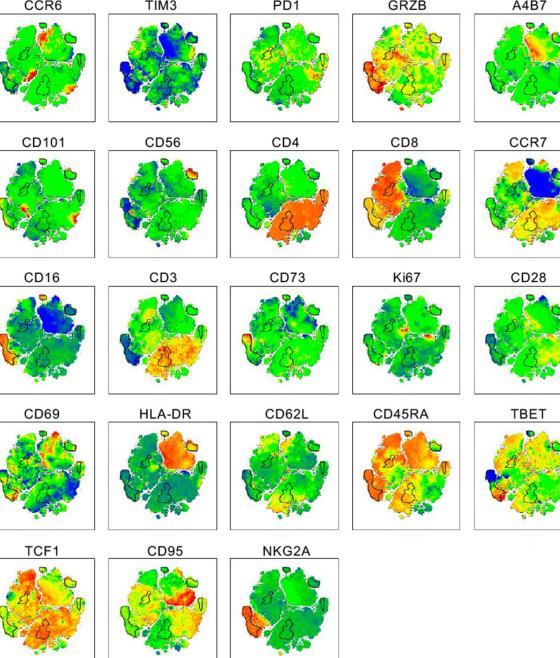
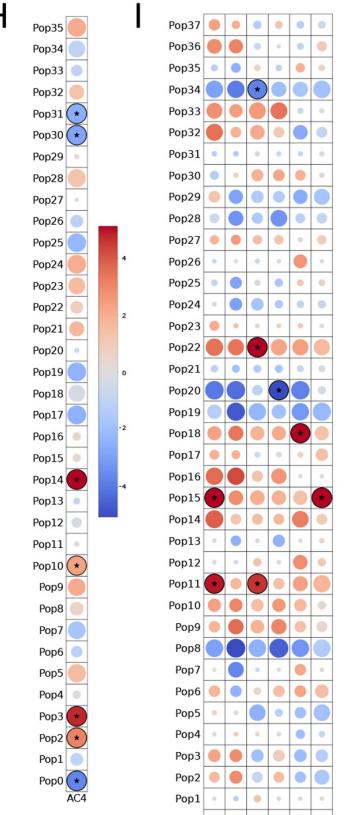
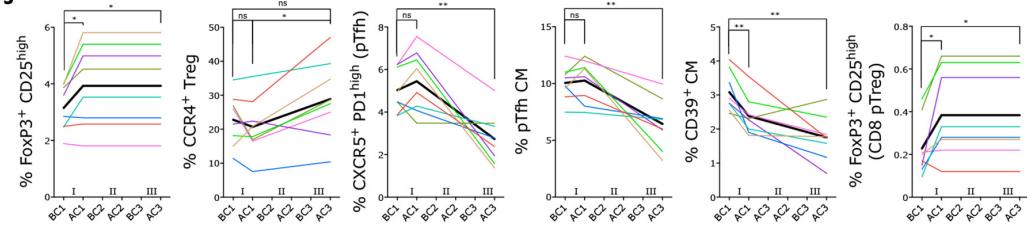



1037

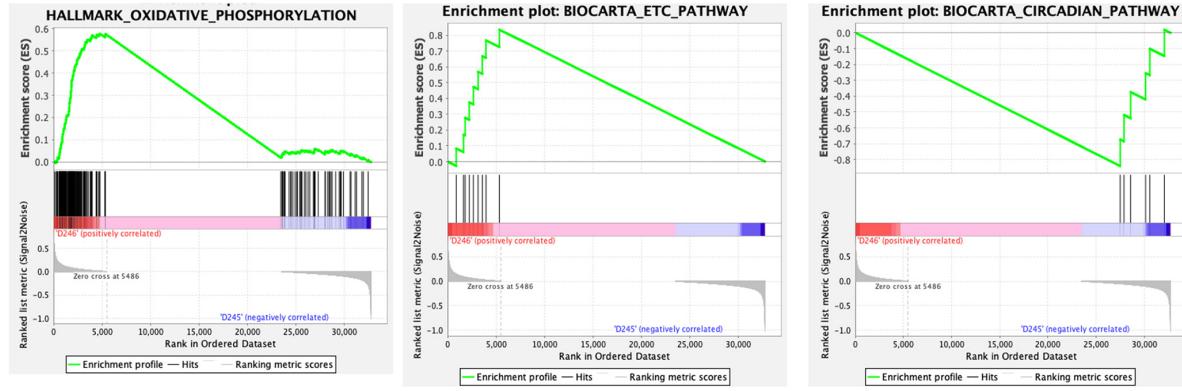
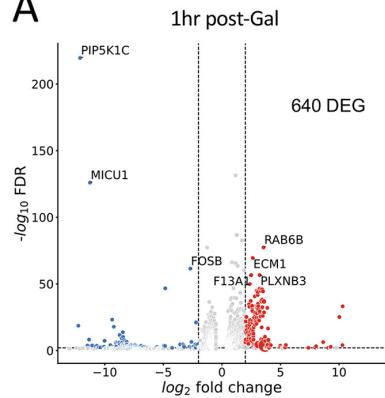
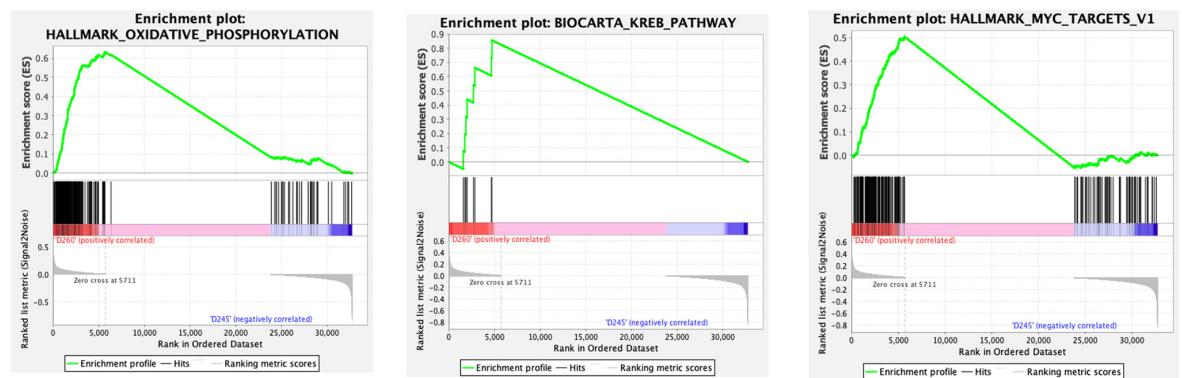
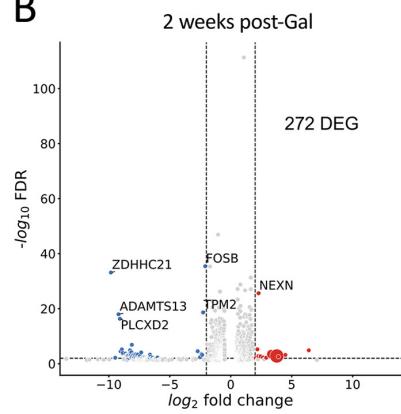
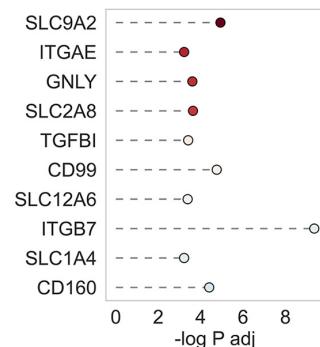
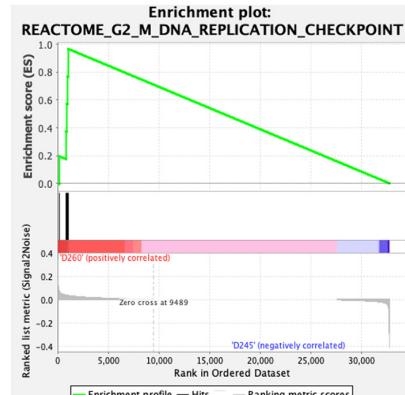
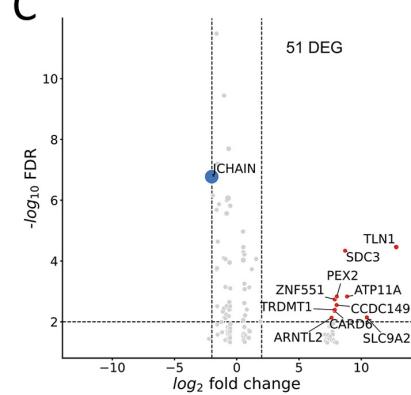


1038 **Figure 8. TCF1 decrease associates with virological and immunological endpoints.** A)
1039 Barcode diversity measure as Shannon Entropy is shown before and after each of the first 3
1040 galunisertib cycles for LN, PBMC and colorectal biopsies. Box-and-whisker plot represents the
1041 median +/- the interquartile range of data from 4 to 8 macaques (all data from macaques with
1042 detectable barcodes were included at each time point for a given tissue; no significant differences
1043 using linear mixed effects models). Blue= before; Red= end of each cycle. B) Bubble plot shows
1044 the results of statistical testing (Chi-squared) for differences in frequency distribution of barcodes
1045 before compared to after, for each of the first 3 cycles of galunisertib for each macaque in the
1046 indicated tissues. Blue indicates significant differences p≤0.05. C) Barcode entropy of virus
1047 isolated at the time of ART initiation compared to week 6 post-ATI in plasma (Wilcoxon matched
1048 pairs two-tailed test; *p≤0.05). D) Correlation matrix of several key variables of virological or
1049 immunological effect of galunisertib. Color is proportional to Pearson r coefficient. *p≤0.05
1050 **p≤0.01 ***p≤0.001 indicate significant correlations. E) Association between fold increase in
1051 TCF1 (MFI) from BC1 to AC4 with CA-vDNA levels at AC4, change in gut SUV at AC3 compared




1052 to BC1 and fold increase in IFN- γ (AC3 vs BC1). Person r is shown. All correlations have * $p \leq 0.05$.








1053 Source data are provided as a Source Data file.

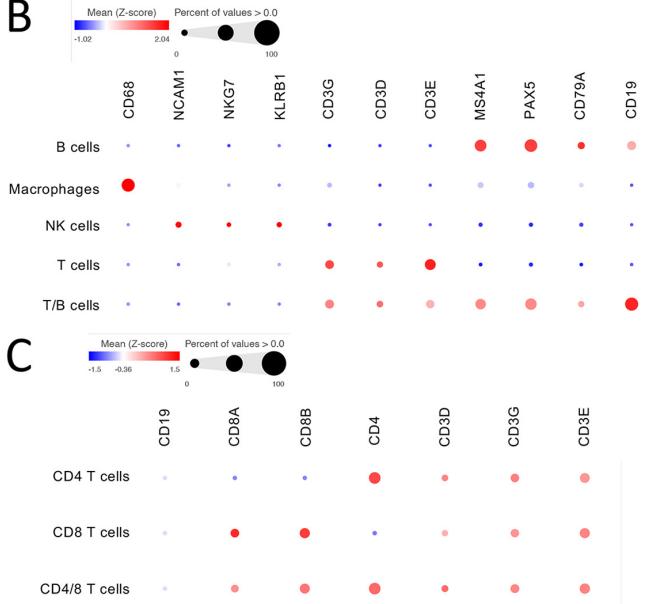
1054




A**B****C**

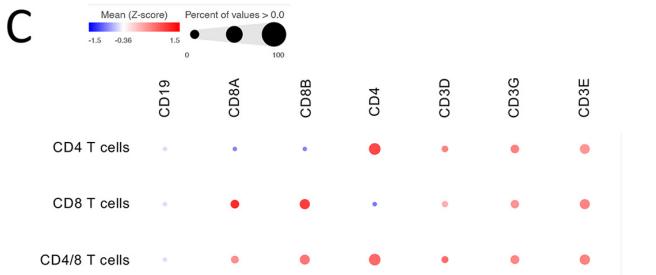








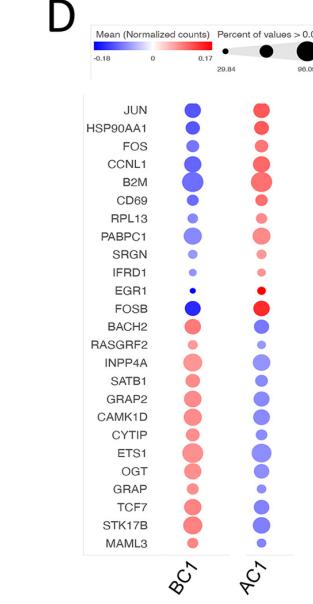
A**B****C****D****E****F****G**

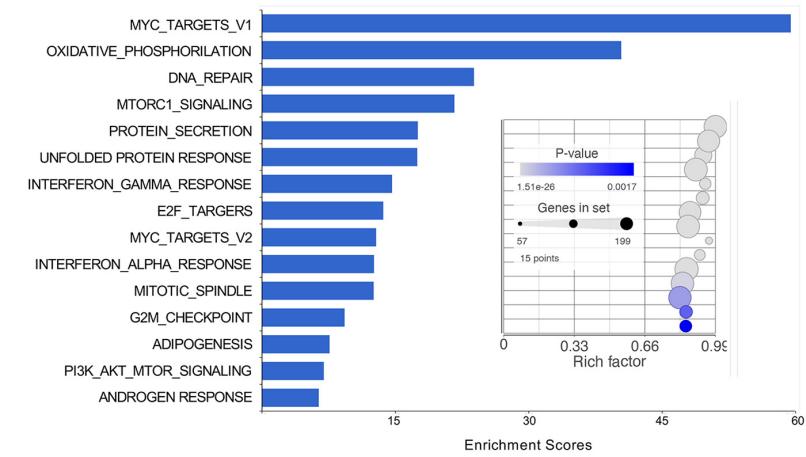
Subunit Name	Count
FlowSOM_Pep0	53697
FlowSOM_Pep1	79310
FlowSOM_Pep2	12364
FlowSOM_Pep3	114674
FlowSOM_Pep4	9406
FlowSOM_Pep5	5978
FlowSOM_Pep6	9333
FlowSOM_Pep7	6265
FlowSOM_Pep8	3013
FlowSOM_Pep9	2960
FlowSOM_Pep10	12331
FlowSOM_Pep11	18921
FlowSOM_Pep12	10195
FlowSOM_Pep13	14543
FlowSOM_Pep14	8647
FlowSOM_Pep15	14263
FlowSOM_Pep16	3159
FlowSOM_Pep17	9095
FlowSOM_Pep18	28934
FlowSOM_Pep19	126348
FlowSOM_Pep20	2112
FlowSOM_Pep21	59036
FlowSOM_Pep22	2684
FlowSOM_Pep23	16239
FlowSOM_Pep24	37375
FlowSOM_Pep25	7035
FlowSOM_Pep26	2243
FlowSOM_Pep27	6592
FlowSOM_Pep28	25850
FlowSOM_Pep29	4046
FlowSOM_Pep30	6104
FlowSOM_Pep31	51190
FlowSOM_Pep32	4634
FlowSOM_Pep33	6928
FlowSOM_Pep34	5784
FlowSOM_Pep35	10183

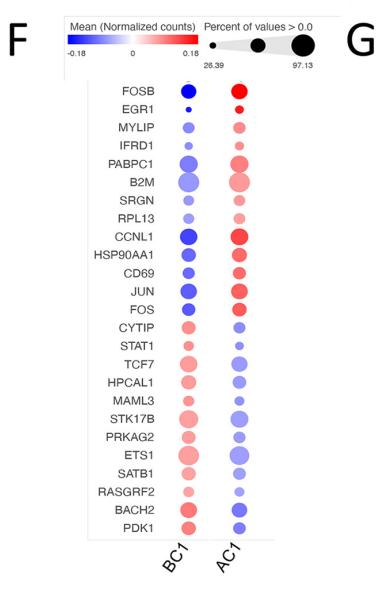

H**J**

A**B****C**

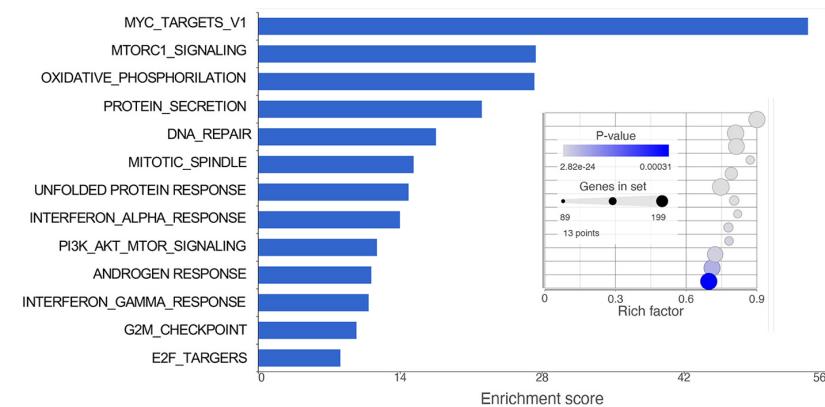

A

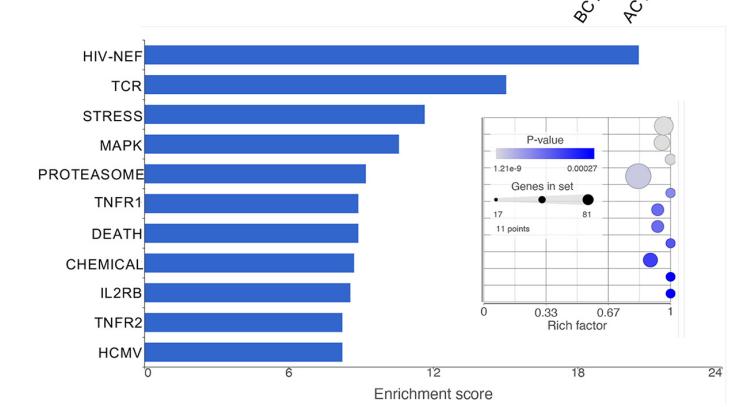

B

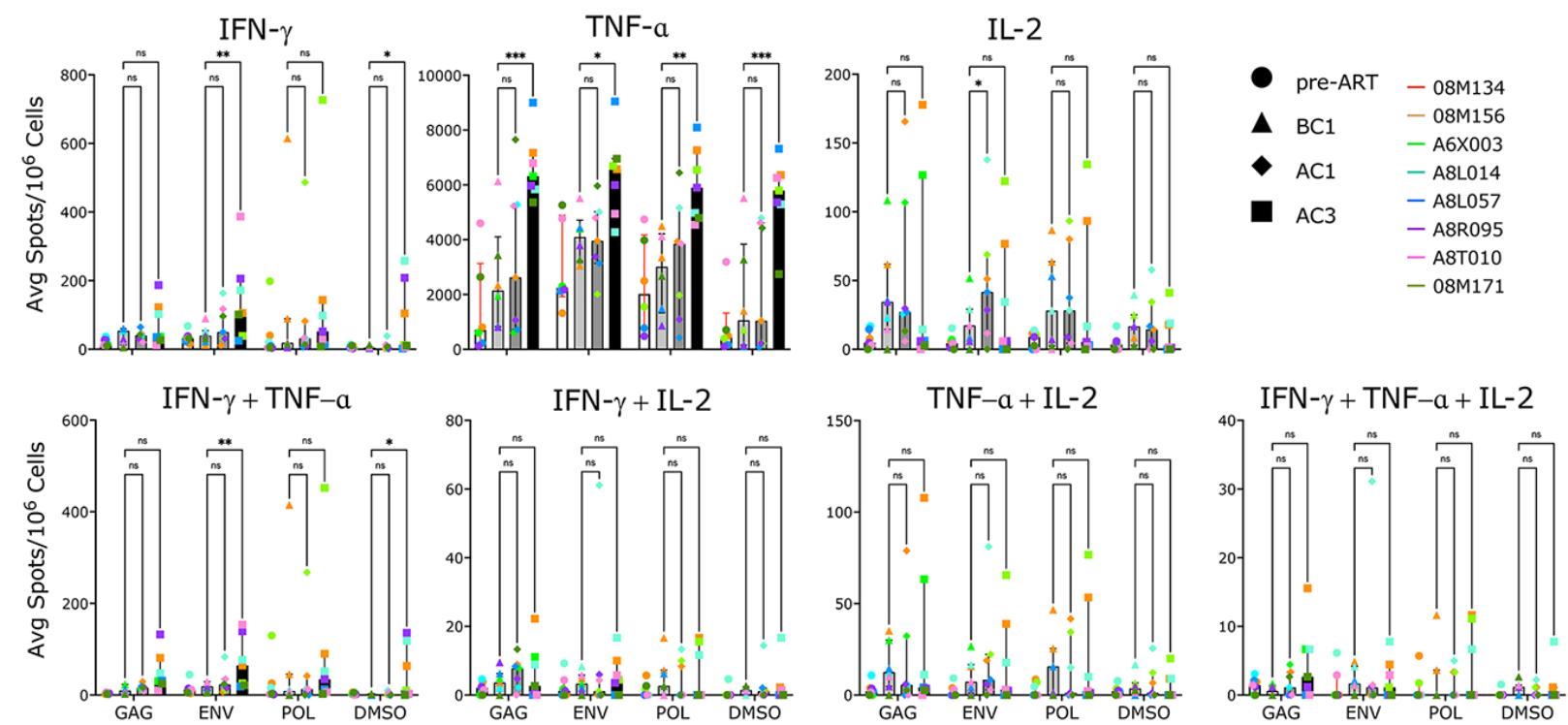

C

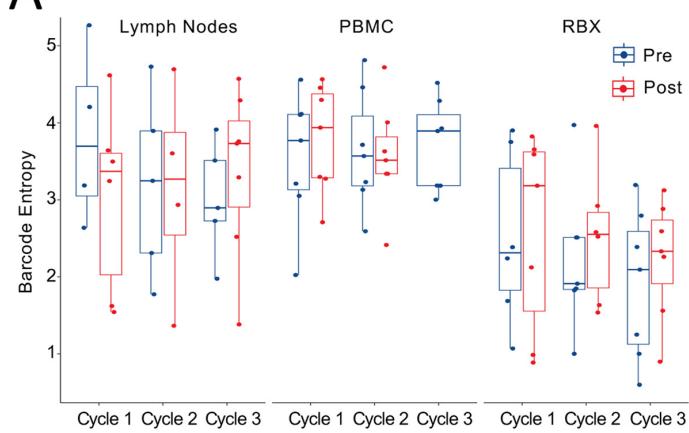
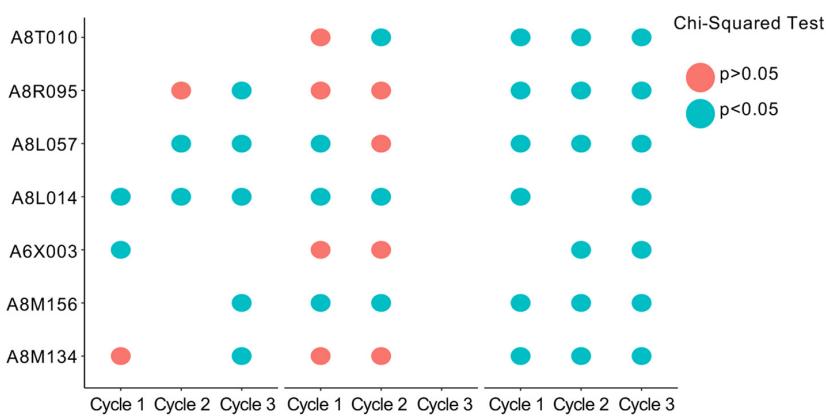
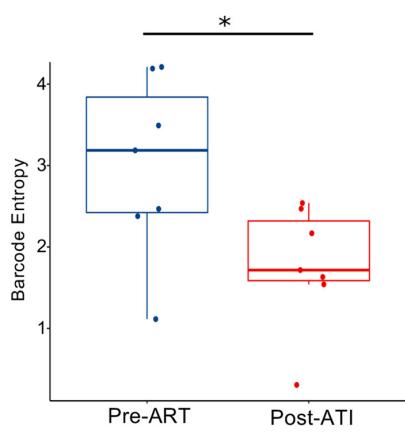
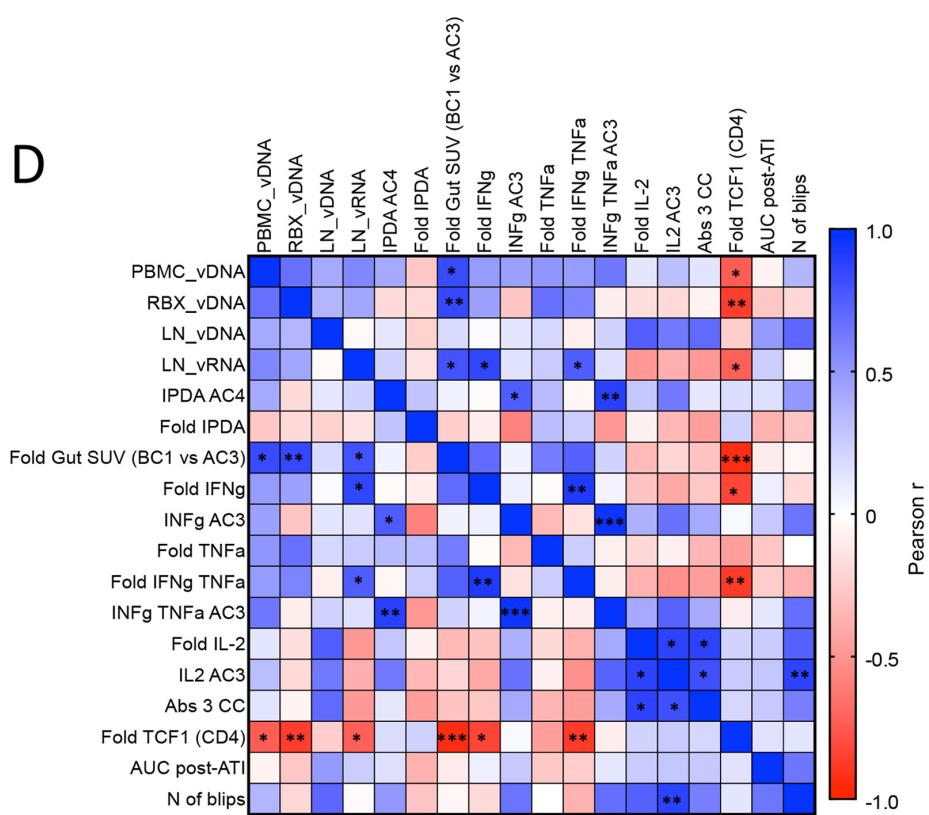
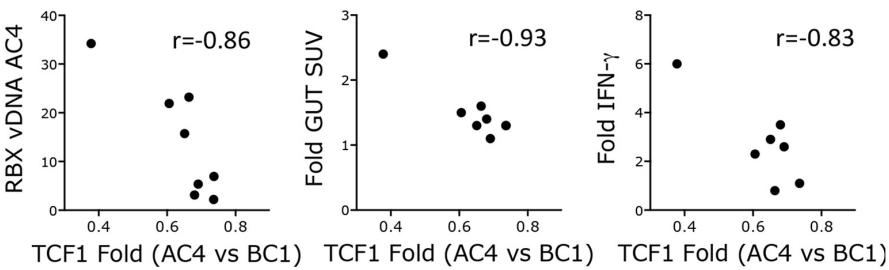

D


E


F


G








H

I

A**B****C****D****E**