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Abstract
We construct invariants of colored links using equivariant bordism
groups of Conner and Floyd. We employ this bordism invariant to
find the first examples of topological vortex knots, the knot struc-
ture of which is protected from decaying via topologically allowed
local surgeries, i.e., by reconnections and strand crossings permit-
ted by the topology of the vortex-supporting medium. Moreover, we
show that, up to the aforementioned local surgeries, each tricolored
link either decays into unlinked simple loops, or can be transformed
into either a left-handed or a right-handed tricolored trefoil knot.
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1 Introduction
The theory of topological defects in ordered media [1–3] provides an intrigu-
ing opportunity to employ the methods of geometry and topology in the study
of concrete physical phenomena, which are often amenable to numerical and
experimental investigation. Accordingly, topological defects have attracted per-
sistent attention from scientists from various backgrounds. On the theoretical
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side, cosmic “Alice” strings in theoretical cosmology [4, 5] provide a potential
answer to the baryogenesis problem, while the zoo of liquid crystals of var-
ious types leads to a delightfully diverse set of geometric theories [6–8]. On
the experimental side, recent successes include the experimental realizations of
synthetic Dirac [9, 10] and isolated monopoles [11], as well as the realization
of a quantum “knot” [12], which is a three-dimensional soliton that is closely
related to the famous Hopf fibration.

Here, we investigate topological vortices in three-dimensional systems, i.e.,
singular defects, the singular locus of which are one dimensional. For simplicity,
we assume that the singular locus is a disjoint union of smoothly embedded
circles, i.e., a link. The local structure of such defects is well understood,
as the local types of topological vortices correspond to conjugacy classes in
π1(X), where X is the order parameter space, which is a topological space
that parameterizes the possible local configurations the physical system may
assume [1, 2]. However, the global defect structure is more subtle. Unknotted
ring defects, and unlinked disjoint union thereof, may be classified by pairs
of π1 and π2 charges, up to the action of π1 [13, 14]. However, most types of
ordered media admit intricate knotted and linked vortex configurations. Even
for one of the simplest cases, that of the nematic liquid crystal (for which
π1(X) = C2), the classification is no simpler than the classification of all links
up to isotopy [15, 16].

In order to explain how to make the global defect structure more amenable
to classification, we take a short historical detour. The idea of knotted and
linked vortex loops is an old one, and may be traced back to Kelvin’s vortex
atom hypothesis [17], which was based on the observation that the linking type
of a vortex core remains unchanged in the dynamical evolution of a dissipa-
tionless ideal fluid. However, this assumption is violated in realistic situations,
as the knotted vortex structure tends to decay via local reconnection events
[18–20]. Taking into account reconnection events in the context of topological
vortices, as well as the crossing events of vortices that correspond to a pair of
commuting elements in π1(X) [21], a framework for investigating topological
vortex configurations up to such core-topology-altering moves, topologically al-
lowed local surgeries, was considered in Ref. [22]. In physical terms, this scheme
models the intermediate-energy evolution of a topological vortex configura-
tion: even though altering the core-topology requires energy [23], the cost is
small if it is performed inside a volume that is much smaller than the size of
the vortex loops [22].

Under the assumption that π2(X) ∼= 0, which is satisfied, for instance,
by several phases of spinor Bose–Einstein condensates [24], as well as biax-
ial nematic liquid crystal [1, 2], the data of a topological vortex configuration
may be faithfully presented by a G-colored link diagram, where G := π1(X)
[22, 25]. The core-topology-conserving evolution corresponds to G-colored Rei-
demeister moves, and the topologically allowed local surgeries admit simple
diagrammatic interpretations as well [22]. For small groups G, this data ad-
mits a particularly simple description in terms of link diagrams in which each
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arc is colored according to a coloring scheme, which is a generalization of the
well-known concept of a tricoloring of a knot [25, 26], in which the three colors
correspond to the three inversions σij in the symmetric group Σ3.

In the previous work [22], Q8-colored links were classified up to topolog-
ically allowed local surgeries: essentially, there exists only three non-trivial
classes. One should contrast this simple classification with the complicated
infinitude of all possible links. However, because the quaternion group Q8

does not support topologically protected knots, all the topologically protected
structures discovered thus far are links.

Here, we show that there is no mathematical obstruction for the existence of
topologically protected knots in general: the symmetric group Σ3 does support
topologically protected knots (Theorem 3.7). Moreover, we prove that, using
topologically allowed local surgeries, any topologically protected tricolored link
may be transformed into either a left-handed or a right-handed tricolored
trefoil knot (Theorem 3.9). Again, the classification is not only finite, but also
remarkably simple.

In order to investigate topological protection of tricolored knots, we in-
troduce in Section 2, which is the technical heart of the article, the bordism
invariant of (G,S)-colored links. Here, G is a finite group and S ⊂ G is a
subset that is closed under inverses and conjugation; a (G,S)-colored link is
such a G-colored link, that the elements of G that appear in the colored link
diagram belong to S. The case of tricolorings corresponds to G = Σ3 and
S = I := {σ12, σ13, σ23}, where σij is the inversion swapping the ith and the
jth element. For each (G,S)-colored link, one may construct a branched cover
M of S3 on which the group G acts. It has the property that the nontrivial
stabilizers of the G-action are cyclic, and generated by an element of S. More-
over, the space M admits a canonical structure of an oriented manifold, and
the bordism invariant of the link is defined to be the class of M in the third G-
equivariant bordism group, with a stabilizer condition given by S. Such groups
have been studied previously by Conner and Floyd [27, 28].

The bordism invariant satisfies many pleasant properties (Theorem 2.8): it
is additive in untangled disjoint unions of links, and takes value 0 on simple
loops. Moreover, it is conserved in topologically allowed local reconnections.
For tricolorings, all topologically allowed local surgeries may be expressed in
terms of reconnections and tricolored Reidemeister moves, and therefore the
bordism invariant may be employed to detect topological protection of a tri-
colored link. Even though we do not apply the bordism invariant in greater
generality here, we believe it to provide a valuable tool for future efforts in the
study of colored links.

Conventions

Throughout the article, all links are tame. Unless otherwise stated, all man-
ifolds are smooth and closed. Cyclic groups are denoted either by Cn or
Zn, depending if they are considered as a group or an Abelian group. The
symmetric group on n letters is denoted by Σn.
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2 Bordism invariants of colored links
Here, we construct bordism invariants for colored links, which we will employ
in Section 3 to study topologically protected tricolorings. The idea behind
the invariant is quite simple: for a G-colored link, we associate an oriented
manifold M with an action of the group G. We prove that the equivariant
oriented bordism class of M is conserved in topologically allowed local recon-
nections. Hence, we obtain an invariant of G-colored links that is conserved in
topologically allowed local reconnections.

Let us recall necessary background [22, 25]. If G is a finite group, then a G-
colored link is a pair (L, ψ), where L ⊂ S3 is a link and the G-coloring ψ is a
group homomorphism π1(S3\L)→ G. Two G-colorings ψ,ψ′ : π1(S3\L)→ G
are considered equivalent if ψ′ can be obtained from ψ by conjugating it with
an element of G. The equivalence classes of G-colorings ψ on a given link L
are in a bijective correspondence with the set of homotopy classes [R3\L, X],
where X is any path-connected space satisfying π1(X) ∼= G and π2(X) ∼= 0
(e.g. the X is the classifying space BG [29]). In physical terms, a G-colored
link captures the homotopical information of an X-valued order parameter
field on the complement of the link L in R3. The data of a G-colored link may
be depicted by a G-colored link diagram (Fig. 1).

Construction 2.1 (Branched covering M(L, ψ) of a colored link). Let (L, ψ)
be a G-colored link, and denote U(L) := S3\L. Let Ũ(L, ψ) be the principal
G-bundle over U(L), with monodromy specified by ψ [29]. Note that Ũ(L, ψ)
depends only on the equivalence class of ψ. Denote by M(L, ψ) the unique
completion of Ũ(L, ψ) to a branched covering of S3 [25, 30]. The spaceM(L, ψ)
has a canonical structure of an oriented smooth manifold, and the group G
acts on it by orientation-preserving diffeomorphisms. An illustration of the
local structure of the branched covering M(L, ψ)→ S3 is provided in Fig. 2.

The stabilizers of the G-action on M(L, ψ) are cyclic.

Lemma 2.2. Let (L, ψ) be a colored link, and let L be component of L. Suppose
that the (free) homotopy class of a meridian1 of L maps to the conjugacy class
of g ∈ G under the G-coloring π1(S3\L) → G. Then the stabilizer groups of

1A small loop that winds about L once.



Springer Nature 2021 LATEX template

Topologically protected tricolorings 5

the points in the preimage of L are conjugate to the cyclic group 〈g〉 generated
by g.

Proof This is evident from Fig. 2. �

Definition 2.3. Let G be a finite group and S ⊂ G be a subset of allowed
stabilizers, which is assumed to be closed under inverses and conjugation with
elements of G. A (G,S)-colored link is a G-colored link (L, ψ) such that the
G-coloring sends meridians of L to elements in S. Given a (G,S)-colored link
(L, ψ), we associate to it the bordism invariant

BG,S(L, ψ) := [M(L, ψ)] ∈ ΩSO
3 (G,FS), (1)

where ΩSO
∗ (G,FS) denotes the group of isomorphism classes of closed oriented

smooth G-manifolds X, such that the stabilizer subgroup of each point of X
belongs to FS := {〈gn〉 ⊂ G|g ∈ S, n ∈ N}2, up to oriented G-equivariant
bordisms, the stabilizers of which are in FS [28, Section 5].

From now on, G denotes a finite group, and S ⊂ G is a subset that is
closed under inverses and conjugation. Let us study the basic properties of the
bordism invariant BG,S .

Definition 2.4. A link L ⊂ S3 is an untangled disjoint union of links L1,L2 ⊂
S3, denoted by

L = L1 ] L2, (2)
if L is a disjoint union of Li ∈ S3, and the links Li can be separated by a smooth
embedded 2-sphere Ω ∈ S3. If L = L1 ]L2, Ω is a separating two-sphere, and
x ∈ Ω, then van Kampen’s theorem [29] provides a canonical identification

π1(S3\L, x) = π1(S3\L1, x) ∗ π1(S3\L2, x), (3)

where ∗ stands for the free product of groups. A colored link (L, ψ) is an
untangled disjoint union of colored links (L1, ψ1) and (L2, ψ2), denoted by

(L, ψ) = (L1, ψ1) ] (L2, ψ2), (4)

if L = L1 ] L2, and, given a separating two-sphere Ω ⊂ S3,

ψ = ψ1 ∗ ψ2 (5)

as group homomorphisms π1(S3\L, x)→ G.

2The role of the exponent n is to verify that the family FS is closed under inclusions, a condition
assumed by Conner and Floyd [28].
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Lemma 2.5. The bordism invariant BG,S(L, ψ) is an additive invariant in
the sense that, if (L, ψ) = (L1, ψ1) ] (L2, ψ2), then

BG,S(L, ψ) = BG,S(L1, ψ1) + BG,S(L2, ψ2) (6)

in ΩSO
3 (G,FS).

Proof If L = L1]L2, then the manifold S3\L is diffeomorphic to the connected sum
(S3\L1)#(S3\L2). Let P be the standard smooth oriented bordism from S3∐S3 to
S3#S3 ∼= S3 (a higher dimensional version of the pair of pants), and P ◦ = P\(I ×
L1
∐
I × L2) the induced oriented bordism from (S3\L1)

∐
(S3\L2) to S3\L. By

van Kampen’s theorem and homotopy invariance, π1(P ◦) ∼= π1(S3\L1)∗π1(S3\L2),
and ψ1 and ψ2 define a group homomorphism ψ̃ : π1(P ◦) → G. Let W be the
completion of the principal G-bundle W ◦ over P ◦, defined by the group homomor-
phism ψ̃, to a branched cover over P . The total space W has a natural structure of
an oriented smooth manifold with boundary. The group G acts on it by orientation
preserving diffeomorphisms, and therefore W an equivariant oriented bordism from
M(L1, ψ1)

∐
M(L2, ψ2) to M(L, ψ). The non-trivial stabilizers of the G-action on

W belong to FS , so W witnesses the desired equality. �

In the light of the above additivity property, in order to establish the trivi-
ality of the bordism invariants of trivial colored links, it is enough to compute
the invariants of simple loops.

Lemma 2.6. If L consists of a single unknotted loop, then

BG,S(L, ψ) = 0 (7)

in ΩSO
3 (G,FS).

Proof By hypothesis, π1(S3\L) ∼= Z. Let g = ψ(1) ∈ G, and let n be the order
of g in G. The n-fold cyclic cover X of S3, branched over L, is diffeomorphic to
S3. Moreover, as the Cn-action on X extends to a Cn-action on D4, X bords as a
Cn-manifold. Moreover, M(L, ψ) ∼= G ×Cn

X bords G ×Cn
D4, and the non-trivial

stabilizers of D4 ×Cn
G belong to FS , proving the desired equality3. �

Next, we establish the conservation of the bordism invariant BG,S(L, ψ) in
topologically allowed local reconnections.

Lemma 2.7. Let (L, ψ) and (L′, ψ′) be (G,S)-colored links which can be
transformed into each other by a single topologically allowed local reconnection
(Fig. 1(c)). Then

BG,S(L, ψ) = BG,S(L′, ψ′) (8)
in ΩSO

3 (G,FS).

3Let H be a subgroup of G, and let X be a H-space. Then G×HX denotes the G space obtained
from the space of pairs (g, x) ∈ G×X with identification (gh, x) ∼ (g, h.x).
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Proof We will construct an equivariant oriented bordism between M(L, ψ) and
M(L′, ψ′).

Let D := D3 ⊂ S3 be a small three-disk inside which the reconnection takes
place, and let C ⊂ D × I be the saddle bordism depicted in Fig. 3. Then

U :=
(
S3\(Int(D) ∪ L)

)
× I ∪ (D × I\C) (9)

is an oriented bordism between the complements of L and L′ in S3. We claim that
the group homomorphism

ψ◦ : π1
((
S3\(Int(D) ∪ L)

)
× I
)

= π1
(
S3\(Int(D) ∪ L)

)
→ G (10)

extends to a group homomorphism
ψ̃ : π1(U)→ G (11)

satisfying
ψ̃|(S3\L)×{0} = ψ (12)

ψ̃|(S3\L′)×{1} = ψ′. (13)

Indeed, the restrictions of ψ and ψ′ to D\L and D\L′, respectively, allow us, by van
Kampen’s theorem, to construct a homomorphism

ψ̄ : π1

((
S3\(Int(D) ∪ L)

)
× I ∪ (D\L)× {0} ∪ (D\L′)× {1}

)
→ G (14)

restricting to the desired homomorphisms at 0 and 1. The complement of the saddle
C in ∂D× I ∪D× {0} ∪D× {1} ' S3 is a deformation retract4 of the complement
of S in D× I ∼= D4, because the inclusion is homeomorphic to the standard inclusion
of ∂D4\∂D2 ↪→ D4\D2. Hence, we get a homotopical identification(

S3\(Int(D) ∪ L)
)
× I ∪ (D\L)× {0} ∪ (D\L′)× {1} ' U . (15)

As a homotopy equivalence induces an isomorphism on fundamental groups, we have
found the desired group homomorphism ψ̃.

Denote by Ũ the G-principal bundle over U associated to the group homomor-
phism ψ̃. It completes to a unique branched covering W of S3× I [25, 30]. The space
W has a canonical structure of an oriented smooth manifold with a boundary: it is
an oriented bordism between M(L, ψ) and M(L′, ψ′). Moreover, the group G acts
on W it by orientation-preserving diffeomorphisms, and this action restricts to the
usual actions on M(L, ψ) and M(L′, ψ′). As the stabilizers of W belong to FS , W
realizes the desired equality in the equivariant bordism group ΩSO

3 (G,FS). �

The results of this section may be concisely summarized as the following
theorem.

Theorem 2.8. Let G be a finite group and S ⊂ G be a subset that is closed
under inverses and conjugation by elements of G. Then the bordism invariant
BG,S satisfies the following properties:
1. conservation in reconnections: if (L, ψ) and (L′, ψ′) are (G,S)-colored

links that can be transformed into each other by a sequence of color re-
specting smooth isotopies5 and topologically allowed local reconnections,
then BG,S(L, ψ) = BG,S(L′, ψ′);

4A deformation retract is a (necessarily injective) continuous map i : X → Y such that there
exists a continuous map r : Y → X satisfying r ◦ i = IdX (such an r is called a retraction), such
that i ◦ r is homotopic to IdY relative to X.

5Diagrammatically, these can be expressed as sequences of colored Reidemeister moves [22, 31].
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2. annihilation of trivial links: if (L, ψ) is a (G,S)-colored link such the link
structure of L is trivial, then BG,S(L, ψ) = 0;

3. additivity: BG,S

(
(L1, ψ1) ] (L2, ψ2)

)
= BG,S(L1, ψ1) + BG,S(L2, ψ2).

3 Classification of topologically protected
tricolorings

Here, we investigate the topological stability of tricolored links. Let Σ3 denote
the group of permutations of three elements, and let I := {σ12, σ13, σ23} ⊂ Σ3

be the set of inversions, where σij denotes the permutation that swaps the ith
and the jth element.

Definition 3.1 (cf. [25]). A tricolored link is a (Σ3, I)-colored link in the sense
of Definition 2.3. The data of a (Σ3, I)-colored link diagram admits a graphical
presentation, as a link diagram in which each arc is colored with either red,
gray, or blue color, as explained in Fig. 4(a) and (b).

Definition 3.2 (cf. [22]). Two tricolored links are topologically equivalent, if
one of them can be transformed into the other using smooth isotopies and
topologically allowed local surgeries (Fig. 4(c) and (d)). A tricolored link is
topologically trivial if it is topologically equivalent to an untangled disjoint
union of simple loops. A tricolored link that is not topologically trivial is
topologically protected. An example of a topologically trivial knot is depicted
in Fig. 5(a).

The existence of topologically protected tricolored links is a non-trivial
question: indeed, in order to establish the topological protection even of a
single example, one needs to be able to detect a topologically protected knot.
For this purpose we employ the bordism invariant developed in Section 2.

Definition 3.3. Let (L, ψ) be a tricolored knot. We define its i-invariant as

i(L, ψ) := [M(L, ψ)] ∈ ΩSO
3 (C3, ∗), (16)

where ∗ is the family of subgroups of C3 consisting of the trivial subgroup {e}.
In other words, we restrict the Σ3-action onM(L, ψ) into a C3-action, and the
resulting action is free because the only non-trivial stabilizers of the original
Σ3-action are the subgroups which are generated by a single inversion σij .

Lemma 3.4. The i-invariant is conserved in topologically allowed local
surgeries.

Proof In fact, all topologically allowed local surgeries of tricolored links can be
expressed as a sequence of smooth isotopies and topologically allowed local recon-
nections (Fig. 4). As i(L, ψ) is the image of the bordism invariant BΣ3,I(L, ψ) under
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the restriction-of-action map ΩSO
3 (Σ3, I) → ΩSO

3 (C3, ∗), the claim follows from the
conservation of the latter in topologically allowed local reconnections (Theorem 2.8).

�

Let us compute the target group of the i-invariant. We start by recording
the following observation.

Lemma 3.5. Let G be a finite group and X a space that has the homotopy
type of a CW complex. Then the map ΩSO

i (X)→ Hi(X; Z) defined by

[M
f−→ X] 7→ f∗([M ]), (17)

where [M ] ∈ Hi(M ; Z) is the fundamental class of the oriented manifold M ,
is an isomorphism in degrees i ≤ 3.

Proof The claim follows immediately from the Atiyah–Hirzebruch spectral sequence
and from the computation of the oriented bordism group of a point. �

Lemma 3.6. We have

ΩSO
3 (C3, ∗) ∼= H3(C3; Z) ∼= Z3 (18)

where Hi(C3,Z) denotes the group homology of C3 with integer coefficients.

Proof Since the C3-action on M(L, ψ) is free, the map M(L, ψ)→M(L, ψ)/C3 is a
principal C3-bundle, and therefore it defines a continuous map M(L, ψ)/C3 → BC3,
unique up to homotopy, where BC3 is the classifying space of the group C3. In this
fashion, one gets an isomorphism ΩSO

3 (C3, ∗) ∼= ΩSO
3 (BC3) [27]. By Lemma 3.5,

ΩSO
3 (BC3) ∼= H3(BC3; Z) = H3(C3; Z). The isomorphism H3(C3; Z) ∼= Z3 is well

known. �

By Theorem 2.8 and Lemma 3.4 the i-invariant is trivial for a tricolored link
that is not topologically protected. Below, we give examples of topologically
protected tricolored knots.

Theorem 3.7. Let (L, ψ) be a tricolored trefoil knot (Fig. 5(b)). Then
i(L, ψ) 6= 0 ∈ Z3.

Proof We have to show that, for a tricolored trefoil (L, ψ), the induced map

f : X := M(L, ψ)/C3 → BC3 (19)

satisfies f∗[X] 6= 0 ∈ H3(BC3; Z) ∼= Z3. As [X] is a generator of H3(X; Z) ∼= Z, this
is equivalent to the surjecitivy of f∗ : H3(X; Z)→ H3(BC3; Z).

By Ref. [31, Chapter 10D], X is diffeomorphic to the lens space L(3, 1), which in
turn is diffeomorphic to S3 by a free action on C3. By construction, π1(f) : π1(X)→
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π1(BC3) is surjective; as both groups are of order 3, π1(f) is an isomorphism. In
conclusion, we have a homotopy fiber sequence of spaces

S3 → X → BC3. (20)

The form of the Serre spectral sequence (see e.g. [32, 33]) of the fiber sequence
(20) is

E2
p,1 = Hp(BC3; Hq(S3; Z))⇒ Hp+q(X; Z), (21)

and the differentials are homomorphisms dr : Er
p,q → Er

p−r,q+r−1. The desired
surjectivity of the homomorphism f∗ is equivalent to the equality

E2
3,0 = E∞3,0. (22)

As the cells Ei
3,0 do not support any non-trivial differentials for dimensional reasons,

the claim follows. �

Remark 3.8. As left-handed and right-handed trefoils are equivalent to each
other under an orientation reversing diffeomorphism, the left-handed and the
right-handed trefoils have opposite i-invariants. We normalize the i-invariant
in such a way that the i-invariant of the right-handed trefoil is by definition
[1] ∈ Z3.

We have shown the existence of two non-equivalent topologically protected
tricolored links. Moreover, any tricolored link that is equivalent to an untangled
disjoint union of tricolored trefoils is either topologically trivial, or equivalent
to a single tricolored trefoil (Fig. 6). Next we prove that every topologically
protected tricoloring is topologically equivalent to a single trefoil.

Theorem 3.9. Let (L, ψ) be a tricolored link. Then (L, ψ) is either topologi-
cally trivial, or topologically equivalent to either a left-handed or a right-handed
tricolored trefoil.

Proof By the trefoil addition rules (Fig. 6), it is enough to show that (L, ψ) is topo-
logically equivalent to an untangled disjoint union of simple loops and tricolored
trefoils. Using the local surgery of Fig. 7(a), we can transform the the link diagram
of (L, ψ) into a form, in which each crossing is immediately followed by another
crossing. Denoting each double crossing by an edge, the link diagram is transformed
into a diagram consisting of a disjoint union of simple loops that connected by edges
(Fig. 7(b) and (c)). We will argue by induction on the number of edges.

Suppose L is an innermost loop in the diagram, i.e., inside L there are no other
loops. Using topologically allowed reconnections, we may assume that L is connected
to at most 3 edges (Fig. 7(d)). Fig. 8 and Fig. 9 illustrate general procedures that
reduce the number edges by performing local surgeries around L in the cases where L
is connected to two and three edges, respectively. Hence, using topologically allowed
local surgeries, (L, ψ) can be transformed into an untangled disjoint union of simple
loops and tricolored trefoils, proving the claim. �
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4 Discussion
In Section 2, we constructed bordism invariant of colored links, which we em-
ployed in Section 3 to classify tricolored links up to topologically allowed local
surgeries. In physical terms, tricolored links model those topological vortex
configurations supported by a medium, the order parameter space X of which
satisfies π1(X) ∼= Σ3 and π2(X) ∼= 0, that do not contain vortices correspond-
ing to cyclic permutations of order 3. Of course, if a given G-colored link
diagram takes values in a subgroup H ⊂ G, then the same is true for any
link diagram obtained from it by G-colored Reidemeister moves and topologi-
cally allowed local reconnections. Therefore, for physical realization, it would
be enough to find a system for which Σ3 ⊂ π1(X) and π2(X) ∼= 0.

Are there any concrete physical systems for which π1(X) contains Σ3 as a
subgroup? Unfortunately, this cannot be the case for spinor Bose–Einstein con-
densates or liquid crystals, because Σ3 does not appear as a discrete subgroup
of SU(2) [34]. Rather, it is the corresponding double cover Dic3, the dicyclic
group of order 12, which appears as a subgroup of SU(2). However, one can
still leverage tricolored links to study the stability of vortex configurations: if
there exists a (surjective) group homomorphism ψ : G→ Σ3, and a G-colored
link that maps under ψ to a topologically protected tricolored link, then the
original link is topologically protected as well. However, it is not clear how
successful this strategy would be for Dic3: the nontrivial tricoloring of a trefoil
does not lift to a Dic3-coloring because the group homomorphism B3 → Σ3

that sends a braid on three strands to the induced permutation on three letters
does not factor through the degree-two homomorphism Dic3 → Σ3.

On a purely theoretical level, it is not difficult to come up with reason-
able models, the order parameter space X of which satisfies π1(X) ∼= Σ3 and
π2(X) ∼= 0. For example, as Σ3 is a discrete subgroup of the simply connected
Lie group SU(6), and as, by Mostow–Palais theorem [35, 36], there exists a
spontaneous-symmetry-breaking process that breaks SU(6) down to Σ3, there
exists a Yang–Mills theory such that the order parameter space of the vacuum
structures is homeomorphic to SU(6)/Σ3. It might be possible to realize such
systems in laboratory setting as artificial gauge field theories [37].

The results of this article naturally lead to further questions. Consider for
example the Zn-valued invariants for Fox n-colorings [25], obtained from the
bordism invariant of Section 2 similarly to how the i-invariant was obtained in
Section 3. Does this invariant provide a complete classification of n-colorings
in the sense that, for each non-trivial value [m] ∈ Zm of the invariant, there
exists only one Fox n-coloring up to topological equivalence? For an odd prime
p > 2, the torus knot T2,p admits a Fox p-coloring [38]. Moreover, since the
branched double cover of T2,p is equivalent to the lens space L(p, 1) [31], one
shows as in the proof of Theorem 3.7 that the invariant of the p-coloring is
a generator of Zp. Hence, by additivity, there exist a Fox p-colored links that
have every possible value of the invariant.
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(a) (b)

(c)

g1

g2

g3

g

g

h1 h2

gh1 = h2g

g

g

g g

Figure 1 G-colored link diagrams and topologically allowed reconnections. (a) In a G-
colored link diagram, each arc is equipped with an arrow and an element g ∈ G. The content
of this extra data is to present a group homomorphism ψ : π1(S3\L, s0) → G where L
denotes the link and the basepoint s0 is taken to lie above the plane of the paper. Namely,
if γ is the loop that starts at s0, travels down to the back of the arrow, follows the arrow
under the arc, and returns back to s0, then ψ([γ]) = g. This rule defines a well-defined group
homomorphism ψ : π1(S3\L, s0) → G if and only if the Wirtinger relation (b) is satisfied
at each crossing of the diagram. The direction of the arrows is completely arbitrary: the
direction of any arrow may be reversed, as long as the corresponding element of G is replaced
by its inverse. (c) A topologically allowed local reconnection is a reconnection of the vortex
cores that respects the G-coloring.
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V

V ′

〈g〉

〈hgh−1〉

g

e

g

g2

h

hg

hg2

Figure 2 Local structure of the branched covering M(L, ψ)→ S3 (Construction 2.1). On
the left, we have a small closed neighborhood V of a point on the link L (blue). The homotopy
class of the loop γ winding about the core of L once (the basepoint of γ is denoted by a red
dot) is sent to g ∈ G under the G-coloring ψ. On the right, we have the preimage V ′ of V
under the branched covering M(L, ψ)→ S3. The preimages of the points in L are denoted
by blue. On the complement of these points, the branched covering is a principal G-bundle.
The preimages of the basepoint are denoted by red dots; there exist one such point for every
element of G. Moreover the unique lift of the loop γ, starting at the point corresponding to
h ∈ G, ends at the point corresponding to hg ∈ G. The group G acts on M(L, ψ)|U ; on the
red dots, this action is identified with the action of G on itself by left multiplication. The
stabilizer group of the blue points on each component is always conjugate to the cyclic group
〈g〉 generated by g. The stabilizer group is given for the two components depicted in the
figure. The components of M(L, ψ)|U are in bijective correspondence with the cosets G/〈g〉.
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(a)

(b)

D3 D3

x1 x2

x3 x4

x1 x2

x3 x4

{x1} × I

{x3} × I

{x2} × I

{x4} × I

⊂

D3 × I

Figure 3 The saddle bordism (proof of Lemma 2.7). (b) The complement of the saddle
(blue) in D3 × I provides a bordism between the complements of the two configurations
of arcs (blue) inside D3 (a). Both arc configurations have the same endpoints xi on the
boundary sphere ∂D3, and the saddle is constant on the boundary, i.e., S ∩ (∂D3 × I) =
{x1, x2, x3, x4} × I.
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(a) (b)

(c) (d)

σ12 σ13 σ23

Figure 4 Graphical presentation of tricolored links (Definition 3.1). (a) A tricolored link
diagram admits a more graphical presentation than that described in Fig. 1: instead of
labeling each arc with an arrow and a group element, it suffices to color each arc with either
red, green, or blue, which correspond to the inversions σ12, σ13, and σ23, respectively. (b) The
Wirtinger relation admits a graphical presentation: at each crossing, either all arcs are of the
same color, or all of them are of a different color. (c) Topologically allowed local surgeries for
tricolored links take place between strands of the same color. The surgery distinguished by a
star is a saddle reconnection. (d) Up to link isotopy, all topologically allowed local surgeries
can be reduced to a saddle reconnection. Above, this is demonstrated for the strand crossing.
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(a)

(b)

i = −[1] ∈ Z3 i = [1] ∈ Z3

Figure 5 Examples of topologically trivial and topologically protected tricolored knots.
(a) An example of a topologically trivial tricolored knot, and an example of its decay. (b)
Two examples of topologically protected tricolored knots (Theorem 3.7), and the values of
their i-invariants (with the normalization convention of Remark 3.8). Every topologically
protected link can be transformed into one of these structures using smooth isotopies and
topologically allowed local surgeries (Theorem 3.9).

(a)

(b)

Figure 6 Addition rules for tricolored trefoils. (a) The combination of a left-handed and a
right-handed tricolored trefoil can be transformed, using topologically allowed local surgeries,
into two unlinked simple loops. (b) The combination of two left-handed tricolored trefoils can
be transformed, using topologically allowed local surgeries, into a right-handed tricolored
trefoil. Similarly, the combination of two right-handed tricolored trefoils can be transformed
into a left-handed trefoil.
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(a)

(b) (c)

(d)

Figure 7 Transforming a tricolored link into a special form (proof of Theorem 3.9). (a)
By performing topologically allowed local surgeries, each crossing of the link diagram can be
transformed into a form where an overcrossing is immediately followed by an undercrossing.
A tricolored trefoil is split off from the link in the process. (b) To simplify the graphical
presentation, we depict each of the obtained double crossings by a yellow edge connecting the
arcs. (c) Using the notation described in (b), the surgeries depicted in (a) may be employed
to transform a tricolored link diagram into a diagram consisting of non-overlapping simple
loops, which are connected by edges. Here we have omitted the coloring of the arcs for
simplicity. (d) An innermost loop (a loop inside which there are no other loops) that is
connected to more than three edges may be broken up to several loops, which are connected
to at most three edges.
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(∗)(†)

(†)

or

(a)

(b)

(c)

Figure 8 Eliminating an innermost loop connected to two edges (proof of Theorem 3.9).
(a),(b) Up to permutation of colors and isometries of the plane of the diagram, there are
only two possible structures around an innermost loop that is connected to two edges. (c) In
both cases, the number of edges may be reduced by at least one, with the cost of potentially
splitting off a simple loop (†) or a tricolored trefoil knot (∗).

(∗)

(†)
at most two edges

(a)

(b)

Figure 9 Eliminating an innermost loop connected to three edges (proof of Theorem 3.9).
(a) Up to permutation of colors and isometries of the plane of the diagram, there is only one
relevant structure to consider. The mark (∗) implies a process in which two trefoils are split
off. (b) After performing the surgery that is depicted in (a), we may reduce to the two-edge
case (†), which was considered in Fig. 8. Hence, the number of edges may be reduced by at
least one, with the cost of potentially splitting off simple loops and tricolored trefoils.
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