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Abstract. In this paper, we first derive a time-dependent Maxwell’s equation model for simulat-
ing wave propagation in anisotropic dispersive media and hyperbolic metamaterials. The modeling
equations are obtained by using the Drude-Lorentz model to approximate both the permittivity and
permeability. Then we develop a time-domain finite element method and prove its discrete stability
and optimal error estimate. This mathematical model and the proposed numerical method can be
used to design effective hyperbolic superlenses by the dielectric-metal multilayer metamaterials in
different frequency ranges. Extensive two-dimensional (2D) and 3D numerical results are presented
to demonstrate the good performance of many 2D and 3D hyperbolic superlenses in different fre-
quency ranges. This is the first finite element paper on solving the hyperbolic metamaterials in a
time domain.
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1. Introduction. Hyperbolic metamaterials (HMMs) [14] are a class of uniax-
ial anisotropic electromagnetic materials which satisfy a hyperbolic (or indefinite)
dispersion relation reflected by their indefinite permittivity and/or permeability ten-
sors. Hence, they are also called indefinite metamaterials [38]. For example, for a
three-dimensional (3D) relative permittivity e, and/or permeability tensors .,

€ 0 0 14| 0 0
(1.1) =10 € O], =0 wpr 0],
0 0 € 0 0 py
it holds that
(1.2) € -€L <0 and/or gy -ps <O0.

Here the subscripts || and L denote the components parallel and perpendicular to
the optical axis which is oriented along the zi-direction. In the 2D case, ¢, and pu,
become as
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while (1.2) still holds true. HMMs were initially used to fabricate lenses to achieve
superresolution imaging [36, 41, 18, 35, 34, 20]. After more than ten years of de-
velopment and exploration, researchers have extended the applications of HMMs to
nanolithography [37], collimation, splitting, enhancing the spontaneous-emission, de-
signing ultrasmall optical cavities, etc. More details can be found in recent review
papers [14], where the authors list some schemes to design HMMs and their interesting
applications.

Although there exist some hyperbolic materials in nature, such as graphite [38] in
the wavelength range 240-280 nm, magnesium diboride (M gB5) [38] in the frequency
range higher than 627 THz, hexagonal boron nitride in midinfrared [6], etc., it is still
difficult to use natural hyperbolic materials to fabricate functional devices that meet
the requirements and achieve hyperbolic dispersion effects in specific frequency ranges.
In order to create HMMs, we must make the permittivity (and/or permeability) neg-
ative in one or both directions. Currently, there are two artificial structures that
exhibit this extreme anisotropy: (i) multilayers [41, 18, 35, 34] formed by alternately
stacking subwavelength-thick dielectric and metal films and (ii) nanowire arrays [36]
formed by embedding nanoscale metal wires in dielectric. Since there are few mag-
netic materials in nature, and it is much more difficult to control permeability than
permittivity, most of the research on HMMs is based on adjusting a material’s per-
mittivity to make artificial materials exhibit a hyperbolic dispersion property. There
are very few studies on HMMSs obtained by adjusting the permeability [19].

Due to the relatively high cost of manufacturing metamaterials and physical ex-
periments, numerical simulation plays an important role in the design of metamaterials
and its applications. In many applications, we are concerned about the multifrequency
properties of metamaterials, and hence time-domain algorithms are needed for sim-
ulation of HMMs. Two of the most popular time-domain numerical methods for
electromagnetic materials are the time-domain finite element (FETD) method and
time-domain finite difference (FDTD) method. Over the years, many excellent finite
element methods have been proposed for solving Maxwell’s equations in various elec-
tromagnetic media (e.g., the papers [1, 4, 8, 12, 17, 23, 7, 40], review paper [16], and
monographs [29, 11, 22]). Due to our interest and expertise in finite element methods
[21, 24] and their advantage in handling problems with complex geometries, we will
consider the FETD method here.

Up until now, most of the research on HMMs has focused on how to design
HMMs and use the commercial software COMSOL Multiphysics to study their single-
frequency properties [20, 37], but not on their multifrequency properties. There are
very few FETD methods developed to simulate multifrequency wave propagation in
HMMs. According to [32], we know that at high frequencies (part of the visible light
band and ultraviolet band), the Drude model has a poor approximation effect on the
physical properties of metals. The popular dispersion medium models used for metals
interacting with high-frequency waves are mostly the Drude model and/or Lorentz
model, and they are widely used in the study of electromagnetic metamaterials [22].
Moreover, most of these time-domain models are based on isotropic metamaterials
[22] and on a single Drude or Lorentz model. In 2013, [9] used COMSOL Mul-
tiphysics 3.5 and a Drude-Lorentz (D-L) model [32] to achieve 100 nm resolution
by using an incident wave with 405 nm wavelength. There are a few FDTD meth-
ods for approximating the permittivity by using mixed dispersion models (e.g., [44]).
Finally, we would like to mention that though there are so many investigations of
HMMs in the physics and engineering communities, there exist very limited math-
ematical analyses of HMMs and robust analyses of numerical methods for solving
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HMM models. In 2021, Lin [26] presented an adaptive boundary element method for
a transmission problem with 2D HMMs in the frequency domain. In 2022, Ciarlet and
Kachanovska [10] established a well-posedness and regularity result for a 2D HMM in
the frequency domain. In the time-dependent case we are unaware of any numerical
analysis for HMMs. Therefore, it is interesting to develop and analyze a time-domain
finite element method to solve a time domain HMMs model, which is one of the main
contributions of this paper.
Below are some Sobolev spaces we will use in this paper (cf. [29]):

H(curl; Q) ={v e (L*(Q))*: V x v € (L*(Q))*},
H(curl;Q) ={v e (H*(Q))*:V x v € (H*(Q))*},
Ho(curl; ) ={v e H(curl; Q) :n x v=0 on 90},
where H*(Q) = W*2(Q) for any a > 0, and Q is assumed to be a simply connected

Lipschitz domain in R3, with boundary 92 and unit normal vectors n. The norms of
H(curl; Q) and H(curl; Q) are given by

1
2
ol s = (02 @ys + IV X vlEzz )

[SIE

VIl e (curts) = (HUH%H”(Q)P +[IV x UH%H"(Q))?’)

We will also use the following norms: ||v|lo = [|v||(z2(Q))5, [V|la,curt = V] 5o (curtz),
and |v|ecuri = ||V X v]jo. Note that when a = 0, we have HY(Q) = L*(Q) and
H*(curl; Q) = H(curl; Q).

The rest of the paper is organized as follows. In section 2, we first derive the
governing equations for simulating the wave propagation in a general anisotropic dis-
persive medium by using the D-L dispersion model. Then we establish an energy
identity and the stability. In section 3, we propose a fully discrete finite element
scheme for solving the system of our modelling equations. In section 4, we prove the
discrete stability of our scheme. Section 5 is devoted to the optimal error analysis
of our scheme. In section 6, we develop a uniaxial anisotropic perfectly match layer
(APML) model to simulate the wave propagation in HMMs. In section 7, we pres-
ent extensive numerical results to justify the optimal error analysis for our proposed
scheme in the 3D case and simulate many interesting wave propagation phenomena
that happened in the ideal HMM. We also present simulations of imaging in mul-
tiple groups of dielectric-metal multilayers lenses and demonstrate designs of some
hyperbolic lenses in different wavelength ranges. We conclude the paper in section 8.

2. The system of modeling equations and its analysis. To derive the gov-
erning equations of the D-L model used for the simulation of hyperlens, we start from
the standard time-harmonic Maxwell’s equations (assuming e/“! dependence):

jwB=-Vx E, juD=V xH,
where E, ﬁ, IA), and E are the magnetic flux density, magnetic field, electric flux

density, and electric field, respectively. The constitutive relations between D and B
and FE and H in general linear dispersive media are

(2.1) D=¢pe,(wE, B= uour(oj)ﬁ,

where €9 and pg are the vacuum permittivity and permeability, 7 =+/—1, w denotes
the wave frequency, and tensors €,, u, denote the relative permittivity and perme-
ability of the underlying media.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/17/24 to 75.175.135.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FINITE ELEMENT METHOD FOR HYPERBOLIC METAMATERIALS 1423

In this paper, we assume that €, and p, are diagonal matrices represented as
e, =diag(ey, ey, €,) and p, = diag(py, by, ). For the D-L model, we have

Q L
(22) 8T:€00+Z«queq(w)’ ur:Hoo+Zngml(w)7
q=0 =0

where €4, and p., are positive definite diagonal matrices and denote the relative
permeability and permittivity at infinite frequency, and Z;Q:O FyXeq(w) and
Zleo ;X (w) denote electric and magnetic susceptibilities, respectively. Further-
more, we denote

(23) fq = diag(fq,w7 fq,yv fq,z)a g, = diag(gl,xagl,yagl,z)a fq,i > 07 gi,i Z Oa 1= x,Y,z,
(24) Xeq = diag(Xeq,zv Xeq7y7 Xeq,z)a Xmil = diag(Xml,w7 thya thz)a

Wp,i (w) _ szn,i
W2, TGw)2Tgaleg 0 XmbilW) = G G e T 2
and wWeq,i, Leqi, Wmiyis I'mis >0 for all i =z, y, 2.

Let us introduce

where X¢q,i(w) =

with wy ;,wWm >0

~ —

(2.5) Py=Xeq(WE, M;=xy(w)H.
Applying the inverse Fourier transform (cf. [22]) to (2.5), we obtain

2.6 Py +Toyd Py +w? P, =w?E, ¢=0,1,2,...,Q,
q q q eq— 4 p

2.7 M, +Toi0, M, + w2 M, =w? H, 1=0,1,2,...,L.
ml m

Introducing auxiliary variables J, =0, P, and K; =9, M, and using (2.6)—(2.7), we
obtain the time-domain D-L model given as

Q
(2.8a) soeooatE—kstoqu:V x H,
q=0

(2.8b) O Jg+TeqJg=w,E—w. Py q=0,1,....Q,
(2.8¢) OPy=J,, q=0,1,...,Q,

L
(2.8d) pottooOH + 10 Y g, K=~V x E,

=0
(2.8e) WK+ Ty K =w? H—w? M, 1=0,1,...,L,
(2.8f) oM, =K, 1=0,1,...,L.

To complete the model, we assume that (2.8a)—(2.8f) are subject to the perfect electric
conductor (PEC) boundary condition,

(2.9) nx E=0 on 0f,

and the following initial conditions:

E(z;0) = E°(2), Jo(x;0)=Jy(x), Py(x;0)=Py(x),

(2.10) H(m;0)2H0($)> Kl(m;O)ZK?(x)a Ml(ac;O):M?(w),

where E°(x), Jg(a:), Pg(:l:), H’(x), K?(x), M}(x) are some given functions in €.
We would like to remark that introducing auxiliary variables J, and K; above
is a common method adopted for modeling dispersive media. This technique started
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in the early 1990s (early references can be found in the book by Taflove and Hagness
[39]) and has been used in analysis and simulation of various dispersive media in both
FDTD and finite element methods (e.g., [3, 5, 25, 28, 31] and references therein).

Denote U = (L%(Q))3,V = H(curl;Q), Vo= Hoy(curl;€2). We can obtain the fol-
lowing weak formulation of (2.8a)—(2.8f): Find E,J,, P, € H'(0,T;Vo)NL*(0,T;V )
and H,K;,M,; € H*(0,T;U) N L*(0,T;U) such that

Q
(2.11a) c0(eccO B, ) + 20 Y (£ d %) = (H,V x 9p),
q=0
(211b> (AqatJT 1/}q) + (Ag]‘-‘ﬂ]'](bwq) = (-qu’ d"q) - (AqwzqPQ’¢q)7
(2.11¢) (O P4 ,) = (T4 1b,),
L
(2.11d) NO(“’ooatH’Qo)+/~LOZ(QIK17§0):_(V x E, ),
=0
(211e) (0K 1, 0) + (TouKi 1) = (Wi Hopp) — (Wi M, o)),
(2.11f) (0: M1, 0,) = (K1, ¢,)

hold true for any v € V), @bq,{bq eV, p,po,9,€U,¢=0,1,...,Q,1=0,1,..., L.
We would like to remark that (2.11b) is obtained by multiplying (2.8b) with matrix
Ag:=w;?f,, which is positive definite.

Below we will use the weighted L? norm notation ||u|4 = +/(u, Au) for any
diagonal matrix A = diag(as,as,a3) with a; > 0,7 =1,2,3. We will also denote the
following constant coefficient matrices

—2
C _wequ fq? Al _w gl7 CYl _wmlwm g,

THEOREM 2.1. For any t € (0,T], the solution (E,Jq, Py, H,K;, M) to (2.11)
satisfies the energy identity

(2.12)

Q L
Soll BIIZ. +20 > (ITal%, +IPllZ, ) +rol HIE _+1o> <||Kli§l+||M1||2@l>]
a=0 1=0

Q

L
+ 260 ) Il a, 200 D IKL7 5, =0
q=0 =0

and the stability

el B2 +aoz(n DI, +I1Pa(0)2,)

L
+pol H)Z, . + 10 (IIKz(t)Hi;l + IIMz(t)Ilél)
(2.13) =0

< 2| (0 ||EW+EOZ(HJ A, + 1P 01,

ol O +40 > (KO3, + IMOI,)
=0
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Proof. Letting ¢ = H and 9 = E in (2.11d) and (2.11a), respectively, then
adding the results together, we have

L Q

(2.14)  po(poc O H H) + 10> (9, K1, H) +c0(ex0 B, E) + 50 Y (£, 4. E) =0.
=0 q=0

Taking ¥, = J g, ¥, =Cy Py, ¢, = A K, ¢, =C M, in (2.11b), (2.11c), (2.11e),
and (2.11f), respectively, we have
( (AgOid g, I q) + (AqTeqd g, I ) = (quv Jq) — (Aq‘-"ngqv Jq),
( (8th,CqPq) = (qucqpq)’
(2.15(}) (6tKl7AlKl) + (I‘lehAlKl) = (H7glKl) - (w%qthAlKl)a
( (0:M,C;M ) = (K,;,C1 M)).

Adding (2.15a) and (2.15c) to (2.15b) and (2.15d), respectively, and using the
facts Cy = w2 Ay, C)=w?, A;, we obtain

1d
(2.162) 53 [all%, + 1PE, |+ 10 0, = (B.£,T0),
1d
(2.16b) 53 (IS, + M | + K, 5 = (H g KD).

Substituting (2.16) into (2.14), we complete the proof of (2.12).
Dropping the last two nonnegative terms on the left-hand side of (2.12), then
integrating the result from 0 to ¢, we immediately prove (2.13). O

3. A fully discrete finite element scheme. To develop a finite element
scheme, we partition the physical domain §2 by a family of regular tetrahedral mesh T},
with maximal mesh size h. Considering the low regularity of the solution to Maxwell’s
equations in complex media and its simplicity in implementation, we just choose the
lowest-order Raviart—-Thomas—-Nédélec (RTN) mixed finite element spaces [33, 30, 29]:

Uy, = {uy, € (L*(2))*: up|k is a piecewise constant, K € Ty, },
Vi={vn € H(curl;Q): vplk =a+bxxz, KTy},
V%z{vhth:vh xn=0, on 89},

where the constant vectors a,b € R?.

For the time interval [0,7], we divide it into N uniform subintervals by points
ty = k7, where 7 = %, and k=0,1,...,N. For time-indexed solutions u* = (-, k7),
we introduce the following central difference operator and averaging operator:

1
—uk_i sl uk—i—l +uk
u 2 =
b
T 2

Now we propose the followirllg leapfrog type slcheme: Given proper initial ap-
proximations Ej € V1, Pgh,Jgh e Vy, HE,M?h,K?h € Uy, find EZ+1 e vy,

k+3 k+32 k+3
Jq,J?,P(l;;LLl eV, Hh+2,Mlh+2,Kf,jl € Uy, such that
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(3.1a) ENCS R +eoZ Fod b2 ) = (HYT 2V xahy) =0,

q=0
k+3 > ~
(31b) (57'th 7¢qh) ( 11[} ) 0)
—k+1
(3.1c) (Ag40- J’;il,%h) (Aq Fquqh ) = (FL BV ) + (Cy Pffflﬂb n) =0,
k+1

(3.1d) (6> th ’¢lh)+(rlelh a¢lh)_(w$th+2v¢lh)+(wmlM a‘Plh) 0,

(3.1e) (0 M @) — (K5 @) =0,
L

(3.1f) Ho(RocO- H Y ) + 110 Y (91K 35 ) + (VX By ) =0
1=0

hold true for any d)h € V?u ‘-thSthaquh € Uh7 ,l/)qh7’izz}qh € Vh7 q = 0517"'7Q7
1=0,1,...,L.

Using the Nédélec interpolation operator r, [29], H*(curl;2) — V', the L? pro-
jection operator wy, : (L?(2))® — Uy, Taylor expansion, and the modeling equations
(2.8a)—(2.8f), we choose the following initial approximations for scheme (3.1):

(3.20) Ej=ryE°, PY =r,P), J2 =7, [JO (iEO—wngg—I‘qug)},

2
1 T _
(3.2b) H; = H02<uoolzgsz+uo uooVXE())]
=0
1 T
(3.2¢) M7, =w), [M? + 51{?} K9 =w, K.

The approximations (3.2a)—(3.2c) guarantee the following initial error estimates:

(3.30) 185~ 1Bl + [P, — PYo + K, — KSllo < Che,
1 1 1 1 1 1
(3.3b) |5, — Tillo+ I HF — HE o+ | M, — Mo < C(h* +72).

4. Stability analysis for our scheme. To prove the discrete stability and the
convergence for our scheme, we need a projection operator I, [42]: For any Py, € V4,
Igp Pyp €V, is the solution of

(OgnPyn,vn) = (CyPyn,vp) Yor € Vi, ¢=0,1,...,Q.

Furthermore, we denote C), = \/% for the wave speed in vacuum, and the maximum
matrix norm ||A| e =max;<;<s|a;| for any diagonal matrix A= diag(ai,az,as).
In this section, we will prove the following discrete stability for our scheme.

THEOREM 4.1. Denote constant Cip, > 0 in the standard inverse estimate
(4.1) IV x Epllo < Cinoh Y| Epllo VE, € V.
If the time step T satisfies

h 1 1
7<min{ ————, min , ,
(4.2) {QCUCW 0s0=@ (2”‘*’6q|°° 2\/Q+1||wpf§|oo>

1 1
min , T ,
0st=t \ 2lwmilloe” 2 TF T |wmgy oo
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ntl
then the solution ( Z,JZ;2 Pq,wHZJ”,MM_2 K7},) of scheme (3.1) satisfies the
following stability: For allm>1,

n n+2
soll BRI2, mZ(H I3, +1P5l2,)

L
nt3 n n—+
ol Hy S 40 Y (IKGIE, +1M577 2
(4.3) =0

Q
<3[€0|E +5OZ(HJ h”A +[|1P h”C)

L
ol I+ oy (1K %, +11M5, ||C)]
=0

Proof. To make our proof easy to follow, We d1v1de it into three major parts.

(I) Taking ), = 27’Eh 2 and ¢, = 27Hh n (3.1a) and (3.1f), respectively,
and adding the results together, we have

k+3 k+3
eo(Il B2 — 1ERIZ.) + mo(IH, > 15— I1H, 25

[(v < EY H') (v x EZ“,H:%)}
(4.4)
L — k41 < k+1
—ZTMOZ(QZK;C;TI’H;] )—27'502(qu E
=0

k+2)

- el —
Taking v, = 2507thP];2_2 and v, = QTsOJI;;l in (3.1b) and (3.1c), respec-
tlvely, addmg the results together, and dropping the nonnegative term 27eo(IeqJ ];,?7

A th ) we obtain

(4.5)
k:+ k+1
ol Tgn 2%, = 190 2 11%,) + o (1P HIE, — [1PgillZ,)

k k k+3
< Tso(Ek“,f (I + o))+ 720 [(Cod * Ply) = (Cod i PR

Similarly, taking ¢, = 2/107'1:11?;?5 and @, = QMOTCN’ZM;C,:A in (3.1d) and
(3.1e), respectively, and adding the results together, we obtain
(4.6)
k3 k+1
po(I B 1, = IEGIE,) + po(IMyy, 1%, = 1My, 2 11E,)
] k+3 k+4
< ruo(Hy g (K + K3 + o [(omfh*%Mm ?) = (CKf, M)

(II) Now, summing up (4.5) over ¢ = 0,1,...,Q, and (4.6) over { = 0,1,...,L,
respectively, then adding the results together to (4.4), and summing up the result
from k=0 to k=n — 1, we obtain
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n n+3 3 n
co(IBR 2, — 1B +soZ(HJ T, = 1A, + 1P, — 1PoI2,)

n+
+uo(1HG A IE — IHGIE ) +qu(||K 1%, = I8 %,
+
MG, - MG,

L
1 ~ ol ~ 1
(VX Bj, ) + 70 Y (K, G ) = (K, CiM)
=0
1 n+
+(9, K, HE) — (9, K}, H), 2)}

Q
1 1 1
—7(V % EZ,HZ+2) +Teo E |:(Jq2hach2h) - (JZFTQ’CqPZh)
q=0

T B — (£, 2, B
+(fq qh h) (fq qh> h) .

Now we just need to estimate each term in (4.7). Using the inequality (a,b) <

6||al|3 + 751/b]|2, the inverse estimate (4.1), and the CFL condition (4.2), we have

(4.8a)
TH2 Y x B = (VigH| "2 70020V x ET)
n+3 (TCvCinv)2 n+1
< d1p0l[Hy, 2||3+W50HE 15 < ovpoll HY, 2% + 166 IERIZ...
(4.8b)
2
n+ n+ i 2 T 2 nt1
(K}, CiM,, %) < 6| M, 2||"l+@||K nllE, <02y, 2|, 16(5 1K 1%,
(4.8¢)
n "+2 "+%
(T, CP n) < 83l Pl + HJ &, <05l P2, + 165 1T > 1%,
(4.84)

2
”+2 mn 3 - ”+2 mn n+3 n
T(.fq']qh E )_ (qupl‘]qh a.qupE )<54HJ ||A + 54” h||.2qu%
1 1

<5 Jn-i-2 + En <6 Jn+2 + E™|2 ,
all I, 60110, IEL1I < 64l I, 16(Q+1)64” nllz..
(4.8¢)
H KT, H ) < 65| KD 1% + — | H T2
(g Ky, H), *) = (glw lhagl wnH, " ?) < | lh”Al || ||glw2
1 n+1 ]- n+i
<&KL |5 + ———— H, °|; <] K, z H, * 2
< 05| KI5, + 16(Z + 1705 I 15 < 05| KT 11%, + 16(L+1)55H e

Note that the above estimates hold true for n =0 too.

(III) Substituting all estimates (4.8) into (4.7), then combining like terms, and

taking 01 =03 =03 =0, =05 = i we can reduce (4.7) to

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/17/24 to 75.175.135.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FINITE ELEMENT METHOD FOR HYPERBOLIC METAMATERIALS 1429

n n+2 3 n n+2
BRI 203 (173218, + S0Pl ) + ol 3212,
q=0

L
n nJF
o3 (nthu S na, C)

312
< 3e0|| B, |€m+6oz<3ll-]thlA + 5 HP Wz, ) + 3wl Hp |l
q=0

+MOZ<3||K 1%+ 1A,

which concludes the proof of (4.3), since all the left-hand side coefficients of (4.9)
are bounded below by 1, and all the right-hand side coefficients of (4.9) are bounded

(4.9)

above by 3. 0
Remark 4.2. We would like to remark that when L = —1 (the common nonmag-
netic case with p. = I3 :=diag(1,1,1)), the CFL condition (4.2) reduces to
h 1 1
(410) Tgmin{m, min (2 y T )}
vCiny 020=Q \ 2weqlloo” 2/ QFT 1wy £71oc

and the stability (4.3) reduces to

n+2 n n+2
<oll B +EOZ (M5 1, + 1P, ) + moll 22
(4.11)

<3 [sonE 2. +soZ (17502, + 1212, ) +uo||H2|#x] .

Another special case is Q = L = —1 with e, = p., = I3, which corresponds to
the free space case. In this case, the CFL condition (4.2) reduces to

h

. < —
(4.12) T< 5C.Co

and the stability (4.3) reduces to
n 1
(4.13) ol B2 + poll Hy 25 <3 [0 BRIZ. + moll 1]

5. The optimal error estimate. To make the error analysis easy to follow, we
denote the solution errors by the corresponding curly letters,

= Bj — E(ta), A5 = H T Hstyy), S0 =000 = T,
=P = Pa(st), K= Ky~ K ta), A = M7= Mt ),
and some intermediate errors given as follows:
Er=rpnE—E, Jg=rpJq—Jq Pa=rnPs— Py,
Hi=w,H-H, Kjj=w,K,—H;, M;j=w,M,— M,
En=rnE—Ey, Jgp=rrdq—JIqn, Pegp=rnPq— Py,
Hp=wrH - Hy, Ki, =wpK; — Hyp, Myp=wp,M;— Mjy,.

To establish the following optimal error estimate for scheme (3.1), we denote the
time intervals I = [tk, tp4+1] and Ij = [ty 1, by 2]

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/17/24 to 75.175.135.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1430 FUHAO LIU, WEI YANG, AND JICHUN LI

THEOREM 5.1. Suppose that the solution of (2.8) satisfies the following regularity
assumptions:

E,J, P,cL>0,T; H*(curl;Q)), H,K;, M,;c L>*(0,T;(L*())?),
WE,0,J 0, P, € L*(0,T; H*(curl;Q)),
V X 3ttE,8ttE,V X 6‘ttH,8ttH,0tth,8tth,5‘ttKl,8ttMl (S Lz(O,T, (L2( ))3)

with % < a<1. If the time step 7 <1 satisfies (4.2) and the scheme (3.1) adopts the
initial approximations (3.2a)—(3.2¢), then we have the optimal error estimate:

L
+1 +1
woll A B+ 0 S IG, + 1 12,)
= 0

n+2 ’r «
+eoll €12 +€oZ\|f 1%, +12al2,) < C(h* +72)2,

(5.1)

where the constant C > 0 is independent of T and h.

Proof. Integrating (2.8a), (2.8c), and (2.8¢) from ¢, to tx41, and (2.8b), (2.8d),
,'ph wqh

T T

and (2.8f) from tk+1 to tk+3 then multiplying the respective results by

b
e Yan e P , integrating over €2, and subtracting the corresponding results from
T T T T

those in (3.1), we obtain

(5.2a)

50(5005T£];L+§71/)h) - (H k+2 VX py) +5OZ fq ijrzﬂ/’h)

q=0

1
H,wah)

k+1 kol
=co(ex0-E; *,v)) — (whH AR =
Iy,

Q
1
+5OZ< <Tth+2_/ Jq>7¢h)a
q=0 T /I

(5.2)
k+1 —k+1 k+1 k+ 1
(61, 2 o) + (ToudCyp, 2 i) — (Wi My, 2 00) + (Wi My, 2 y)

k4l 1 k+l
- <le (thl ?— ;/ Kl> 780”1,) + (6T’Cl[+27solh)
Iy,
1 1
(‘*’En <wth+é/ H>7(plh>+( ; (thk+2/ Ml)a‘)olh>7
T Ik T Ik

(5.2¢)
L

po(too0- 1 @) + (VX EXT ) + 10 > (gChT 1)
=0

1
= pio(Boo6-HT ) + (V X BF - =

T Illc

1
+u02<gl thkJrl** Kl),‘Ph),
I/

=0

VXE,Lph>
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(5.2d)

—k+1

(A Feqjqiz 7¢qh) (A 6 ijrl '(pqh) - (fq£§+1?¢qh) +( k+17¢qh)

(A 5 jk+1’¢qh) + <Aqreq <rh']f;+1 o %\// Jq) ,Tth)
1 1
_ <fq <rhEk+1 — T/; E) ,wqh> + (C’q (th’;“ — T/; Pq> ,wqh> ;
(5.2¢)

1 ~
( k+25,¢'qh) ( k+2a,¢'qh) ( k+2a¢qh) (""th+2 — */I le"/"qh>7

T

(5.2f)

- - - 1 -
(57Mf}jlv¢lh) - (Kf}j_lvgolh) = (5"’M;€I+17<Plh) - <thg€+l - ;/p Kla%h) .
k

=k+1 —k+1 Skt
Taking ¢, = 2T’Hh s W =27E, 7 by, = 260TT gy Yo = 2607 Py,

e = 2,uOTA lClh 2 @ = 2uoTClM”, in (5.2), then adding the results together,
and summing up from k=0 to k=n—1, we obtain

(5.3)

n+i 1
(€712, — I€R1IZ.) +802 1T > W, = 1T 3, + IPGIE, = IPlE,)

L
TH’ i n n+fl
+ oMy, 2ln . — M)+ ro Z(H’Czh||2 — KD, H2 + My, 2 H2 HM”LHQZ)
1=0
1 o L 0 ad il el o 1.
ST(HE,VXE)) +Tp0Y {(gz’czmﬂﬁ) (@K H, *)+ My, 2, CK}) - (Mlzh’cllclh):|
1=0

NCRARR Y +moz[<f Tl F )~ (14T 0 E0) + (Pl CaT ) = (P CuT )|

q=0

n—1 L1 gl - 1 1 ket
+27502(so@57 t2 8 e 272<wth+2 H,VxE, 2)

k=0 k=0 T Iy

n—1 i1 =kl n—1 1 kg1
+ 2700 > (Moo 0-HTTH H,y )+2¢Z(wahEk+1 V x E,H,, )

k=0 k=0 T I/

Q n—1 1 1
+2re0> 0 <fq(th§+2 21 Jq),812+2>

q=0 k=0 T I,

Qnt —k41 1 k+1 ka1 —k+1
+2re0y > [(Aqrﬁq <thq — > > + (A TH T an )

q=0 k=0 T
_ (rhEk+1 _% , E f J§Z1> (Cq(’f‘thJrl // > *k+1

I k

k+1 —k+1 k 1 g4l
(6P 2 CePay 2 — (th 7 ;/I Jq,chq;{Z)]
k

L n—1 1 1 ket
+27',LLOZ g (wp, K7 — -, K;),H,y,
1=0 I
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. =k+s 1 ~ ——k+1 ki o~ kil
+2100 > > || Tt | wn K, 2 _7/ K|, AK, 2| + 06K, 2, AK,, ?)
TJI
=0 k=0 k

1 kpl 1
- (whH’H'é i H,gﬂCf:_2> + (wfnl <th’“+2 — 7/ Ml> AK) +2>
T JIy, T JIy

. JUp— 1
+(5TM§1+1701M;€J1) - (thfH - ;/ Kz,Csz}:H>
1,

5 L 10 Q 14 21 Q 28 L
=FErry + ZZETTH + Erre + ZZETTW + Z Err; + Z ZErn,q + Z ZEM’M.

1=21=0 =7 q=0 =11 i=15q=0 1=221=0

Now we need to estimate each term on the right-hand side of (5.3). The first ten
terms can be estimated in the same way as (4.8), and the rest can be estimated by
using the inequality (a,b) < &||al|? + 25 |b]|?, the standard (L?(£2))* projection error,
the Nédélec interpolation error estimate [29, Theorem 5.41], and [22, Lemma 3.19)].
Due to page limits, we skip the details. Then by the discrete Gronwall inequality, we
have

n+ n n+
coll €l +6oZ||J *|, +1PglE,) + rollHy, 1

wZ ICEIZ, + 1M 1),
(5.4)
C ol M7 17, +=oll €1 +MOZ(||M 12, + <k,
=0

Q
20 ) (1T 515, + 1P, )
q=0

Finally, by the triangle inequality, the Nédélec interpolation, and L? projection
error estimates, we conclude the proof. ]

+C(h% +74).

6. Coupling with the anisotropic perfectly matched layer. To effectively
simulate the wave propagation in an unbounded domain, we truncate the unbounded
domain to a bounded one and use a perfectly matched layer (PML) to surround the
truncated domain. Here we adopt an APML [13], which in the frequency domain is
given as

(6.1) jwAD=V x H, juAB=-V x E,

where the anisotropic medium tensor A is

4

jweg’

-1 -1 .
A =diag(s; sysz,szs 82,855y8, ), Si=FK;+ 1=x,Y,2

Y

Moreover, the coefficients x; and damping functions o; are chosen as

’ii:]-'f'(fima:c _]-) <C§> y 0i = Omax (?) 5

with m =4, and 0,42 = —%, where d; denotes the distance from the point

x in the PML region to the interface in the 4 direction, d denotes the PML thickness,
and Ry = 1078 denotes the reflectivity at the truncated boundary interface.
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Denote A, = diag(sz,sy,s.), Ay = diag(sy,s.,s,), and A, = diag(s., 54,s,). We
can rewrite A as A = A, 'A,A.. Introducing two new variables

(6.2) D(w)=A;'A.D(w), B(w)=A;'A.B(w),
then applying the Fourier inverse transform to (6.1), (6.2), and
jwB = jwpops H + o Yy 9K, jwD = jupesE +e0 ) fod,
=0 q=0

we obtain the time-domain APML governing equations given as

20D +¢,' QD =V x H, KC20;B+¢,'QsB=-V x E,
’Clatb + galglb = K?,atD + EEIQ?)D, ’ClatB—F&alQlB:K?,atB—Fc?alQ3Ba
Q L
coediB+c0y ) fod g =D, HotocOH + 1o Y 9K =B
q=0 =0
8th:Jq, atMl:Kh
O0Jq+TeqJy=w.E —w. Py, 0K +TpK =wl H—w) M,

where we denote matrices ICi = diag(kq, Ky, £2), Ko = diag(ky, k2, ks ), Ks = diag(k
Ka,ky), Q1 = diag(og,0y,0.), Qo = diag(oy,0.,0,), Q3 = diag(c.,05,0y), q
0,1,...,Q,and [ =0,1,...,L.

We propose the following leapfrog scheme to solve the above APML model w1th

z

a PEC boundary condltlon Given proper initial approximations Eh, D,L, Dh, H ,

k+1 ktl Rt o k+3 pktl
Bh"Bﬁ,’th’ th, lh andth’ﬁ dE D Dh V}N th27th EV]—“
k+32

HE: By BRYE KhL MR Uy such that
k+1 _ —k+3 Erl
(6.32)  (K20.D), % apy) +5'(Q2Dy, T py) = (H, 2,V x4py,),
k+31 = —k+i k+3
(63b) (K30, D2 b)) + et (931) ) = (1616, Dy, % 4by,)

+851(91Dh ' 712"%;)’

k+2 k+2

(630) ( ?"/)qh) ( 7¢qh)
—k+1
(63d) (5 Jk}—flﬂq/)qh) (rquqh 7¢qh) ( 127E]f€z+13¢qh) - (wngSitla’lpqh)v
IR R k ki o5
(630)  colent By F 4hy) +€OZ (Fa i * 901 = (6: D32 by,
q=0
k41 _ —k+1

(6.3f) (K267 Bh +Pn) — €0 1(Q2Bh, ) =—(V x EkH,‘Ph),

- _ - B+l

(6.3g) (’CS‘LBZJr »‘Ph)‘*‘Eol(QSB’ZHa‘Ph) (K167 Bh @)
—k+1

+661(Q1Bh 7¢h>7

(6.30)  po(pasd-HET @p) + 0 Y (@K @1) = (0. B, @),),
=0
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. k+3 —k+3 k+3 k+3
(6.31)  (6-Kyp, 1) + (Do Ky, 27‘Plh):(w72th o) — (w72nlMlh ®, ),
(6.3)) (6 My, @un) = (K, @un).
which hold true for any /l»bh?{#ha {bh € V%? {bqhquh € Vha Phs ‘;oha cAthv (thv <AAaqh € Uh7
¢=0,1,...,Q,and [=0,1,..., L.

Last, we will carry out many interesting 2D simulations. The corresponding 2D
APML model can be obtained by letting s, = 1 in the matrix A. More specifically,
the 2D APML governing equations are given as follows:

V x H=Ky0:D+¢;'QsD, r,0:B+¢e5'0,B=-V xE,
0,B= KyOy B + salayB,

Q L
K10:D+e,' Q1D =epeathE+20 Y fodg, OB =popecOH + o > 91K,
q=0 =0
8tP :Jq, 8t]\4l:I(l7

O1Jg+Teqd g =wiE — w2 Py, 0K+ Doy Ky = wi H — wiy M,

where we denote matrices IC; = diag(kq, ky), Ko = diag(ky, ky), Q1 = diag(oy,oy),
and Qo =diag(oy,05).

To solve the 2D APML model, we choose the following 2D RTN mixed finite
element spaces on triangular elements:

Up, = {vn € L*(Q) : vp|. is a piecewise constant,e € Tj,},
Vi, ={vn € H(curl; Q) : vple =span{\;VA; — \;VA; },0,5=1,2,3,e € T}, },
V0={v, €Vy:v, xn=0, on 90},

where \;, 1 =1,2,3, are the barycentric coordinates for the triangle e.
The correspondmg leapfrog finite element scheme for the 2D APML is as follows

qh € Vh, Hh vBhvBﬁvMZhv
K, € Uy, find J5 2 PY e vy, HY T2 B‘”z Bk+2 KEFU MR e Uy, BXY DI €
VY, such that the equatlons

Given proper initial approximations Eh, D s J ;h,

—ktl k+2)

(6.42)  (K26,DI"2 4p,) + 51 (Q.D)
(6.4b) (5, PN ) = (52 ),

—k+1
(64C) (JTJZ}TI’ ’lpqh) (I‘(’(I'Iqh 7¢qh) ( IQ)EZ+13 ¢qh) - (wiqP];Ierlquh)v

7¢h) (v X’l/]}“

)

k+1 ~ k k ~
(6.4d) so<eoo67E,f2,¢h>+eoz<quq:2,¢h>:<K16 D} 4,)
q=0
1 =ktd -
+501(Q1Dh+ a¢h)a
- —k+1
(6.4e) (nméTB,’f“,(ph) +€61(Uth yon)=—(V x E£+17g0h),
~ _ —k+1 . ~ -
(6.4f) (kyd- By, on) + et (Uth ,@n) = (6B, @),

(64g) (IU‘OO(S H}l§+17§0h +HOZ lKk+17¢h):(6TBz+la¢h)>
=0
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k+3% T=k+3 k+3 k+3
(6.4h) (5Tth o) + (Lot Ky 2 oin) = (wranh *, ) — (anlMlh %, @im),
(641) (6‘/‘Mlk}1+1a§5lh) = (Kl’fh+1a<)5lh)7

hold true for any ¢h7’{bh € Vhov /(bqh?{pqh € Vha and @hv@hv@lhy(plha@h S Uha q =
0,1,...,Q,and [=0,1,..., L.

7. Numerical results. Here we present some numerical results to first justify
the convergence rate of our scheme (3.1), then use (6.3) and (6.4) to simulate the su-
perresolution imaging achieved by 2D and 3D metal-dielectric multilayers hyperlenses.

7.1. Convergence test in the 3D case. This example is developed to test
the convergence rate of our FETD scheme in the 3D case with Q = [0,1]3, which
is first divided into uniform cubes with length h, and then each cube is divided
into six tetrahedra. We choose physical parameters L = 1, Q = 2, g = po = 1,
€0 = diag(1,2,1), wf) = m2diag(1,1,2), p., = diag(3,3,2), w?, = r3diag(1,2,1), and
the other parameters.

q Leq wzq fq

0 rdiag(2,2,3) 0 diag(2,3,4)
1 wdiag(3,3,4) m2diag(1,1,1) diag(2,1,0)
2 0 m2diag(0,0, 1) diag(1,0,1)
l T wfnl g1

0 rdiag(2, 3, 2) 0 diag(1,0,0)
1 wdiag(2,4, 2) m2diag(0,1,0) diag(0,1,0)

We choose an exact solution (E,J 4, Py, H, K;, M) given as follows:
[ Acos(mx)sin(ry) sin(rz)
E =exp(—mt) | Bsin(mx) cos(my) sin(nz) | ,
| C'sin(mz) sin(7y) cos(nz)
[(C — B)sin(rx) cos(my) cos(mz)
H =exp(—mnt) | (A— C)cos(mzx)sin(mry) cos(nz) | ,
| (B — A) cos(mx) cos(my) sin(mz)
J():’iTE, POZ—E,Jl :7'1'.E7 P1 Z—E, J2 :—’ﬂ'E, PQZE,
KOZ’]TH, MOZ—H,Kl :’R'H, M1:—H.

This exact solution requires us to add source terms F,, and F. to (2.8a) and
(2.8b) as follows:
Q
F,=V x eroeoo@tEfeozf
q=0
(B + C) cos(mx) sin(my) sin(nz)
= —mexp(—mt) | (C + A)sin(rz) cos(my) sin(rz) | ,
)

qu

(
(A + B)sin(mx) sin(my) cos(mz)
L
Foy=-VxE - pop 0:H — o y_g, K, =7H.
1=0
In our simulation, we choose A = 1,B = 2,C = 3 and fix the time step size

7 = h/20 with varying mesh size h. The obtained L? errors at time 7 = 1 are given
in Table 1, which clearly shows the theoretical O(h) convergence rate.
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TaBLE 1
The obtained L? errors at T =1 with 7 = h/20 in the 3D case.

h! |En — Elo Rates |Ep — E|cur Rates |H}p — Hlo Rates
4 0.670553 3.7653 1.44747
8 0.32537 1.04327 2.23092 0.755126 0.714852 1.01782
16 0.161506 1.01049 1.09442 1.02747 0.355077 1.00951
32 0.0802587 1.00886 0.559287 0.968509 0.177003 1.00436
64 0.0400912 1.00137 0.224768 1.31515 0.0884003 1.00165

T
01 02 03
T

02 04

0

-01 0

(@

02
-04 02
-04  -02

>

b > 5 5 2 2 31
b > 2 3 T 1 2

.3 -02

-03
i

-03

(a) vacuum (b) HMMs (c¢) vacuum (d) HMMs

Fi1G. 1. (a) and (b) are the contour plots of the magnetic field at t = 30007 when the incident
source wave is Hg; (c) and (d) are the contour plots of the magnetic field at t = 40007 when the
incident source wave is H, .

7.2. Single frequency waves propagating in 2D ideal HMMs. In this
subsection, we simulate how single-frequency waves propagate in 2D ideal HMMs.
First, we take an incident source wave H; = sin(wt)d(x.) imposed at point . =
(1.5A,1.5X), where A = 300 nm and §(z.) denotes the Dirac delta function. The
physical domain is [0,3)] x [0,3)], and our simulation uses h = \/60 and 7= 10"18s.
We use the modeling physical parameters Q = 0,L = —1, f, = diag(0,1), € = I2,
wep =0, T =0, wp =3wly, poo = 1,w =2rf with f = C,/A ~ 999.3 THz. The
relative permittivity &, = €4 fwfzfowf, = diag(1, —8). The simulated magnetic fields
in vacuum and HMMs are shown in Figure 1(a) and (b), respectively.

Then we keep the same physical parameters as those used for Figure 1(a) and
(b) except w, = Twl,. The relative permittivity e, = €0, — w_gfouufj = diag(1, —48).
The incident source wave Hy ¢ = sin(wt)G(x), where G(z) = exp(—‘m;[,imfjlz) with W =
0.1}, is imposed on two line segments: one from point (1.1X,2.9X) to point (1.4X,2.9));
and another one from point (1.6, 2.9) to point (1.9X,2.9)). The simulated results in
both vacuum and HMMs are shown in Figure 1(c) and (d), respectively, which clearly
show that HMMs can break the optical diffraction limit. Our results are similar to
those obtained in [10, Figure 2] and [14, Figure 4].

7.3. Simulation of waves propagation in 2D hyperbolic superlenses. In
[27, 20], the authors showed that when the electromagnetic wave with wavelength
365 nm passes through the alumina-silver multilayer film (€4, = —2.4012 — 0.2488j,
€A1,05 = 3.217), the wave yields a hyperbolic dispersion, which shows that the device
can realize superresolution imaging. Their conclusion is drawn through simulations
via COMSOL Multiphysics under the assumption that the incident wave is single-
frequency.

In our numerical experimental designs of this section, we always use the combi-
nation of one-layer dielectric film and one-layer metal film as the basic unit for the
multilayer structure and denote t; = t4 + t,,,, where t4 and t,, are the thickness of
one-layer dielectric and metal films. In our experimental designs, we fix o :=t4/t;.
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Let ¢ and ¢, denote the tangential and normal permittivity of the multilayers,
respectively, and then the effective permittivity tensor is given by [41]:
1
1= ;
afeq+ (1 —a)/em

e, =diag(e|,e1,€)), g=aca+ (1 —a)em,

where £4 and &, are the relative permittivity of dielectric and metal, respectively.

According to [15], the bigger conductivity o and wave frequency w, the smaller
the skin depth §¢ of a nonmagnetic medium. Hence we would like to ensure that the
metal has a negative permittivity and an electrical conductivity as low as possible.

It is known [2] that at high-frequency (or short wavelength) such as at the visible
light band, the relative permittivity of aluminum oxide AlsOs is almost unchanged
and around 3.2. We will use the D-L model to simulate metals.

Substituting the D-L model parameters of silver (Ag) and aluminum (Al) given
in [32, Table 2] into [32],

Q 2
fowzz; qup
+>

7.1 er(W)=€oo + — - - - y
71) @) G + oy T 2= G, & ()2 + joT'eg

q=1

we obtain Figure 2.

In this subsection, we use both single-frequency wave Hy ¢ and multifrequency
wave Ha, ¢ = Geos(t)G(z) as incident waves, and the waist W of Gaussian beamer
is always equal to half the length of the segment of the wave source. The cosine
modulated Gaussian pulse Gos(t) is expressed as

_ 2
Gcos(t) = COS(w(t — tO)) exp (471_(tt0)>

with effective wavelength band [(+ +253357) L (3 — w2xaasz) "1 (ie., the effective

—(AN? N _(AN?
; v wCrA v wCr A _ In(0.8
frequency band is [§ %, S — %]), where C, = ﬁ\/_ni(ﬂ)’ the
fundamental angular frequency w = 27 f, the center frequency fy= C;\ , and

C, C,
m206n,'Q:09%/< ).

A=A A+AN

7.3.1. Aluminum oxide and silver. First, we consider aluminum oxide (t; =
12.5 nm) and silver (¢,, = 12.5 nm) for the lens given in Figure 3(a), with inner radius
120 nm and thickness 450 nm. The center distance of the incident waves is 148.7 nm.
The physical area is [0, 1365](nm) x [0,840](nm), and the PML thickness is 12h, where

Ag. e=cr-ej Al e=¢ ¢

value

100

200 w0 o 100 20
AMnm) Anm)

FI1G. 2. The relationship between wave wavelength and the relative permittivity of silver (Ag)
and aluminum (Al).
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(a) t; is independent of direc- (b) Same as , but the inci-
tion. dent wave p051t10ns are differ-
ent.

FiG. 3. Sketches of two hyperbolic superlenses: the red parts represent metal, the green parts
are dielectric, the black segments are the incident wave’s positions, the blue parts are the background
medium (vacuum), and the gray areas denote the PML. (Color images are available online.)

(a) 16.5fs (HMMs) (b) 16.5fs (vacuum) (c) 19.5fs (HMMs) (d) 19.5fs (vacuum)

F1G. 4. Distribution of the magnetic field intensity |H.|. (1) and (2). The incident wave is
H, ¢ with wavelength A = 380 nm. (3) and (4). The incident wave is Hg, g with A = 380 nm and
AX=12nm. The time step T is 1.5-10718s, and 1 femtosecond (fs)=1-10"15s

g g

(a) 4.9fs (HMMs) (b) 4.9fs (vacuum) (c) 3.85fs (HMMs) (d) 3.85fs (vacuum)

Fi1G. 5. Contour plot of the magnetic field intensity |H.|. (1) and (2). The incident wave is
H, ¢ with wavelength A =150 nm. (3) and (4). The incident wave is Hg, g with A = 150 nm and
AX=10nm. The time step T is 0.7-10~18s.

the mesh size h = 6 Snm. The total numbers of mesh points, elements, and edges are
94407, 187344, and 281750, respectively.

Taking the incident waves as Hs ¢ and Hg, g, respectively, we obtain the mag-
netic field intensity |H,| shown in Figure 4(a) and (c). The corresponding results in
vacuum are shown in Figure 4(b) and (d). Figure 4(a) and (c) are similar to [20,
Figure 2] and show clearly that HMMs achieve superresolution imaging.

7.3.2. Aluminum oxide and aluminum. In this example, we consider using
aluminum oxide (t4 = 5 nm) and aluminum (¢,, = 5 nm) for the lens shown in
Figure 3(a), with inner radius 35 nm and thickness 200 nm. The center distance of
the incident wave is chosen as 45.4 nm. The physical domain is [0,570] x [0, 355](nm),
and the PML thickness is 12h. The total numbers of mesh points, elements, and edges
are 102106, 202709, and 304814, respectively.

For this example, we take both H; s and Hg, g for the incident waves. The
obtained magnetic field intensities |H,| are shown in Figure 5(a) and (c), and the cor-
responding results in vacuum are shown in Figure 5(b) and (d). Same superresolution
imaging is achieved by the HMMs as shown by Figure 5(a) and (c).
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(a) HMMs (b) Vacuum (¢) HMMs (d) Vacuum

F1G. 6. Distribution of the magnetic field intensity |H.(3.85fs)|. (1) and (2). The incident
wave is Hy ¢ with A = 150 nm. (3) and (4). The incident wave is Hg, g with X = 150 nm and
AX=10nm. The time step 7 =0.7-10"18s.

(a) t =5.6fs (HMMs) (b) t =5.6fs (vacuum) (c) t =4.9fs (HMMs) (d) t =4.9fs (vacuum)

F1G. 7. Distribution of the magnetic field intensity |H.|. (a) and (b). The incident wave is
H, g with A=180nm. (c) and (d). The incident wave is Hg, g with A =180nm and AX=10nm.
The time step 7=0.7-10"18s.

This last example is developed to verify the photolithography of the lenses given
in Figure 5(b) and is composed of aluminum oxide (t; = 5 nm) and aluminum
(tm, = 5 nm). The inner radius and thickness of the lenses are 24 nm and 200 nm,
respectively, the center distance of the incident wave is 271.2 nm, the distance of
transmitted waves at the output interface is about 28.6 nm, and the physical domain
and mesh data are the same as those used for Figure 5(c). The magnetic field intensi-
ties |H,| obtained with incident waves Hy ¢ and Hg, ¢ are shown in Figure 6(a) and
(¢), respectively. The corresponding results in vacuum are shown in Figure 6(b) and
(d). Figure 6(a) and (c) are similar to [37, Figure 2(a)], and they show that this lens
can be used in nanolithography.

7.3.3. Titanium (V) oxide and aluminum. This example uses titanium (V)
oxide (Ti30s, &, = 5.85, tg = 5nm) and aluminum (¢,, =5 nm) for the lenses shown
in Figure 3(a). The inner radius and thickness of the lenses are 32 nm and 200 nm,
respectively, and the center distance of the incident wave is 40.4 nm. The physical
domain for the simulation is [0, 564] x [0, 352](nm), and the PML thickness is 12h with
h= % nm. The total numbers of mesh points, elements, and edges are 100404, 199310
and 299713, respectively.

The obtained magnetic field intensity |H.| for the incident waves Hy ¢ and He, ¢
are shown in Figure 7(a) and (c), respectively. The corresponding results in vacuum
are shown in Figure 7(b) and (d).

7.4. Multifrequency wave propagation in 3D hyperbolic superlenses.
Now we simulate the wave propagation of multifrequency waves in a 3D cylindrical
multilayer lens. We take Figure 3(a) as the xy plane cross section of the 3D cylindrical
lens with inner radius R;,ner = 45 nm and lens thickness 8t;, where t; = 15 nm. This
lens is made from aluminum oxide ¢4 = 7.5 nm and aluminum (¢, = 7.5 nm). The
physical domain is [0,234] nm x [0,195] nm x [0,150] nm, and the PML thickness is
10h with h = % nm. The total numbers of mesh points, tetrahedra, faces, and edges
are 691005, 4223404, 8493242, and 4960842, respectively.
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{015

Axis: Z

Axis: Y o 05 1 15 2 25 3 35 Axis: Y 05 1 15 2 25 s 38
Axis: X 10 Axis: X 10°

(a) Hyperbolic lens 2(a) (b) Vacuum

F1G. 8. Distribution of magnetic field intensity |H.| obtained with incident wave Hg, ¢ with
frequency A =150 nm and AX =7 nm passing through the lens given in Figure 3 at time T = 60007,
where time step T =0.6-10"18s,

TABLE 2
The multilayer lens’ size, operating frequency, and resolution. The units of tm,, t;, resolution
Sr, and X\ are in nanometers (nm).

Lens tm tdq Resolution S, A /Sy Figures
Al203/Ag 12.5 12.5 148.7 [367,394] [2.47,2.65] Figure 4(c)
Al203 /Al 5 5 45.4 [140,162] [3.08,3.57] Figure 5(c)
Ti3O0s5 /Al 5 5 40.4 [170,192] [4.20,4.75] Figure 7(c)
Ti305 — Al
(170,192)

Al2 O3 — Al Al,O3/A

(140°162) l (367, Yo

o}% } ——| f —|

10 100 200 300 400 )\ (nm)

Fic. 9. Distribution of the operating frequencies of all experimental lenses in the ultraviolet band.

The multifrequency source wave is taken as

r—x.)2 + (2 — 2.)? —ye)?
%) =Gty (~E2L ) (=)

with widths Wy = 19.2 nm and W5 = 45 nm. The source wave is imposed on quadrilat-
erals SP; and SP,, where SP; is formed by nodes (134.5,155.1,52.5), (150.2,143,52.5),
(150.2,143,97.5), (134.5,155.1,97.5) with center (142.3,149.1,75), and SP» is formed
by nodes (204.5,155.1,52.5), (188.8,143,52.5), (188.8,143,97.5), (204.5,155.1,97.5)
with center (196.7,149.1,75). The obtained contour plots of magnetic field intensity
|H,| are presented in Figure 8.

Finally, let us summarize our experimental data for all the above lenses in Table 2.
Usually, A/S, is used to measure the superresolution effect of a lens. We say that
the lens can achieve superresolution imaging when A\/S, > 2. It is known that the
larger A/S, is, the better superresolution performance the lens has. Table 2 shows
that the performance of a multilayer lens made of titanium (V) oxide and aluminum
(Ti305/Al) is the best among our experiments, but its resolution is not the best.

Comparing the operating wavelengths of lenses, we see that the working fre-
quencies of different lenses are distributed in different bands of ultraviolet light (see
Figure 9). For example, the operating frequencies of lenses AlyO3/Al and Ti305/Al
are in vacuum ultraviolet (VUV: 100-200 nm), and the operating frequency of lenses
AlsO3/Ag is in near ultraviolet (NUV: 300-400 nm).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/17/24 to 75.175.135.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FINITE ELEMENT METHOD FOR HYPERBOLIC METAMATERIALS 1441

8. Conclusion. In this paper, we derive the time-dependent Maxwell’s equa-
tions in anisotropic dispersive media by using the Drude—Lorentz model. This model
is composed of two PDEs supplemented with 2(Q+ L+2) ODEs. We prove an energy
identity and stability for this model and develop a leapfrog type finite element scheme
to solve this model. Discrete stability and optimal convergence O(72 + h) are estab-
lished for our scheme by using the lowest-order edge element. Extensive numerical
results are presented to verify the optimal convergence result and demonstrate many
interesting superresolution imaging phenomena achieved by HMMs. In the future, we
plan to study some efficient adaptive finite element methods with a proper posteriori
error estimator to resolve the sharp transition in hyperbolic media.
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