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A B S T R A C T   

High entropy alloys (HEAs) with a body centered cubic (bcc) crystal structure have emerged as potential high- 
performance structural materials due to their high strength at room and elevated temperatures. In this study, a 
computational approach, based on the revised Peierls-Nabarro model and using the inputs solely calculated from 
the 昀椀rst principles density functional theory, has been developed to predict the yield strength of bcc HEAs. 
Examining its accuracy and reliability, the developed computational approach was applied to four different types 
of bcc HEAs. The yield strength was predicted to be 1034 MPa for MoNbTaW, 1489 MPa for MoNbTaV, 1356 
MPa for AlCoCrFeNi, and 1740 MPa for AlCoCrFeNiZr0.3 alloy, respectively. These computational predictions are 
found to agree well with available experimental data. Moreover, the developed computational approach accu-
rately quanti昀椀es the changes in the yield strength from MoNbTaW to MoNbTaV with a change of constituent W to 
V, and from AlCoCrFeNi to AlCoCrFeNiZr0.3 with addition of 6 at% Zr. Therefore, this 昀椀rst-principles based 
computational approach provides a way for expedite optimization on the mechanical properties of bcc HEAs 
across vast composition space.   

1. Introduction 

Owning to excellent mechanical properties, high entropy alloys 
(HEA) with a body-centered cubic (bcc) crystal structure have emerged 
as potential high-performance structural materials [1]. In a typical HEA, 
multiple principal metallic constituents in equal or nearly equal molar 
concentrations are processed to form homogeneously mixed solid solu-
tion with a simple crystal structure [2–4]. Bcc HEAs are most often found 
to exhibit relatively high intrinsic yield strengths over 1000 MPa [3,4] 
and retain reasonably good mechanical strength even at high tempera-
ture [4,5]. For example, MoNbTaW HEA with a single bcc solid solution 
phase could possess a yield strength of 1058 MPa at room temperature 
and maintain a yield strength of 552 MPa at 800 çC [6,7]. It was further 
reported that the yield strengths of MoNbTaWTi and MoNbTaWTiV 
HEAs could reach as high as 586 and 659 MPa at 1200 çC, respectively 
[8]. 

Moreover, it has been demonstrated that tuning chemical composi-
tion is an effective approach to tailor the mechanical properties of bcc 
HEAs. Adding Zr to AlCoCrFeNi alloy was found to increase the yield 
strength of AlCoCrFeNiZrx from 1330 MPa to 1987 MPa with the change 
of x from 0 to 0.5 [9]. In addition, gradually adding W into AlCrFeNiCu 

alloy was reported to change both the yield strength (from 1010.5 MPa 
(0 at% W), 998.4 MPa (1 at% W), to 1005.3 MPa (3 at% W)) and the 
maximum strength (from 1253.9 MPa (0 at% W), 1274.6 MPa (1 at% 
W), to 1287.9 MPa(3 at% W)) [10]. Furthermore, Huang et al. observed 
that, accompanying with decreasing content of Ta in TiZrHfTax (x de-
creases from 1.0 to 0.5), the activated deformation mechanism in these 
bcc HEAs could change from deformation twinning, 
deformation-induced martensite, to martensite transformation twinning 
sequentially [11]. As a result, TiZrHfTa0.6 and TiZrHfTa0.5 alloys were 
found to have the best combination of strength and ductility [11]. 

So far, the composition design of HEAs is primarily carried out in an 
empirical trial-and-error way. A rational design of HEAs demands the 
development of computational approaches which can accurately predict 
the mechanical properties of bcc HEAs as a function of their chemical 
composition. Some progresses have been made on this forefront. For 
example, Ji et al. employed the 昀椀rst-principles density functional theory 
(DFT) method to calculate the elastic constants of a series of bcc 
Ti65−xTa25Nb10Zrx HEAs [12]. Their computational results showed a 
systematic decrease in the bulk modulus with the addition of Zr content 
in the HEAs. Moreover, Vazquez et al. have developed an ef昀椀cient ma-
chine learning model to predict the elastic properties of bcc 
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NbMoTaWV-based HEAs over a large composition space [13]. Their 
model was trained using a database consisting of the DFT calculated 
elastic properties of the binary and ternary alloys and was able to predict 
the mechanical properties of HEAs from meaningful atomic features. 
Despite of these progresses, it is clearly noticeable that the reliable 
computational approach to predict the yield strength of bcc HEAs are 
rather scarce in the literature. To date, the only computational approach 
was developed by Maresca et al. considering solute-strengthening of 
edge dislocations in bcc HEAs and demonstrated to predict the yield 
strengths of MoNbTaW and MoNbTaVW alloys within 15% error range 
as compared to experimental values [14]. 

In a previous study [15], we have developed a computational 
approach to predict the yield strength of some select HEAs with a 
face-centered cubic lattice structure based on the revised 
Peierls-Naborro model [16] and using the DFT calculated generalized 
stacking fault energy (GSFE) curves. As compared to the experimentally 
measured values, the predicted yield strengths were found to differ only 
by 10.0% for CoFeNi, 2.5% for CoCrFeNi, 7.8% for CoCrFeCuNi, and 
1.3% for RhIrPdPtNiCu HEAs [15]. In the present study, we extend the 
computational approach to predict the yield strength of bcc HEAs using 
(112) GSFE surface [17], considering the contributions from both edge 
and screw dislocations. Moreover, we have validated the reliability of 
the computational approach by examining its predictions for four 
different bcc HEAs (i.e., MoNbTaW, MoNbTaV, AlCoCrFeNi, and 
AlCoCrFeNiZr0.3). More importantly, we quanti昀椀ed the effect of a 
composition change (i.e., change a constituent from W in MoNbTaW to 
V in MoNbTaV, and add Zr into AlCoCrFeNi to form AlCoCrFeNiZr0.3) on 
affecting the yield strength of these HEAs. 

2. Computational method 

In this study, all the spin-polarized DFT calculations were performed 
using the Vienna ab initio simulation package (VASP) [18]. Plane wave 
basis associated with the projector augmented wave potentials [19] was 
employed. Speci昀椀cally, the orbitals considered in the pseudopotentials 
were Mo (4p5s4d), Nb (4p5s4d), Ta (5p6s5d), W (5p6s5d), V (3p3d4s), 
Al (3s3p), Co(3d4s), Cr (3p3d4s), Fe (3d4s), Ni (3p3d4s), and Zr 
(4s4p5s4d). The plane wave energy cut-off energy was set to be 500 eV. 
The generalized gradient approximation (GGA) with the 
Perdew-Burke-Ernzerhof (PBE) [20] functional was used to evaluate the 
exchange-correlation energy. In the calculations, the total energy of 
each system was converged within 10−6 eV. In bulk crystal calculations, 
we used an orthogonal simulation cell containing 72 atoms to model 
MoNbTaW and MoNbTaV HEAs, and an orthogonal simulation cell 
containing 80 atoms to model AlCoCrFeNi and AlCoCrFeNiZr0.3 HEAs. 3 
× 4 × 4 and 3 × 4 × 5 Monkhorst-Pack k-point [21] grids were used in 
these 72- and 80-atom bulk crystal calculations, respectively. 

In GSFE surface calculations, we constructed various (112) stacking 
faults of bcc crystal in a simulation cell spanned along [111], [110], and 
[112] directions and containing sequentially packed (112) atomic layers 
(eight atoms each layer). In the simulation cells, a vacuum region of 
12 Å thick was added in the [112] direction normal to the (112) layers to 
minimize the in昀氀uence of periodic images. The GSFE surface was pre-
dicted by calculating the energies of various slab cells in which, relative 
to the bottom half crystal, the top half crystal slips simultaneously along 
[111] direction up to a full Burgers vector of b1

³= a/2 < 111 > and along 
[110] direction up to a full Burgers vector of b2

³= a/2 < 110 > . During 
structural optimization, the positions of the two atomic layers on both 
the top and bottom of the slab were 昀椀xed whereas the positions of the 
other atoms were allowed to relax only in the [112] direction normal to 
the stacking fault. The stacking fault energies were computed as the 
energy difference per area between the slab model containing a stacking 
fault and the corresponding reference slab free of stacking fault. A 
Monkhorst-Pack k-point grid of 5 × 4 × 1 was used for these (112) GSFE 
surface calculations. All the structures were fully relaxed until the re-

sidual force acting on each atom was lower than 0.01 eV/Å. 

3. Results and discussion 

3.1. Theorem 

The plastic deformation and behavior of conventional bcc metals at 
low temperature are believed to be primarily controlled by the mobility 
of screw dislocations via a kink-pair mechanism involving the nucle-
ation and propagation of kinks along the screw dislocation [22]. In 
contrast to that in conventional bcc metals, the plastic deformation in 
some example bcc HEAs (such as, MoNbTi, NbTaTiV, and CrMoNbV 
alloys) was revealed to be mostly controlled by the slip of edge dislo-
cations which led to the observed high-temperature strength retention in 
these HEAs [23,24]. Moreover, Lee et al. observed a/2 < 111 > type of 
dislocations on {110} and {112} slip planes of the deformed NbTaTiV 
and CrMoNbV HEAs using transmission electron microscopy [24]. This 
experimental observation is consistent with the predictions from 
large-scale molecular dynamics (MD) simulation on the bcc AlCoCrFeNi 
HEA nanopillars under uniaxial compression [25]. In the MD simula-
tions, Zhang et al. found that a/2 < 111 > type full dislocations were 
nucleated from the free surface, slipped on {110}, {112}, or {123} 
planes, and interacted/reacted with each other [25]. 

Consequently, we consider the slip of the dislocations with both 
screw and edge characters as the primary deformation mechanism in bcc 
HEAs in this work. In bcc crystal, both full dislocations with Burger 
vectors of b1

³=a/2 < 111 > (pure screw) and b2
³=a/2 < 110 > (pure 

edge) would contribute the slip within a (112) slip plane [16,17,26]. We 
assume that the displacement caused by the dislocation has a form of 
u(x) = b

π
tan−1x

ξ
+ b

2, where x represents the distance to the dislocation line 
along the Burgers vector direction (<111 > or <110 >) within a (112) 
plane, b is the length of the Burgers vector, and ξ is the dislocation width 
[16,27]. 

In the Peierls model based on dislocations containing both screw and 
edge components, the GSFE surface over a (112) plane in a cubic crystal 
could be expressed in an expansion of two-dimensional Fourier series 
[27]: 
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where uy and uz are the displacements induced by screw and edge dis-
locations, respectively. p = 2π/b and q=2π/

���3: b. 
Moreover, the dislocation width ξ could be calculated as [26]. 

ξ = K

2
S44Δd (2)  

where Δd is the spacing of adjacent atomic planes along the slip direc-
tion in a perfect bcc crystal. For a dislocation with b1

³=a/2 < 111 > , Δ 

d =
��3: a
4 , with a as the lattice parameter of the bcc crystal, K = R

S44, where 
R = [ S11S44

S11S44−S152]1/2, S11 = 1
6
[

1
C11−C12 +

1
C44 +

9
2(C11+2C12+C44)

]

, S44 =
1
3
[

4
C11−C12 +

1
C44

]

, S15 = −
��2:

6 [ 2
C11−C12 −

1
C44], Sij is the modi昀椀ed elastic 

compliance (by de昀椀nition Sij=Sij-Si3Sj3/S33, where Sij is the elastic 
compliance referred to the coordinate system) [26]. For a dislocation 
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with b2
³=a/2 < 110 > , Δd =

��2: a
4 , K = 1

3
[

2
(

C12
C11

)

+1
]

Ke, where Ke =
C12+C12

C12
[C11C44(C12−C12)

C12+C12+2C44
]0.5, and C12 = [12 C11 (C11 + C12 + C44)]0.5, Cij is 

the elastic constant of bcc crystal [26]. 
Peierls stress (τp) is de昀椀ned as the critical resolved shear stress 

required to resist dislocation motion in a single crystal metal, whereas 
the yield strength of a bcc polycrystal metal can be predicted by [28,29]. 

σy = Mτy =
1

3
Mτp (3)  

where M= 2.733 [30]. Under the narrow core approximation (i.e., the 
width of dislocation core is in the order of one or two atomic spacing 
[31]) of the revised Peierls-Nabarro model [16], the Peierls stress can be 
calculated as 

τp = Δd

πξ
max{dγ(μ)

dμ
sin2(πμ

b
)} (4)  

from the GSFE surface of bcc metals. The dislocations in bcc metals are 
usually classi昀椀ed as narrow-core dislocations [32–34]. Consequently, 
we applied the narrow core approximation of the revised 
Peierls-Nabarro model [16] to predict the Peierls stress required for 
dislocation slip in bcc HEAs. 

It should be mentioned that the revised Peierls-Nabarro model can be 
directly applied only to predict the mobility of the dislocations with a 
planar core. In bcc metals, the screw dislocations are found to have a 
nonplanar core structure which is responsible for the observed non-glide 
stress effect on plastic 昀氀ow [35–41]. To address this issue, Ngan et al. 
proposed a generalized Peierls-Nabarro model to treat the three-fold 
core structure of screw dislocations in bcc metal [42] and further 
derived that the Peierls stress τp for the screw dislocations with 
non-planar core would exhibit a 1/cos2χ relation with respect to the 
orientation of the maximum resolved shear stress plane (i.e., the value of 
angle χ varies between −30ç and 30ç) [43]. Consequently, the Peierls 
stress of screw dislocations is calculated in this study to be in a range 
from Δd

πξ
max {dγ(μ)

dμ
sin2(πμ

b )} to 1
cos230ç

Δd
πξ

max
{dγ(μ)

dμ
sin2(πμ

b
)

}

from the GSFE 
surface of bcc metals. 

3.2. Predicted lattice parameters and elastic constants 

We performed the DFT calculations to predict the equilibrium lattice 
parameters and elastic constants of the single crystal of bcc MoNbTaW, 
MoNbTaV, AlCoCrFeNi, and AlCoCrFeNiZr0.3 HEAs. Modeling the bulk 
crystal of each alloy with the speci昀椀ed molar composition, we used the 
Alloy Theoretic Automated Toolkit (ATAT) code [44] to generate special 
quasi-random structures which mimic the element distribution in a 
random alloy. Two examples of the modeled bulk crystal structures of 
bcc HEAs are shown in Fig. 1. The equilibrium lattice parameter of these 
HEAs was determined by 昀椀nding the minimum energy state as a function 
of the lattice parameter, whereas the elastic constants C11, C12, and C44 
of these HEAs were derived from the energy curves obtained by applying 

the equal-axis volume expansion strain and volume conserving shear 
strains to the modeled bcc HEA crystal [45]. We present our predictions 
for bulk crystal of the four HEAs in Table 1. It is shown that the pre-
dictions agree well with the computational and experimental values 
from the literature. 

Furthermore, we gave in Table 2 the predicted dislocation width ξ of 
both edge and screw dislocations in bcc MoNbTaW, MoNbTaV, 
AlCoCrFeNi, and AlCoCrFeNiZr0.3 HEAs. Our predictions con昀椀rm that 
the narrow-core approximation is applicable to the dislocations in these 
four bcc HEAs. Moreover, the predicted dislocation widths of MoNbTaV 
are found to be slightly lower than those of MoNbTaW with the change 
of constituent W to V, and the dislocation widths of AlCoCrFeNiZr0.3 are 
also slightly lower than those of AlCoCrFeNi with the addition of con-
stituent Zr. 

3.3. Predicted generalized stacking fault energy surface 

The generalized stacking fault energy (GSFE) surface is believed to 
govern the dislocation mobility in bcc metals [35]. Hence, we further 
used the DFT method to predict the GSFE surfaces of bcc MoNbTaW, 
MoNbTaV, AlCoCrFeNi, and AlCoCrFeNiZr0.3 HEAs. We used a 
twelve-layer slab containing 96 atoms for modeling the (112) GSFE 
surface of MoNbTaW and MoNbTaV HEAs, whereas a ten-layer (112) 
slab containing 80 atoms for AlCoCrFeNi and AlCoCrFeNiZr0.3 HEAs. 
Some example structures on the (112) GSFE surface of bcc MoNbTaW 
alloy are illustrated in Fig. 2. 

In this study, we computed the two-dimensional (112) GSFE surface 
by rigidly slipping the top half crystal on (112) plane by a displacement, 
whose vector could be decomposed along two basis Burgers vectors 
b1
³=a/2 < 111 > and b2

³=a/2 < 110 > . In total, we constructed thirty- 
six slipped crystal structures corresponding to a 2D grid in (112) with 
uniform increments of b1

³/5 and b2
³/5 along the two basis vectors. At 

each slip displacement, we computed the energies of the slipped crystal 
optimized using the DFT method. Furthermore, we applied the least 
square method to best 昀椀t the thirty-six DFT datapoints to the mathe-
matical formula given in Eq. (1) and thus predict the (112) GSFE surface 
of the four bcc HEAs. 

The 昀椀tted (112) GSFE surfaces for four bcc HEAs are plotted in Fig. 3 
and Fig. 4. Points (0, 0) in these 昀椀gures represent the perfect bcc crystal 
as shown in Fig. 2(a) and (f), whereas points (0.5, 0.0) and (0.0, 0.5) in 
the 昀椀gures correspond to the half crystal slipped by 1/2b1

³ and 1/2b2
³ on 

(112) as shown in Fig. 2(c) and (h), respectively. It can be seen that no 
stable planar defect state appears on the (112) GSFE surface of these bcc 
HEAs, different from the GSFE curves of fcc HEAs showing stable 
intrinsic stacking faults [15]. Moreover, the calculated (112) GSFE 
surfaces exhibit clear asymmetry with respect to < 111 > direction, 
which qualitatively indicates the twinning and the anti-twinning slip 
asymmetry of bcc crystal [36]. 

In addition, our results in Fig. 3 and Fig. 4 indicate that the calcu-
lated (112) GSFE of bcc HEAs would change with their chemical 

Fig. 1. Atomistic structures of the modeled bulk crystal of (a) quaternary MoNbTaW and (b) quinary AlCoCrFeNi HEAs with a bcc lattice structure.  
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composition. The highest fault energy in the (112) GSFE was found to 
increase from 4873 mJ/m2 for MoNbTaW to 5191 mJ/m2 for MoNbTaV 
with a change of constituent W to V and increase from 5269 mJ/m2 for 
AlCoCrFeNi to 5835 mJ/m2 for AlCoCrFeNiZr0.3 with addition of con-
stituent Zr. It should be mentioned that local chemical composition 
variation could affect the values of our predicted GSFE. To quantify this 
effect, we have predicted the fault energy at a speci昀椀ed displacement 
point (0.5, 0.5) on three different (112) planes with slightly different 
compositions for each bcc HEA. It was found that local composition 

variation around stoichiometry only causes an error less than 1.0% in 
the calculated value of GSFE. 

3.4. Predicted yield strength 

From the calculated (112) GSFE surfaces, we further predicted the 
Peierls stress (τp) required for dislocation slip in the four bcc HEAs using 
the revised Peierls-Nabarro model.16 The results are presented in  
Table 3. On the two-dimensional (112) GSFE surface, we computed the 
Peierls stress as τp = max| g³|. The vector as expressed in Eq. (5a) was 
used to compute the minimum value of τp whereas the vector given in 
Eq. (5b) was used to compute the maximum value of τp. 

g³= (
(

Δd1

πξ1

∂γ(f1, f2)
∂f1

)

sin2(πf1

b1

),
(

Δd2

πξ2

∂γ(f1, f2)
∂f2

)

sin2(πf2

b2

)) (5a)  

g³= (
(

1

cos230ç
Δd1

πξ1

∂γ(f1, f2)
∂f1

)

sin2

(

πf1
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)

,

(

Δd2

πξ2

∂γ(f1, f2)
∂f2

)

sin2

(

πf2

b2

))

(5b) 

Table 1 
DFT predicted equilibrium lattice parameter a (in unit of Å), elastic constants C11, C12, and C44 (in unit of GPa) of four bcc HEAs. Experimental and computational 
values from the literature are included for comparison.    

MoNbTaW MoNbTaV AlCoCrFeNi AlCoCrFeNiZr0.3 

a This work 3.24 3.20 2.86 2.89 
Computational 3.25 [46] 3.21 [47]    
Experimental 3.22 [7] 3.21[47] 2.91 [9] 2.95 [9] 

C11 This work 365 305 209 213 
Computational 371 [46] 301 [14] 214 [48]  

C12 This work 161 135 137 126 
Computational 160 [46] 144 [14] 135 [48]  

C44 This work 72 57 165 163 
Computational 69 [46] 63 [14] 167 [48]   

Table 2 
Predicted core-widths of the screw dislocation (with a Burgers vector b1

³=a/ 
2 <111 >) and edge dislocation (with a Burgers vector b2

³=a/2 <110 >) in four 
bcc HEAs using the DFT data in Table 1.   

MoNbTaW MoNbTaV AlCoCrFeNi AlCoCrFeNiZr0.3 

screw 0.52b1 0.50b1 0.59b1 0.57b1 
edge 0.66b2 0.65b2 1.19b2 1.06b2  

Fig. 2. Atomic structure of a simulation slab consisting of sequentially packed (112) atomic layers to model relative slip on (112) plane of bcc MoNbTaW HEA. The 
slip along [111] is depicted as (a) a perfect bcc crystal displaced by (b) 1/4b1

³, (c) 1/2b1
³, (d) 3/4b1

³, and (e) b1
³. Here, b1

³=a/2 < 111 > . The slip along [110] is shown 
as (f) a perfect bcc crystal displaced by (g) 1/4b2

³, (h) 1/2b2
³, (i) 3/4b2

³, and (j) b2
³. Here, b2

³=a/2 < 110 > . In this 昀椀gure, the red, green, brown, and blue balls 
represent Mo, Nb, Ta, and W atoms, respectively. 
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Where, Δd1 =
��3:

4 a and Δd2 =
��2:

4 a are the spacing of adjacent atomic 
planes along the slip direction < 111 > and < 110 > , respectively, in a 
perfect bcc crystal, ξ1 and ξ2 are the width of the dislocation with Burger 
vector b1

³=a/2 < 111 > and b2
³=a/2 < 110 > , respectively. The 

maximum gradient location on the (112) GSFE surface (i.e., where the 
minimal value of the Peierls stress are determined) of the four bcc HEAs 
are marked in Figs. 3 and 4. Furthermore, the yield strength of the four 
bcc HEAs in their polycrystal form were predicted by Eq. (3). 

Our results in Table 4 show a good agreement between our model 
predictions with experimentally measured values, having a discrepancy 
ranging from 0.6% (for AlCoCrFeNiZr0.3) to 2.4% (for MoNbTaV). 
Moreover, our model predicted yield strength of MoNbTaW alloy is 
found to have less discrepancy within 2.3% as compared to the experi-
mental value (i.e.,1058 MPa) than that calculated from the mis昀椀t 

volume variation model [14] showing a difference of 7.8%. 

3.5. Discussion 

Both experimental and our computational results in Table 4 show 
that the yield strength of MoNbTaV is higher than that of MoNbTaW 
with the change of constituent W to V, and the yield strength of 
AlCoCrFeNiZr0.3 is higher than that of AlCoCrFeNi with the addition of 
constituent Zr. Quantitatively, the difference between the yield 
strengths of MoNbTaV and MoNbTaW HEAs was predicted by our model 
to be 455 MPa, which is very close to the experimental value of 
467 MPa, whereas the difference between the yield strengths of 
AlCoCrFeNiZr0.3 and AlCoCrFeNi HEAs was predicted to be 384 MPa, 
which is also comparable to the experimental value of 420 MPa. 
Consequently, our model provides a computational approach to quantify 
the dependency of the yield strength of bcc HEAs on their chemical 
composition. 

Furthermore, some insights can be gained regarding how the yield 
strength would change with the chemical composition of bcc HEAs from 
this study. Based on the employed Peierls-Nabarro model, higher Periels 
stress and yield strength are the result of larger lattice resistance to 
dislocation slip. It has been proposed that atomic-radius mismatch is an 
important parameter to quantify the degree of lattice distortion and 
describe the solid-solution strengthening in HEAs [49]. To examine this 
concept, we have further calculated the equilibrium lattice parameters 
of all the constituent elements in bcc structure using the DFT method. 
The bcc lattice parameters are predicted to be 3.16 Å for Mo, 3.31 Å for 
Nb, 3.32 Å for Ta, 3.19 Å for W, and 3.00 Å for V, showing much smaller 
atomic radius of V as compared to those of the other four constituent 
elements. Using the same computational approach given in Ref. [49], we 
calculated the atomic-radius mismatch to be 2.3% for MoNbTaW and 

Fig. 3. Predicted (112) GSFE surface of (a) MoNbTaW and (b)MoNbTaV HEAs. The red dots indicate the location having the maximum gradient on the surface.  

Fig. 4. Predicted (112) GSFE surface of (a) AlCoCrFeNi and (b) AlCoCrFeNiZr0.3 HEAs. The red dots indicate the location having the maximum gradient on 
the surface. 

Table 3 
Predicted range of Peierls stress τp (in unit of MPa) of four bcc single crystal 
HEAs.   

MoNbTaW MoNbTaV AlCoCrFeNi AlCoCrFeNiZr0.3 

τp 1115~1154 1622~1645 1474~1502 1883~1937  

Table 4 
Predicted yield strength (in unit of MPa) of four bcc polycrystal HEAs. Experi-
mental and computational values from the literature are included for 
comparison.   

MoNbTaW MoNbTaV AlCoCrFeNi AlCoCrFeNiZr0.3 

This work 1034 1489 1356 1740 
Experimental 1058 [6] 1525 [4] 1330 [9] 1750 [9] 
Computational 975 [14]     
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4.4% for MoNbTaV using our calculated bcc lattice parameters. More-
over, the bcc lattice parameters are predicted to be 3.24 Å for Al, 2.83 Å 
for Fe, 2.81 Å for Co, 2.87 Å for Cr, 2.80 Å for Ni and 3.58 Å for Zr, 
showing much larger atomic radius of Zr as compared to those of the 
other 昀椀ve constituent elements. The atomic-radius mismatch is thus 
calculated to be 5.0% for AlCoCrFeNi and 6.8% for AlCoCrFeNiZr0.3. 
Consequently, our analysis reveals a correlation between the 
atomic-radius mismatch (i.e., degree of lattice distortion) and the 
calculated yield strength of the two bcc HEA systems. Namely, larger 
atomic-radius mismatch would lead to higher yield strengths for the bcc 
HEAs with a systematic composition change. 

4. Conclusion 

In this study, we have developed a 昀椀rst principles based computa-
tional approach to predict the yield strength of bcc structured HEAs. 
Using the developed computational method based on the revised Peierls- 
Nabarro model, we are able to predict the Peierls stress required to slip 
the dislocations with both edge and screw characters in bcc HEAs. All 
the input data, including equilibrium lattice parameter, elastic con-
stants, and two-dimensional (112) GSFE surface of bcc HEA, were 
calculated using the 昀椀rst-principles DFT method. 

We further applied the computational approach to predict the yield 
strength of quaternary MoNbTaW, MoNbTaV, quinary AlCoCrFeNi, and 
senary AlCoCrFeNiZr0.3 HEAs, all with a bcc crystal structure. Our 
predicted yield strength of these four bcc HEAs are found to agree well 
with experimentally measured values, exhibiting a difference ranging 
from 0.6% for AlCoCrFeNiZr0.3 to 2.4% for MoNbTaV. Moreover, as 
compared to experimental data, our computational model accurately 
quanti昀椀ed the changes in the yield strength from MoNbTaW to MoN-
bTaV with the change of constituent W to V, and from AlCoCrFeNi to 
AlCoCrFeNiZr0.3 with the addition of 6 at% Zr. Our model analysis 
suggests that increasing atomic-radius mismatch through systematically 
introducing either much smaller or much larger constituents could lead 
to higher room-temperature yield strengths of bcc HEAs. 

Therefore, this study presents an accurate and reliable computa-
tional approach to explore the relation between the chemical composi-
tion and mechanical properties of bcc HEAs for further design of HEAs to 
have optimal mechanical properties. Additionally, the presented 
computational method sets up a theoretical framework extendable to 
predict the high-temperature yield strength and low-temperature 
ductility of bcc HEAs. 
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