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Abstract

One potential application of metamaterials is for designing invisibility cloaks. In this paper,
we are interested in a rotation cloak model. Here we carry out the mathematical analysis of this
model for the first time. Through a careful analysis, we reformulate a new system of governing
partial differential equations by reducing one unknown variable from the originally developed
modeling equations in Yang et al. (Commun Comput Phys 25:135-154, 2019). Then some
novel finite element schemes are proposed and their stability and optimal error estimate are
proved. Numerical simulations are presented to demonstrate that the new schemes for the
reduced modeling equations can effectively reproduce the rotation cloaking phenomenon.
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1 Introduction

The discovery of the electromagnetic (EM) metamaterials in 2000 stimulated a growing
interest in developing and analyzing various numerical methods for solving the Maxwell’s
equations in metamaterials (cf., [5, 6, 10, 21, 28, 30], since metamaterials have many potential
revolutionary applications across different areas, such as sensing, nanolithography with light,

Submitted to the editors on January 18, 2024.

X Jichun Li
jichun.li@unlv.edu
http://faculty.unlv.edu/jichun/

Yunqging Huang
huangyq@xtu.edu.cn

Bin He
hebinxtu@126.com
National Center for Applied Mathematics in Hunan, Xiangtan University, Xiangtan, China

Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas,
NV 89154-4020, USA

Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China

Published online: 08 June 2024 @ Springer



26  Page2of29 Journal of Scientific Computing (2024) 100:26

subwavelength imaging with super-resolution, invisibility cloaks (e.g., [3, 15, 24, 25, 29, 33]),
optical black hole [31], EM concentrator [18], rotator, and splitter etc [7, 8].

Due to its advantage in dealing with complex geometries and algorithmic robustness, the
finite element method (FEM) plays an important role in solving Maxwell’s equations. Over
the years, many FEMs have been developed and implemented to solve Maxwell’s equations
in both frequency domain (e.g., [14, 17, 19, 34]) and time domain (e.g, [9, 11, 12, 23]).
More details can be found in books on FEMs for Maxwell’s equations (e.g., [13, 22, 26]) and
review papers [1, 16].

In 2007, Chen and Chan [7] used the transformation media technique to design a real
rotation cloak, which is an invisible field rotator that rotates the EM fields so that the source
wave from inside/outside the cloak appears as if it comes from a different angle 6y. In
2009, Chen, Chan and their collaborators [8] made a sample rotator and experimentally
demonstrated the field rotation effect as well as the broadband functionality at microwave
frequencies. In 2019, Yang et al. [32] derived a set of time-domain Maxwell’s equations
and proposed a finite element scheme to successfully model the EM field rotation effect.
However, up to now, no any mathematical analysis has been done for the modeling equations.
Furthermore, the finite element scheme proposed in [32] involves all the unknown variables,
including a 2D electric field E, a 2D electric flux density D, and the scalar magnetic field
H. In this paper, we fill the theoretical analysis gap by carrying out some mathematical
analysis for this rotator model. More specifically, through a careful observation, we first
reformulate the original model into a new set of governing equations involving only E and
D. Then we establish the existence and uniqueness result for the new modeling equations.
Some novel finite element schemes (including both unconditonally and conditionally stable)
are developed and analyzed for the new model. Compared to the previous work [32], the new
schemes are more efficient and use less memory storage. To our best knowledge, this is the
first mathematical analysis paper devoted to the rotation cloak model. The newly proposed
schemes and the theoretical analysis are original.

The rest of the paper is organized as follows. In Sect. 2, we first present the original time-
domain governing equations for the EM rotation cloak model, then we reformulate it with
less unkowns. The existence and uniqueness of the solution for this model are established.
In Sect. 3, we propose an unconditionally stable finite element scheme for solving the rotator
model, then we establish the discrete stability and the error estimate of the scheme. In Sect. 4,
we extend the idea to three similar schemes, and present a conditional stability analysis. In
Sect. 5, we present some numerical results to demonstrate the rotation cloaking effect achieved
by the model. Finally, we conclude the paper in Sect. 6.

2 The Model Problem and Its Analysis

The 2D electromagnetic rotator cloak modelling equations were originally derived in our
previous work (cf. [32, Sec.2.2]). For the sake of completeness, we reiterate some important
steps from [32]. This cloaking device consists of two regions: the cloaking region Q2 =
{(r,0) : Ry <r < Ry,0 <6 < 2r} changes the direction of wave propagation, and the
inner core region 2 = {(r,0) : 0 < r < R{,0 < 0 < 27} rotates the incoming wave by
an angle 0y (cf., Fig. 1). To realize these functions, the exact permittivity and permeability
can be derived by the coordinate transformation technique (cf. [22, Sec.9.2]). For this rotator
cloak, the coordinate transformation is given as follows (cf. [7]):
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Fig. 1 Illustration of the coordinate transformation of a cylindrical rotator cloak

r'=r, 0<r<Ry,

;|0 +60. 0<r <Ry, 2.1
16+ Rliz—_lsl 6o, R <r < Ry.

Using the form invariant property of Maxwell’s equations (cf. [22, Sec.9.2]), the relative
permittivity and permeability for the rotator cloak can be obtained (cf. [32, Sec.2.2]):

w(x,y)=1, 0<r <Ry,
10

P 01)°

CEIDZN aid v b y)
b(x',y) ex’, y)

0<r <Ry,
(2.2)
>, R <r' < Ry,

where we denote

x/y/ m2y/2 m (x/z _ y/2) mzx/y/
’N * I — * *
a(,y) =1+2m -7+ —5—. blx.y) = - ;e -7

x2m? 2mux'y Oor’
/ / * * /
c(x',yH) =1+ — =X+ Y2, my = —.
( )’) r/z r/2 y * R2 _ R]

Note that €/.(x’, y") on the cloaking region (R; < r’ < Rj) is symmetric and can be
diagonlized as

A1 0 p1 D2
e =pr PT, p= , 2.3

g [ 0 )»2} —p2 p1 23)
where A1 and A, are the two eigenvalues of €. (x’, y') given as [32, Sec.2.2]:

_24mi— @4 m?—4 cO.1). g 24+mi+/Q+m)?—4
9 9 - 2

2

Furthermore, we denote

Al € (1, 00).

Ay —a(x',y)
Ay — A

1oy — A
2 = sgn(b(, vy, |28 1

where sgn is the standard sign function.
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Since A; < 1, which is nonphysical and we map it by the lossless Drude dispersive
medium model
2
ao=1-2 (2.4)
1)
where w, and w denote the plasma frequency and the general wave frequency, respectively.
Substituting (2.4) into (2.3), using the constitutive equation D = €pe,. E and the inverse of
matrix €., we obtain

2.2
Wy Py

1 hpt+ps— 252 pipa(l =) —
2 2 2.2
ha(l=2%) | pip2(l —ho) = BEZ ph 4 ops — e

A

D=ekE, ©25)

PP}
w2

where E and D denote the eletric field and electric flux density in the frequency domain,
respectively.

Applying the time-harmonic relation u(x, t) = Re(eﬁ“” u(x, 1)) to(2.5), we can obtain
the constitutive equation in the time-domain given below in (2.6b), which along with the
Faraday’s law and Ampere’s law leads to the electromagnetic rotator model (cf. [32, Sec.2.2]):
For any (x,7) € @ x (0, T],

oyD(x,t) =V x H(x,1), (2.6a)
€or2 (A E(x, 1) + 02E(x,1)) = My, D(x, 1) + MyD(x,1), (2.6b)
nodrH(x,t) = -V x E(x,1), (2.6¢)

where € is a bounded domain in R? with boundary 02, H denotes the magnetic field,
E = (E,, Ey)’ is the electric field, D = (Dy, Dy)’ is the electric flux density, and € and
1o are the free space permittivity and permeability, respectively. Here we adopt the 2D curl
operators V x H = (3,H, —9,H) and V x E = 9,E, — 3y E,. Finally, matrices M, and
M), are given as follows:

[ piva+p3 pipa(l —12) _ o[ p3 pip2
0= 2 2 , M=o, 27 |-
pip2(l1 —A2)  pi+ p3i2 P1p2 Py

To complete the rotator model, we assume that (2.6a)—(2.6¢) satisfy the initial conditions

D(x,0) = Do(x), 8;D(x,0) = D;(x),

2.7
E(x,0) = Eo(x), 0,E(x,0)=E(x), H(x,0)=Hy(x) Vxe€Q, @7

and the perfect conducting (PEC) boundary condition:
nx E=0 on 9%, (2.8)

where Dy, D1, Eo, E|, Hy are some given functions, and n is the unit outward normal
vector to 9S2.

First, we like to prove the following properties for matrices M, Mj, and M. := M, "My,
We need the positive definiteness to invert matrix M, later to benefit the mathematical analysis
of the model, and we also need M}, to be symmetric nonnegative definite in order to define a
norm in Theorem 2 below.

Lemma 1 (I) The matrix M, is symmetric positive definite.
(II) The matrix My, is symmetric nonnegative definite.
(L) For M, := M, ' M), we have M, = M,
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Proof (I) For any vector (u, v), it is easy to see that

u
(u, v)M, [v]

u?(pira + p3) + 2p1pa(1 — auv + (p? + p3ra)v?

= (ups + vp1)* + ra(upr — vp2)? > 0, 2.9)

and (2.9) equals zero if and only if when u = v = 0. This proves that M, is symmetric
positive definite.
(II) Itis easy to see that

u
(u, V)M [v] = 7 (pyu’ + 2p1pauv + piv’) = 7 (pau + p1v)* 2 0. (2.10)

which shows that M}, is nonnegative definite.
(III) Since M, is positive definite, its inverse M, exists and is given by

2, 2
M-l — 1 [ pi+p3r2 —pip2(l — ?»2)] . @.11)

@ T l=pip2(1=x)  piag+ p?

Through some algebraic calculations, and using the fact that p% + p% = 1, we easily
obtain that M LM, = M, which completes the proof. ]

Taking the time derivative of (2.6a) and using (2.6c), we have

D=V xyH=—1uy'VxVxE. (2.12)

Using (2.12), we can reduce the original model problem (2.6a)—(2.6c) with three unknowns
(E, D, H) to a problem involving only two unknowns (E, D):

D =—1uy'VxVxE, (2.13a)
€or2(M; '3 E + w?M;'E) = 8,,D + M, D, (2.13b)

where (2.13b) is obtained by multliplying (2.6b) with M I and using Lemma 1 (II).
From now on, we consider the following weak formulation problem of (2.13a)—(2.13b):
Find E € Hy(curl; Q) and D € H(curl; 2) such that

04D, @) = —MEI(V x E,Vx¢), Y¢ € Ho(curl; Q), (2.14a)
eUAZ(Ma_IE),,E + a)zMa_lE, ¥)= 0D+ MpD,¥), V¥ € Ho(curl; Q), (2.14b)

subject to the same initial conditions (2.7) (except for H) and the PEC boundary condition
(2.8).

Theorem 1 There exists a unique solution (E, D) € Ho(curl; Q) x H(curl; Q) for the
problem (2.14a)—(2.14b).

Proof Denote the Laplace transform of a function f (z) fort > 0 by f(s) = fooo e S f(t)dt.
Taking the Laplace transform of (2.14a) and using the initial conditions (2.7), we obtain

(’D —sDy— D1, ¢) = —iy (VX E,V x ¢). (2.15)

Taking the Laplace transform of (2.14b) and using (2.15), we have
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(%) (Ma_l(szﬁ —sEg—Ey) + a)gMa_]E, 1//)
= —ug"(Vx E,V x ¢) + (MyD, ¥). (2.16)

Multiplying (2.16) by s2, then replacing 52D by (2.15), and collecting like terms, we
obtain

1" (2B + Mp)V x E, V x ) + €gras’ (s> + 02 (M, 'E, )
= eohas? (M ' (sEo + E)), ¥) + (Mp(sDo + D), ¥)., 2.17)

where we denote the 2 by 2 identity matrix I> = diag(1, 1).

Using the Lax-Milgram lemma, we know that (2.17) exists a unique solution E ¢
Hy(curl; ©2). The uniqueness of E follows from the uniqueness of the inverse Laplace trans-
form of E. The existence and uniqueness of the solution D is guaranteed by (2.14a). O

Denote the L2(2) norm as || - ||. We can establish the following stability for the solution
of (2.14a) and (2.14b).

Theorem 2 For the solution (E, D) of (2.14a)—(2.14b), the following energy identity holds
true foranyt € (0, T]:

ENG(t)—ENG(0)

t
:/ 2[(MpD, % E) + w,*(Mpd, D, 3 E) + eor2(M, '3, E + w>M; 'E, 3,D)] ds,
0

(2.18)
where the energy EN G (t) is defined as
Ly~ 2 2 -3 2 5 2
ENG(t) := eoha(llw, My > 9 E||” +2||M, >0, E||” + |lweM, * E||%)
1
+ug IV x EIP + llo; 'V x 8, EII*) + 113, DI + ||M; D|P*. (2.19)
Moreover; the following stability holds:

ENG(t) < ENG(0) -exp(Cxt), Vte][0,T], (2.20)

where the positive constant Cy depends on those physical parameters of the problem (2.14a)
and (2.14D).

Proof To make our proof easy to follow, we divide it into two major parts.
(I) Choosing ¥ = 9, E in (2.14b), and using (2.14a) with ¢ = 9, E, we have

€Az d -3 2 —3 12 —1
2 (IMa * 0 E|P + [loMa * EIP) = =11 (V x E,V x &) + (M, D, 0, E)
uy' d
= —%Env x E|> + (MyD, 3, E), 2.21)
ie.,
-1
€A d -1 -1 Lo d
= 7 M 2 E|* + o.M, P E|Y) + %EIIV x E||* = (MyD, 8 E). (2.22)
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Similarly, taking the time derivative of (2.14b), then using (2.14a) and choosing ¢ =
w;za,, E, we obtain

€orr d _1 1
0%2 “'My 20, E|? + 1M, 29,E|]%)

2 a4l
M—lw_z d
+07285”V x % E|* = w, >(Mpd; D, 0, E). (2.23)

To bound D and 9; D, choosing ¥ = 9; D in (2.14b), we have

1d 2 32 -1 281
5 ;W18 DI + 1My DIIY) = e0da(My "0 E + w0, M B, 8, D). (2.24)

Adding (2.22), (2.23) and (2.24) together, we obtain

d ENG(t)
dt

=2[(MpD, ) E) + 0, *(Mpd, D, 3, E) + eorr (M '3, E + 0’ M, 'E, 3, D)],
(2.25)

integrating which with respect to ¢ from O to ¢ completes the proof of (2.18).
(IT) Using the Cauchy-Schwarz inequality, we can bound those four terms on the right
hand side of (2.25) as follows:

1 1 1 _1
2MyD, E) < |IMZMZ||oc(|IM2 D> + ||M >3, El|%),
1 _1
2w, 2(Mpd; D, 3, E) < |lo, MyMZ ||oo (18, DI1* + ||, ' M, >3, E|%),
_1 _1
2e0r2 (M '3 E, 8, D) < eohallweMy * oo (ly ' M, 28, EN1* + 113, D),

_1 _1
2e0r (@M E, 8, D) < eorallweMy * |loo(|lweMy > E[|* + 113, D|%).

Substituting the above estimates into (2.25) and using the Gronwall inequality (e.g., [20,
Lemma 2.1]), we complete the proof of (2.20). ]

3 An Unconditionally Stable Scheme and Its Analysis

To solve the problem (2.14a)-(2.14b) by a finite element method, we partition the physical
domain €2 by a family of regular triangular mesh 7}, with maximum mesh size 4, and adopt
the r-th order Nédélec edge element space Uy, [26, 27]: For any r > 1,

Uy = {up € H(curl; Q) : uplg € (pr—1)* @ Sy, VK € T}, 3.1)

where S, = {p € (ﬁ,)z, x - p = 0}, p, denotes the space of homogeneous polynomials
of degree r, and p, denotes the space of polynomials of degree less than or equal to r in
variables x, y, respectively. To impose the PEC boundary condition (2.8), we denote the
subspace Ul = {fueUp:uxn=0 onadQ}.

To construct a fully-discrete scheme, we assume that the time domain [0, 7] is discretized
uniformly by points #; = it,i = 0,1, ---, N;, where the time step size T = Nl, For any
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time function ", we introduce the following time difference and averaging operators:

n+1 n n+1 n n—1
1 u —u u —2u" +u
n+5 __ 2.n __
STM 2 = i, 811/{ - 1,'2 }
n+1 n—1 n+l1 n—1
82u":u —u ﬁ”_u +u
! 27 ’ 2

Now we consider the following scheme: For any n > 0, find DZH e Uy, EZH elU 2
such that

OID}, ) = —uy (VX Ej, V x @), ¥, €U, (3.2a)
cor (M '62E) + o?M; E), ;) = (82D} + MyD, ¥y), Y ¥, €UY,  (3.2b)
where the needed initial approximations DY, D}l, E2 E }l can be obtained from (2.7) as
follows:

D) = TI;Dy(x), D} — D, =2tII§D;(x), (3.32)
E) =TS Eo(x), E} —E;' =2tTI$E(x), (3.3b)

where ITj denotes the Nédélec interpolation operator.
We like to remark that this scheme is very easy in practical implementation: At each time

step,
Step 1: Substitute (3.2a) into (3.2b) to solve for EZH from the following equation:

coh (M 'S2E) + 0l M By ) + 115 (V x B}V x ) = (M D}, ¥y). (3.4)

Step 2: Solve (3.2a) for D} ™.

Note that when n = 0, we have to use the initial approximations (3.3a) and (3.3b) to
replace D;l and E ;l.

Below we will establish both the stability and convergence analysis for our scheme (3.2a)-
(3.2b).

3.1 Stability Analysis

In this subsection, we prove the unconditional stability for the scheme (3.2a)-(3.2b). For the
solution of (3.2a)-(3.2b), we denote the following discrete energy

1 1
—1ag 722 n+12 —lag 282 N2
w, ' M, “5:E + |lw, ' M, “52E _1 1
|| e a T ™h ||2 || e a T h|| ||Ma ZSIEZ+2||2

n+%

ENG.p = = €oh2

1 1
_1 | _1
[lwe M, ZEZJr ||2 + |lw. M, 2EZ||2

B
HIM 8By 1P + 5

(Y X ESP IV < ERIP =t}
+u0‘< — B o, 'V x 8 B 2P

1 1
IM2 Dy + (1M D2

+l
18D} 211+ 5

(3.5)
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Theorem 3 For the solution of (3.2a)-(3.2b), the following energy identity holds true: For
anym € [1, N; — 2],

2

1 T 1
ENG”’+2 ENGZ, — 7(||(SIDZ”2 12

1
—118: D211
m
=2t ) [y, 02 E}) + 0 (Myso D}, 62E7)

n=1

+eoia (M 82 B + M, Bl 2 D)) (3.6)

Furthermore, under the time step constraint:

1 1

T < min , WAk 3.7
2llor My M loo + 26022l 0 My *lloe) 21IMEME oo V2
we have the following discrete stability:
m+1 )
ENG,y > <2-ENGg¢, - exp(Cyuint), (3.8)

where the constant C, only depends on the physical parameters of the model.

Remark 1T We like to remark that the time step constraint (3.7) only depends on those physical
parameters of the model, and is independent of the finite element mesh size 4. Hence the
scheme (3.2a) and (3.2b) is an unconditionally stable scheme. Moreover, (3.6) is a discrete
form of the continuous energy identity (2.18) with an extra small perturbed term.

Proof The proof follows those similar technues developed for the proof of continuous stability
given in Theorem 2. To make our proof easy to follow, we divide it into several major parts.
() Choosing ¥, = 762, EJ, in (3.4), then using the following identities:
1 1

(52u" Spru) = <Bru”+; —Scu"2 5run+% +8tun_2>
T ’ T - ’

T 2

1 1
E (‘|8run+2

1
|2 _ ‘|5,un_5

?). (3.9)
and

1 _
= — ("2 = [l 1%), (3.10)

un+1 +Mn—1 un+1 _ Mn—l
’ 27

@", 8rru") = ( 5

with u = E},, we have

€0h2 n+% -3 -3
= (IMy 5 BN - M, 8 B )
€0A2
+— (loeMa LB oo, TEL)
l
IV X BTN =11V < B = (M D}, 02 ). (3.1

Dividing (3.11) by t really leads to a discretized form of (2.22).

@ Springer



26  Page 10 of 29 Journal of Scientific Computing (2024) 100:26

(II) Using (3.2b) with n = n + 1 to subtract itself with n = n — 1, then dividing the result
by 27, and using (3.2a), we obtain

82En+1 _ 82En_1 "
60)\2(1‘4;1 % + nga—l(gerZ’ )

11y (V x 82 Ep, V x ¥y) = (Mpdae D} ¥r)). (3.12)

Ch~oosing ¥, = a);2 . ‘C(S%EZ in (3.12), and using the identities (3.9) and (3.10) with with
u = E}, we obtain

60)»2 _ _ -1 _
4 <|| IM 282En+1|| ||a)g1Mu 28$E2 1||2>
€0h2 —3 =nty —3¢ =n—% 0
+ R AIM 8 B P — vy 8 )
—2 —1 o1
+f—2“°<||v < S EIIP SV x 8, B IP)
= 1w, 2(Mydy. D}, 82 E}). (3.13)

We like to remark that dividing (3.13) by t leads to a discretized form of (2.23).
(IIT) Choosing ¥;, = td2¢ DZ in (3.2b), and using the following identities

1 1 1
T(87u" . baeu”) = S (18" 2|7 — |I8cu" 2P, (3.14)

and

1 —1 1 -1 1 —1
T(un’ azrun) _ (2”" _ unJr I , + (un+ +un )’ un+ ;un )

1 n+1,,2 n—1,,2 T3 2. n n
=Z(|Iu 7= " )—7(3# s 82zu™),

1 _ 72 1 _1
= Z(nu"“nz—nu" l||2)—I(||8fu"+z||2—||6fu" 2% (3.15)

with u = Dj,, we obtain

1 +1 _1 1 1 o
E(HSTDZ 212 — |18, D, 2||2)+Z<||M;Dz“||2—||M;DZ "%
7’ n+3 0 =% 12 pn
= (18D, 1P = 118:D,, 2 IP) = reoha (M ' ST B
M E}, 82, D}). (3.16)

Again, dividing (3.16) by t yields a discretized form of (2.24).

1
Adding (3.11), (3.13) and (3.16), then using the definition of ENG?:,r 2, and summing up
the result from n = 1 to any m < N; — 2, we obtain

m+2

1 2 11 1
ENGly'? — ENGZ, — 7(||<S,DZ’ 2112~ 118: D711

m
=20 )" [(M,D}. 020 B} + ;> (Mys2: D}, 62E})
n=1

eora (M V82BN + w2 M VED 5211);',)] . (3.17)
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(IV) By absorbing the last left hand side term into the energy term, we immediately have

2 m+L ‘172 1
(l——)ENG 2 5(1+7)ENG§1,

m
120 Y [(My D}, 550 B} + 0 2 (Mydo: D, 62 )

n=1

teora (M S2E! + w2 M 1Eh,82,D’;l)]. (3.18)

Now we just need to estimate the last four right hand side terms. First, by the Cauchy—
Schwarz inequlaity and the inequality ||#||2 < %(||a||2 + [|b]|%), we have

m 1 1 m 1 1
2t (MyD}, 82 Ep) < T|IMZMi|loo Y (HM;DZH2 +11Mq 282 z||2>

n=1

1 1
T ! 1M 28, B2 4+ 1My 28, B |2
< TlIM; Mg lloo Y [ 1M D}II* + R
n=1
1
Lot 1M DR + (M) D2 mt}
< T|IMEMZ oo S+ 1My s EN
1
von e g DR 4 Dy i+
+Tl M M |0 Y S My 5 EE | Gag)
n=0
By the same arguments, we have
m m
2t ) w, *(Mysy: Dj, 8 2E7) < tllo; | MM} lloo Y _(112e DRI + [, ' My 2B
n=1 n=1

_1 _1
B 1 1 +l ||w—1M 282Em+1||2—|—||w_1M 282Em||2
< lloop My Mg llso | 118D 1P 4 =

m—1

_ 1 +1 o]
+rllo, ' MM 1o Y (HB,DZ 2P+ oo, ' M, 283E2||2> : (3.20)
n=0
1 n
2reoAzZ<M '$2E}. 85: D) < Teoha||we M, 2||m2<||w“M I5LEL|1 +||6sz2||)
n=1 n=1
_ m+
< vepralloeMy <||w g SRR + —||afD,1 2||2)
_1omd s
+reorallweMq 2||w2<||w—‘M 25;E} + 118: D 2||2), (3.21)
n=0

and

" ~ _1 " 1l
2teohy Y (i M Ej. 820 D}) < teohallweMy 2 lloo Y (llweMy > Ej11* + 11820 D117

n=1
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1 1
_1 w M_fEm+l 2+ @ M_fEm 2 1 1
< reprallweMy F 1o | 10Ma “Ed “2 oeMs 51 +§||a,z>§,”+2||2
-3 i -1 2 nti 2
+reoralloeMa *lloo (nweMa 2ENP 4 118. D) 2| ) (3.22)
n=0

Substituting the estimates of (3.19)-(3.22) into (3.18), then choosing t small enough, e.g.,

B 1 1 1 1ol 1 1
t(||lw; MM ||oo + 2€022 e My * [1o0) < 5 T||My M lloo < > TS 7 (3.23)

7

which are equivalent to (3.7), and using the discrete Gronwall inequality (e.g., [20, Lemma
3.1]), we complete the proof. m}

3.2 Optimal Error Estimate

To establish the error estimate, we need the following interpolation error estimate
[lu — qu”H(curl;Q) =< Chr||u||H"(curl;Q)s Yue H (curl; Q), (3.24)
where we denote the norm ||#|| gr curi:) = (||#]|gr @) +11V x || gr(e))'/? for the Sobolev

space

H (curl; Q) ={ve H'(Q) | VxueH (Q}.

To carry out the convergence analysis, we split the solution errors into two parts: one is
the error between the finite element solution and the corrsponding interpolation; the other
one is the interpolation error, i.e.,

& =Ep — E(x,ty) = (Ep —TILE™) — (E" — TILE") := EEE - Eﬁn’
Dp = Dp — D(x, ty) = (Dp — [ D™) — (D" — T} D") := Dﬁs — En’
here and below we simply denote E" := E(x,t,) and D" := D(x,1t,).
Now we can present the following optimal error estimate for the scheme (3.2a)-(3.2b).
The idea is to first derive the error equations, which have exactly the same form as the

numerical scheme (3.2a)-(3.2b) plus extra error terms caused by the spatial interpolation and
time approximations. Hence, the proof of error estimate follows the stabilty proof closely.

Theorem 4 Suppose that the analytical solutions (E, D) of (2.14a)-(2.14b) are smooth
enough, then for any n > 1 we have

_1 _1
o (nw;‘Ma FE2ER = 0B + o ' M, 2 (G2E) — 2EM)|?
0A2
2

_1 1 1 _1 ~ 1 ~ 1
HIM 2GS By 2 — 9 E" )2 4 ||M, 28, B2 — 0, BT

_1 _1
+HweMa 2EN = E"IP + (oo My 2 (B} — E")||2)
2

(1Y < (Ep = EMY| 2 4 ||V x (B} — EM)||?
+1

~nt+t ~n+l
2 +llog 'V x 5By - 8tE"+2)||2)
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1 1
[|MZ (DT — D)2 + 1M (D} — D))
2
<CE2+h)2, (3.25)

118, Dn+2 — oD+

where constant C > 0 is independent of h and t, and r is the degree of the finite element
basis functions.

Proof First, we need to derive the error equations. Integrating (2.14b) from ¢ = #,_; to
t = ty41, then dividing by 27, we obtain

Int1

1
MyD dl,l/fh) = eoh2 (M;l(Sz,a,E" + 57 o’M'E dt,w//h>.
T Jty
(3.26)

1 In+1
<821— 81 Dn + o
2t

In—1

Subtracting (3.26) from (3.2b) and using the error notations, we have the first error equa-
tion:

(2D} + MpDj. W) — coro (M, S2E), + I M, Eje . ¥))
= (82D}, + MyD}, . ¥),) — €0ra (M, 'S2E}, + w2M; B}y, )

In+1

8.0, D" — 82D" + —
+<2rt T +2‘L’ A

My(D — D") dt, l/Ih>

-1
In+1

1 ~
—€oh2 (M;l(az,a,E" —82E") + > / M;Y(E — E") dt, 1/th> .(3.27)
In

-1
Similarly, integrating (2.14b) (with the substition of (2.14a)) from ¢t = t,,_1 to t = t,,41,
then dividing by 27, we obtain

Int1

1
€oro (Ma_152r81E" + E/z a)gMa_]Edt, W)
n—1

| 1 Int+1 1 Int1
+ug (7/ V x Edt,V x 1//) = (— M, D dt, 1/r> - (328
th

2t J,, 2t J,, |

Subtracting (3.28) from (3.2b) (with the use of (3.2a)) and using the error notations, we
have the second error equation:
60)\.2( l(SthS-f—sz EhE wh)—{—,uo (VXEZE’VX Wh)_(MbDZ§7Wh)

= oha (M;l(S%EZn +w2M; B}, l/fh> +g! (V x Epy, V ¢h> — ( - ¢h>
g1

1 ~n
+eora (M (8200, E" — 82E™) , ¥),) + €0r2 (2—/ WM (E — E"dt1, 1/Ih)
T In

—1
1 1 It ~n 1 th+1
+ug (—/ Vx(E—E)dz,Vxn//h)—<— Mb(D—D”)dt,glfh).
2t Ji, 2t Jp
(3.29)
Note that the left hand sides of (3.27) and (3.29) have exactly the same forms as the

equations (3.2b) and (3.4) used in the stability proof of Theorem 3, and the right hand sides
(RHS) are extra terms caused by the spatial interpolation and time approximations. By the

@ Springer



26  Page 14 0of 29 Journal of Scientific Computing (2024) 100:26

Cauchy-Schwarz inequality, the interpolation error estimate (3.24) and Lemma 3 given in
Appendix, all RHS terms of (3.27) and (3.29) can be bounded by O(t2 + h"). Due to their
similarities, here we just illustrate how to estimate a few typical terms.

By Lemma 3 (IV) and the interpolation error estimate (3.24), we have

1 In41
167D}, + My D}, [1> <2 [;/ 1107 Dy Pt + ||Mb||§o||Dz,,||2]
h—1

1 In+1
=2 [? f 1107 Dl curl. oy + ”Mb”goChzr||D||i°°<o,T;Hr(curz;sz)>]
In—1 ’

2 2 2 2
<ch” [||8r D”L“(O,T:H’(c‘url;ﬂ)) + ||D||L°¢(0,T;H’(curl;§2))j| . (3.30)

Similarly, by Lemma 3 (II) and (VII), we have

n 2 nn 1 it n 2
[162:9;, D" — 87D + 5 My,(D — D") dt||

In—1

Ing1
< 013/ (1107 D> + 1| My 12,1107 DI *)dt. (331)
th—1

Using the same technique developed for the stability proof in Theorem 3 and those RHS
estimates, we can obtain: For any n > 1,

_1
||Cl)_1M 282En+1||2+||0}e_1Ma 25$EZ§||2 2
€02 > +|IMy 28 E

HZII

loeMy * Ep I+ llwe My * Ef |
2

My s, E”+2||

<|IV < BN+ IV x Ej |
+ig
0 2

+ o'V x 8 E’+2||2>

165 DR IR + 11 Dl |2
2

+118:D "+2|| + <C(+h)2 (3.32)

Finally, applying the triangle inequality, Lemma 3 and the interpolation error estimate
(3.24) to all terms in (3.32), we can complete the proof of (3.25). Due to its technicality, here
we just present one estimate as an illustration:

162E, — 07 E"||* = ||87E}, — 62E}}, + (52E" — 37 E™)||*
< 3 [182 B P + 182 B, 1P + 1107 BI s 2t

f C(‘L’ —I— h ) + Chzr'|812E||%°°(0,T;H’(curl;9)) + CT4||a[4E||ioO(0’T;(L2(Q))2)'

(3.33)

[m}
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4 Extensions to Other Similar Schemes

We like to remark that we can construct some other schemes similar to (3.2a)-(3.2b), such as

(7D} 1) = —pg (VX Ej. V x ¢,). ¥, €UJ, (4.1a)
€M (M 'S2E} + w>M,'E}, ¥)) = (82D} + MDD}, ¥,), V¥, €UY,  (4.1b)
GID}, ¢y) = —uy " (VX E}LLV x ¢)), V¢, €U, (4.2a)

€M (M 'S2E} + w2M,'E}, ¥)) = (82D} + MDD}, ¥,), V¥, cUY,  (4.2b)
and

GID}, ¢y) = —uy ' (VX ELLV x @), YV, €U, (4.3a)

cora (M '2E) + 0?M E), ¥)) = (82D} + MyD, ¥,), V¥, €UY.  (43b)

It is easy to see that the scheme (4.1a)-(4.1b) can be implemented similarly as (3.2a) and
(3.2b) by substituting (4.1a) into (4.1b) to solve for EZJrl from the following equation:

cora (M 'S2EL ¥y + 1y (V x B,V x ¥)
= (MpD}, ¥)) — €ora (@2 M, "Ef ¥y). (4.4)

Then solve (4.1a) for DZ'H.

While the implementation of schemes (4.2a) and (4.2b), (4.3a) and (4.3b) are straightfor-
ward by first solving (4.2a) and (4.3a) respectively for DZ+1, then solve (4.2b) and (4.3b)
for EZH. In this sense, we can think that both schemes (4.2a) and (4.2b), (4.3a) and (4.3b)
are explicit.

Furthermore, we like to mention that stability and error estimate for these schemes can be
carried out similarly, but their analyses are quite delicate. Since schemes (4.2a) and (4.2b),
(4.3a) and (4.3b) are similar, below we just present the stability analysis for (4.2a) and (4.2b).

The same strategy developed in the stabilty proof for the scheme (3.2a) and (3.2b) does not
working for the scheme (4.2a) and (4.2b). The stability proof is much more complicated than
the previous proof for scheme (3.2a) and (3.2b). Moreover, we need the following standard
inverse estimate

IV x upl| < Cinoh™ Hunll, Yuy €Uy, 4.5)

where the constant Cj,, > 0 is independent of the mesh size 4. We also need the following
identity.

Lemma 2 For any sequence function u", we have

n n—1
((Stun-; ,33(%0

1 1 _3 -
= 2 [ 3P s =) — st P — 182D | @6
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Proof First, note that

1 ;
= (Go""E, ST — ST + E(M"—%, Sou""r — Sy, (A7)

Using the following identity

[(@n) — ap) + (@np1 — an)?] (4.8)

N =

(an+1, Gpy1 —ap) =

_1 .
for a, = 8;u"~ 2, we obtain

—_

SO s — )
1 1 _1 1 _1
= 2 [ 21 = 5w D) + s E — 5,

1 1 _1
= 2 [ H 1 s =12y + <262 ] (4.9)
Using (4.9), we have

|
E((s,u"—%, Sout3 — 84" Y)

! 1
- _§||81;Mn+% - 81’“"7% ||2 + E(srun+%, 5rl/in+% — (Srun*%)

1 1 _1
= 5 [ s =212 = s =212) — <2122 (4.10)
Substituting (4.9) with n replaced by n — 1 and (4.10) into (4.7) leads to (4.6). ]
Now we present the stability analysis for the scheme (4.2a)-(4.2b).

Theorem 5 For the solution of (4.2a)-(4.2b), we denote the discrete energy
ENGI? = eona [Ilw My T2 P +7<3||M S ENR My 28 Bl IP)
1 _1 _1
+5 (e Mg 2EFP 4 e M, 2E;1||2)]
-1

_1
+— [(nv x EfTHE+ IV x EXP) + (llw, 'V x 8, E”*2||2+||w;1v x 8. E, 2||2)]

+7 = Ey
+[18; D), 2||2+§<||M;Dz+‘||2+||M;Dz||2). 4.11)

First, the following energy identity holds true for the solution of (4.2a)-(4.2b): For any
m € [1, Ny — 2],

3 o mty 0 32
—ENGer = — (I8 Dy, |17 = 118: Dy 1)

2
€AT m+ 1 -1 1
- (II We azst 22 —||weMa26rE,f||2>

m+2

ENG,
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Mol Z 2 -1 m+3 —1 302
=5 llo, VX3 E, I —lw, "V x 8 E ||
A 2.2
_Srret 2;)61 (II SUM B — o My 2 82E) ||2>
2 -1
‘L’ezﬂof2 2 m |2 2 m—12 2012 20102
T — NV x STEFN+ IV X GGEY 7)) — (IIV x STEL|I” + IV x §7E,|17)

m
=27 Z [(MyD}, 830 E}) + €ora(M,, "2 E}} + 0> M ElL, 82 D]
n=1

n _1
Ty o (szSgtDZ 2 S2(E} + EZ“)) : (4.12)
Furthermore, under the time step constraint:

€l 1

. 1
Tfmln 5 s T = )
A1l My M2 1o + 8comallweMy Ploe) 20IMIME |l V2 V20

1 v€oporah

— T , 4.13)
depha|lwe M, . [loo 2Cinu||Ma2||oo
we have the following discrete stability:
1 1
ENGE? <2 ENGZ - exp(C*mr), (4.14)

where the constant C* only depends on the physical parameters of the model.

Remark 2 We like to remark that the time step constraint (4.13) not only depends on the
physical parameters of the model, but also on the mesh size . Moreover, (4.12) is another
discrete form of the continuous energy identity (2.18), and has more extra small perturbed
terms compared to the energy identity (3.6) established for the scheme (3.2a)-(3.2b).

Proof The proof follows similarly to the stability proof given in Theorem 3, but much more
involved. To make our proof easy to follow, we divide it into several major parts.

() Choosing ¥, = 2. E}. in (4.2b), then substituting (4.2a) into (4.2b), and using
identities (3.9) and (3.15) with u" = Ej, we have

_1 _1

60—Z(HM 5B — 1M, s B )

€0A2

+T[<||we CEFP — oM, E))

+l l
(oM, 6B} I — llwocM, 6. ||2)]
0! n+ n—1

+T[(IIVXEZ“IIZ—IIVxEZ’IIIZ)—rZ(IISTV><Eh P = 118:V x E), 2||2>]
:‘L'(MbDZ,527 ';l) (4.15)

Choosing ¥, = t82; D}, in (4.2b), and using identities (3.14) and (3.15) with u" = D7,
we obtain

1
(18D

+1 1
W R = 118:Dy 1P
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o L _1
[(IIMZD”“II — M2 D712 — 2118 D), 117 — 116, D), 2||2)}

= teor2 (M, '82E} + w2 M EY, 5, D}). (4.16)

Adding (4.15) and (4.16) together, then summing up the result from n = 1 to any m <
N; — 2, we have

€02 m+1 2

_1 1
= (M, 5, E, — M, 28 E %)

€or2 _1 _1
+T[<||weMa2E21“||2+||weMa2E;,"||2>—<||we 2E2||+\|wc thII)]

Eokz‘cz +
- (n oMy 5B RN ooy 5 ||2)

-1
Ho
T

[I1V X 12 4+ 11V x BRI = IV x EfIP = IV x E}IP]
—-1_2 1 2 1 1
My T m+3 3 1 T +1 1
- (nw x E, | —118:V x E} H2> +50-3) (HSrD';f P - ||er,§||2)
1 1 1 1 1
+1 [||M;D;1+1||2+ l\M; D} 1I? = [|1M,; Dy — ||M;D},\|2}
m m
=1 (MpD}. 8 E})+1 ) eora(M; ' S2E} + ;M E}}, 55 D}). 4.17)
n=I1

(II) Using (4.2b) to subtract itself with n reduced to n — 1, then dividing the result by 7,
and using (4.2a), we obtain

L 82E" — 2! B _1
60)‘2(Ma1 =k _L_T b +a)5Ma18TEZ Z’V’h)

_1 _1
g (VX 8. B2V x ¥y) = (Mpse D), 2, 9y). (4.18)

Choosing ¥, = w, > - rSz(M

obtain

) in (4.18), and using Lemma 2 with u" = Ej}, we

60 2(” 71M 282En||2_”a)71M 282En 1||)

_1 1 _1 _3 _1 _1
+T [(nMa 25, E) " P M, ZSTEZ Py - 231M, 282ENI1F — 1M, 263E2*1||2)]

o7 2u! +1 -
+A[(||VXSTEZ 2P|V x 8 E, - 2(IV x 82E}|1*~||V x §2E}} l||2>]
1 E" + g1
- (M,,a D, 52(%) . (4.19)

(III) Summing up (4.19) fromn = 1 to any m < N; — 2, then adding the result to (4.17),

. .. +1 .
and using the definition of EN sz 2 we obtain
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ENG™' Z ENGZ — (||6,D’ e llaszHZ)
_eokar? (||we . ’afE"l“Hz—Hwe ZSthH2>
_@(n SV x s, Em+2||2 ||w;1VX$rEh%ll2)
—E‘)M# (II C My 252Em||2—||w;1MJ%6$E2I|2>
_olug'e?

[V X 2B} I+ 11V x 2B 1P = IV x 2EQIP + IV x 82413

m
=2t Y [(MyD}, 82 E}) + eora(M; '8 E}y + o} M, E}}, 52. D}})]

n=1
m uel

) o <Mb52, D, %, 82(E} + EZ’1)> ) (4.20)
n=1

(IV) Dropping those nonnegative terms on the left hand side of (4.20), we have

1 1 2 1
ENGou ? < ENGZ + —||8TD"’+2 12

2 2 2

€0A2T +1 Ko _ m+3
llweM; 25, E; P+ %H 'V x 8. E, 2

2 2 —2,,—-1_2
€orow; g1 Mo T _
ane‘MazaiEﬁfnz ¢ 20 IV x SZEP > + IV x $2E} 1%

m
+21 Y [(MpDj, 820 E})) + eoha(M; '8 E)} + ;M ' Ej, 8. D})]

n=1

1
-HZw (Mbszf " ,33(E2+EZ—1)). 4.21)

Now we just need to bound those right hand side terms of (4.21). First, by using the inverse
estimate (4.5), we have

~2,,~1.2 —2,,~1.2
w, g T
IV X BB < = G ISP
1 1 I
=57 1o ' C TR IME |2 llw, " M, 2 S2ET . 4.22)

The term 27 ) ", (M D7}, 62 E})) can be bounded as derived in (3.19). By the Cauchy-
Schwarz inequlaity and the inequality ||#||2 < %(||a||2 + 1|b]|%), we have

" _1
2reohy Y (M, '62E}. 82: D) < T€0rawel My  |loo

n=l1
m 1
Z[szlM 2B + ||8 Dy 46,0 W]
n=1
m—1
< vephowel My ¥ llng [nwlM PSIENIP 4 Y ey My 52
n=1
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-1

1 +l m +l

+18eDy IR+ Y 18Dy I | (4.23)
n=0

By the same arguments, we have

m
2tehy Y (w; M, E}. 82: D))

n=1

_1
TegMwe || My ¥ |loo

1 |A

! m—1 1 1 1 m—1 |
—_= —_= +, Jr,
llweMy * Ej/ 11+ 3 llweMy * EjI2 + S116: D) 1P + 3 118 D) 2||2} :
n=1

n=0
(4.24)
and
m n_l
Y (Mb(Sth 2 82BN + E;’,—l))
n=1
1
< tllo; ' MpMS |10
- P S DO A TS (P
D8 Dy 1P + Sl ' My P STERIP + ) oy ' My ST | (4.25)
n=1 n=0

Substituting the above estimates of (4.22)—(4.25) into (4.21), then choosing t small enough
so that the right hand side terms can be controlled by the corresponding left hand terms of
4.21),e.g.,

1 1 -1 1 _ L1 €gA2
< 5 wlt? < 3 Te0r20elIMa *lloo < 7, 7o, IMEMZ ||oo < -
—3 1 -3 | 3 €02
Tl My *lloo < 5, Te0h20elMa * lloo + 570, 1My Mg lloo < ==,
L1 1 1 _ _ 1 €QA2
Tl 1My M lloo < 5, Erzuolc,%wh 2IMZ 2 < 5 (4.26)

which are equivalent to (4.13), and using the discrete Gronwall inequality (e.g., [20, Lemma
3.1]), we complete the proof. O

Similar error estimate can be established for scheme (4.3a) and (4.3b). Due to page limit
and more technicality, we skip it.

5 Numerical Results
In this section, we present some numerical tests to justify our analysis and demonstrate that

the proposed rotation cloak model can rotate the electromagnetic fields at a specified angle,
while the cloak itself is invisible as it causes little scattering.
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Fig.2 The coarse grid

5.1 Example 1

This example is developed to test the convergence rate for both schemes (3.2a) and (3.2b),
(4.2a) and (4.2b) on an annulus domain with inner radius Ry = 0.2 and outer radius R, = 0.4.

To construct an analytic solution for testing the convergence rate, we have to add source
terms to the original model (2.13a) and (2.13b), i.e., we solve the following problem

D= —uy'VxVxE+g, (5.1a)
cora(M; '3, E + M 'E) = 8,D + MyD + f, (5.1b)

where the source functions f and g are calculated by the exact solution
_(eTT(r—=02)(r —0.4) _ (2ye! _ \/7
E= (e—f(r —0.2)(r — 0.4)) » D= (2xe—’> L=yttt
For simplicity, we choose the parameter g = 1, uo =1, w, = 1,0 = %, and the rest of
parameters of modeling equations are calculated by the expressions given in Sec.2. For our
simulation, we fixed the time step 7 = 2 x 1075 s, final time T = 1, and used a series of
continuous refined meshes to test the convergence rate. A sample coarse grid is demonstrated
in Fig.2. Tables 1 and 2 show The obtained convergence rates and computational times (in
seconds) by schemes (3.2a) and (3.2b), (4.2a) and (4.2b) are presented in Table 1 and Table 2,
respectively. Our results show clearly that both schemes achieved almost the same accuracy,
but scheme (4.2a) and (4.2b) is much faster than scheme (3.2a) and (3.2b). The reason is that
solving for E ZH via (3.4) involves computing and assembling an extra matrix (V¢ ;, V¢,)
for any basis function ¢ ; of U 2.

5.2 Example 2

This example is used to demonstrate the proposed new modeling equations can rotate the
electromagnetic fields at a specified angle, while the cloak itself is invisible as it causes little
scattering.

In our simulations, we fix the computational domain Q2 = [—1, I]m x [—1, 1]m dis-
cretized by an unstructured triangular mesh with a mesh size 4 = 0.01. We introduce a plane
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Table 1 The convergence rate and computational time obtained by scheme (3.2a) and (3.2b)

hmax hin |E — Epll Rate ||D — Dyl Rate Time (s)

0.12178 0.04961 1.5292887984E-03 - 1.7481064194E-02 - 46.6
0.06131 0.01602 5.1931514285E-04 1.5582 8.1750010134E-03 1.0965 230.3
0.03128 0.01139 2.3532747483E-04 1.1419 3.9835480738E-03 1.0372 571.1
0.01602 0.00512 1.1831112182E-04 0.9921 2.0231599016E-03 0.9774 1743.9
0.00814 0.00219 5.9087403575E-05 1.0017 1.0013051201E-03 1.0147 6610.2

Table 2 The convergence rate and computational time obtained by scheme (4.2a) and (4.2b)

hmax Rpin |E — Epll Rate ||D — Dyl Rate Time (s)

0.12178 0.04961 1.5292901919E-03 - 1.7481063283E-02 - 33.7
0.06131 0.01602 5.1931677762E-04 1.5582 8.1750009448E-03 1.0965 86.3
0.03128 0.01139 2.3532772796E-04 1.1419 3.9835482623E-03 1.0372 182.7
0.01602 0.00512 1.1831087464E-04 0.9921 2.0231599967E-03 0.9774 639.2
0.00814 0.00219 5.9087421391E-05 1.0017 1.0013051029E-03 1.0147 4645.3

wave source through a right hand side function S imposed in the Maxwell’s equations in the
free space region surrounding the cloaking region:

nodyD ==V x(VxE)—VxS, withD =¢kE, (5.2)

where the source function

(5.3)

2007 cos(wt), (x,y) € [—0.8, —0.79] x [—0.98, 0.98],
0, elsewhere,

and w = 2x f with an operating frequency f = 1.0 GH;. To avoid the complicated
perfectly matched layer (PML) [2, 4] used in our previous work [32], now we surround the
computational domain by an absorption boundary condition given as:

1 €0
nx (—VXxE)=—]|—0(mx (nxE)). 54
1o V 1o

To couple with the rotator model (3.2a) and (3.2b), we implement the free space model
(5.2) with the absorption boundary condition (5.4) as follows:

o2 E W)+ (VX Ej, VX i) = Jéolto < nx (nx 8 E}), ¥y >= —(Vx 5", ),
(5.5)
where we denote the boundary integral < u, v >:= |, aq U V.
To show that this scheme is conditionally stable, by choosing ¥, = 782 E}, in (5.5), and
using identities (3.14) and (3.15) with u" = EJ, we have

€010
2

+1 1
(18 Ey 2112 = 18 E;, 211*) + feoro < n X 82 E, n x 82, E} >

1 _ 41 _1
+Z[(||Vsz“||2—||VXEz %) =221V x 8. E, 2P = IV x 8. E, 2||2)]
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_1
_z (v x S, (st"+2 +6.E) 2))

I /\

gl _1
SV S"IR 4+ 218 B, P + 118 By 211, (5.6)

where in the last step we used the simple inequality (a, b) < %(| lal)® + [|b]%).
Summing up (5.6) fromn = 1toany m < N;—2, and dropping the non-negative boundary
integral term on the left side of (5.6), we obtain

€00 +2||

1
— (I8 E, — 16 EZ %)

1 [V % IR 19 x IR — 19 x B2 419 x ELID)]

2

T
< IV x5, MR SV x 8B + ZHVXS"H + ZlIs: )P

n=1
Tmfl 41
pil
+5 D 8B, P IR 5.7
n=0

Using the inverse estimate (4.5), we have

2

TV x s By

znv

2
< CL IS E EMTP, (5.8)

Substituting (5.8) into (5.7), and under the following time step constraint

22 -2
T C,Zuh 56();0 (OFTSZ/,/; Oé,jf:f) and%geogo (ort < iO[;—O)‘ (59)
we have
Eouo +
8. E, | +f||v x Ent?
€OMO
<—||8E 12+ - (||VxE 12+ 11V x E4II*) +
- m m—1 +
n
EZ IV x S"[1> + = an 211, (5.10)
n=1 n=0

which, by the discrete Gronwall inequality, leads to the following stability

+
conolls E, 2112+ |V x EMT?

<C|:260M0I|51E IP+1IV x ERIIP 4+ 11V x B, +2rZ|IV><S"II :| (.11

n=1

Here we consider a cylindrical electromagnetic rotator with Ry = 0.2m, R, = 0.4m.
Our computational mesh totally contains 206389 edges and 137326 triangular elements. In
our simulation, we choose the time step size 7 = 2.5 X 1013 5 and the total number of time
steps N = 70000. We test two different rotating angles 6.

Casel.6) = 7.

In Figs. 3 and 4, we plot the snapshots of the electric field components E, and E, respec-
tively. Both figures show clearly how the wave gets distorted in the metamaterial region. From
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Fig. 3 Snapshots of electric fields Ey at various time steps: (top left) 12000 steps; (top middle) 18000 steps;

(top right) 20000 steps; (bottom left) 30000 steps; (bottom middle) 40000 steps; (bottom right) 70000 steps
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Fig.4 Snapshots of electric fields Ey at various time steps: (top left) 12000 steps; (top middle) 18000 steps;
(top right) 20000 steps; (bottom left) 30000 steps; (bottom middle) 40000 steps; (bottom right) 70000 steps

those pictures, we can see that the structure has very small scattering and obvious rotational

effects.

Case2.0) = 7.

In this example, we take the same physical parameters as Case 1, except that the rotation
angle is changed to 6y = % Some snapshots of of the electric field components E = (E,
and E) are presented in Figs. 5 and 6, respectively. Both figures demonstrate that this design
indeed rotates the wave 5 clockwisely inside the inner region, and in the same time has the
invisibility cloaking capability outside the metamaterial region. Figures 5 and 6 are similar
to what we obtained by a different algorithm in our previous work [32, Fig.5-6].
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6 Conclusion

In this paper, we first reformulate a rotation cloak model originally derived in our previous
work [32]. The new system of govening equations has one less unknown variable than the
old model given in [32]. Existence and uniqueness of the modeling equations are established
for the first time. Some novel finite element schemes are proposed and analyzed. Numerical
results presented show that the new model can both rotate the wave inside the inner region,
and have the invisibility cloaking capability outside the metamaterial region.
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Appendix

In this appendix, we present the following lemma, which gives various time difference approx-
imations.

Lemma 3 The following inequalities hold:

2 3

n+1 n—1 1 tht1 In+1
o [ L w(y di|| < L/ 62u()|[* dt, Vu € H2©. T: L2()),
2 2t Ji, 15 Ji,,
., 1 Int 23 e 5 5 5 )
a ||lu" — — u(tydi|| <= 102u(r)|2dt, Y u € H*0, T; L2(S)).
27 th—1 8 th—1
L 2 unJrl —u" 2 1 [ ) . )
(11D ‘ Seu"T2|| = < - [[0;u(®)||"dt, Yu € H (0, T; L*(£2)),
T T Ji,
n+1 — oyt n—11,2 1 Int1
avy [|s2u"||* == % < 7/ 102u(r)|2dt, ¥ u € H*0, T; LX),
T h—1

3 In+1
V) |[82u" — a,zu"|\2 < I—S l104u(r)||>dt, Y u € H*(0, T; L*(R)),
h

n+1

-1

_ un—l

2t

u
_ arun

2 3 th+1
< =T 93u)
< [10; u(®)||dt,
1y

n—1

VD [|ctt” — B || =

Yue HO,T; L*(Q)),

1373 [+l
(VD) [[82 " — 82| < %/ 182 u()])2dt, ¥ u € H*(0, T; L2(S)).
th—1

Proof The proof of (IIT) can be found in [22, Lemma 3.19]. Below we give a brief proofs of
the rest.
(D Taking the square of the following integral identity
un+1 + unfl 1 /1n+1 1 tht1
In

u(ydt = — (t = ta—1)(tg1 — DO u(r) dt
4t

2 - E -1 th—1

and using the inequality

2 Ing1 In+1
< ( / la(t)|? dr) ( / Ib(0)|? dr), (6.1)
th—1 Ih—1

2

In+
/ 1 a(t)b(t) dt
tn

-1

we have

un+l +un—l 1 tht1
_ = —/ u(t) dt
2 2t Jy,

1 I+ Int+1
<16 < ft (t = ta1)* (a1 — 1)’ dt) ( / |07 u(t)|? dz)
n—1 Ih—1

f3 Int1
15

102u(z)|? dt.

In—1

(II) Taking the square of the following integral identity
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1 In41 1 S Y
u" — —/ u(t) dt = = [/ ( nol 1> (tys1 — t)atzu(t) dt
21/, 2t

+ ( 5 1)(tn1—t)32u(t)dt]

In—1

and using the inequality (6.1), we have

1 [l 2 Wt (f — 2 tnt
L Hdt| <= —1) (s — )% dt / 2u)|? dr
u ZT/rH u(r) _2[</% ( 7 ) (fn41 — 1) (:,, [07u(®)]
tn r—t 2 tn 3 tht1
+ (/ ( 2”“ + 1) (the1 — 1)? dt) (/ 102u()|? dt>i| < L/ 102u()|? dt.
th—1 T th—1 8 th—1

(IIT) Similarly, we have

12 2
un+1 —2u + " 1

2

1 In+1 5 In 2
= [/ (tne1 — D)0 u(t) dt +/ (t — th—1)0; u(t) dt:|
T T In h—1

I In+
<2 [(/ O dr) </ 1 |a,2u(r>|2dr)
t"
In n
(/ (t — th_1)? dt) (/ 102u())? dt)] i/ - 102u(t)|?dt.
1 -1

(IV) Using the same techniques as above, we have

1 It (g — ) 4 (1 — tn—1)3 4 2
—_ 78 t) dt —_— 90 1) dt
Tzu gt +/ 2 gu(n) |]

2 Int1 1 —t 6 Int1
22 / (1 =07 ) / ot u()? di
T4 I 36 h
th t—t,_ 6 tn 3 Int1
n </ ¢ —ta1)” d,) (/ ENTOIS dt)] < T—f |97 u ()| dt.
w36 - 18 Ji,

(V) Similarly, we easily have

L[ [0 (tggr — 1?4 o (t —ty-1)? 4 )
—_ 73 t) dt — 9 1) dt
zfu = 5u +/,, e |]

1—1

2
2.n 2. n2
[67u” —ou"|” =

2 2

n+1 _ un—l

2T

1 thtl t —t 4 1
< f (w1 =07 / 193u(t)|? dt
272 ' 4 £
th t—1t,_ 4 h 3 Int1
+ / =t / 03u()? dr ) | < T—/ 103u(r)dr.
th—1 4 h—1 8 th—1

(VD) Using the triangle inequality, and (V) and (VI), we obtain

u
— Btu"

1827 8™ — 82" [* < 2(|(82r — at>atu”|2 +197u" — 82u"?)

3 th+ It 3 In+
T " 4 n+l 4 2 137 n+1 A 2
<2(— 3u[2dt+f d, u(t)|“dt ——7/ d u(t)|“dt.
= (8 /t,,l | ] 18 . |t (0] 36 - |t (]
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