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Abstract
One potential application of metamaterials is for designing invisibility cloaks. In this paper,
we are interested in a rotation cloakmodel.Herewe carry out themathematical analysis of this
model for the first time. Through a careful analysis, we reformulate a new systemof governing
partial differential equations by reducing one unknown variable from the originally developed
modeling equations in Yang et al. (Commun Comput Phys 25:135–154, 2019). Then some
novel finite element schemes are proposed and their stability and optimal error estimate are
proved. Numerical simulations are presented to demonstrate that the new schemes for the
reduced modeling equations can effectively reproduce the rotation cloaking phenomenon.

Keywords Maxwell’s equations · Finite element method · Metamaterials · Rotation cloak

Mathematics Subject Classification 78M10 · 65N30 · 65F10 · 78-08

1 Introduction

The discovery of the electromagnetic (EM) metamaterials in 2000 stimulated a growing
interest in developing and analyzing various numerical methods for solving the Maxwell’s
equations inmetamaterials (cf., [5, 6, 10, 21, 28, 30], sincemetamaterials havemany potential
revolutionary applications across different areas, such as sensing, nanolithographywith light,
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subwavelength imagingwith super-resolution, invisibility cloaks (e.g., [3, 15, 24, 25, 29, 33]),
optical black hole [31], EM concentrator [18], rotator, and splitter etc [7, 8].

Due to its advantage in dealing with complex geometries and algorithmic robustness, the
finite element method (FEM) plays an important role in solving Maxwell’s equations. Over
the years, many FEMs have been developed and implemented to solve Maxwell’s equations
in both frequency domain (e.g., [14, 17, 19, 34]) and time domain (e.g, [9, 11, 12, 23]).
More details can be found in books on FEMs for Maxwell’s equations (e.g., [13, 22, 26]) and
review papers [1, 16].

In 2007, Chen and Chan [7] used the transformation media technique to design a real
rotation cloak, which is an invisible field rotator that rotates the EM fields so that the source
wave from inside/outside the cloak appears as if it comes from a different angle θ0. In
2009, Chen, Chan and their collaborators [8] made a sample rotator and experimentally
demonstrated the field rotation effect as well as the broadband functionality at microwave
frequencies. In 2019, Yang et al. [32] derived a set of time-domain Maxwell’s equations
and proposed a finite element scheme to successfully model the EM field rotation effect.
However, up to now, no anymathematical analysis has been done for the modeling equations.
Furthermore, the finite element scheme proposed in [32] involves all the unknown variables,
including a 2D electric field E, a 2D electric flux density D, and the scalar magnetic field
H . In this paper, we fill the theoretical analysis gap by carrying out some mathematical
analysis for this rotator model. More specifically, through a careful observation, we first
reformulate the original model into a new set of governing equations involving only E and
D. Then we establish the existence and uniqueness result for the new modeling equations.
Some novel finite element schemes (including both unconditonally and conditionally stable)
are developed and analyzed for the newmodel. Compared to the previous work [32], the new
schemes are more efficient and use less memory storage. To our best knowledge, this is the
first mathematical analysis paper devoted to the rotation cloak model. The newly proposed
schemes and the theoretical analysis are original.

The rest of the paper is organized as follows. In Sect. 2, we first present the original time-
domain governing equations for the EM rotation cloak model, then we reformulate it with
less unkowns. The existence and uniqueness of the solution for this model are established.
In Sect. 3, we propose an unconditionally stable finite element scheme for solving the rotator
model, then we establish the discrete stability and the error estimate of the scheme. In Sect. 4,
we extend the idea to three similar schemes, and present a conditional stability analysis. In
Sect. 5,wepresent somenumerical results to demonstrate the rotation cloaking effect achieved
by the model. Finally, we conclude the paper in Sect. 6.

2 TheModel Problem and Its Analysis

The 2D electromagnetic rotator cloak modelling equations were originally derived in our
previous work (cf. [32, Sec.2.2]). For the sake of completeness, we reiterate some important
steps from [32]. This cloaking device consists of two regions: the cloaking region �2 =
{(r , θ) : R1 ≤ r ≤ R2, 0 ≤ θ ≤ 2π} changes the direction of wave propagation, and the
inner core region �1 = {(r , θ) : 0 ≤ r ≤ R1, 0 ≤ θ ≤ 2π} rotates the incoming wave by
an angle θ0 (cf., Fig. 1). To realize these functions, the exact permittivity and permeability
can be derived by the coordinate transformation technique (cf. [22, Sec.9.2]). For this rotator
cloak, the coordinate transformation is given as follows (cf. [7]):
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Fig. 1 Illustration of the coordinate transformation of a cylindrical rotator cloak

r ′ = r , 0 ≤ r ≤ R2,

θ ′ =
{

θ + θ0, 0 ≤ r ≤ R1,

θ + R2−r
R2−R1

θ0, R1 ≤ r ≤ R2.

(2.1)

Using the form invariant property of Maxwell’s equations (cf. [22, Sec.9.2]), the relative
permittivity and permeability for the rotator cloak can be obtained (cf. [32, Sec.2.2]):

μ
′
r (x

′
, y

′
) = 1, 0 ≤ r ′ ≤ R2,

ε′
r (x

′, y′) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 0
0 1

)
, 0 ≤ r ′ ≤ R1,(

a(x ′, y′) b(x ′, y′)
b(x ′, y′) c(x ′, y′)

)
, R1 ≤ r ′ ≤ R2,

(2.2)

where we denote

a(x ′, y′) = 1 + 2m∗
x ′y′

r ′2 + m2∗y′2

r ′2 , b(x ′, y′) = −m∗(x ′2 − y′2)
r ′2 − m2∗x ′y′

r ′2 ,

c(x ′, y′) = 1 + x ′2m2∗
r ′2 − 2m∗x ′y′

r ′2 , r ′ =
√
x ′2 + y′2, m∗ = θ0r ′

R2 − R1
.

Note that ε′
r (x

′, y′) on the cloaking region (R1 ≤ r ′ ≤ R2) is symmetric and can be
diagonlized as

ε′
r = P

[
λ1 0
0 λ2

]
PT , P =

[
p1 p2

−p2 p1

]
, (2.3)

where λ1 and λ2 are the two eigenvalues of ε′
r (x

′, y′) given as [32, Sec.2.2]:

λ1 = 2 + m2∗ −√(2 + m2∗)2 − 4

2
∈ (0, 1), λ2 = 2 + m2∗ +√(2 + m2∗)2 − 4

2
∈ (1,∞).

Furthermore, we denote

p1 =
√

λ2 − a(x ′, y′)
λ2 − λ1

, p2 = sgn(b(x ′, y′))

√
a(x ′, y′) − λ1

λ2 − λ1
,

where sgn is the standard sign function.
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Since λ1 < 1, which is nonphysical and we map it by the lossless Drude dispersive
medium model

λ1 = 1 − ω2
e

ω2 , (2.4)

where ωe and ω denote the plasma frequency and the general wave frequency, respectively.
Substituting (2.4) into (2.3), using the constitutive equation D̂ = ε0ε

′
r Ê and the inverse of

matrix ε′
r , we obtain

1

λ2(1 − ω2
e

ω2 )

⎡
⎣ λ2 p21 + p22 − ω2

e p
2
2

ω2 p1 p2(1 − λ2) − p1 p2ω2
e

ω2

p1 p2(1 − λ2) − p1 p2ω2
e

ω2 p21 + λ2 p22 − ω2
e p

2
1

ω2

⎤
⎦ D̂ = ε0 Ê, (2.5)

where Ê and D̂ denote the eletric field and electric flux density in the frequency domain,
respectively.

Applying the time-harmonic relation u(x, t) = Re(e
√−1ωt û(x, t)) to (2.5), we can obtain

the constitutive equation in the time-domain given below in (2.6b), which along with the
Faraday’s law andAmpere’s law leads to the electromagnetic rotatormodel (cf. [32, Sec.2.2]):
For any (x, t) ∈ � × (0, T ],

∂t D(x, t) = ∇ × H(x, t), (2.6a)

ε0λ2
(
∂t t E(x, t) + ω2

e E(x, t)
) = Ma∂t t D(x, t) + MbD(x, t), (2.6b)

μ0∂t H(x, t) = −∇ × E(x, t), (2.6c)

where � is a bounded domain in R
2 with boundary ∂�, H denotes the magnetic field,

E = (Ex , Ey)
′ is the electric field, D = (Dx , Dy)

′ is the electric flux density, and ε0 and
μ0 are the free space permittivity and permeability, respectively. Here we adopt the 2D curl
operators ∇ × H = (∂y H ,−∂x H)′ and ∇ × E = ∂x Ey − ∂y Ex . Finally, matrices Ma and
Mb are given as follows:

Ma =
[

p21λ2 + p22 p1 p2(1 − λ2)

p1 p2(1 − λ2) p21 + p22λ2

]
, Mb = ω2

e

[
p22 p1 p2

p1 p2 p21

]
.

To complete the rotator model, we assume that (2.6a)–(2.6c) satisfy the initial conditions

D(x, 0) = D0(x), ∂t D(x, 0) = D1(x),

E(x, 0) = E0(x), ∂t E(x, 0) = E1(x), H(x, 0) = H0(x) ∀x ∈ �,
(2.7)

and the perfect conducting (PEC) boundary condition:

n × E = 0 on ∂�, (2.8)

where D0, D1, E0, E1, H0 are some given functions, and n is the unit outward normal
vector to ∂�.

First, we like to prove the following properties for matrices Ma , Mb, and Mc := M−1
a Mb.

Weneed the positive definiteness to invertmatrixMa later to benefit themathematical analysis
of the model, and we also need Mb to be symmetric nonnegative definite in order to define a
norm in Theorem 2 below.

Lemma 1 (I) The matrix Ma is symmetric positive definite.
(II) The matrix Mb is symmetric nonnegative definite.
(III) For Mc := M−1

a Mb, we have Mc = Mb.
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Proof (I) For any vector (u, v), it is easy to see that

(u, v)Ma

[
u
v

]
= u2(p21λ2 + p22) + 2p1 p2(1 − λ2)uv + (p21 + p22λ2)v

2

= (up2 + vp1)
2 + λ2(up1 − vp2)

2 ≥ 0, (2.9)

and (2.9) equals zero if and only if when u = v = 0. This proves that Ma is symmetric
positive definite.

(II) It is easy to see that

(u, v)Mb

[
u
v

]
= ω2

e (p
2
2u

2 + 2p1 p2uv + p21v
2) = ω2

e (p2u + p1v)2 ≥ 0, (2.10)

which shows that Mb is nonnegative definite.
(III) Since Ma is positive definite, its inverse Ma exists and is given by

M−1
a = 1

λ2

[
p21 + p22λ2 −p1 p2(1 − λ2)

−p1 p2(1 − λ2) p21λ2 + p22

]
. (2.11)

Through some algebraic calculations, and using the fact that p21 + p22 = 1, we easily
obtain that M−1

a Mb = Mb, which completes the proof. ��
Taking the time derivative of (2.6a) and using (2.6c), we have

∂t t D = ∇ × ∂t H = −μ−1
0 ∇ × ∇ × E. (2.12)

Using (2.12),we can reduce the originalmodel problem (2.6a)–(2.6c)with three unknowns
(E, D, H) to a problem involving only two unknowns (E, D):

∂t t D = −μ−1
0 ∇ × ∇ × E, (2.13a)

ε0λ2(M
−1
a ∂t t E + ω2

e M
−1
a E) = ∂t t D + MbD, (2.13b)

where (2.13b) is obtained by multliplying (2.6b) with M−1
a and using Lemma 1 (III).

From now on, we consider the following weak formulation problem of (2.13a)–(2.13b):
Find E ∈ H0(curl;�) and D ∈ H(curl;�) such that

(∂t t D,φ) = −μ−1
0 (∇ × E,∇ × φ), ∀ φ ∈ H0(curl;�), (2.14a)

ε0λ2(M
−1
a ∂t t E + ω2

e M
−1
a E,ψ) = (∂t t D + MbD,ψ), ∀ ψ ∈ H0(curl;�), (2.14b)

subject to the same initial conditions (2.7) (except for H ) and the PEC boundary condition
(2.8).

Theorem 1 There exists a unique solution (E, D) ∈ H0(curl;�) × H(curl;�) for the
problem (2.14a)–(2.14b).

Proof Denote the Laplace transform of a function f (t) for t ≥ 0 by f̂ (s) = ∫∞0 e−st f (t)dt .
Taking the Laplace transform of (2.14a) and using the initial conditions (2.7), we obtain

(s2 D̂ − sD0 − D1,φ) = −μ−1
0 (∇ × Ê,∇ × φ). (2.15)

Taking the Laplace transform of (2.14b) and using (2.15), we have
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ε0λ2
(
M−1

a (s2 Ê − sE0 − E1) + ω2
e M

−1
a Ê,ψ

)
= −μ−1

0 (∇ × Ê,∇ × ψ) + (Mb D̂,ψ). (2.16)

Multiplying (2.16) by s2, then replacing s2 D̂ by (2.15), and collecting like terms, we
obtain

μ−1
0

(
(s2 I2 + Mb)∇ × Ê,∇ × ψ

)+ ε0λ2s
2(s2 + ω2

e )(M
−1
a Ê,ψ)

= ε0λ2s
2 (M−1

a (sE0 + E1),ψ
)+ (Mb(sD0 + D1),ψ) , (2.17)

where we denote the 2 by 2 identity matrix I2 = diag(1, 1).
Using the Lax-Milgram lemma, we know that (2.17) exists a unique solution Ê ∈

H0(curl;�). The uniqueness of E follows from the uniqueness of the inverse Laplace trans-
form of Ê. The existence and uniqueness of the solution D is guaranteed by (2.14a). ��

Denote the L2(�) norm as || · ||. We can establish the following stability for the solution
of (2.14a) and (2.14b).

Theorem 2 For the solution (E, D) of (2.14a)–(2.14b), the following energy identity holds
true for any t ∈ (0, T ]:
ENG(t) − ENG(0)

=
∫ t

0
2
[
(MbD, ∂t E) + ω−2

e (Mb∂t D, ∂t t E) + ε0λ2(M
−1
a ∂t t E + ω2

e M
−1
a E, ∂t D)

]
ds,

(2.18)

where the energy ENG(t) is defined as

ENG(t) := ε0λ2(||ω−1
e M

− 1
2

a ∂t t E||2 + 2||M− 1
2

a ∂t E||2 + ||ωeM
− 1

2
a E||2)

+μ−1
0 (||∇ × E||2 + ||ω−1

e ∇ × ∂t E||2) + ||∂t D||2 + ||M
1
2
b D||2. (2.19)

Moreover, the following stability holds:

ENG(t) ≤ ENG(0) · exp(C∗t), ∀ t ∈ [0, T ], (2.20)

where the positive constant C∗ depends on those physical parameters of the problem (2.14a)
and (2.14b).

Proof To make our proof easy to follow, we divide it into two major parts.
(I) Choosing ψ = ∂t E in (2.14b), and using (2.14a) with φ = ∂t E, we have

ε0λ2

2

d

dt
(||M− 1

2
a ∂t E||2 + ||ωeM

− 1
2

a E||2) = −μ−1
0 (∇ × E,∇ × ∂t E) + (MbD, ∂t E)

= −μ−1
0

2

d

dt
||∇ × E||2 + (MbD, ∂t E), (2.21)

i.e.,

ε0λ2

2

d

dt
(||M− 1

2
a ∂t E||2 + ||ωeM

− 1
2

a E||2) + μ−1
0

2

d

dt
||∇ × E||2 = (MbD, ∂t E). (2.22)
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Similarly, taking the time derivative of (2.14b), then using (2.14a) and choosing ψ =
ω−2
e ∂t t E, we obtain

ε0λ2

2

d

dt
(||ω−1

e M
− 1

2
a ∂t t E||2 + ||M− 1

2
a ∂t E||2)

+μ−1
0 ω−2

e

2

d

dt
||∇ × ∂t E||2 = ω−2

e (Mb∂t D, ∂t t E). (2.23)

To bound D and ∂t D, choosing ψ = ∂t D in (2.14b), we have

1

2

d

dt
(||∂t D||2 + ||M

1
2
b D||2) = ε0λ2(M

−1
a ∂t t E + ω2

e M
−1
a E, ∂t D). (2.24)

Adding (2.22), (2.23) and (2.24) together, we obtain

d

dt
ENG(t)

= 2
[
(MbD, ∂t E) + ω−2

e (Mb∂t D, ∂t t E) + ε0λ2(M
−1
a ∂t t E + ω2

e M
−1
a E, ∂t D)

]
,

(2.25)

integrating which with respect to t from 0 to t completes the proof of (2.18).
(II) Using the Cauchy-Schwarz inequality, we can bound those four terms on the right

hand side of (2.25) as follows:

2(MbD, ∂t E) ≤ ||M
1
2
b M

1
2
a ||∞(||M

1
2
b D||2 + ||M− 1

2
a ∂t E||2),

2ω−2
e (Mb∂t D, ∂t t E) ≤ ||ω−1

e MbM
1
2
a ||∞(||∂t D||2 + ||ω−1

e M
− 1

2
a ∂t t E||2),

2ε0λ2(M
−1
a ∂t t E, ∂t D) ≤ ε0λ2||ωeM

− 1
2

a ||∞(||ω−1
e M

− 1
2

a ∂t t E||2 + ||∂t D||2),
2ε0λ2(ω

2
e M

−1
a E, ∂t D) ≤ ε0λ2||ωeM

− 1
2

a ||∞(||ωeM
− 1

2
a E||2 + ||∂t D||2).

Substituting the above estimates into (2.25) and using the Gronwall inequality (e.g., [20,
Lemma 2.1]), we complete the proof of (2.20). ��

3 An Unconditionally Stable Scheme and Its Analysis

To solve the problem (2.14a)-(2.14b) by a finite element method, we partition the physical
domain � by a family of regular triangular mesh Th with maximum mesh size h, and adopt
the r -th order Nédélec edge element space Uh [26, 27]: For any r ≥ 1,

Uh = {uh ∈ H(curl;�) : uh |K ∈ (pr−1)
2 ⊕ Sr , ∀ K ∈ Th}, (3.1)

where Sr = { �p ∈ ( p̃r )2, x · �p = 0}, p̃r denotes the space of homogeneous polynomials
of degree r , and pr denotes the space of polynomials of degree less than or equal to r in
variables x, y, respectively. To impose the PEC boundary condition (2.8), we denote the
subspace U0

h = {u ∈ Uh : u × n = 0 on ∂�}.
To construct a fully-discrete scheme, we assume that the time domain [0, T ] is discretized

uniformly by points ti = iτ, i = 0, 1, · · · , Nt , where the time step size τ = T
Nt
. For any
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time function un , we introduce the following time difference and averaging operators:

δτu
n+ 1

2 = un+1 − un

τ
, δ2τu

n = un+1 − 2un + un−1

τ 2
,

δ2τu
n = un+1 − un−1

2τ
, ũn = un+1 + un−1

2
.

Now we consider the following scheme: For any n ≥ 0, find Dn+1
h ∈ Uh, E

n+1
h ∈ U0

h
such that

(δ2τ D
n
h,φh) = −μ−1

0 (∇ × Ẽ
n
h,∇ × φh), ∀ φh ∈ U0

h, (3.2a)

ε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a Ẽ

n
h,ψh) = (δ2τ D

n
h + MbDn

h,ψh), ∀ ψh ∈ U0
h, (3.2b)

where the needed initial approximations D0
h, D

1
h, E0

h, E
1
h can be obtained from (2.7) as

follows:

D0
h = �c

hD0(x), D1
h − D−1

h = 2τ�c
hD1(x), (3.3a)

E0
h = �c

hE0(x), E1
h − E−1

h = 2τ�c
hE1(x), (3.3b)

where �c
h denotes the Nédélec interpolation operator.

We like to remark that this scheme is very easy in practical implementation: At each time
step,
Step 1: Substitute (3.2a) into (3.2b) to solve for En+1

h from the following equation:

ε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a Ẽ

n
h,ψh) + μ−1

0 (∇ × Ẽ
n
h,∇ × ψh) = (MbDn

h,ψh). (3.4)

Step 2: Solve (3.2a) for Dn+1
h .

Note that when n = 0, we have to use the initial approximations (3.3a) and (3.3b) to
replace D−1

h and E−1
h .

Belowwe will establish both the stability and convergence analysis for our scheme (3.2a)-
(3.2b).

3.1 Stability Analysis

In this subsection, we prove the unconditional stability for the scheme (3.2a)-(3.2b). For the
solution of (3.2a)-(3.2b), we denote the following discrete energy

ENG
n+ 1

2
ep = ε0λ2

⎛
⎝ ||ω−1

e M
− 1

2
a δ2τ E

n+1
h ||2 + ||ω−1

e M
− 1

2
a δ2τ E

n
h ||2

2
+ ||M− 1

2
a δτ E

n+ 1
2

h ||2

+||M− 1
2

a δτ Ẽ
n+ 1

2
h ||2 + ||ωeM

− 1
2

a En+1
h ||2 + ||ωeM

− 1
2

a En
h ||2

2

⎞
⎠

+μ−1
0

(
||∇ × En+1

h ||2 + ||∇ × En
h ||2

2
+ ||ω−1

e ∇ × δτ Ẽ
n+ 1

2
h ||2
)

+||δτ D
n+ 1

2
h ||2 + ||M

1
2
b Dn+1

h ||2 + ||M
1
2
b Dn

h ||2
2

. (3.5)
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Theorem 3 For the solution of (3.2a)-(3.2b), the following energy identity holds true: For
any m ∈ [1, Nt − 2],

ENG
m+ 1

2
ep − ENG

1
2
ep − τ 2

2
(||δτ D

m+ 1
2

h ||2 − ||δτ D
1
2
h ||2)

= 2τ
m∑

n=1

[
(MbDn

h, δ2τ E
n
h) + ω−2

e (Mbδ2τ Dn
h, δ

2
τ Ẽ

n
h)

+ ε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a Ẽ

n
h, δ2τ D

n
h)
]
. (3.6)

Furthermore, under the time step constraint:

τ ≤ min

⎧⎨
⎩

1

2(||ω−1
e MbM

1
2
a ||∞ + 2ε0λ2||ωeM

− 1
2

a ||∞)

,
1

2||M
1
2
b M

1
2
a ||∞

,
1√
2

⎫⎬
⎭ , (3.7)

we have the following discrete stability:

ENG
m+ 1

2
ep ≤ 2 · ENG

1
2
ep · exp(C∗∗mτ), (3.8)

where the constant C∗∗ only depends on the physical parameters of the model.

Remark 1 We like to remark that the time step constraint (3.7) only depends on those physical
parameters of the model, and is independent of the finite element mesh size h. Hence the
scheme (3.2a) and (3.2b) is an unconditionally stable scheme. Moreover, (3.6) is a discrete
form of the continuous energy identity (2.18) with an extra small perturbed term.

Proof Theproof follows those similar technues developed for the proof of continuous stability
given in Theorem 2. To make our proof easy to follow, we divide it into several major parts.

(I) Choosing ψh = τδ2τ En
h in (3.4), then using the following identities:

(δ2τu
n, δ2τu

n) =
(

δτun+ 1
2 − δτun− 1

2

τ
,
δτun+ 1

2 + δτun− 1
2

2

)

= 1

2τ

(∣∣∣|δτu
n+ 1

2

∣∣∣ |2 −
∣∣∣|δτu

n− 1
2

∣∣∣ |2) , (3.9)

and

(̃un, δ2τu
n) =
(
un+1 + un−1

2
,
un+1 − un−1

2τ

)
= 1

4τ

(||un+1||2 − ||un−1||2) , (3.10)

with u = Eh , we have

ε0λ2

2
(||M− 1

2
a δτ E

n+ 1
2

h ||2 − ||M− 1
2

a δτ E
n− 1

2
h ||2)

+ε0λ2

4
(||ωeM

− 1
2

a En+1
h ||2 − ||ωeM

− 1
2

a En−1
h ||2)

+μ−1
0

4
(||∇ × En+1

h ||2 − ||∇ × En−1
h ||2) = τ(MbDn

h, δ2τ E
n
h). (3.11)

Dividing (3.11) by τ really leads to a discretized form of (2.22).
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(II) Using (3.2b) with n = n + 1 to subtract itself with n = n − 1, then dividing the result
by 2τ , and using (3.2a), we obtain

ε0λ2(M
−1
a

δ2τ E
n+1
h − δ2τ E

n−1
h

2τ
+ ω2

e M
−1
a δ2τ Ẽ

n
h,ψh)

+μ−1
0 (∇ × δ2τ Ẽ

n
h,∇ × ψh) = (Mbδ2τ Dn

h,ψh). (3.12)

Choosing ψh = ω−2
e · τδ2τ Ẽ

n
h in (3.12), and using the identities (3.9) and (3.10) with with

u = Ẽh , we obtain

ε0λ2

4

(
||ω−1

e M
− 1

2
a δ2τ E

n+1
h ||2 − ||ω−1

e M
− 1

2
a δ2τ E

n−1
h ||2
)

+ε0λ2

2
(||M− 1

2
a δτ Ẽ

n+ 1
2

h ||2 − ||M− 1
2

a δτ Ẽ
n− 1

2
h ||2)

+ω−2
e μ−1

0

2
(||∇ × δτ Ẽ

n+ 1
2

h ||2 − ||∇ × δτ Ẽ
n− 1

2
h ||2)

= τω−2
e (Mbδ2τ Dn

h, δ
2
τ Ẽ

n
h). (3.13)

We like to remark that dividing (3.13) by τ leads to a discretized form of (2.23).
(III) Choosing ψh = τδ2τ Dn

h in (3.2b), and using the following identities

τ(δ2τu
n, δ2τu

n) = 1

2
(||δτu

n+ 1
2 ||2 − ||δτu

n− 1
2 ||2), (3.14)

and

τ(un, δ2τu
n) =
(
2un − un+1 − un−1 + (un+1 + un−1)

2
,
un+1 − un−1

2

)

= 1

4
(||un+1||2 − ||un−1||2) − τ 3

2
(δ2τu

n, δ2τu
n),

= 1

4
(||un+1||2 − ||un−1||2) − τ 2

4
(||δτu

n+ 1
2 ||2 − ||δτu

n− 1
2 ||2) (3.15)

with u = Dh , we obtain

1

2
(||δτ D

n+ 1
2

h ||2 − ||δτ D
n− 1

2
h ||2) + 1

4
(||M

1
2
b Dn+1

h ||2 − ||M
1
2
b Dn−1

h ||2)

−τ 2

4
(||δτ D

n+ 1
2

h ||2 − ||δτ D
n− 1

2
h ||2) = τε0λ2(M

−1
a δ2τ E

n
h

+ω2
e M

−1
a Ẽ

n
h, δ2τ D

n
h). (3.16)

Again, dividing (3.16) by τ yields a discretized form of (2.24).

Adding (3.11), (3.13) and (3.16), then using the definition of ENG
n+ 1

2
cn , and summing up

the result from n = 1 to any m ≤ Nt − 2, we obtain

ENG
m+ 1

2
ep − ENG

1
2
ep − τ 2

2
(||δτ D

m+ 1
2

h ||2 − ||δτ D
1
2
h ||2)

= 2τ
m∑

n=1

[
(MbDn

h, δ2τ E
n
h) + ω−2

e (Mbδ2τ Dn
h, δ

2
τ Ẽ

n
h)

+ε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a Ẽ

n
h, δ2τ D

n
h)
]
. (3.17)
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(IV) By absorbing the last left hand side term into the energy term, we immediately have

(1 − τ 2

2
)ENG

m+ 1
2

ep ≤ (1 + τ 2

2
)ENG

1
2
ep

+2τ
m∑

n=1

[
(MbDn

h, δ2τ E
n
h) + ω−2

e (Mbδ2τ Dn
h, δ

2
τ Ẽ

n
h)

+ε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a Ẽ

n
h, δ2τ D

n
h)
]
. (3.18)

Now we just need to estimate the last four right hand side terms. First, by the Cauchy–
Schwarz inequlaity and the inequality || a+b

2 ||2 ≤ 1
2 (||a||2 + ||b||2), we have

2τ
m∑

n=1

(MbDn
h, δ2τ E

n
h) ≤ τ ||M

1
2
b M

1
2
a ||∞

m∑
n=1

(
||M

1
2
b Dn

h ||2 + ||M− 1
2

a δ2τ En
h ||2
)

≤ τ ||M
1
2
b M

1
2
a ||∞

m∑
n=1

⎛
⎝||M

1
2
b Dn

h ||2 + ||M− 1
2

a δτ E
n+ 1

2
h ||2 + ||M− 1

2
a δτ E

n− 1
2

h ||2
2

⎞
⎠

≤ τ ||M
1
2
b M

1
2
a ||∞
⎛
⎝ ||M

1
2
b Dm+1

h ||2 + ||M
1
2
b Dm

h ||2
2

+ ||M− 1
2

a δτ E
m+ 1

2
h ||2
⎞
⎠

+τ ||M
1
2
b M

1
2
a ||∞

m−1∑
n=0

⎛
⎝ ||M

1
2
b Dn+1

h ||2 + ||M
1
2
b Dn

h ||2
2

+ ||M− 1
2

a δτ E
n+ 1

2
h ||2
⎞
⎠ .(3.19)

By the same arguments, we have

2τ
m∑

n=1

ω−2
e (Mbδ2τ Dn

h, δ
2
τ Ẽ

n
h) ≤ τ ||ω−1

e MbM
1
2
a ||∞

m∑
n=1

(||δ2τ Dn
h ||2 + ||ω−1

e M
− 1

2
a δ2τ Ẽ

n
h ||2)

≤ τ ||ω−1
e MbM

1
2
a ||∞
⎛
⎝1
2
||δτ D

m+ 1
2

h ||2 + ||ω−1
e M

− 1
2

a δ2τ E
m+1
h ||2 + ||ω−1

e M
− 1

2
a δ2τ E

m
h ||2

2

⎞
⎠

+ τ ||ω−1
e MbM

1
2
a ||∞

m−1∑
n=0

(
||δτ D

n+ 1
2

h ||2 + ||ω−1
e M

− 1
2

a δ2τ E
n
h ||2
)

, (3.20)

2τε0λ2

m∑
n=1

(M−1
a δ2τ E

n
h, δ2τ D

n
h) ≤ τε0λ2||ωeM

− 1
2

a ||∞
m∑

n=1

(
||ω−1

e M
− 1

2
a δ2τ E

n
h ||2 + ||δ2τ Dn

h ||2
)

≤ τε0λ2||ωeM
− 1

2
a ||∞

(
||ω−1

e M
− 1

2
a δ2τ E

m
h ||2 + 1

2
||δτ D

m+ 1
2

h ||2
)

+τε0λ2||ωeM
− 1

2
a ||∞

m−1∑
n=0

(
||ω−1

e M
− 1

2
a δ2τ E

n
h ||2 + ||δτ D

n+ 1
2

h ||2
)

, (3.21)

and

2τε0λ2

m∑
n=1

(ω2
e M

−1
a Ẽ

n
h, δ2τ D

n
h) ≤ τε0λ2||ωeM

− 1
2

a ||∞
m∑

n=1

(||ωeM
− 1

2
a Ẽ

n
h ||2 + ||δ2τ Dn

h ||2)
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≤ τε0λ2||ωeM
− 1

2
a ||∞

⎛
⎝ ||ωeM

− 1
2

a Em+1
h ||2 + ||ωeM

− 1
2

a Em
h ||2

2
+ 1

2
||δτ D

m+ 1
2

h ||2
⎞
⎠

+τε0λ2||ωeM
− 1

2
a ||∞

m−1∑
n=0

(
||ωeM

− 1
2

a En
h ||2 + ||δτ D

n+ 1
2

h ||2
)

. (3.22)

Substituting the estimates of (3.19)-(3.22) into (3.18), then choosing τ small enough, e.g.,

τ(||ω−1
e MbM

1
2
a ||∞ + 2ε0λ2||ωeM

− 1
2

a ||∞) ≤ 1

2
, τ ||M

1
2
b M

1
2
a ||∞ ≤ 1

2
, τ ≤ 1√

2
, (3.23)

which are equivalent to (3.7), and using the discrete Gronwall inequality (e.g., [20, Lemma
3.1]), we complete the proof. ��

3.2 Optimal Error Estimate

To establish the error estimate, we need the following interpolation error estimate

||u − �c
hu||H(curl;�) ≤ chr ||u||Hr (curl;�), ∀ u ∈ Hr (curl;�), (3.24)

where we denote the norm ||u||Hr (curl;�) := (||u||Hr (�)+||∇×u||Hr (�))
1/2 for the Sobolev

space

Hr (curl;�) = {v ∈ Hr (�) | ∇ × u ∈ Hr (�)
}
.

To carry out the convergence analysis, we split the solution errors into two parts: one is
the error between the finite element solution and the corrsponding interpolation; the other
one is the interpolation error, i.e.,

En
h = En

h − E(x, tn) = (En
h − �c

hE
n) − (En − �c

hE
n) := En

hξ − En
hη,

Dn
h = Dn

h − D(x, tn) = (Dn
h − �c

hD
n) − (Dn − �c

hD
n) := Dn

hξ − Dn
hη,

here and below we simply denote En := E(x, tn) and Dn := D(x, tn).
Now we can present the following optimal error estimate for the scheme (3.2a)-(3.2b).

The idea is to first derive the error equations, which have exactly the same form as the
numerical scheme (3.2a)-(3.2b) plus extra error terms caused by the spatial interpolation and
time approximations. Hence, the proof of error estimate follows the stabilty proof closely.

Theorem 4 Suppose that the analytical solutions (E, D) of (2.14a)-(2.14b) are smooth
enough, then for any n ≥ 1 we have

ε0λ2

⎛
⎝ ||ω−1

e M
− 1

2
a (δ2τ E

n+1
h − ∂2t E

n+1)||2 + ||ω−1
e M

− 1
2

a (δ2τ E
n
h − ∂2t E

n)||2
2

+||M− 1
2

a (δτ E
n+ 1

2
h − ∂t En+ 1

2 )||2 + ||M− 1
2

a (δτ Ẽ
n+ 1

2
h − ∂t Ẽ

n+ 1
2 )||2

+||ωeM
− 1

2
a (En+1

h − En+1)||2 + ||ωeM
− 1

2
a (En

h − En)||2
2

⎞
⎠

+μ−1
0

(
||∇ × (En+1

h − En+1)||2 + ||∇ × (En
h − En)||2

2
+ ||ω−1

e ∇ × (δτ Ẽ
n+ 1

2
h − ∂t Ẽ

n+ 1
2 )||2
)
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+||δτ D
n+ 1

2
h − ∂t Dn+ 1

2 ||2 + ||M
1
2
b (Dn+1

h − Dn+1)||2 + ||M
1
2
b (Dn

h − Dn)||2
2

≤ C(τ 2 + hr )2, (3.25)

where constant C > 0 is independent of h and τ , and r is the degree of the finite element
basis functions.

Proof First, we need to derive the error equations. Integrating (2.14b) from t = tn−1 to
t = tn+1, then dividing by 2τ , we obtain
(

δ2τ ∂t Dn + 1

2τ

∫ tn+1

tn−1

MbD dt,ψh

)
= ε0λ2

(
M−1

a δ2τ ∂t En + 1

2τ

∫ tn+1

tn−1

ω2
e M

−1
a E dt,ψh

)
.

(3.26)

Subtracting (3.26) from (3.2b) and using the error notations, we have the first error equa-
tion:

(δ2τ D
n
hξ + MbDn

hξ ,ψh) − ε0λ2(M
−1
a δ2τ E

n
hξ + ω2

e M
−1
a Ẽ

n
hξ ,ψh)

= (δ2τ D
n
hη + MbDn

hη,ψh) − ε0λ2(M
−1
a δ2τ E

n
hη + ω2

e M
−1
a Ẽ

n
hη,ψh)

+
(

δ2τ ∂t Dn − δ2τ D
n + 1

2τ

∫ tn+1

tn−1

Mb(D − Dn) dt,ψh

)

−ε0λ2

(
M−1

a (δ2τ ∂t En − δ2τ E
n) + 1

2τ

∫ tn+1

tn−1

ω2
e M

−1
a (E − Ẽ

n
) dt,ψh

)
.(3.27)

Similarly, integrating (2.14b) (with the substition of (2.14a)) from t = tn−1 to t = tn+1,
then dividing by 2τ , we obtain

ε0λ2

(
M−1

a δ2τ ∂t En + 1

2τ

∫ tn+1

tn−1

ω2
e M

−1
a Edt,ψ

)

+μ−1
0

(
1

2τ

∫ tn+1

tn−1

∇ × Edt,∇ × ψ

)
=
(

1

2τ

∫ tn+1

tn−1

MbD dt,ψ

)
. (3.28)

Subtracting (3.28) from (3.2b) (with the use of (3.2a)) and using the error notations, we
have the second error equation:

ε0λ2

(
M−1

a δ2τ E
n
hξ + ω2

e M
−1
a Ẽ

n
hξ ,ψh

)
+ μ−1

0

(
∇ × Ẽ

n
hξ ,∇ × ψh

)
−
(
MbDn

hξ ,ψh

)

= ε0λ2

(
M−1

a δ2τ E
n
hη + ω2

e M
−1
a Ẽ

n
hη,ψh

)
+ μ−1

0

(
∇ × Ẽ

n
hη,∇ × ψh

)
−
(
MbDn

hη,ψh

)

+ ε0λ2
(
M−1

a

(
δ2τ ∂t En − δ2τ E

n) ,ψh

)+ ε0λ2

(
1

2τ

∫ tn+1

tn−1

ω2
e M

−1
a (E − Ẽ

n
)dt,ψh

)

+μ−1
0

(
1

2τ

∫ tn+1

tn−1

∇ × (E − Ẽ
n
)dt,∇ × ψh

)
−
(

1

2τ

∫ tn+1

tn−1

Mb(D − Dn) dt,ψh

)
.

(3.29)

Note that the left hand sides of (3.27) and (3.29) have exactly the same forms as the
equations (3.2b) and (3.4) used in the stability proof of Theorem 3, and the right hand sides
(RHS) are extra terms caused by the spatial interpolation and time approximations. By the
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Cauchy-Schwarz inequality, the interpolation error estimate (3.24) and Lemma 3 given in
Appendix, all RHS terms of (3.27) and (3.29) can be bounded by O(τ 2 + hr ). Due to their
similarities, here we just illustrate how to estimate a few typical terms.

By Lemma 3 (IV) and the interpolation error estimate (3.24), we have

||δ2τ Dn
hη + MbDn

hη||2 ≤ 2

[
1

τ

∫ tn+1

tn−1

||∂2t Dhη||2dt + ||Mb||2∞||Dn
hη||2
]

≤ 2

[
1

τ

∫ tn+1

tn−1

ch2r ||∂2t D||2
Hr (curl;�)

dt + ||Mb||2∞ch2r ||D||2L∞(0,T ;Hr (curl;�))

]

≤ ch2r
[
||∂2t D||2L∞(0,T ;Hr (curl;�)) + ||D||2L∞(0,T ;Hr (curl;�))

]
. (3.30)

Similarly, by Lemma 3 (II) and (VII), we have

||δ2τ ∂t Dn − δ2τ D
n + 1

2τ

∫ tn+1

tn−1

Mb(D − Dn) dt ||2

≤ cτ 3
∫ tn+1

tn−1

(||∂4τ D||2 + ||Mb||2∞||∂2τ D||2)dt . (3.31)

Using the same technique developed for the stability proof in Theorem 3 and those RHS
estimates, we can obtain: For any n ≥ 1,

ε0λ2

⎛
⎝ ||ω−1

e M
− 1

2
a δ2τ E

n+1
hξ ||2 + ||ω−1

e M
− 1

2
a δ2τ E

n
hξ ||2

2
+ ||M− 1

2
a δτ E

n+ 1
2

hξ ||2

+||M− 1
2

a δτ Ẽ
n+ 1

2
hξ ||2 + ||ωeM

− 1
2

a En+1
hξ ||2 + ||ωeM

− 1
2

a En
hξ ||2

2

⎞
⎠

+μ−1
0

( ||∇ × En+1
hξ ||2 + ||∇ × En

hξ ||2
2

+ ||ω−1
e ∇ × δτ Ẽ

n+ 1
2

hξ ||2
)

+||δτ D
n+ 1

2
hξ ||2 + ||M

1
2
b Dn+1

hξ ||2 + ||M
1
2
b Dn

hξ ||2
2

≤ C(τ 2 + hr )2. (3.32)

Finally, applying the triangle inequality, Lemma 3 and the interpolation error estimate
(3.24) to all terms in (3.32), we can complete the proof of (3.25). Due to its technicality, here
we just present one estimate as an illustration:

||δ2τ En
h − ∂2t E

n ||2 = ||δ2τ En
hξ − δ2τ E

n
hη + (δ2τ E

n − ∂2t E
n)||2

≤ 3
[
||δ2τ En

hξ ||2 + ||δ2τ En
hη||2 + cτ 4||∂4t E||2L∞(0,T ;(L2(�))2)

]

≤ C(τ 2 + hr )2 + Ch2r ||∂2t E||2L∞(0,T ;Hr (curl;�)) + Cτ 4||∂4t E||2L∞(0,T ;(L2(�))2)
.

(3.33)

��
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4 Extensions to Other Similar Schemes

We like to remark that we can construct some other schemes similar to (3.2a)-(3.2b), such as

(δ2τ D
n
h,φh) = −μ−1

0 (∇ × Ẽ
n
h,∇ × φh), ∀ φh ∈ U0

h, (4.1a)

ε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a En

h,ψh) = (δ2τ D
n
h + MbDn

h,ψh), ∀ ψh ∈ U0
h, (4.1b)

(δ2τ D
n
h,φh) = −μ−1

0 (∇ × En
h,∇ × φh), ∀ φh ∈ U0

h, (4.2a)

ε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a En

h,ψh) = (δ2τ D
n
h + MbDn

h,ψh), ∀ ψh ∈ U0
h, (4.2b)

and

(δ2τ D
n
h,φh) = −μ−1

0 (∇ × En
h,∇ × φh), ∀ φh ∈ U0

h, (4.3a)

ε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a Ẽ

n
h,ψh) = (δ2τ D

n
h + MbDn

h,ψh), ∀ ψh ∈ U0
h . (4.3b)

It is easy to see that the scheme (4.1a)-(4.1b) can be implemented similarly as (3.2a) and
(3.2b) by substituting (4.1a) into (4.1b) to solve for En+1

h from the following equation:

ε0λ2(M
−1
a δ2τ E

n
h,ψh) + μ−1

0 (∇ × Ẽ
n
h,∇ × ψh)

= (MbDn
h,ψh) − ε0λ2(ω

2
e M

−1
a En

h,ψh). (4.4)

Then solve (4.1a) for Dn+1
h .

While the implementation of schemes (4.2a) and (4.2b), (4.3a) and (4.3b) are straightfor-
ward by first solving (4.2a) and (4.3a) respectively for Dn+1

h , then solve (4.2b) and (4.3b)
for En+1

h . In this sense, we can think that both schemes (4.2a) and (4.2b), (4.3a) and (4.3b)
are explicit.

Furthermore, we like to mention that stability and error estimate for these schemes can be
carried out similarly, but their analyses are quite delicate. Since schemes (4.2a) and (4.2b),
(4.3a) and (4.3b) are similar, belowwe just present the stability analysis for (4.2a) and (4.2b).

The same strategy developed in the stabilty proof for the scheme (3.2a) and (3.2b) does not
working for the scheme (4.2a) and (4.2b). The stability proof is much more complicated than
the previous proof for scheme (3.2a) and (3.2b). Moreover, we need the following standard
inverse estimate

||∇ × uh || ≤ Cinvh
−1||uh ||, ∀ uh ∈ Uh, (4.5)

where the constant Cinv > 0 is independent of the mesh size h. We also need the following
identity.

Lemma 2 For any sequence function un, we have(
δτu

n− 1
2 , τδ2τ (

un + un−1

2
)

)

= 1

4

[
(||δτu

n+ 1
2 ||2 − ||δτu

n− 3
2 ||2) − τ 2(||δ2τun ||2 − ||δ2τun−1||2)

]
. (4.6)
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Proof First, note that(
δτu

n− 1
2 , τδ2τ (

un + un−1

2
)

)

=
(

δτu
n− 1

2 ,
1

2
(δτu

n+ 1
2 − δτu

n− 1
2 ) + 1

2
(δτu

n− 1
2 − δτu

n− 3
2 )

)

= 1

2
(δτu

n− 1
2 , δτu

n+ 1
2 − δτu

n− 1
2 ) + 1

2
(δτu

n− 1
2 , δτu

n− 1
2 − δτu

n− 3
2 ). (4.7)

Using the following identity

(an+1, an+1 − an) = 1

2

[
(a2n+1 − a2n) + (an+1 − an)

2] (4.8)

for an = δτun− 1
2 , we obtain

1

2
(δτu

n+ 1
2 , δτu

n+ 1
2 − δτu

n− 1
2 )

= 1

4

[
(||δτu

n+ 1
2 ||2 − ||δτu

n− 1
2 ||2) + ||δτu

n+ 1
2 − δτu

n− 1
2 ||2
]

= 1

4

[
(||δτu

n+ 1
2 ||2 − ||δτu

n− 1
2 ||2) + τ 2||δ2τun ||2

]
. (4.9)

Using (4.9), we have

1

2
(δτu

n− 1
2 , δτu

n+ 1
2 − δτu

n− 1
2 )

= −1

2
||δτu

n+ 1
2 − δτu

n− 1
2 ||2 + 1

2
(δτu

n+ 1
2 , δτu

n+ 1
2 − δτu

n− 1
2 )

= 1

4

[
(||δτu

n+ 1
2 ||2 − ||δτu

n− 1
2 ||2) − τ 2||δ2τun ||2

]
. (4.10)

Substituting (4.9) with n replaced by n − 1 and (4.10) into (4.7) leads to (4.6). ��
Now we present the stability analysis for the scheme (4.2a)-(4.2b).

Theorem 5 For the solution of (4.2a)-(4.2b), we denote the discrete energy

ENG
n+ 1

2
ex = ε0λ2

[
||ω−1

e M
− 1

2
a δ2τ E

n
h ||2 + 1

2
(3||M− 1

2
a δτ E

n+ 1
2

h ||2 + ||M− 1
2

a δτ E
n− 1

2
h ||2)

+1

2
(||ωeM

− 1
2

a En+1
h ||2 + ||ωeM

− 1
2

a En
h ||2)
]

+μ−1
0

2

[
(||∇ × En+1

h ||2 + ||∇ × En
h ||2) + (||ω−1

e ∇ × δτ E
n+ 1

2
h ||2 + ||ω−1

e ∇ × δτ E
n− 1

2
h ||2)

]

+||δτ D
n+ 1

2
h ||2 + 1

2
(||M

1
2
b Dn+1

h ||2 + ||M
1
2
b Dn

h ||2). (4.11)

First, the following energy identity holds true for the solution of (4.2a)-(4.2b): For any
m ∈ [1, Nt − 2],

ENG
m+ 1

2
ex − ENG

1
2
ex − τ 2

2
(||δτ D

m+ 1
2

h ||2 − ||δτ D
1
2
h ||2)

− ε0λ2τ
2

2

(
||ωeM

− 1
2

a δτ E
m+ 1

2
h ||2 − ||ωeM

− 1
2

a δτ E
1
2
h ||2
)
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−μ−1
0 ω2

eτ
2

2

(
||ω−1

e ∇ × δτ E
m+ 1

2
h ||2 − ||ω−1

e ∇ × δτ E
1
2
h ||2
)

− ε0λ2ω
2
eτ

2

2

(
||ω−1

e M
− 1

2
a δ2τ E

m
h ||2 − ||ω−1

e M
− 1

2
a δ2τ E

0
h ||2
)

−ω−2
e μ−1

0 τ 2

2

[
(||∇ × δ2τ E

m
h ||2 + ||∇ × δ2τ E

m−1
h ||2) − (||∇ × δ2τ E

0
h ||2 + ||∇ × δ2τ E

1
h ||2)
]

= 2τ
m∑

n=1

[
(MbDn

h, δ2τ E
n
h) + ε0λ2(M

−1
a δ2τ E

n
h + ω2

e M
−1
a En

h, δ2τ D
n
h)
]

+τ

m∑
n=1

ω−2
e

(
Mbδ2τ D

n− 1
2

h , δ2τ (E
n
h + En−1

h )

)
. (4.12)

Furthermore, under the time step constraint:

τ ≤ min

⎧⎨
⎩

ε0λ2

4(||ω−1
e MbM

1
2
a ||∞ + 8ε0λ2||ωeM

− 1
2

a ||∞)

,
1

2||M
1
2
b M

1
2
a ||∞

,
1√
2
,

1√
2ωe

,

1

4ε0λ2||ωeM
− 1

2
a ||∞

,

√
ε0μ0λ2h

2Cinv||M
1
2
a ||∞

⎫⎬
⎭ , (4.13)

we have the following discrete stability:

ENG
m+ 1

2
ex ≤ 2 · ENG

1
2
ex · exp(C∗mτ), (4.14)

where the constant C∗ only depends on the physical parameters of the model.

Remark 2 We like to remark that the time step constraint (4.13) not only depends on the
physical parameters of the model, but also on the mesh size h. Moreover, (4.12) is another
discrete form of the continuous energy identity (2.18), and has more extra small perturbed
terms compared to the energy identity (3.6) established for the scheme (3.2a)-(3.2b).

Proof The proof follows similarly to the stability proof given in Theorem 3, but much more
involved. To make our proof easy to follow, we divide it into several major parts.

(I) Choosing ψh = τδ2τ En
h in (4.2b), then substituting (4.2a) into (4.2b), and using

identities (3.9) and (3.15) with un = En
h , we have

ε0λ2

2
(||M− 1

2
a δτ E

n+ 1
2

h ||2 − ||M− 1
2

a δτ E
n− 1

2
h ||2)

+ ε0λ2

4

[
(||ωeM

− 1
2

a En+1
h ||2 − ||ωeM

− 1
2

a En−1
h ||2)

−τ 2(||ωeM
− 1

2
a δτ E

n+ 1
2

h ||2 − ||ωeM
− 1

2
a δτ E

n− 1
2

h ||2)
]

+μ−1
0

4

[
(||∇ × En+1

h ||2 − ||∇ × En−1
h ||2) − τ 2(||δτ∇ × E

n+ 1
2

h ||2 − ||δτ∇ × E
n− 1

2
h ||2)

]

= τ(MbDn
h, δ2τ E

n
h). (4.15)

Choosing ψh = τδ2τ Dn
h in (4.2b), and using identities (3.14) and (3.15) with un = Dn

h ,
we obtain

1

2
(||δτ D

n+ 1
2

h ||2 − ||δτ D
n− 1

2
h ||2)
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+1

4

[
(||M

1
2
b Dn+1

h ||2 − ||M
1
2
b Dn−1

h ||2) − τ 2(||δτ D
n+ 1

2
h ||2 − ||δτ D

n− 1
2

h ||2)
]

= τε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a En

h, δ2τ D
n
h). (4.16)

Adding (4.15) and (4.16) together, then summing up the result from n = 1 to any m ≤
Nt − 2, we have

ε0λ2

2
(||M− 1

2
a δτ E

m+ 1
2

h ||2 − ||M− 1
2

a δτ E
1
2
h ||2)

+ ε0λ2

4

[
(||ωeM

− 1
2

a Em+1
h ||2 + ||ωeM

− 1
2

a Em
h ||2) − (||ωeM

− 1
2

a E0
h ||2 + ||ωeM

− 1
2

a E1
h ||2)
]

− ε0λ2τ
2

4

(
||ωeM

− 1
2

a δτ E
m+ 1

2
h ||2 − ||ωeM

− 1
2

a δτ E
1
2
h ||2
)

+μ−1
0

4

[
||∇ × Em+1

h ||2 + ||∇ × Em
h ||2 − ||∇ × E0

h ||2 − ||∇ × E1
h ||2
]

−μ−1
0 τ 2

4

(
||δτ ∇ × E

m+ 1
2

h ||2 − ||δτ ∇ × E
1
2
h ||2
)

+ 1

2
(1 − τ 2

2
)

(
||δτ D

m+ 1
2

h ||2 − ||δτ D
1
2
h ||2
)

+1

4

[
||M

1
2
b Dm+1

h ||2 + ||M
1
2
b Dm

h ||2 − ||M
1
2
b D0

h ||2 − ||M
1
2
b D1

h ||2
]

= τ

m∑
n=1

(MbDn
h, δ2τ E

n
h) + τ

m∑
n=1

ε0λ2(M
−1
a δ2τ E

n
h + ω2

e M
−1
a En

h, δ2τ D
n
h). (4.17)

(II) Using (4.2b) to subtract itself with n reduced to n − 1, then dividing the result by τ ,
and using (4.2a), we obtain

ε0λ2(M
−1
a

δ2τ E
n
h − δ2τ E

n−1
h

τ
+ ω2

e M
−1
a δτ E

n− 1
2

h ,ψh)

+μ−1
0 (∇ × δτ E

n− 1
2

h ,∇ × ψh) = (Mbδτ D
n− 1

2
h ,ψh). (4.18)

Choosing ψh = ω−2
e · τδ2τ (

En
h+En−1

h
2 ) in (4.18), and using Lemma 2 with un = En

h , we
obtain

ε0λ2

2
(||ω−1

e M
− 1

2
a δ2τ E

n
h ||2 − ||ω−1

e M
− 1

2
a δ2τ E

n−1
h ||2)

+ ε0λ2

4

[
(||M− 1

2
a δτ E

n+ 1
2

h ||2 − ||M− 1
2

a δτ E
n− 3

2
h ||2) − τ 2(||M− 1

2
a δ2τ E

n
h ||2 − ||M− 1

2
a δ2τ E

n−1
h ||2)
]

+ω−2
e μ−1

0

4

[
(||∇ × δτ E

n+ 1
2

h ||2−||∇ × δτ E
n− 3

2
h ||2)−τ 2(||∇ × δ2τ E

n
h ||2−||∇ × δ2τ E

n−1
h ||2)
]

= τω−2
e

(
Mbδτ D

n− 1
2

h , δ2τ (
En
h + En−1

h

2
)

)
. (4.19)

(III) Summing up (4.19) from n = 1 to any m ≤ Nt − 2, then adding the result to (4.17),

and using the definition of ENG
n+ 1

2
ex , we obtain

123



Journal of Scientific Computing           (2024) 100:26 Page 19 of 29    26 

ENG
m+ 1

2
ex − ENG

1
2
ex − τ 2

2
(||δτ D

m+ 1
2

h ||2 − ||δτ D
1
2
h ||2)

− ε0λ2τ
2

2

(
||ωeM

− 1
2

a δτ E
m+ 1

2
h ||2 − ||ωeM

− 1
2

a δτ E
1
2
h ||2
)

−μ−1
0 ω2

eτ
2

2

(
||ω−1

e ∇ × δτ E
m+ 1

2
h ||2 − ||ω−1

e ∇ × δτ E
1
2
h ||2
)

− ε0λ2ω
2
eτ

2

2

(
||ω−1

e M
− 1

2
a δ2τ E

m
h ||2 − ||ω−1

e M
− 1

2
a δ2τ E

0
h ||2
)

−ω−2
e μ−1

0 τ 2

2

[
(||∇ × δ2τ E

m
h ||2 + ||∇ × δ2τ E

m−1
h ||2) − (||∇ × δ2τ E

0
h ||2 + ||∇ × δ2τ E

1
h ||2)
]

= 2τ
m∑

n=1

[
(MbDn

h , δ2τ E
n
h) + ε0λ2(M

−1
a δ2τ E

n
h + ω2

e M
−1
a En

h , δ2τ D
n
h)
]

+τ

m∑
n=1

ω−2
e

(
Mbδ2τ D

n− 1
2

h , δ2τ (En
h + En−1

h )

)
. (4.20)

(IV) Dropping those nonnegative terms on the left hand side of (4.20), we have

ENG
m+ 1

2
ex ≤ ENG

1
2
ex + τ 2

2
||δτ D

m+ 1
2

h ||2

+ε0λ2τ
2

2
||ωeM

− 1
2

a δτ E
m+ 1

2
h ||2 + μ−1

0 ω2
eτ

2

2
||ω−1

e ∇ × δτ E
m+ 1

2
h ||2

+ε0λ2ω
2
eτ

2

2
||ω−1

e M
− 1

2
a δ2τ E

m
h ||2 + ω−2

e μ−1
0 τ 2

2
(||∇ × δ2τ E

m
h ||2 + ||∇ × δ2τ E

m−1
h ||2)

+2τ
m∑

n=1

[
(MbDn

h, δ2τ E
n
h) + ε0λ2(M

−1
a δ2τ E

n
h + ω2

e M
−1
a En

h, δ2τ D
n
h)
]

+τ

m∑
n=1

ω−2
e

(
Mbδ2τ D

n− 1
2

h , δ2τ (E
n
h + En−1

h )

)
. (4.21)

Nowwe just need to bound those right hand side terms of (4.21). First, by using the inverse
estimate (4.5), we have

ω−2
e μ−1

0 τ 2

2
||∇ × δ2τ E

m
h ||2 ≤ ω−2

e μ−1
0 τ 2

2
· C2

invh
−2||δ2τ Em

h ||2

≤ 1

2
· τ 2μ−1

0 C2
invh

−2||M
1
2
a ||2∞||ω−1

e M
− 1

2
a δ2τ E

m
h ||2. (4.22)

The term 2τ
∑m

n=1(MbDn
h, δ2τ E

n
h) can be bounded as derived in (3.19). By the Cauchy-

Schwarz inequlaity and the inequality || a+b
2 ||2 ≤ 1

2 (||a||2 + ||b||2), we have

2τε0λ2

m∑
n=1

(M−1
a δ2τ E

n
h, δ2τ D

n
h) ≤ τε0λ2ωe||M− 1

2
a ||∞

m∑
n=1

[
||ω−1

e M
− 1

2
a δ2τ E

n
h ||2 + 1

4
||δτ D

n+ 1
2

h + δτ D
n− 1

2
h ||2
]

≤ τε0λ2ωe||M− 1
2

a ||∞
[
||ω−1

e M
− 1

2
a δ2τ E

m
h ||2 +

m−1∑
n=1

||ω−1
e M

− 1
2

a δ2τ E
n
h ||2
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+1

2
||δτ D

m+ 1
2

h ||2 +
m−1∑
n=0

||δτ D
n+ 1

2
h ||2
]

. (4.23)

By the same arguments, we have

2τε0λ2

m∑
n=1

(ω2
e M

−1
a En

h, δ2τ D
n
h)

≤ τε0λ2ωe||M− 1
2

a ||∞[
||ωeM

− 1
2

a Em
h ||2 +

m−1∑
n=1

||ωeM
− 1

2
a En

h ||2 + 1

2
||δτ D

m+ 1
2

h ||2 +
m−1∑
n=0

||δτ D
n+ 1

2
h ||2
]

,

(4.24)

and

τ

m∑
n=1

ω−2
e

(
Mbδτ D

n− 1
2

h , δ2τ (E
n
h + En−1

h )

)

≤ τ ||ω−1
e MbM

1
2
a ||∞[

m∑
n=1

||δτ D
n− 1

2
h ||2 + 1

2
||ω−1

e M
− 1

2
a δ2τ E

m
h ||2 +

m−1∑
n=0

||ω−1
e M

− 1
2

a δ2τ E
n
h ||2
]

. (4.25)

Substituting the above estimates of (4.22)–(4.25) into (4.21), then choosing τ small enough
so that the right hand side terms can be controlled by the corresponding left hand terms of
(4.21), e.g.,

τ 2 ≤ 1

2
, ω2

eτ
2 ≤ 1

2
, τε0λ2ωe||M− 1

2
a ||∞ ≤ 1

4
, τω−1

e ||M
1
2
b M

1
2
a ||∞ ≤ ε0λ2

4
,

τωe||M− 1
2

a ||∞ ≤ 1

2
, τε0λ2ωe||M− 1

2
a ||∞ + 1

2
τω−1

e ||MbM
1
2
a ||∞ ≤ ε0λ2

8
,

τ ||M
1
2
b M

1
2
a ||∞ ≤ 1

2
,

1

2
τ 2μ−1

0 C2
invh

−2||M
1
2
a ||2∞ ≤ ε0λ2

8
, (4.26)

which are equivalent to (4.13), and using the discrete Gronwall inequality (e.g., [20, Lemma
3.1]), we complete the proof. ��

Similar error estimate can be established for scheme (4.3a) and (4.3b). Due to page limit
and more technicality, we skip it.

5 Numerical Results

In this section, we present some numerical tests to justify our analysis and demonstrate that
the proposed rotation cloak model can rotate the electromagnetic fields at a specified angle,
while the cloak itself is invisible as it causes little scattering.
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Fig. 2 The coarse grid

5.1 Example 1

This example is developed to test the convergence rate for both schemes (3.2a) and (3.2b),
(4.2a) and (4.2b) on an annulus domainwith inner radius R1 = 0.2 and outer radius R2 = 0.4.

To construct an analytic solution for testing the convergence rate, we have to add source
terms to the original model (2.13a) and (2.13b), i.e., we solve the following problem

∂t t D = −μ−1
0 ∇ × ∇ × E + g, (5.1a)

ε0λ2(M
−1
a ∂t t E + ω2

e M
−1
a E) = ∂t t D + MbD + f , (5.1b)

where the source functions f and g are calculated by the exact solution

E =
(
e−t (r − 0.2)(r − 0.4)
e−t (r − 0.2)(r − 0.4)

)
, D =

(
2ye−t

2xe−t

)
, r =

√
x2 + y2.

For simplicity, we choose the parameter ε0 = 1, μ0 = 1, ωe = 1, θ = π
4 , and the rest of

parameters of modeling equations are calculated by the expressions given in Sec. 2. For our
simulation, we fixed the time step τ = 2 × 10−5 s, final time T = 1 s, and used a series of
continuous refined meshes to test the convergence rate. A sample coarse grid is demonstrated
in Fig. 2. Tables 1 and 2 show The obtained convergence rates and computational times (in
seconds) by schemes (3.2a) and (3.2b), (4.2a) and (4.2b) are presented in Table 1 and Table 2,
respectively. Our results show clearly that both schemes achieved almost the same accuracy,
but scheme (4.2a) and (4.2b) is much faster than scheme (3.2a) and (3.2b). The reason is that
solving for En+1

h via (3.4) involves computing and assembling an extra matrix (∇φ j ,∇φi )

for any basis function φ j of U
0
h .

5.2 Example 2

This example is used to demonstrate the proposed new modeling equations can rotate the
electromagnetic fields at a specified angle, while the cloak itself is invisible as it causes little
scattering.

In our simulations, we fix the computational domain � = [−1, 1]m × [−1, 1]m dis-
cretized by an unstructured triangular mesh with a mesh size h = 0.01. We introduce a plane
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Table 1 The convergence rate and computational time obtained by scheme (3.2a) and (3.2b)

hmax hmin ‖E − Eh‖ Rate ‖D − Dh‖ Rate Time (s)

0.12178 0.04961 1.5292887984E-03 – 1.7481064194E-02 – 46.6

0.06131 0.01602 5.1931514285E-04 1.5582 8.1750010134E-03 1.0965 230.3

0.03128 0.01139 2.3532747483E-04 1.1419 3.9835480738E-03 1.0372 571.1

0.01602 0.00512 1.1831112182E-04 0.9921 2.0231599016E-03 0.9774 1743.9

0.00814 0.00219 5.9087403575E-05 1.0017 1.0013051201E-03 1.0147 6610.2

Table 2 The convergence rate and computational time obtained by scheme (4.2a) and (4.2b)

hmax hmin ‖E − Eh‖ Rate ‖D − Dh‖ Rate Time (s)

0.12178 0.04961 1.5292901919E-03 – 1.7481063283E-02 – 33.7

0.06131 0.01602 5.1931677762E-04 1.5582 8.1750009448E-03 1.0965 86.3

0.03128 0.01139 2.3532772796E-04 1.1419 3.9835482623E-03 1.0372 182.7

0.01602 0.00512 1.1831087464E-04 0.9921 2.0231599967E-03 0.9774 639.2

0.00814 0.00219 5.9087421391E-05 1.0017 1.0013051029E-03 1.0147 4645.3

wave source through a right hand side function S imposed in the Maxwell’s equations in the
free space region surrounding the cloaking region:

μ0∂t t D = −∇ × (∇ × E) − ∇ × S, with D = ε0E, (5.2)

where the source function

S =
{
200π cos(ωt), (x, y) ∈ [−0.8,−0.79] × [−0.98, 0.98],
0, elsewhere,

(5.3)

and ω = 2π f with an operating frequency f = 1.0 GHz . To avoid the complicated
perfectly matched layer (PML) [2, 4] used in our previous work [32], now we surround the
computational domain by an absorption boundary condition given as:

n × (
1

μ0
∇ × E) = −

√
ε0

μ0
∂t (n × (n × E)). (5.4)

To couple with the rotator model (3.2a) and (3.2b), we implement the free space model
(5.2) with the absorption boundary condition (5.4) as follows:

ε0μ0(δ
2
τ E

n
h,ψh)+(∇×En

h,∇×ψh)−√
ε0μ0 < n×(n×δ2τ En

h),ψh >= −(∇×Sn,ψh),

(5.5)
where we denote the boundary integral < u, v >:= ∫

∂�
u · v.

To show that this scheme is conditionally stable, by choosing ψh = τδ2τ En
h in (5.5), and

using identities (3.14) and (3.15) with un = En
h , we have

ε0μ0

2
(||δτ E

n+ 1
2

h ||2 − ||δτ E
n− 1

2
h ||2) + √

ε0μ0 < n × δ2τ En
h, n × δ2τ En

h >

+1

4

[
(||∇ × En+1

h ||2 − ||∇ × En−1
h ||2) − τ 2(||∇ × δτ E

n+ 1
2

h ||2 − ||∇ × δτ E
n− 1

2
h ||2)

]
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= −τ

(
∇ × Sn,

1

2
(δτ E

n+ 1
2

h + δτ E
n− 1

2
h )

)

≤ τ

2
||∇ × Sn ||2 + τ

4
(||δτ E

n+ 1
2

h ||2 + ||δτ E
n− 1

2
h ||2), (5.6)

where in the last step we used the simple inequality (a, b) ≤ 1
2 (||a||2 + ||b||2).

Summing up (5.6) from n = 1 to anym ≤ Nt−2, and dropping the non-negative boundary
integral term on the left side of (5.6), we obtain

ε0μ0

2
(||δτ E

m+ 1
2

h ||2 − ||δτ E
1
2
h ||2)

+1

4

[
(||∇ × Em+1

h ||2 + ||∇ × Em
h ||2) − (||∇ × E0

h ||2 + ||∇ × E1
h ||2)
]

≤ τ 2

4
(||∇ × δτ E

m+ 1
2

h ||2 − ||∇ × δτ E
1
2
h ||2) + τ

2

m∑
n=1

||∇ × Sn ||2 + τ

4
||δτ E

m+ 1
2

h ||2

+τ

2

m−1∑
n=0

||δτ E
n+ 1

2
h ||2. (5.7)

Using the inverse estimate (4.5), we have

τ 2

4
||∇ × δτ E

m+ 1
2

h ||2 ≤ τ 2

4
· C2

invh
−2||δτ E

m+ 1
2

h ||2. (5.8)

Substituting (5.8) into (5.7), and under the following time step constraint

τ2C2
inv

h−2

4
≤ ε0μ0

8
(or τ ≤

√
ε0μ0h√
2Cinv

) and
τ

4
≤ ε0μ0

8
(or τ ≤

√
ε0μ0√
2

), (5.9)

we have

ε0μ0

4
||δτ E

m+ 1
2

h ||2 + 1

4
||∇ × Em+1

h ||2

≤ ε0μ0

2
||δτ E

1
2
h ||2 + 1

4
(||∇ × E0

h ||2 + ||∇ × E1
h ||2) +

τ

2

m∑
n=1

||∇ × Sn ||2 + τ

2

m−1∑
n=0

||δτ E
n+ 1

2
h ||2, (5.10)

which, by the discrete Gronwall inequality, leads to the following stability

ε0μ0||δτ E
m+ 1

2
h ||2 + ||∇ × Em+1

h ||2

≤ C

[
2ε0μ0||δτ E

1
2
h ||2 + ||∇ × E0

h ||2 + ||∇ × E1
h ||2 + 2τ

m∑
n=1

||∇ × Sn ||2
]

. (5.11)

Here we consider a cylindrical electromagnetic rotator with R1 = 0.2m, R2 = 0.4m.
Our computational mesh totally contains 206389 edges and 137326 triangular elements. In
our simulation, we choose the time step size τ = 2.5× 10−13 s and the total number of time
steps N = 70000. We test two different rotating angles θ0.

Case 1. θ0 = π
4 .

In Figs. 3 and 4, we plot the snapshots of the electric field components Ex and Ey , respec-
tively. Both figures show clearly how thewave gets distorted in themetamaterial region. From
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Fig. 3 Snapshots of electric fields Ex at various time steps: (top left) 12000 steps; (top middle) 18000 steps;
(top right) 20000 steps; (bottom left) 30000 steps; (bottom middle) 40000 steps; (bottom right) 70000 steps

Fig. 4 Snapshots of electric fields Ey at various time steps: (top left) 12000 steps; (top middle) 18000 steps;
(top right) 20000 steps; (bottom left) 30000 steps; (bottom middle) 40000 steps; (bottom right) 70000 steps

those pictures, we can see that the structure has very small scattering and obvious rotational
effects.

Case 2. θ0 = π
2 .

In this example, we take the same physical parameters as Case 1, except that the rotation
angle is changed to θ0 = π

2 . Some snapshots of of the electric field components E = (Ex

and Ey) are presented in Figs. 5 and 6, respectively. Both figures demonstrate that this design
indeed rotates the wave π

2 clockwisely inside the inner region, and in the same time has the
invisibility cloaking capability outside the metamaterial region. Figures5 and 6 are similar
to what we obtained by a different algorithm in our previous work [32, Fig.5-6].
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Fig. 5 Snapshots of electric fields Ex at various time steps: (top left) 12000 steps; (top middle) 18000 steps;
(top right) 20000 steps; (bottom left) 30000 steps; (bottom middle) 40000 steps; (bottom right) 70000 steps

Fig. 6 Snapshots of electric fields Ey at various time steps: (top left) 12000 steps; (top middle) 18000 steps;
(top right) 20000 steps; (bottom left) 30000 steps; (bottom middle) 40000 steps; (bottom right) 70000 steps

6 Conclusion

In this paper, we first reformulate a rotation cloak model originally derived in our previous
work [32]. The new system of govening equations has one less unknown variable than the
old model given in [32]. Existence and uniqueness of the modeling equations are established
for the first time. Some novel finite element schemes are proposed and analyzed. Numerical
results presented show that the new model can both rotate the wave inside the inner region,
and have the invisibility cloaking capability outside the metamaterial region.
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Appendix

In this appendix,wepresent the following lemma,which gives various timedifference approx-
imations.

Lemma 3 The following inequalities hold:

(I)

∣∣∣∣
∣∣∣∣u

n+1 + un−1

2
− 1

2τ

∫ tn+1

tn−1

u(t) dt

∣∣∣∣
∣∣∣∣
2

≤ τ 3

15

∫ tn+1

tn−1

∣∣∣∣∂2t u(t)
∣∣∣∣2 dt, ∀ u ∈ H2(0, T ; L2(�)),

(II)

∣∣∣∣
∣∣∣∣un − 1

2τ

∫ tn+1

tn−1

u(t) dt

∣∣∣∣
∣∣∣∣
2

≤ τ 3

8

∫ tn+1

tn−1

||∂2t u(t)||2dt, ∀ u ∈ H2(0, T ; L2(�)),

(III)
∣∣∣∣∣∣δτu

n+ 1
2

∣∣∣∣∣∣2 :=
∣∣∣∣
∣∣∣∣u

n+1 − un

τ

∣∣∣∣
∣∣∣∣
2

≤ 1

τ

∫ tn+1

tn
||∂t u(t)||2dt, ∀ u ∈ H1(0, T ; L2(�)),

(IV)
∣∣∣∣δ2τ un∣∣∣∣2 :=

∣∣∣∣
∣∣∣∣u

n+1 − 2un + un−1

τ 2

∣∣∣∣
∣∣∣∣
2

≤ 1

τ

∫ tn+1

tn−1

||∂2t u(t)||2dt, ∀ u ∈ H2(0, T ; L2(�)),

(V)
∣∣∣∣δ2τ un − ∂2t u

n
∣∣∣∣2 ≤ τ 3

18

∫ tn+1

tn−1

||∂4t u(t)||2dt, ∀ u ∈ H4(0, T ; L2(�)),

(VI)
∣∣∣∣δ2τun − ∂t u

n
∣∣∣∣2 :=
∣∣∣∣
∣∣∣∣u

n+1 − un−1

2τ
− ∂t u

n
∣∣∣∣
∣∣∣∣
2

≤ τ 3

8

∫ tn+1

tn−1

||∂3t u(t)||2dt,

∀ u ∈ H3(0, T ; L2(�)),

(VII)
∣∣∣∣δ2τ ∂t un − δ2τ u

n
∣∣∣∣2 ≤ 13τ 3

36

∫ tn+1

tn−1

||∂4t u(t)||2dt, ∀ u ∈ H4(0, T ; L2(�)).

Proof The proof of (III) can be found in [22, Lemma 3.19]. Below we give a brief proofs of
the rest.

(I) Taking the square of the following integral identity

un+1 + un−1

2
− 1

2τ

∫ tn+1

tn−1

u(t) dt = 1

4τ

∫ tn+1

tn−1

(t − tn−1)(tn+1 − t)∂2t u(t) dt

and using the inequality
∣∣∣∣
∫ tn+1

tn−1

a(t)b(t) dt

∣∣∣∣
2

≤
(∫ tn+1

tn−1

|a(t)|2 dt
)(∫ tn+1

tn−1

|b(t)|2 dt
)

, (6.1)

we have ∣∣∣∣u
n+1 + un−1

2
− 1

2τ

∫ tn+1

tn−1

u(t) dt

∣∣∣∣
2

≤ 1

16τ 2

(∫ tn+1

tn−1

(t − tn−1)
2(tn+1 − t)2 dt

)(∫ tn+1

tn−1

|∂2t u(t)|2 dt
)

= τ 3

15

∫ tn+1

tn−1

|∂2t u(t)|2 dt .

(II) Taking the square of the following integral identity
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un − 1

2τ

∫ tn+1

tn−1

u(t) dt = 1

2

[∫ tn+1

tn

(
t − tn−1

2τ
− 1

)
(tn+1 − t)∂2t u(t) dt

+
∫ tn

tn−1

(
t − tn+1

2τ
+ 1)(tn−1 − t)∂2t u(t) dt

]

and using the inequality (6.1), we have

∣∣∣∣un − 1

2τ

∫ tn+1

tn−1

u(t) dt

∣∣∣∣
2

≤ 1

2

[(∫ tn+1

tn

(
t − tn−1

2τ
− 1

)2
(tn+1 − t)2 dt

)(∫ tn+1

tn
|∂2t u(t)|2 dt

)

+
(∫ tn

tn−1

(
t − tn+1

2τ
+ 1

)2
(tn−1 − t)2 dt

)(∫ tn

tn−1

|∂2t u(t)|2 dt
)]

≤ τ 3

8

∫ tn+1

tn−1

|∂2t u(t)|2 dt .

(III) Similarly, we have
∣∣∣∣u

n+1 − 2un + un−1

τ 2

∣∣∣∣
2

=
∣∣∣∣ 1τ 2
[∫ tn+1

tn
(tn+1 − t)∂2t u(t) dt +

∫ tn

tn−1

(t − tn−1)∂
2
t u(t) dt

]∣∣∣∣
2

≤ 2

τ 4

[(∫ tn+1

tn
(tn+1 − t)2 dt

)(∫ tn+1

tn
|∂2t u(t)|2 dt

)

+
(∫ tn

tn−1

(t − tn−1)
2 dt

)(∫ tn

tn−1

|∂2t u(t)|2 dt
)]

≤ 1

τ

∫ tn+1

tn−1

|∂2t u(t)|2dt .

(IV) Using the same techniques as above, we have

|δ2τun − ∂2t u
n |2 =
∣∣∣∣ 1τ 2
[∫ tn+1

tn

(tn+1 − t)3

3! ∂4t u(t) dt +
∫ tn

tn−1

(t − tn−1)
3

3! ∂4t u(t) dt |2
]∣∣∣∣

2

≤ 2

τ 4

[(∫ tn+1

tn

(tn+1 − t)6

36
dt

)(∫ tn+1

tn
|∂4t u(t)|2 dt

)

+
(∫ tn

tn−1

(t − tn−1)
6

36
dt

)(∫ tn

tn−1

|∂4t u(t)|2 dt
)]

≤ τ 3

18

∫ tn+1

tn−1

|∂4t u(t)|2dt .

(V) Similarly, we easily have

∣∣∣∣u
n+1 − un−1

2τ
− ∂t u

n
∣∣∣∣
2

=
∣∣∣∣ 12τ
[∫ tn+1

tn

(tn+1 − t)2

2! ∂3t u(t) dt +
∫ tn

tn−1

(t − tn−1)
2

2! ∂3t u(t) dt |2
]∣∣∣∣

2

≤ 1

2τ 2

[(∫ tn+1

tn

(tn+1 − t)4

4
dt

)(∫ tn+1

tn
|∂3t u(t)|2 dt

)

+
(∫ tn

tn−1

(t − tn−1)
4

4
dt

)(∫ tn

tn−1

|∂3t u(t)|2 dt
)]

≤ τ 3

8

∫ tn+1

tn−1

|∂3t u(t)|2dt .

(VI) Using the triangle inequality, and (V) and (VI), we obtain

|δ2τ ∂t un − δ2τu
n |2 ≤ 2(|(δ2τ − ∂t )∂t u

n |2 + |∂2t un − δ2τu
n |2)

≤ 2

(
τ 3

8

∫ tn+1

tn−1

|∂4t u(t)|2dt + τ 3

18

∫ tn+1

tn−1

|∂4t u(t)|2dt
)

= 13τ 3

36

∫ tn+1

tn−1

|∂4t u(t)|2dt .
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