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Table I: Dataset Car

tion within the realm of multi-criteria decision-making. While Car | Horsepower (x10? hp) | Safety Rating | fu, (-)
forward operators, such as skyline, seek to identify products that P1 4.5 5 4.55
may interest a customer, reverse operators identify prospective P2 4.6 4 4.54
customers who are likely to be attracted to a particular product. P3 5.0 1 4.60
Specifically, for each customer, they assign scores to all products [ g ] 4.8 [ 2 [ 452 ]

w.r.t. the customer’s preference and then rank the products based
on these scores. If the particular product ranks high, the customer
is considered a prospective customer for that product. However,
relying purely on rankings might cause misleading results, as
rankings emphasize the products’ relative positions without
accounting for their score differences. In a competitive market,
a comparatively low-ranked product may have a score that is
nearly indistinguishable from that of the top-tier product(s), and
thus, may still be interesting to the customer. In this paper,
we directly utilize scores to evaluate products, enabling more
accurate identification of prospective customers.

We refer to our problem as the reverse regret query (RRQ)
and make several contributions. First, for the special case in
which each product is described by two attributes, we propose
an algorithm Sweeping that only takes linear time. Second,
for the general case in which each product can be described
by multiple attributes, we present two algorithms: an exact
algorithm E-PT and a faster approximate algorithm A-PC. We
conducted experiments on synthetic and real datasets. The results
confirm that evaluating products via scores provides a sound and
insightful way of identifying prospective customers. Under typical
settings, our proposed algorithms execute faster than existing
ones by 1-3 orders of magnitude.

Index Terms—reverse regret, query optimization

I. INTRODUCTION

The reverse version of the multi-criteria decision-making
problem [1]-[4] has recently become increasingly significant.
Unlike the forward version [5]-[7], which aims to pinpoint
products that align with customers’ preferences, the reverse
version seeks to identify prospective customers who are likely
to be interested in a particular product. This problem arises
in multiple scenarios, particularly for product design, where a
manufacturer seeks to create products with broad appeal in a
heterogeneous marketplace.

To motivate the problem, consider a simplified situation of a
car manufacturer. Suppose that there is a set D of cars pq, pa2,
etc., in the market, each of which is described by two attributes
as shown in Table I. The manufacturer wants to estimate the
demand for the design of a new car q.

In the literature [7]-[9], the customer’s preference is com-
monly modeled by a utility function f,,. This utility function is
different for each prospective customer. Consider a customer
with utility function f,,. Each car has a function score, as
shown in the rightmost column of the table. If the score of

car g is high enough, car g will be considered for purchase
by the customer. Thus, to find prospective customers, we need
to search for the utility functions based on which the score of
car g is high enough. If the number of such utility functions
is large, there will be many prospective customers for car q.

When mentioning that “the score of car g is high enough”
for a prospective customer, we refer to a widely applied mea-
surement called regret ratio [5], [10], [11]. Let p* represent
the car with the highest score in the market. The regret ratio of
q is defined as the proportion of the score difference between
q and p* to the score of p*. We require the regret ratio of q
to be below a small threshold, which posits that the score of
car q is close to the highest in the market. Formally, we define
problem reverse regret query (RRQ). Given a query product
q, the goal is to identify all prospective customers of g. In
essence, it seeks all the utility functions based on which the
regret ratio of q is below a given threshold.

To the best of our knowledge, we are the first to study
problem RRQ. There are some closely related studies [1]-
[4], [12]-[14] focusing on reverse operators, but they are
distinct to ours. One representative operator is the reverse top-
k query [1]-[4]. It ranks the products in descending order
based on their scores w.r.t. each utility function, and then
returns the utility functions where car g ranks within the top-%
positions. The limitation of this work is that it concentrates on
product rankings, which are secondary sources of information
derived from product scores. This information emphasizes the
products’ relative positions without accounting for their score
differences, potentially obscuring details about the product’s
attractiveness to prospective customers.

For instance, consider Table 1. The fourth column displays
the score of each car based on utility function f,,,. It is easy
to see that car g ranks last among the cars listed. Suppose
that £ = 3. Following the reverse top-k query, car ¢ would
not interest customers. However, this considerable gap in the
ranking is caused by a minor score difference, i.e., only about
1.7% (calculated as %). The score of q is close to those
of the others. Car g could attract customers’ attention. It
would be imprudent to dismiss the competitiveness of car gq.

In this paper, we directly utilize product scores to evaluate
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products. It is worth noting that the concept of the regret ratio
uses the highest score as a pivot. However, “the highest score”
might sometimes be overly stringent [15], [16]. To broaden our
problem and accommodate various scenarios, following [15],
[16], we relax the comparison from the highest score to the
k-th highest score, where k£ > 1. This relaxation allows for
more flexibility in evaluating products, ultimately enhancing
the versatility and effectiveness of our problem.

Contributions. Our contributions are described as follows.

To the best of our knowledge, we are the first to propose
problem reverse regret query (problem RRQ). This problem
employs a comprehensive evaluation of products (i.e., prod-
uct scores) to identify prospective customers effectively.
We propose algorithm Sweeping for the special case of RRQ
in which each product is described by two attributes. We
prove that algorithm Sweeping only takes linear time cost.
We propose two algorithms for the general case of RRQ,
in which each product is described by multiple attributes.
Algorithm E-PT is an exact algorithm that returns complete
results (i.e., all prospective customers). Algorithm A-PC is
an approximate algorithm that may miss some results (i.e.,
miss some prospective customers) but runs faster than E-PT.
We conducted experiments on synthetic and real datasets
to show that our problem setting evaluates prospective cus-
tomers soundly and insightfully, and our algorithms execute
several orders of magnitude faster than existing ones.

The rest of the paper is organized as follows. The related
work is reviewed in Section II. The formal problem defini-
tion and characteristics are shown in Section III. Section IV
describes algorithm Sweeping for the special case of RRQ.
Section V presents two algorithms E-PT and A-PC for the
general case of RRQ. The experiments are shown in Section
VI and finally, Section VII concludes our paper.

II. RELATED WORK

The multi-criteria decision-making operators [5], [15],
[17]-[19] can be classified into forward and reverse versions.

There are two widely studied forward operators: the skyline
query and the top-%k query. The skyline query [17], [20]-[27]
is designed to return the skyline products, i.e., the products
that are not dominated by other products. A product p is said
to dominate another product q if p is not worse than g in
each attribute and is strictly better in at least one attribute.
The deficiency of a skyline query is that its output size
is uncontrollable [10], [28]. It is possible that none of the
products are dominated by others, and thus, the whole product
dataset is returned to customers. In contrast, the top-k query
[18], [19], [29]-[33] returns a controllable output size. It
models customer preference by a utility function. Based on the
utility function, each product is associated with a score and the
k products with the highest scores are returned to the customer.
Several algorithms [19], [29], [30], [33] are designed for
the top-k query. [19], [29] employ sophisticated techniques,
such as Omnion and kSkyband, to process the dataset into a
small set. Then, they quickly obtain the exact output from the
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small set. [30], [33] solve the top-k query from the geometric
perspective. Unfortunately, there is a practical barrier to the use
of the top-k query. It requires customers to specify their utility
functions, but customers usually have difficulty in explicitly
specifying the exact parameters of the utility function.

Another forward operator is the regret minimization query
[5], [6], [15], [16], [34]. The regret minimization query aims
to find a representative set S' such that the difference between
the customer’s favorite product in set S and that in the whole
product dataset is minimized. There are many algorithms [5],
[6], [15], [34] that are proposed for the regret minimization
query. [15], [34] adopt a greedy strategy that iteratively identi-
fies the product minimizing the difference and add it into S [5]
samples the product dataset by partitioning the products into
different cubes. Then, it selects one product from each cube as
the output. [6] samples the customer preference and identifies
products as output based on the sampled customer preference.

Among the forward operators discussed, they commonly
take the customer’s perspective to identify products. Instead,
the reverse operators seek out potential customers for products.
One representative operator is the reverse top-k query.

Given a product g, the reverse top-k query [1]-[4] returns
all customers such that q is one of the best k products based on
customers’ preferences. Specifically, [2]-[4] assume that there
is a set U of utility functions modeling customer preferences.
The objective is to find those utility functions based on which
the score of product g is among the top-k. However, [2]-[4]
only allow set U to comprise a finite number of discrete utility
functions. They cannot deal with the entire continuous utility
function space, i.e., the entire customer preference space.

Motivated by this insufficiency, [1] studies a more general
case in which set U is set to be the entire continuous utility
function space. It proposes an algorithm via partitioning.
Intuitively, it partitions the utility function space into cells and
builds a cell-tree to index the cells. By processing the cell-tree,
it checks the cells and returns utility functions from qualified
cells. The weakness of [1] is that it measures products based
on the product rankings. This may result in an inappropriate
evaluation of products, as discussed in Section I. In contrast,
our work considers product scores, which provides a more
comprehensive view of products, and consequently, yields a
sounder identification of prospective customers. Besides, the
cell-tree in [1] is not efficient. In Section VI, we adapted it
to compare with our algorithms. The results show that our
algorithms execute several orders of magnitude faster than it.

III. PROBLEM DEFINITION
A. Problem Reverse Regret Query

Product/Point. The input consists of a set D of n products and
a query product, each described by d attributes. We represent
each product as a d-dimensional point p = (p[1], p[2], ..., p[d]).
In the following, we use the words product/point and at-
tribute/dimension interchangeably. Without loss of generality,
we assume that each dimension is normalized to (0,1] and
a large value in each dimension is preferred by customers.
Note that humans typically consider a limited number of
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attributes in their decision-making process. Following previous
studies [1], [28], we specifically focus on scenarios where the
number of attributes remains relatively modest (e.g., d < 7).
Nevertheless, it is important to mention that our methodologies
proposed herein are applicable to any setting of d.

Utility Function. Following [1], [2], [5]-[7], [33], we model
the customer preference as a linear utility function

fu@) =wu-p =30 ulilp[i],

which is widely used for modeling customer preference [35],
[36]. The experimental studies conducted by [7], [10] also
show that linear utility functions can effectively capture how
customers evaluate products. Each utility function corresponds
to a utility vector w = (u[l],u[2],...,u[d]) that captures
the importance of each attribute to a customer. A larger
u[i] indicates that the i-th attribute is more important to the
customer, where i € [1,d]. The domain ¢/ of all utility vectors
is called the utility space. Moreover, the function score [, (p),
also known as the utility of p w.r.t. u, represents how much
a customer favors point p. If a customer prefers p to g, then
fu(P) > fu(q). Note that, as discussed in [5], [8], [10], the
norm of u does not affect the semantics of a utility function.
Therefore, without loss of generality, we assume that (1)
u[é] > 0 for each dimension i € [1,d], and (2) Zle uli] = 1.
Example 1. Consider Table II where each point has two dimen-
sions. Let fo,(p) = 0.5p[1]+0.5p[2] (i.e., w = (0.5,0.5)). The
utility of p; w.rt. wis f(p1) = 0.5x0.20+0.5x0.92 = 0.56.
We can obtain the utilities of other points in a similar way.

Regret Point. Given a utility function f,, the points in a
dataset D can be ranked by their utilities w.r.t. w in a descend-
ing order. Let us denote the utility of the k-th ranked point
by kmazpep fu(p). For example, in Table II, since point p;
ranks the second, we have 2mazpep fu (P) = fu(p1) = 0.56.
To evaluate the query point g, following [15], [16], we employ
the concept of k-regret ratio by utilizing kmazpep fu (D).

Definition 1 (k-Regret Ratio). Given a dataset D and a utility
function f,,, the k-regret ratio of the query point gq is:

max(0, kmazpep fu(P) — fu(q))
kmazpep fu(p)

k-regratio(q,u)

Intuitively, the k-regret ratio measures how close the utility
of q is to that of the k-th ranked point in D w.r.t. u. Here,
we consider the ratio instead of the direct score difference to
achieve the property of scale invariance [5]. Besides, the nu-
merator incorporates a maximum operation to ensure that the
k-regret ratio remains non-negative. The k-regret ratio falls in
the range [0, 1]. If k-regratio(q, u) is below a small threshold
€ (ie., k-regratio(q,u) < €), the utility of g is only slightly
smaller or even larger than that of the k-th ranked point. In
this case, we say point q is a (k, €)-regret point w.r.t. u.

Example 2. Continue Example 1, where u (0.5,0.5).
Suppose that ¢ = (0.4,0.7) and € = 0.1. The 2-regret ratio of
point g is 2-regratio(q,u) = max(0,0.56 — 0.55)/0.56 =
0.018 < €. Thus, g is a (2,0.1)-regret point w.r.t. u.

4102

We now formally define the Reverse Regret Query problem
(RRQ). The frequently used notations are summarized in a
table that can be found in the technical report [37].

Problem 1 (Reverse Regret Query (RRQ)). Given a dataset
D, a query point g, an integer k, and a threshold €, we want
to find all w € U such that q is a (k, €)-regret point w.r.t. u.

There are two parameters k and e in Problem 1. Parameter
k controls the selection of the pivot point. If k is small, we
focus on the very best point as the pivot. Parameter e decides
the level of closeness required between the query point and the
selected pivot. A smaller € implies a stricter criterion for con-
sidering a point as sufficiently close. Back to Example 2, utility
vector u = (0.5,0.5) can be returned as an output for problem
RRQ since q is a (2, 0.1)-regret point w.r.t. w. We say w is a
qualified utility vector. Note that the utility space U is a con-
tinuous space containing infinite utility vectors. The complete
output of problem RRQ are regions in ¢/ that contain qualified
utility vectors. Such regions are called qualified regions.

B. Problem Characteristics

We formalize our problem RRQ from a geometric perspec-
tive. In a d-dimensional geometric space R¢, each utility vector
u € U can be seen as a point. Recall that we assume (1)
u[i] > 0 for every dimension, and (2) Zle uli] = 1. The
utility space U = {u € RY| Zle uli] = 1} is a polyhedron
[38] in R?, e.g., a line segment when d = 2 as shown in
Figure 2 or a triangle when d = 3 as shown in Figure 1.

For any point p € D, we can build a hyper-plane hgq 4, with
query point g in the geometric space R? as follows.

hep:{r € Rer- (g —(1-¢)p) =0}

The hyper-plane passes through the origin with its unit norm
in the same direction as ¢ — (1 — €)p [38]. Figure 1 shows an
example. For each utility vector w € U N hg p, We have

u-(q—(1—-€)p) =0, ie., fulq) = (1 —¢€)fulp)

Hyper-plane hg, divides the utility space into two half-
spaces. The half-space h;p above hg p (yellow part), called
positive half-space, contains all utility vectors w such that
Ju(@) > (1 =€) fu(p). The half-space h , below hgp (red
part), called negative half-space, contains all the utility vectors
u such that fo,(q) < (1—¢) fu(p). The unit norm %
(black arrow) of hyper-plane hq 4 points to positive half-space
hqu. Note that the half-space is bounded by utility space U/

instead of being defined on the entire geometric space.

Example 3. Consider Table II. Suppose g = (0.4,0.7) and
threshold € = 0.1. For point p;, we build a hyper-plane hg p,
in space R?: {r € R?|r-(0.22,—0.13) = 0} shown as a line in
Figure 2. Its unit norm (black arrow) is in the same direction
as vector (0.22, —0.13). Similarly for hq p, and hg p,.

For any two half-spaces, e.g., h;p and b

q.p» We say half-
space .}, is covered by half-space h; pr» denoted by bl C
R}, if any utility vector in A} is also contained in h"

a.p" N 'a,p ) i,p"
For example, in Figure 2, half-space h;p,z is covered by hy ..
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Table II: Dataset

Yy P[l] P[2] f(o.s,o.s)(P)
p1 | 02 | 092 0.56
p2 | 0.70 | 0.54 0.62
p3 | 0.60 | 0.30 0.45

Figure 1: Hyper-plane

We now apply the hyper-plane/half-space concepts to
problem RRQ. For each point p € D, we build a hyper-plane
hq.p With g, dividing the utility space into two half-spaces.
Since |D| = n, there are n hyper-planes and 2n half-spaces.
The n hyper-planes divide the utility space into O(n?=!)
regions, called partitions [38]. Each partition is covered by n
(positive or negative) half-spaces. Here, we say a partition ¢
is covered by a half-space, e.g., h} . denoted by ¢ C hj}
if any utility vector in partition ¢ is also in half-space h;p.
Example 4. Continue Example 3 as shown in Figure 2, where
€ = 0.1. The three hyper-planes hq p, , hg p,, and hq p, divides
the utility space into four partitions ¢, c2, c3, and c4. Partition
c1 = hgp N, Nhi, is covered by one negative half-

'q,p2
space hg ,, , and two positive half-spaces A, and hy , .

q,p2

The following lemma shows how to determine if query point
q is a (k, €)-regret point w.r.t. the utility vectors in a partition.
For lack of space, the proofs of some theorems/lemmas in this
paper can be found in the technical report [37].

Lemma 1. If and only if a partition c is covered by fewer than
k negative half-spaces (i.e., more than n — k positive half-
spaces), query point g is a (k, €)-regret point w.r.t. any utility
vectors in partition c.

Based on Lemma 1, we can solve problem RRQ in roughly
three steps: (1) construct a hyper-plane hg , for each point
p € D; (2) compute the partitions based on the hyper-planes
constructed; and (3) obtain the partitions that are covered by
fewer than k negative half-spaces. To illustrate, assume that
k = 2 in Example 4. Partitions ¢, ¢, and c3 will be returned
since they are covered by fewer than two negative half-spaces.

IV. TWO DIMENSIONAL ALGORITHM

We begin with a special case of problem RRQ in which each
point has two dimensions (i.e., d = 2). We propose algorithm
Sweeping, which performs well theoretically and empirically.
Intuitively, in a 2-dimensional geometric space R?, as depicted
in Figure 2, the utility space U is a line segment £ from (0,1)
to (1,0). Once the utility space is divided by hyper-planes, the
partitions are ordered sub-segments of £ (e.g., in Figure 2, we
have ¢; — co — ¢35 — c4). Algorithm Sweeping conducts a
sweep along £ (from (0,1) to (1,0)) and checks each partition
sequentially. If a partition is covered by fewer than k negative
half-spaces (i.e., more than n — k positive half-spaces), it is a
qualified partition to be returned. However, two issues affect
the efficiency of Sweeping. Firstly, there are many partitions
that need to be checked since for every p € D, a hyper-plane
will be created, resulting in O(n) partitions. Secondly, it is
costly to check whether a partition is qualified to be returned.

Figure 2: Two Dim
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Figure 3: High Dim Figure 4: P-Tree
Since each partition is covered by n (positive or negative) half-
spaces, we need O(n) time to count the negative half-spaces.
In the following, we address these two issues, respectively.

Partition Reduction. Let 7 = (1,0) in £ be a reference utility
vector in space R%. We call a hyper-plane an inclusive hyper-
plane if its negative half-space contains r, and an exclusive
hyper-plane otherwise. In Figure 2, hq p, and hq p, are two
inclusive hyper-planes, and hg p, is an exclusive hyper-plane.

For all the inclusive hyper-planes, let us rank them based on
their intersections with line segment £. Denote the intersection
between a hyper-plane h and £ by A(h,L). If A(h,L) is
farther away from the X;-axis, the hyper-plane h ranks higher.
For instance, in Figure 2, hyper-plane hgq p, ranks higher than
hyper-plane hgq p,, since its intersection with L is farther away
from the Xj-axis than that of hg p,. With a slight abuse of
notation, denote the k-th ranked inclusive hyper-plane by [hy.

Lemma 2. Query point q is not a (k, €)-regret point w.r.t. any
utility vectors in the negative half-space of (A, (i.e., u € lh).

Lemma 2 indicates that the partitions in [}, are not quali-
fied to be returned. Thus, we can directly omit those partitions.
To illustrate, consider Figure 2 with £ = 1. Since inclusive
hyper-plane hg 5, ranks the first, partitions c3 C hg . and
¢4 C hgp, can be omitted. Similarly, we can rank all the
exclusive hyper-planes based on their intersections with £. If
the intersection is farther away from the Xs-axis, the hyper-
plane ranks higher. Denote the k-th ranked exclusive hyper-

plane by why,. The partitions in wh, can also be omitted.

Lemma 3. Based on the partition reduction strategy, we reduce
the number of partitions that we need to consider to O(k).

Checking Cost Reduction. Recall that the sweep direction
of our algorithm is from (0,1) to (1,0). For each inclusive
(resp. exclusive) hyper-plane h, the sweep will pass through
T — A(h, L) — h™ (resp. h~ — A(h, L) — h™). In other
words, when the sweep reaches A(h, £) of an inclusive (resp.
exclusive) hyper-plane h, we know that the remaining parti-
tions to be swept are covered by (resp. are not covered by) h™.
For example, consider an inclusive hyper-plane hq p, in Fig-
ure 2. When the sweep reaches intersection A(hg,p,, L), the
partitions to be swept, say c3 and c4, must be covered by A ..

Following this idea, we maintain an integer () to track the
number of negative half-spaces during the sweep. Assume that
partition c is currently being swept and () holds the number of
negative half-spaces covering c. As the sweep advances, the
sweep reaches an intersection A(h, £) and the next partition
is ¢/. If hyper-plane h is an inclusive hyper-plane, its negative
half-space h~ must cover the remaining partitions (including
') to be swept. Thus, we can obtain the number of negative
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Algorithm 1: Algorithm Sweeping

1 Input: point set D, query point g, parameters k and e.
2 Output: the set C of qualified partitions.

3 Find hyper-planes [h; and uhy;

4 Exclude the partitions in [k, or uh, ;

5 for each partition c in uhﬁ N lh;’ do

6 Update integer () for partition c¢;

7 if () < k then

8 | C+«cCcu{ch

9 return The set C of qualified partitions.

half-spaces that cover partition ¢’ by simply adding 1 to Q.
Similarly, if hyper-plane h is an exclusive hyper-plane, we
can obtain the number by subtracting 1 from Q.

Lemma 4. The checking cost for each partition is O(1).

The pseudocode of algorithm Sweeping is shown in Algo-
rithm 1. In the beginning, we find hyper-planes lhj and uhy,
and exclude the partitions in negative half-spaces [h; or uh,
(lines 3-4). Then, we start the sweep process from the partition
next to A(uhy, L) and set () to be the number of negative
half-spaces covering it. The sweep moves towards A(lhg, L).
When we reach the intersection A(h, £) of an inclusive (resp.
exclusive) hyper-plane h and enter a new partition ¢, @ is
updated by adding (resp. subtracting) 1 and we check whether
partition c is qualified to be returned (lines 6-8). The process
stops when all partitions in uh;" NIk, are swept (line 5).

To illustrate, consider Figure 2 with k£ = 1. There are three
hyper-planes hg p,, Rq.p,> and hq p,, where uhy, = hg p, and
lhi, = hg,p,. We exclude partitions c¢1, c3, and ¢4 since they
are in either h ,, or hg . The sweep starts from A(hg p,, £)
to A(hg,p,, £). For partition ¢z, since Q = 0 < k, it is returned
as the final output, i.e., C = {ca}.

Theorem 1. The time complexity of Sweeping is O(n).

V. HIGH DIMENSIONAL ALGORITHMS

We consider the general case of problem RRQ in which each
point has multiple dimensions (i.e., d > 2). The first algorithm,
termed Partition Tree (E-PT), is an exact algorithm. It returns
all qualified partitions (i.e., covered by fewer than k nega-
tive half-spaces). The second algorithm, named Progressive
Construction (A-PC), is an approximate algorithm. It sacrifices
some qualified partitions to achieve a better execution time.

A. Exact Algorithm

We construct a tree-structured index, called Partition Tree
(or P-Tree for short), to manage the partitions in the utility
space divided by the hyper-planes. For each point p € D, a
hyper-plane Ay, 4 is built with query point g and is inserted into
the P-Tree. The P-Tree incrementally indexes the partitions
divided by the hyper-planes inserted so far. Upon inserting all
hyper-planes, the partitions in the P-Tree that are covered by
fewer than k negative half-spaces are returned.
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1) Partition Tree: In the P-Tree, each leaf node contains
one partition and each internal node contains the union of
partitions from its reachable leaves. When the context is clear,
we also call a union of partitions as a partition. For each
internal/leaf node N, we use a counter QQ(NV) to record the
number of negative half-spaces that cover the partition stored
in N. Consider Figure 3 as an example. The utility space is
divided into three partitions by two hyper-planes hg p,, and
hgq,p,- Figure 4 shows the corresponding P-Tree. It has three
leaves that contain partitions ¢, co, and c3, respectively. The
internal node N, contains partition ¢y U c3 since it has two
reachable leaves, containing ¢, and cg, respectively. Since par-
tition caUcg is covered by neither b ,, nor b, , Q(N2) = 0.

The P-Tree is incrementally built by inserting one hyper-
plane at a time. Initially, the root is constructed, whose parti-
tion is the entire utility space. When a hyper-plane is inserted,
the partitions stored in some leaves are divided into smaller
ones, causing those leaves to split. Specifically, each hyper-
plane insertion begins at the root and proceeds downward. At
each node N, the insertion is conducted based on the relation-
ship between hg p, and the partition ¢ stored in N as follows.

Case 1: Half-space h, , covers partition ¢, i.e., ¢ C h .
We keep partition ¢ unchanged and increase Q(NN) by I.
If Q(N) > k, node N is marked as invalid and will not
be processed by any future hyper-plane insertions. This is
because partition ¢ is already covered by k negative half-
spaces, and thus, none of the utility vectors in c is qualified
to be returned. If Q(N) < k and node N is an internal node,
we process the children of N recursively.

Case 2: Half-space 1/, covers partition c, i.e., c C hJ ..
We keep partition ¢ and () unchanged. The children of N

(if any) will not be recursively processed.

Case 3: Hyper-plane hy , intersects partition c, i.e., cN
hgp # 0 and cNhy , # (. Hyper-plane hg 4, divides partition
c into two sub-partitions. If node N is an internal node, the
insertion proceeds directly to its children. Otherwise, we build
two children N’ and N” for N, containing the two sub-
partitions of ¢, respectively. Precisely, the first child contains
partition ¢’ = ¢ hg, and Q(N') = Q(N) + 1; the second
child contains partition ¢’ = ¢k, and Q(N") = Q(N).
Note that for node N’, if Q(N’) > k, it will be marked as
invalid, since partition ¢’ is already covered by k negative
half-spaces, and thus, ¢ is not qualified to be returned.

To illustrate, we build a P-Tree based on Figure 3 with
k = 2. In the beginning, the partition in the root is the
entire utility space & and Q(Root) = 0. Assume that the
first hyper-plane inserted is hgq p,. It divides the utility space
into two partitions hg,, and h;pl (Case 3). We build two
children N; and N, for the root. Node N; contains partition
c1 = hgp,, and Q(Ny) = 1; node N contains partition h;m
and Q(N2) = 0. The second hyper-plane inserted is hq p,-
The insertion first comes to the root. Since hg,p, intersects
the utility space, the insertion directly proceeds to the children
N; and Ny of the root (Case 3). For node Nj, half-space

hg p, covers partition c; (Case 1). We increase Q(Ny) by
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1. Since Q(Ny) > k, node Np is marked as invalid. For

node Na, hyper-plane hg 5, divides partition A, into two
sub-partitions o = hJ,, Nhy , and c3 = hj ﬂh;pz (Case

3). We build two chlldren N3 and Ny for N, containing
partitions ¢ and c3, respectively, and set Q(N3) = 1 and
Q(N4) = 0. The final P-Tree is shown in Figure 4.

During the insertion, a critical step is to check the rela-
tionship between a hyper-plane and a partition c¢. We decide
such relationship based on the extreme points (i.e. corner
points [38]) of the partition. Specifically, assume that partition
c has x extreme points ey, es, ..., €.

Lemma 5. Given a hyper-plane hy p, if Vi € [1, 2], ¢; € b,
(resp. e; € h, ), partition ¢ is covered by h;p (resp. hg ).
Otherwise, hyper-plane hg ;, intersects partition c.

Consider partition co U cg in Figure 3. It is a trapezoid with
four extreme points (shown as black dots). Hyper-plane hg p,
intersects the partition, since there are two extreme points in
h;p and another two in hg , . Suppose that a partition has
x extreme points. It takes O(z) time to check the relationship
between all extreme points and the hyper-plane.

2) Acceleration: We develop several strategies to accelerate
the P-Tree construction: (1) reduce the number of hyper-
planes inserted; (2) establish an efficient order for hyper-plane
insertion; (3) speed up the relationship checking between a
hyper-plane and a partition; and (4) reduce the number of
children creation for leaf nodes.

Hyper-plane Reduction. We reduce the number of hyper-
planes inserted into the P-Tree. Consider a hyper-plane hg p.
Assume that there exist & hyper-planes hg p such that their
negative half-spaces h_ p cover half-space hgp (e, hgp C
hy p)- Then, for any partmons covered by hq p» they are
unqualified since they are already covered by & half-spaces
hq.p'; for any partitions covered by hq p» the numbers of
negative half-spaces covering them are not affected by hgq p.
Therefore, the insertion of hyper-plane hq ;, does not affect the
qualification of a partition. Based on this idea, we only insert
the hyper-planes into the P-Tree if their negative half-spaces
are covered by fewer than k negative half-spaces. Lemma 6
shows how to check if a negative half-space h, , is covered
by another negative half-space h_ . Let vqp and vgp be
the unit norms of hyper-planes hg p, and hgq pr, respectively.

Lemma 6. If Vi € [1,d], vgp[i] > vqp[i], then hy , Ch, o,

Consider Figure 2 as an example. Vectors vq p, and Vq,ps
represent the unit norms of hyper-planes hg p, and hqp,,
respectively. Since vg p,[1] > vg,p, [1] and vg,p,[2] > vg,p,[2],
half-space h_ ,_ is covered by half-space h

a.ps q.p2°
Insertion Order. During the P-Tree construction, a node N
will be marked as invalid and will not be processed by future
hyper-plane insertions if Q(N) > k. We develop an insertion
order for hyper-planes, so that if a node is indeed invalid, it
can be marked as early as possible, reducing the number of
nodes to be processed for hyper-plane insertions.

We utilize the half-spaces covering relationships to deter-
mine the insertion order. Consider two hyper-planes hg , and
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Inner Sphere

Figure 5: Relationship

Figure 6: Sampled u

hq,p» where hg ., C hy . It is easy to see that h , covers
more partitions than hq p- Suppose that we insert hyper-plane
hq.p' before hg . More nodes in the P-Tree will have their
counters () incremented by 1, and thus, the possibility of
nodes in the P-Tree being marked as invalid increases. Fol-
lowing this intuition, for each hyper-plane hg ,, we compute
the number of negative half-spaces that are covered by h, ,,
denote by W (hg p). Then, we insert hyper-planes into the P-

Tree based on their W (hgp) in the descending order.

Relationship Checking. We present strategies to speed up the
relationship checking between a partition and a hyper-plane.
Our first strategy is to utilize the hierarchy of the P-Tree.
Assume that node N’ is a child of node N, where N (resp.
N') contains partition ¢ (resp. partition ¢’).

Lemma 7. If partition c is covered by a half-space h,;p (resp.

- L3 + —
hq p), partition ¢’ must be covered by hg p (resp. hg ).

Consider Figure 4. Nodes N3 and N4 are two children of
No. If there is a half-space covering the partition in node No,
it must cover the partitions in N3 and Ny.

Our second strategy is to approximate partitions as spheres,
since it only takes O(1) time to check the relationship between
a sphere and a hyper-plane. Let dist(h,B.) denote the smallest
Euclidean distance from a sphere’s center B, to any point in
a hyper-plane h. If dist(h,B.) is smaller than the sphere’s
radius, the sphere must intersect the hyper-plane. Otherwise,
we can easily determine which half-space the sphere is in,
by checking the location of the sphere’s center. For example,
in Figure 5, the larger sphere is in half-space hqp , since
(1) dist(h,B,) is larger than the sphere’s radius and (2) the
sphere’s center is in half-space hq pi-

Consider a partition ¢ that has x extreme points ey, es, ...,
e,. We define the outer sphere and inner sphere of partition
c as follows. For the outer sphere, we define its center O, to
be the average of all extreme points (ie., O. = >.7 ;| e;/x),
and its radius O, to be the largest Euclidean distance from
the center to any extreme point (i.e., O, = max{dist(e;, Q,),
dist(ez, 0,), ..., dist(e;, O.)}, where dist(e;, O.) denotes the
Euclidean distance between e; and Q.). Intuitively, the outer
sphere of partition c is a sphere that covers c.

Lemma 8. If a half-space (i.e., h,;p or hy ) covers the outer
sphere of a partition, the half-space covers the partition.

Consider the inner sphere of partition c. Assume that there
are y boundary hyper-planes hi, ho, ..., h, of partition c (i.e.,
the hyper-planes that bound partition ¢). We define the inner
sphere’s center . to be the average of all extreme points (i.e.,
I. = Zle e;/x), and its radius I, to be the smallest Euclidean
distance from the center to any boundary hyper-plane (i.e.,
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I, = min{dist(hy,L.),dist(ho, L), ..., dist(h,, L)}, where
dist(h;,I.) denotes the smallest Euclidean distance from I,
to any point in h;). Intuitively, the inner sphere of partition ¢
is a sphere that is covered by c.

Lemma 9. If a hyper-plane intersects the inner sphere of a
partition, the hyper-plane intersects the partition.

Figure 5 shows a partition (represented as a triangle), along
with its outer and inner spheres. Since the outer sphere is in
half-space hj , ., the partition is also in hj , . Since hyper-
plane hg p, intersects the inner sphere, hyper-plane hg p, also
intersects the partition. Note that if the relationship cannot be
determined using the above two strategies, we can still rely

on the extreme points method as discussed in Section V-Al

Lazy Split. For the P-Tree construction, one time-consuming
step is to create children for the leaves. To accelerate the con-
struction, our idea is to reduce the number of children creation.
Consider a leaf node N. Suppose the partition c in N intersects
a set H(N) of hyper-planes. Since |H ()| hyper-planes cor-
respond to |H (V)| negative half-spaces, for any utility vector
in partition ¢, it must be covered by at most Q(N) + |H(N)]
negative half-spaces. If Q(N)+|H(N)| < k, any utility vector
in partition c is covered by fewer than k negative half-spaces.
Thus, partition ¢ could potentially be returned in its entirety,
making the split and children creation for N unnecessary.

Following this idea, we maintain a hyper-plane set H(N)
for each leaf node. When the insertion of a hyper-plane hg p
comes to a leaf node NV and the partition in IV intersects hq p,
we simply store hg p in set H(N) rather than creating two
children immediately. The children creation is only triggered
when a leaf N has Q(N) + [H(N)| > k. This condition can
be met in two cases. (1) The hyper-plane inserted intersects
the partition ¢ in N (which makes |H (V)| increase by 1).
(2) The negative half-space of the hyper-plane inserted covers
partition ¢ (which makes Q(XN) increase by 1).

When Q(N) + |H(N)| > k, we attempt to reduce the
hyper-planes in H (V) by splitting node N. Firstly, we pop out
the oldest hyper-plane hgq p, in H(N) and create two children
for node N. One child N’ contains partition ¢; = ¢N hgp and
Q(N') = Q(N) + 1; the other child N” contains partition
ca = cNhf, and Q(N") = Q(N). Both children inherit
H(N) from node N. However, since partitions ¢; and ¢y
are sub-partitions of ¢, the hyper-planes in 7 (N) may not
intersect partitions ¢; or c¢o. Thus secondly, we refine H(N’)
and H(N”) in nodes N’ and N", respectively. Consider
node N’ as an example. For any hyper-plane hq p, € H(N'),
if its half-space (either h,,, or h,fp) covers partition c;, we
remove hqp from H(N'). Besides, Q(N') is updated to be
Q(N') = Q(N') + 1 if e1 C hy . After the refinement, if
Q(N") + |[H(N")| < k, we stop. Otherwise, N’ is recursively
split. Similarly for node N”.

3) Summary and Analysis: The pseudocode of algorithm
E-PT is shown in Algorithm 2. Initially, we reduce the number
of hyper-planes inserted, by filtering out the hyper-planes
whose negative half-spaces are covered by at least & negative
half-spaces (line 3). Then, the remaining hyper-planes are

Algorithm 2: Algorithm E-PT

1 Input: point set D, query point g, parameters k and e.
2 Output: the set C of qualified partitions.

3 Filter and rank the hyper-planes based on W (hqp);

4 for each hyper-plane hq p, do

5 L Insert(Root, hq p);

6 return All leaves N with Q(N) + |H(N)| < k.

Insert(node N, hyper-plane hg p)
7 if ¢ C h;p then
8 | QIN)=Q(N)+1;
9 if Q(N) > k then
10 L Mark node N invalid;

11 else if node N is an internal node then
12 for each child N' of N do
13 | Insert(N', hqp);

14 else if Q(N) + |H(N)| > k then
15 L Lazy_Split(V);

16 else if cNhy , # 0 and cNh), # 0 then

17 if node N is an internal node then
18 for each child N’ of N do

19 | Insert(N', hgqp);

20 else

21 Add hgq p into H(N);

2 if Q(N) 4+ |H(N)| > k then
23 | Lazy_Split(N);

Lazy_Split(node N)
24 hgp < the oldest hyper-plane in H(V);
28 H(N) = H(N) \ {hg )
26 Create two children N’ and N” for N;

27 cp =cNhyy QIN') = Q(N) + 15 H(N') = H(N);
28 c2 =cNhg QIN") = Q(N); H(N") = H(N);
29 Refine(N’); Refine(N'');

Refine(node N)
30 for each hyper-plane hq p, in H(N) do
31 if ¢ C h,,, or c C hf, then

32 Remove hyper-plane hq p, from H(N);
33 if ¢c C h;p then

34 Q(N)=Q(N)+1;

35 if Q(N) > k then

36 Mark node N invalid;

37 L return;

38 | if Q(N) +|H(N)| > k then
39 | Lazy_Split(N);
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inserted into the P-Tree in the descending order of their
W (hgp) (lines 3-5). When all hyper-planes are inserted, the
partitions that (1) are stored in the leaves and (2) are covered
by fewer than k negative half-spaces are returned (line 6).

The insertion of each hyper-plane hg 4 is conducted in a
top-down manner. Suppose that the insertion comes to a node
N that stores a partition c. (1) If ¢ C hg . Q(N) is updated
to be Q(N) = Q(N) + 1 (lines 7-8). If Q(N) > k, node
N is marked as invalid (lines 9-10). If node N is a valid
internal node, the insertion proceeds to its children recursively
(lines 11-13). If node N is a valid leaf, we check whether
Q(N) + |H(N)| > k and split N if such condition holds
(lines 14-15). (2) Suppose cNh, , # 0 and cNh, # O (line
16). If node N is an internal node, the insertion proceeds to
its children recursively (lines 17-19). If node NN is a valid
leaf, we add the hyper-plane to set H (V) (lines 20-21). The
update of H(N) may lead to Q(N) + |H(N)| > k. If this
is the case, we split node N (lines 22-23). To split node IV,
we pop out the oldest hyper-plane hq , in H (V) and create
two children N’ and N” for N based on hqp (lines 24-26).
Each child stores its own partition and counter, and inherits
set H(N) (lines 27-28). Note that H(N') and H(N"") will be
refined, by only maintaining the hyper-planes that intersect the
new partition in the child (lines 29-37). After the refinement,
if Q(N') + |[H(N")| > k (resp. Q(N"') + |[H(N")| > k), we
recursively split node N’ (node N”) (lines 38-39).

Denote by O(«) the creation cost of a single node. The fol-
lowing theorem shows the time complexity of our algorithm.

Theorem 2.d "l:he time complexity of our algorithm E-PT is
O(a- (klogdi!”)d_l).

Note that O(«) mainly depends on the cost of partition
construction. Our algorithm E-PT constructs partitions incre-
mentally. When building a new partition (either ¢ N h, , or
cn h;p), there is only one hyper-plane hg 4, that intersects
the existing partition c. Thus, the time cost for each partition
construction is low [10], [38], resulting in a small O(«).

B. Approximate Algorithm

Algorithm E-PT constructs partitions for internal nodes,
which are important for hierarchical indexing. However, none
of them will be included in the output. This motivates us to
design a more efficient algorithm A-PC, to ensure that each
partition constructed is indeed a qualified partition.

1) Progressive Construction: We randomly sample a set of
utility vectors in the utility space. For each sampled utility
vector u, we compute the k-regret ratio of the query point q,
i.e., k-regratio(q,w). If k-regratio(q,u) < €, we construct
a partition ¢, based on w and add ¢, to the final output.
Specifically, partition c,, is the intersection of n half-spaces.
Denote by Dyt (resp. D) the set of points p such that (1 —

€)fu(p) < fulq) (resp. (1 —€)fu(p) > fu(q)). These two
sets can be easily computed based on the utilities. We have

m h;p n m h;p’

peD} p’ €D,

Cy —
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Lemma 10. Given partition c,, that is constructed based on a
sampled utility vector u, we have u € ¢, and for any utility
vector u’ € ¢, query point q is a (k, €)-regret point w.r.t. w'.

To illustrate, consider the points in Table II. Suppose that
query point ¢ = (0.4,0.7) and threshold ¢ = 0.1. Consider
a sampled utility vector w (0.5,0.5). If & = 2, then
k-regratio(q,u) = 0.018 < ¢, and thus, query point g is
a (2,0.1)-regret point w.r.t. w. We build three hyper-planes
and construct a partition ¢, = bt Nhy , Nh, .

To avoid constructing the same partition based on different
sampled utility vectors, we use the following lemma to check
if a partition ¢, based on a sampled w is already constructed.

Lemma 11. If the sampled utility vector w is in a partition ¢
(i.e., u € ¢), then partition c,, is the same as partition c.

Consider Figure 6 as an example. Suppose that partition
c4 shown in pink is already constructed based on a sampled
utility vector u,4. For another sampled utility vector u, we will
not construct the partition repeatedly since u is in partition c4.

2) Acceleration: We develop an effective strategy to reduce
the number of partitions to be constructed. Consider two parti-
tions ¢4 = hf, Nt Nht, and cs = hy, Nhy, Oh
as shown in Figure 6. Since they are the intersections of differ-
ent half-spaces, they are constructed independently based on
different sampled utility vectors if no optimization strategies
are used. However, if we can directly construct the union of
partition ¢4 and c5 (i.e., partition ¢4 U c5) based on a sampled
utility vector u, we only need to call the partition construction
once instead of twice. Following this idea, we improve our
method of constructing partitions as follows. Consider any
two sampled utility vectors w, and uo, where k-regratio(q,
uy) < € and k-regratio(q, us) < e. If Df C D , we create
a partition ¢y, ., based on the points in D and D, i..,

= ﬂh;p N

peD,

ﬂ ht;,p’

p'€D,,

Cuy,uz

Similarly for the case where D C D .

Lemma 12. Given partition c,,, ., that is constructed based on
sampled utility vectors w; and us, we have w1, Uz € Cyy u,
and for any utility vector ©’' € Cy, uy, query point q is a
(k, €)-regret point w.r.t. u'.

Back to the example discussed in Figure 6. For the sampled
utility vector uy, D = {p1,p2,p3} and D, = (). For the
sampled utility vector us, D;f. = {p1,p3} and D, = {p2}.
Since D:[s C Dyf,, we construct a partition based on the
points in Dyf. and D,,. The partition is ¢ = h} , Nhf
which is an union of partitions ¢4 and cs.

3) Summary and Analysis: The pseudocode of algorithm A-
PC is shown in Algorithm 3. Initially, we randomly sample a
set U of utility vectors (line 3). For each vector u, we compute
D, and D,, and only keep w in U if k-regratio(q,u) < €
(lines 4-7). Then, we refine the utility vectors in U as follows.
For each pair u; and ue, if Djl - Dif > We only keep one
utility vector, say uy, in U and set D, = D, (lines 8-11).
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Algorithm 3: Algorithm A-PC

1 Input: point set D, query point g, parameters k£ and e.
2 Output: the set C of qualified partitions.

3 Randomly sample a set U of utility vectors;

4 for each sampled u € U do

5 | Obtain set D and D ;

6 if k-regratio(q,u) > € then
7 L Delete u from U;

8 for each any pair ui,us € U do
9 | if Df C D then

10
11

Update D, =TD,,;
Delete us from U;

L

else if D} C D then
L Update D, =D, ;

Delete u; from U;
for each u € U do

L Build a partition based on u and insert it into set C;

12
13
14

ju

5
16

17 return The set C of qualified partitions.

Similarly for Df C D} (lines 12-14). After the refinement,
we create a partition for each remaining utility vector w in U
based on its D} and D,; (lines 15-16).

Denote by N the total number of sampled utility vectors.
The only remaining issue is to set a proper value for N. If
N is small, it may limit the number of qualified partitions
found. If NV is large, excessive sampled vectors may lead to
a high computational cost. To strike a balance, we focus our
sampling strategy on finding “influential” partitions, which
are quantified by their volumes. Intuitively, if a qualified
partition has a large volume, it means that query point q is a
(k, €)-regret point w.r.t. many utility vectors. We regard such a
partition as an influential partition since if it is not included in
the output, we miss a large number of qualified utility vectors.
Thus, we primarily target at finding qualified partitions whose
volumes are larger than a predefined threshold. Specifically,
let us use V. (resp. V) to denote the volume of a qualified
partition c (resp. the utility space Uf). Given a real number p,
our goal is to find the qualified partitions such that V./V > p.

Lemma 13. Given a confidence parameter § and a sampling
size N = O((1/p?)(d + In(1/6)), for each qualified partition
¢ with V./V > p, we can find it with confidence 1 — .

VI. EXPERIMENT

In this section, we present our experimental evaluation. We
begin by describing the experimental setting in Section VI-A.
Then, in Section VI-B, we showcase the benefit of the reverse
regret query, compared to traditional reverse queries that focus
on rankings instead of utilities. Next, we compare the perfor-
mance of our algorithms against existing ones on synthetic and
real datasets in Sections VI-C and VI-D, respectively. Finally,
our findings are summarized in Section VI-E.
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A. Experimental Setting

The experiments were run on a machine with 3.10GHz CPU
and 16GB RAM. All programs were implemented in C/C++.

Datasets. We conducted experiments on synthetic and real
datasets that were commonly used in existing studies [17],
[33], [39]. The synthetic datasets are anti-correlated (Anti),
correlated (Cor), and independent (Indep) [17], [39]. They
represent typical data distributions in multi-criteria decision-
making. The real datasets are Island, Weather, Car, and NBA
[10], [33]. Dataset Island contains 63,383 2-dimensional ge-
ographic locations. Dataset Weather includes 178,080 records
described by four attributes. Dataset Car comprises 69,052
used cars described by four attributes. Dataset NBA has
16,916 players and five attributes are used to describe the
performance of each player. For all datasets, each dimension
was normalized to (0, 1]. Note that existing studies [1], [40]
preprocessed datasets to include k-skyband points only. To
maintain consistency and enable a fair comparison of our al-
gorithms with existing ones, we also preprocessed the datasets
in the same manner by retaining only k-skyband points.

Parameter Setting. We evaluated algorithms by varying the
following parameters: (1) parameter k; (2) threshold €; (3)
the number of dimensions d; (4) the dataset size n; and (5)
the dataset type (e.g., Anti, Cor, and Indep). Unless stated
explicitly, following the default setting of [1], [40], we set k =
10 and € = 0.1 by default, and the synthetic datasets were set
by default as follows: d = 4, n = 400, 000, and type: Indep.

Algorithms & Measurement. We evaluated our algorithms
Sweeping, E-PT, and A-PC against existing methods LP-CTA
[1] and PBA+ [40] by their execution times. We generated
30 query points by assigning random values within the range
(0, 1] to each dimension. Each algorithm was then tested with
these query points, running 30 times, and the average result
was reported. Since existing algorithms were not designed to
solve our problem originally, we adapted them as follows.

e Algorithm LP-CTA is designed to find customers who are
interested in a given product merely based on the product
rankings. It divides the utility space into partitions using
its designed hyper-planes. We replaced its designed hyper-
planes with ours, and followed its strategy to construct and
return qualified partitions.

o Algorithm PBA+ builds a hierarchical tree-based structure
to store partitions in the utility space. Each partition in the
i-th level corresponds to a point that has the i-th highest
utility w.r.t. any utility vector in the partition. We performed
a top-down search to check the partitions in the tree. For
each partition, we compared its corresponding point with
the query point, and determined whether the partition (or
part of the partition) was qualified to be returned. Note that
algorithm PBA+ builds the hierarchical tree-based structure
in a preprocessing step and uses it in later queries. We re-
ported its querying time as the execution time, excluding its
preprocessing time (which can be more than 10* seconds).
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B. User Study

To motivate our problem, we explored the difference be-
tween the reverse top-k query and the reverse regret query.

Firstly, following [8], [10], [33], we conducted a user study
on dataset Car to compare (1) the product rankings (used by
the reverse top-k query) and (2) the product utilities (used by
the reverse regret query) for evaluating products. We recruited
thirty participants and used an interactive algorithm Adaptive
[7] to learn their exact utility functions. Based on the learned
utility function, the cars’ utilities were known. We provided
each participant with their top-£ cars (i.e., k cars with the high-
est utilities), claiming that these results would be of interest to
them, where k had three settings: £k = 1, k = 5, and k£ = 10.
Then, we found the cars whose k-regratio were smaller than
0.1 and uniformly selected five of them. The participants were
asked to indicate if they were interested in these five selected
cars. We collected two types of results: (1) the percentage of
interest, i.e., the percentages of cars that are of interest to the
participants among the five selected cars; and (2) the average
rank, i.e., the average ranks of the cars that are of interest to the
participants among the five cars. Figure 7 shows the results.
For different k, the percentages of interest are at least 50%
and the average ranks are up to 75.1. These findings suggest
that as secondary sources of information derived from product
utilities, rankings are insufficient for determining customers’
interests. The regret ratio, which focuses on utilities directly,
works better in modeling customer preferences for products.

Secondly, we compared the results of the reverse regret
query with those of the reverse top-k query. Let .S denote the
set of utility functions learned in the user study. With different
k and e, we identified subsets S; C S and Sy C S, which
contained the utility vectors in the result of the reverse top-k
query and the reverse regret query, respectively. Considering
Sy as a hypothetical “ground truth” for comparison purposes
(not the real ground truth), we obtained the precision, recall,
and F1 of S;. Figure 8 shows the results. In many cases, results
51 are different from Ss. These findings, in conjunction with
our earlier observations (the product utilities evaluate products
better than product rankings), suggest that the reverse regret
query is more effective in finding prospective customers.

C. Results on Synthetic Datasets

Accuracy. We conducted a study to explore the effect of the
number A of sampling utility vectors on the output quality and
the execution time in Figure 9(a) and 9(b), respectively. For the
output quality, we quantified it following the accuracy mea-
surement in [41]. Specifically, we (1) randomly selected 10000
utility vectors in U, (2) for each utility vector selected, we
checked if it was a qualified utility vector by verifying if it was
in the partitions returned by the exact algorithm E-PT, and (3)
we reported the accuracy of algorithm A-PC to be the percent-
age of qualified utility vectors that were also in the partitions
returned by A-PC. Figure 9(a) shows the accuracy of A-PC is
high with different sampling sizes. In particular, when more
utility vectors are sampled (i.e., A is larger), the accuracy in-
creases, as expected. Besides, on the four-dimensional dataset,
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to achieve the same accuracy, we need to sample more utility
vectors than on the two-dimensional dataset. This is because
the utility space in the four-dimensional dataset is larger, and
thus, there will be more qualified partitions. Moreover, when
the sampling size is larger, it takes more time to process the
samples, leading to a longer execution time (Figure 9(b)). To
strike a balance, we set the sampling size N for algorithm A-
PC to be 10 x (d—1) by default in the rest of the experiments.

Two-dimensional Dataset. We compared our algorithms
Sweeping, E-PT, and A-PC against existing ones on a two-
dimensional dataset (i.e., d = 2) by varying parameters k and
€, where other parameters were set by default. In Figure 10(a),
we varied parameter k£ from 1 to 40. Our algorithms achieve
significant improvements. They reduce the execution time
by up to 1-2 orders of magnitude compared to the existing
ones. When k increases, the execution times of all algorithms
become longer. This is because the increasing k relaxes
the returned condition, leading to more qualified partitions
to be processed. Nevertheless, our algorithm Sweeping only
increases slightly in execution time since it processes partitions
in linear time. In contrast, the existing algorithm PBA+ is
heavily affected by the increasing k. For example, it runs 2
orders of magnitude slower than the others when k = 40. This
indicates that its hierarchical tree-based index is not efficient
in handling a large number of partitions. In Figure 10(b), we
varied parameter ¢ from O to 0.2. Our algorithms consistently
take the shortest time in all cases. For instance, when € = 0.2,
algorithm Sweeping is 20 times and 60 times faster than
existing algorithms LP-CTA and PBA+, respectively. More-
over, when ¢ increases, the execution time of our algorithm
Sweeping is almost indifferent. This again verifies the stability
of algorithm Sweeping under different parameter settings.

Four-dimensional Dataset. We also evaluated our algorithms
on a four-dimensional dataset (i.e., d = 4), where the other pa-
rameters were set by default. Since algorithm Sweeping is only
designed for the two-dimensional special case, we excluded it
from the experiment. Figure 11(a) shows the execution time
of each algorithm when we increased £ from 1 to 40. As
shown there, algorithm PBA+ performs the worst. Note that
we do not show the results of algorithm PBA+ in Figure 11(a)
when k > 30 since its pre-processing step (for computing the
tree) costs more than 10? seconds. Algorithm LP-CTA runs 3-
5 times slower than our algorithms on average. This is because
it spends much time checking the relationship between hyper-
planes and partitions via solving the costly Linear Program-
ming (LP) problems. In contrast, our algorithm E-PT adopts
effective strategies to speed up the relationship checking (see
Section V-A2), and our algorithm A-PC even avoids such
costly relationship checking. Although all algorithms need
more time to execute given a larger parameter £, as expected,
our algorithms consistently run the fastest in all cases. In Fig-
ure 11(b), we varied parameter € from 0 to 0.2. Our algorithms
work the best. They are at least four times faster than the exist-
ing ones. Our algorithm A-PC is 3-10 times faster than E-PT
since it avoids some partition constructions (e.g., the partitions
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in the internal nodes of E-PT). Furthermore, all algorithms
except PBA+ experience a slowdown when e increases since
more partitions are qualified to be returned, leading to longer
execution times. Note that algorithm PBA+ becomes faster
with larger e. It pre-constructs partitions without knowing the
regret ratio criterion, resulting in some partitions that need to
be shrunk or refined (e.g., filtering out unqualified utility vec-
tors) before being returned. As € increases, more utility vectors
become qualified, allowing some partitions to be returned
directly without refinement, which reduces the overall cost.
We also compared the results of the reverse top-k query
with ours (i.e., the results of the reverse regret query) on the
four-dimensional dataset. We assumed that our results were
the ground truth (just for comparison, not the real ground
truth), and obtained the precision, recall, and F1 of the results
of the reverse top-k query. The results are shown in Figure 12.
In all cases, the measurements are low, indicating that the
results of the reverse top-k query differ largely from ours.

Scalability. We studied the scalability of algorithms by varying
the dimension d, the dataset size n, and the type of datasets.

Varying d. In Figure 13, we evaluated the scalability of al-
gorithms w.r.t. the dimension d. Compared with the existing
algorithms, our algorithms E-PT and A-PC consistently take
the shortest execution time for all values of d. For instance,
when d = 4, algorithms LP-CTA and PBA+ run about 2.3 and
3.2 seconds, respectively, while algorithms E-PT and A-PC
finish in 0.5 and 0.1 seconds, respectively.

Varying n. In Figure 14, we studied the scalability of all
algorithms w.r.t. the dataset size n. Our algorithms E-PT
and A-PC scale well. For example, their execution times are
less than 0.75 seconds even if n = 800,000, and the others
run up to 2.55 seconds. Note that the execution times of all
algorithms become larger with the increasing dataset size,
since more hyper-planes have to be constructed and there are
more qualified partitions to be returned.

Varying type. In Figure 15, we ran all algorithms on three
types of synthetic datasets: anti-correlated (Anti), correlated
(Cor), and independent (Indep). Our algorithms are the best
on all datasets. On the correlated dataset, all the algorithms
run within 10~2 seconds. This is because the attributes in the
dataset are correlated. We only need to build hyper-planes
based on a few points to form partitions in the utility space. In
contrast, all the algorithms run slower on the anti-correlated
dataset. This is because the attributes in the dataset are
anti-correlated with each other, and thus, we need to consider
a lot of points in the dataset in order to decide the qualified
partitions in the utility space.

D. Results on Real Datasets

We studied the performance of our algorithms Sweeping,
E-PT and A-PC, on 4 real datasets by varying parameters k
and €. The results on datasets Island, Weather, Car, and NBA
are shown in Figures 16, 18, 17, and 19, respectively. We
only present the results of Sweeping on the Island dataset,
as it is only applicable to the two-dimensional special case.

4111

Our algorithms E-PT and A-PC outperform competitors
substantially in execution times. For instance, when k& = 40,
both E-PT and A-PC spend at most 15.4 seconds on dataset
NBA, while the existing algorithms LP-CTA and PBA+ take
810.1 seconds and 266.2 seconds, respectively. When £ = 35,
our algorithms take within 13.8 seconds on dataset Weather,
while the existing algorithm LP-CTA spends 347.7 seconds.
Note that we do not show the complete results of algorithm
PBA+ on some datasets due to its costly preprocessing step
(more than 10 seconds). Similarly, we omit the results of
LP-CTA when its execution time exceeds 10* seconds.

E. Summary

The experiments demonstrate that our formulation of prob-
lem RRQ provides a better assessment of prospective cus-
tomers. In our user study, the percentages of interest are at least
50% and the average ranks are up to 75.1. Furthermore, our
algorithms exhibit superior performance. (1) Our algorithms
are efficient. For example, our algorithm Sweeping runs 180
times faster than the existing algorithm PBA+ on a two-
dimensional dataset when k& = 30; our algorithms E-PT and A-
PC spend at most 6.94 seconds on a four-dimensional dataset
when k& = 30, while the existing algorithm PBA+ takes 995.7
seconds. (2) Algorithm A-PC achieves a faster speed (up to
20 times) than algorithm E-PT by providing an approximate
solution, while algorithm E-PT can return an exact solution.
(3) Our algorithms also scale well w.r.t. the type of dataset,
the number of dimensions, and the dataset size. For example,
our algorithm A-PC spends 0.14 seconds on the dataset with
the size of 1600k, while the existing algorithm PBA+ takes
4.5 seconds. In summary, our algorithm Sweeping runs in the
shortest time for the special case of RRQ. Our algorithms E-PT
and A-PC solve the general case of RRQ the most efficiently.

VII. CONCLUSION

In this paper, we aim to identify the prospective customers
for a given product, by finding all utility vectors such that the
given product is a (k, €)-regret product. Firstly, we focus on a
special case where each product is described by two attributes
(i.e., d = 2). We propose algorithm Sweeping that only takes
linear time. Secondly, we consider the general case where each
product can be described by multiple attributes (i.e., d > 2).
We present an exact algorithm E-PT and an approximate algo-
rithm A-PC, which perform well theoretically and empirically.
Extensive experiments verify that our algorithms are efficient.
As for future work, we want to apply the reverse regret query
under the streaming and dynamic setting (e.g., considering the
time of attribute) and extend the regret condition from a point
to the top as the pivot.
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