
Reverse Regret Query

Weicheng Wang, Raymond Chi-Wing Wong�

Hong Kong University of Science and Technology
wwangby@connect.ust.hk, raywong@cse.ust.hk

H. V. Jagadish
University of Michigan

jag@umich.edu

Min Xie�

Shenzhen Institute of Computing Sciences
xiemin@sics.ac.cn

Abstract—Reverse operators have lately gained much atten-
tion within the realm of multi-criteria decision-making. While
forward operators, such as skyline, seek to identify products that
may interest a customer, reverse operators identify prospective
customers who are likely to be attracted to a particular product.
Specifically, for each customer, they assign scores to all products
w.r.t. the customer’s preference and then rank the products based
on these scores. If the particular product ranks high, the customer
is considered a prospective customer for that product. However,
relying purely on rankings might cause misleading results, as
rankings emphasize the products’ relative positions without
accounting for their score differences. In a competitive market,
a comparatively low-ranked product may have a score that is
nearly indistinguishable from that of the top-tier product(s), and
thus, may still be interesting to the customer. In this paper,
we directly utilize scores to evaluate products, enabling more
accurate identification of prospective customers.

We refer to our problem as the reverse regret query (RRQ)
and make several contributions. First, for the special case in
which each product is described by two attributes, we propose
an algorithm Sweeping that only takes linear time. Second,
for the general case in which each product can be described
by multiple attributes, we present two algorithms: an exact
algorithm E-PT and a faster approximate algorithm A-PC. We
conducted experiments on synthetic and real datasets. The results
confirm that evaluating products via scores provides a sound and
insightful way of identifying prospective customers. Under typical
settings, our proposed algorithms execute faster than existing
ones by 1-3 orders of magnitude.

Index Terms—reverse regret, query optimization

I. INTRODUCTION

The reverse version of the multi-criteria decision-making
problem [1]–[4] has recently become increasingly significant.

Unlike the forward version [5]–[7], which aims to pinpoint

products that align with customers’ preferences, the reverse
version seeks to identify prospective customers who are likely

to be interested in a particular product. This problem arises

in multiple scenarios, particularly for product design, where a

manufacturer seeks to create products with broad appeal in a

heterogeneous marketplace.
To motivate the problem, consider a simplified situation of a

car manufacturer. Suppose that there is a set D of cars p1, p2,

etc., in the market, each of which is described by two attributes

as shown in Table I. The manufacturer wants to estimate the

demand for the design of a new car q.
In the literature [7]–[9], the customer’s preference is com-

monly modeled by a utility function fu. This utility function is

different for each prospective customer. Consider a customer

with utility function fu1 . Each car has a function score, as

shown in the rightmost column of the table. If the score of

Table I: Dataset Car

Car Horsepower (×102 hp) Safety Rating fu1 (·)
p1 4.5 5 4.55
p2 4.6 4 4.54
p3 5.0 1 4.60

q 4.8 2 4.52

car q is high enough, car q will be considered for purchase

by the customer. Thus, to find prospective customers, we need

to search for the utility functions based on which the score of

car q is high enough. If the number of such utility functions

is large, there will be many prospective customers for car q.

When mentioning that “the score of car q is high enough”

for a prospective customer, we refer to a widely applied mea-

surement called regret ratio [5], [10], [11]. Let p∗ represent

the car with the highest score in the market. The regret ratio of

q is defined as the proportion of the score difference between

q and p∗ to the score of p∗. We require the regret ratio of q
to be below a small threshold, which posits that the score of

car q is close to the highest in the market. Formally, we define

problem reverse regret query (RRQ). Given a query product

q, the goal is to identify all prospective customers of q. In

essence, it seeks all the utility functions based on which the

regret ratio of q is below a given threshold.

To the best of our knowledge, we are the first to study

problem RRQ. There are some closely related studies [1]–

[4], [12]–[14] focusing on reverse operators, but they are

distinct to ours. One representative operator is the reverse top-
k query [1]–[4]. It ranks the products in descending order

based on their scores w.r.t. each utility function, and then

returns the utility functions where car q ranks within the top-k
positions. The limitation of this work is that it concentrates on

product rankings, which are secondary sources of information

derived from product scores. This information emphasizes the

products’ relative positions without accounting for their score

differences, potentially obscuring details about the product’s

attractiveness to prospective customers.

For instance, consider Table I. The fourth column displays

the score of each car based on utility function fu1 . It is easy

to see that car q ranks last among the cars listed. Suppose

that k = 3. Following the reverse top-k query, car q would

not interest customers. However, this considerable gap in the

ranking is caused by a minor score difference, i.e., only about

1.7% (calculated as 4.6−4.52
4.6). The score of q is close to those

of the others. Car q could attract customers’ attention. It

would be imprudent to dismiss the competitiveness of car q.

In this paper, we directly utilize product scores to evaluate

4100

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00314

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
03

14

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

products. It is worth noting that the concept of the regret ratio

uses the highest score as a pivot. However, “the highest score”

might sometimes be overly stringent [15], [16]. To broaden our

problem and accommodate various scenarios, following [15],

[16], we relax the comparison from the highest score to the

k-th highest score, where k ≥ 1. This relaxation allows for

more flexibility in evaluating products, ultimately enhancing

the versatility and effectiveness of our problem.

Contributions. Our contributions are described as follows.

• To the best of our knowledge, we are the first to propose

problem reverse regret query (problem RRQ). This problem

employs a comprehensive evaluation of products (i.e., prod-

uct scores) to identify prospective customers effectively.

• We propose algorithm Sweeping for the special case of RRQ

in which each product is described by two attributes. We

prove that algorithm Sweeping only takes linear time cost.

• We propose two algorithms for the general case of RRQ,

in which each product is described by multiple attributes.

Algorithm E-PT is an exact algorithm that returns complete

results (i.e., all prospective customers). Algorithm A-PC is

an approximate algorithm that may miss some results (i.e.,

miss some prospective customers) but runs faster than E-PT.

• We conducted experiments on synthetic and real datasets

to show that our problem setting evaluates prospective cus-

tomers soundly and insightfully, and our algorithms execute

several orders of magnitude faster than existing ones.

The rest of the paper is organized as follows. The related

work is reviewed in Section II. The formal problem defini-

tion and characteristics are shown in Section III. Section IV

describes algorithm Sweeping for the special case of RRQ.

Section V presents two algorithms E-PT and A-PC for the

general case of RRQ. The experiments are shown in Section

VI and finally, Section VII concludes our paper.

II. RELATED WORK

The multi-criteria decision-making operators [5], [15],

[17]–[19] can be classified into forward and reverse versions.

There are two widely studied forward operators: the skyline

query and the top-k query. The skyline query [17], [20]–[27]

is designed to return the skyline products, i.e., the products

that are not dominated by other products. A product p is said

to dominate another product q if p is not worse than q in

each attribute and is strictly better in at least one attribute.

The deficiency of a skyline query is that its output size

is uncontrollable [10], [28]. It is possible that none of the

products are dominated by others, and thus, the whole product

dataset is returned to customers. In contrast, the top-k query

[18], [19], [29]–[33] returns a controllable output size. It

models customer preference by a utility function. Based on the

utility function, each product is associated with a score and the

k products with the highest scores are returned to the customer.

Several algorithms [19], [29], [30], [33] are designed for

the top-k query. [19], [29] employ sophisticated techniques,

such as Onion and kSkyband, to process the dataset into a

small set. Then, they quickly obtain the exact output from the

small set. [30], [33] solve the top-k query from the geometric

perspective. Unfortunately, there is a practical barrier to the use

of the top-k query. It requires customers to specify their utility

functions, but customers usually have difficulty in explicitly

specifying the exact parameters of the utility function.

Another forward operator is the regret minimization query

[5], [6], [15], [16], [34]. The regret minimization query aims

to find a representative set S such that the difference between

the customer’s favorite product in set S and that in the whole

product dataset is minimized. There are many algorithms [5],

[6], [15], [34] that are proposed for the regret minimization

query. [15], [34] adopt a greedy strategy that iteratively identi-

fies the product minimizing the difference and add it into S. [5]

samples the product dataset by partitioning the products into

different cubes. Then, it selects one product from each cube as

the output. [6] samples the customer preference and identifies

products as output based on the sampled customer preference.

Among the forward operators discussed, they commonly

take the customer’s perspective to identify products. Instead,

the reverse operators seek out potential customers for products.

One representative operator is the reverse top-k query.

Given a product q, the reverse top-k query [1]–[4] returns

all customers such that q is one of the best k products based on

customers’ preferences. Specifically, [2]–[4] assume that there

is a set U of utility functions modeling customer preferences.

The objective is to find those utility functions based on which

the score of product q is among the top-k. However, [2]–[4]

only allow set U to comprise a finite number of discrete utility

functions. They cannot deal with the entire continuous utility

function space, i.e., the entire customer preference space.

Motivated by this insufficiency, [1] studies a more general

case in which set U is set to be the entire continuous utility

function space. It proposes an algorithm via partitioning.

Intuitively, it partitions the utility function space into cells and

builds a cell-tree to index the cells. By processing the cell-tree,

it checks the cells and returns utility functions from qualified

cells. The weakness of [1] is that it measures products based

on the product rankings. This may result in an inappropriate

evaluation of products, as discussed in Section I. In contrast,

our work considers product scores, which provides a more

comprehensive view of products, and consequently, yields a

sounder identification of prospective customers. Besides, the

cell-tree in [1] is not efficient. In Section VI, we adapted it

to compare with our algorithms. The results show that our

algorithms execute several orders of magnitude faster than it.

III. PROBLEM DEFINITION

A. Problem Reverse Regret Query

Product/Point. The input consists of a set D of n products and

a query product, each described by d attributes. We represent

each product as a d-dimensional point p = (p[1], p[2], ..., p[d]).
In the following, we use the words product/point and at-

tribute/dimension interchangeably. Without loss of generality,

we assume that each dimension is normalized to (0, 1] and

a large value in each dimension is preferred by customers.

Note that humans typically consider a limited number of

4101

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

attributes in their decision-making process. Following previous

studies [1], [28], we specifically focus on scenarios where the

number of attributes remains relatively modest (e.g., d ≤ 7).

Nevertheless, it is important to mention that our methodologies

proposed herein are applicable to any setting of d.

Utility Function. Following [1], [2], [5]–[7], [33], we model

the customer preference as a linear utility function

fu(p) = u · p =
∑d

i=1 u[i]p[i],

which is widely used for modeling customer preference [35],

[36]. The experimental studies conducted by [7], [10] also

show that linear utility functions can effectively capture how

customers evaluate products. Each utility function corresponds

to a utility vector u = (u[1], u[2], ..., u[d]) that captures

the importance of each attribute to a customer. A larger

u[i] indicates that the i-th attribute is more important to the

customer, where i ∈ [1, d]. The domain U of all utility vectors

is called the utility space. Moreover, the function score fu(p),
also known as the utility of p w.r.t. u, represents how much

a customer favors point p. If a customer prefers p to q, then

fu(p) > fu(q). Note that, as discussed in [5], [8], [10], the

norm of u does not affect the semantics of a utility function.

Therefore, without loss of generality, we assume that (1)

u[i] ≥ 0 for each dimension i ∈ [1, d], and (2)
∑d

i=1 u[i] = 1.

Example 1. Consider Table II where each point has two dimen-

sions. Let fu(p) = 0.5p[1]+0.5p[2] (i.e., u = (0.5, 0.5)). The

utility of p1 w.r.t. u is f(p1) = 0.5×0.20+0.5×0.92 = 0.56.

We can obtain the utilities of other points in a similar way.

Regret Point. Given a utility function fu, the points in a

dataset D can be ranked by their utilities w.r.t. u in a descend-

ing order. Let us denote the utility of the k-th ranked point

by kmaxp∈Dfu(p). For example, in Table II, since point p1
ranks the second, we have 2maxp∈Dfu(p) = fu(p1) = 0.56.

To evaluate the query point q, following [15], [16], we employ

the concept of k-regret ratio by utilizing kmaxp∈Dfu(p).

Definition 1 (k-Regret Ratio). Given a dataset D and a utility

function fu, the k-regret ratio of the query point q is:

k-regratio(q,u) =
max(0, kmaxp∈Dfu(p)− fu(q))

kmaxp∈Dfu(p)

Intuitively, the k-regret ratio measures how close the utility

of q is to that of the k-th ranked point in D w.r.t. u. Here,

we consider the ratio instead of the direct score difference to

achieve the property of scale invariance [5]. Besides, the nu-

merator incorporates a maximum operation to ensure that the

k-regret ratio remains non-negative. The k-regret ratio falls in

the range [0, 1]. If k-regratio(q,u) is below a small threshold

ε (i.e., k-regratio(q,u) < ε), the utility of q is only slightly

smaller or even larger than that of the k-th ranked point. In

this case, we say point q is a (k, ε)-regret point w.r.t. u.

Example 2. Continue Example 1, where u = (0.5, 0.5).
Suppose that q = (0.4, 0.7) and ε = 0.1. The 2-regret ratio of

point q is 2-regratio(q,u) = max(0, 0.56 − 0.55)/0.56 =
0.018 < ε. Thus, q is a (2, 0.1)-regret point w.r.t. u.

We now formally define the Reverse Regret Query problem

(RRQ). The frequently used notations are summarized in a

table that can be found in the technical report [37].

Problem 1 (Reverse Regret Query (RRQ)). Given a dataset

D, a query point q, an integer k, and a threshold ε, we want

to find all u ∈ U such that q is a (k, ε)-regret point w.r.t. u.

There are two parameters k and ε in Problem 1. Parameter

k controls the selection of the pivot point. If k is small, we

focus on the very best point as the pivot. Parameter ε decides

the level of closeness required between the query point and the

selected pivot. A smaller ε implies a stricter criterion for con-

sidering a point as sufficiently close. Back to Example 2, utility

vector u = (0.5, 0.5) can be returned as an output for problem

RRQ since q is a (2, 0.1)-regret point w.r.t. u. We say u is a

qualified utility vector. Note that the utility space U is a con-

tinuous space containing infinite utility vectors. The complete

output of problem RRQ are regions in U that contain qualified

utility vectors. Such regions are called qualified regions.

B. Problem Characteristics

We formalize our problem RRQ from a geometric perspec-

tive. In a d-dimensional geometric space Rd, each utility vector

u ∈ U can be seen as a point. Recall that we assume (1)

u[i] ≥ 0 for every dimension, and (2)
∑d

i=1 u[i] = 1. The

utility space U = {u ∈ R
d
+|

∑d
i=1 u[i] = 1} is a polyhedron

[38] in R
d, e.g., a line segment when d = 2 as shown in

Figure 2 or a triangle when d = 3 as shown in Figure 1.

For any point p ∈ D, we can build a hyper-plane hq,p with

query point q in the geometric space R
d as follows.

hq,p : {r ∈ R
d|r · (q − (1− ε)p) = 0}

The hyper-plane passes through the origin with its unit norm

in the same direction as q− (1− ε)p [38]. Figure 1 shows an

example. For each utility vector u ∈ U ∩ hq,p, we have

u · (q − (1− ε)p) = 0, i.e., fu(q) = (1− ε)fu(p)

Hyper-plane hq,p divides the utility space into two half-

spaces. The half-space h+
q,p above hq,p (yellow part), called

positive half-space, contains all utility vectors u such that

fu(q) > (1 − ε)fu(p). The half-space h−
q,p below hq,p (red

part), called negative half-space, contains all the utility vectors

u such that fu(q) < (1−ε)fu(p). The unit norm
q−(1−ε)p

||q−(1−ε)p||
(black arrow) of hyper-plane hq,p points to positive half-space

h+
q,p. Note that the half-space is bounded by utility space U

instead of being defined on the entire geometric space.

Example 3. Consider Table II. Suppose q = (0.4, 0.7) and

threshold ε = 0.1. For point p1, we build a hyper-plane hq,p1

in space R
2: {r ∈ R

2|r·(0.22,−0.13) = 0} shown as a line in

Figure 2. Its unit norm (black arrow) is in the same direction

as vector (0.22,−0.13). Similarly for hq,p2 and hq,p3 .

For any two half-spaces, e.g., h+
q,p and h+

q,p′ , we say half-

space h+
q,p is covered by half-space h+

q,p′ , denoted by h+
q,p ⊆

h+
q,p′ , if any utility vector in h+

q,p is also contained in h+
q,p′ .

For example, in Figure 2, half-space h+
q,p2

is covered by h+
q,p3

.

4102

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

Table II: Dataset

p p[1] p[2] f(0.5,0.5)(p)
p1 0.2 0.92 0.56
p2 0.70 0.54 0.62
p3 0.60 0.30 0.45

��

��

��

����

����
�

����
	

�
�� � ���

Figure 1: Hyper-plane

��

��

�����

�����

�����

�

��

��

��
��

�����

�����

Figure 2: Two Dim

��

�����

�����

��

��

Figure 3: High Dim

�����
� ������

�

��

�����
�

�����
� �����

�

�� � ��

����

�� ��

�� ���� ��

Figure 4: P-Tree

We now apply the hyper-plane/half-space concepts to

problem RRQ. For each point p ∈ D, we build a hyper-plane

hq,p with q, dividing the utility space into two half-spaces.

Since |D| = n, there are n hyper-planes and 2n half-spaces.

The n hyper-planes divide the utility space into O(nd−1)
regions, called partitions [38]. Each partition is covered by n
(positive or negative) half-spaces. Here, we say a partition c
is covered by a half-space, e.g., h+

q,p, denoted by c ⊆ h+
q,p,

if any utility vector in partition c is also in half-space h+
q,p.

Example 4. Continue Example 3 as shown in Figure 2, where

ε = 0.1. The three hyper-planes hq,p1
, hq,p2

, and hq,p3
divides

the utility space into four partitions c1, c2, c3, and c4. Partition

c1 = h−
q,p1

∩ h+
q,p2

∩ h+
q,p3

is covered by one negative half-

space h−
q,p1

, and two positive half-spaces h+
q,p2

and h+
q,p3

.

The following lemma shows how to determine if query point

q is a (k, ε)-regret point w.r.t. the utility vectors in a partition.

For lack of space, the proofs of some theorems/lemmas in this

paper can be found in the technical report [37].

Lemma 1. If and only if a partition c is covered by fewer than

k negative half-spaces (i.e., more than n − k positive half-

spaces), query point q is a (k, ε)-regret point w.r.t. any utility

vectors in partition c.

Based on Lemma 1, we can solve problem RRQ in roughly

three steps: (1) construct a hyper-plane hq,p for each point

p ∈ D; (2) compute the partitions based on the hyper-planes

constructed; and (3) obtain the partitions that are covered by

fewer than k negative half-spaces. To illustrate, assume that

k = 2 in Example 4. Partitions c1, c2, and c3 will be returned

since they are covered by fewer than two negative half-spaces.

IV. TWO DIMENSIONAL ALGORITHM

We begin with a special case of problem RRQ in which each

point has two dimensions (i.e., d = 2). We propose algorithm

Sweeping, which performs well theoretically and empirically.

Intuitively, in a 2-dimensional geometric space R
2, as depicted

in Figure 2, the utility space U is a line segment L from (0,1)

to (1,0). Once the utility space is divided by hyper-planes, the

partitions are ordered sub-segments of L (e.g., in Figure 2, we

have c1 → c2 → c3 → c4). Algorithm Sweeping conducts a

sweep along L (from (0,1) to (1,0)) and checks each partition

sequentially. If a partition is covered by fewer than k negative

half-spaces (i.e., more than n− k positive half-spaces), it is a

qualified partition to be returned. However, two issues affect

the efficiency of Sweeping. Firstly, there are many partitions

that need to be checked since for every p ∈ D, a hyper-plane

will be created, resulting in O(n) partitions. Secondly, it is

costly to check whether a partition is qualified to be returned.

Since each partition is covered by n (positive or negative) half-

spaces, we need O(n) time to count the negative half-spaces.

In the following, we address these two issues, respectively.

Partition Reduction. Let r = (1, 0) in L be a reference utility

vector in space R
2. We call a hyper-plane an inclusive hyper-

plane if its negative half-space contains r, and an exclusive
hyper-plane otherwise. In Figure 2, hq,p2

and hq,p3
are two

inclusive hyper-planes, and hq,p1
is an exclusive hyper-plane.

For all the inclusive hyper-planes, let us rank them based on

their intersections with line segment L. Denote the intersection

between a hyper-plane h and L by ∧(h,L). If ∧(h,L) is

farther away from the X1-axis, the hyper-plane h ranks higher.

For instance, in Figure 2, hyper-plane hq,p2
ranks higher than

hyper-plane hq,p3 , since its intersection with L is farther away

from the X1-axis than that of hq,p3 . With a slight abuse of

notation, denote the k-th ranked inclusive hyper-plane by lhk.

Lemma 2. Query point q is not a (k, ε)-regret point w.r.t. any

utility vectors in the negative half-space of lhk (i.e., u ∈ lh−
k).

Lemma 2 indicates that the partitions in lh−
k are not quali-

fied to be returned. Thus, we can directly omit those partitions.

To illustrate, consider Figure 2 with k = 1. Since inclusive

hyper-plane hq,p2
ranks the first, partitions c3 ⊆ h−

q,p2
and

c4 ⊆ h−
q,p2

can be omitted. Similarly, we can rank all the

exclusive hyper-planes based on their intersections with L. If

the intersection is farther away from the X2-axis, the hyper-

plane ranks higher. Denote the k-th ranked exclusive hyper-

plane by uhk. The partitions in uh−
k can also be omitted.

Lemma 3. Based on the partition reduction strategy, we reduce

the number of partitions that we need to consider to O(k).

Checking Cost Reduction. Recall that the sweep direction

of our algorithm is from (0,1) to (1,0). For each inclusive

(resp. exclusive) hyper-plane h, the sweep will pass through

h+ → ∧(h,L) → h− (resp. h− → ∧(h,L) → h+). In other

words, when the sweep reaches ∧(h,L) of an inclusive (resp.

exclusive) hyper-plane h, we know that the remaining parti-

tions to be swept are covered by (resp. are not covered by) h−.

For example, consider an inclusive hyper-plane hq,p2
in Fig-

ure 2. When the sweep reaches intersection ∧(hq,p2
,L), the

partitions to be swept, say c3 and c4, must be covered by h−
q,p2

.

Following this idea, we maintain an integer Q to track the

number of negative half-spaces during the sweep. Assume that

partition c is currently being swept and Q holds the number of

negative half-spaces covering c. As the sweep advances, the

sweep reaches an intersection ∧(h,L) and the next partition

is c′. If hyper-plane h is an inclusive hyper-plane, its negative

half-space h− must cover the remaining partitions (including

c′) to be swept. Thus, we can obtain the number of negative

4103

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Algorithm Sweeping

1 Input: point set D, query point q, parameters k and ε.
2 Output: the set C of qualified partitions.

3 Find hyper-planes lhk and uhk;

4 Exclude the partitions in lh−
k or uh−

k ;

5 for each partition c in uh+
k ∩ lh+

k do
6 Update integer Q for partition c;
7 if Q < k then
8 C ← C ∪ {c};

9 return The set C of qualified partitions.

half-spaces that cover partition c′ by simply adding 1 to Q.

Similarly, if hyper-plane h is an exclusive hyper-plane, we

can obtain the number by subtracting 1 from Q.

Lemma 4. The checking cost for each partition is O(1).

The pseudocode of algorithm Sweeping is shown in Algo-

rithm 1. In the beginning, we find hyper-planes lhk and uhk,

and exclude the partitions in negative half-spaces lh−
k or uh−

k

(lines 3-4). Then, we start the sweep process from the partition

next to ∧(uhk,L) and set Q to be the number of negative

half-spaces covering it. The sweep moves towards ∧(lhk,L).
When we reach the intersection ∧(h,L) of an inclusive (resp.

exclusive) hyper-plane h and enter a new partition c, Q is

updated by adding (resp. subtracting) 1 and we check whether

partition c is qualified to be returned (lines 6-8). The process

stops when all partitions in uh+
k ∩ lh+

k are swept (line 5).

To illustrate, consider Figure 2 with k = 1. There are three

hyper-planes hq,p1 , hq,p2 , and hq,p3 , where uhk = hq,p1 and

lhk = hq,p2 . We exclude partitions c1, c3, and c4 since they

are in either h−
q,p1

or h−
q,p2

. The sweep starts from ∧(hq,p1
,L)

to ∧(hq,p2
,L). For partition c2, since Q = 0 < k, it is returned

as the final output, i.e., C = {c2}.

Theorem 1. The time complexity of Sweeping is O(n).

V. HIGH DIMENSIONAL ALGORITHMS

We consider the general case of problem RRQ in which each

point has multiple dimensions (i.e., d ≥ 2). The first algorithm,

termed Partition Tree (E-PT), is an exact algorithm. It returns

all qualified partitions (i.e., covered by fewer than k nega-

tive half-spaces). The second algorithm, named Progressive
Construction (A-PC), is an approximate algorithm. It sacrifices

some qualified partitions to achieve a better execution time.

A. Exact Algorithm

We construct a tree-structured index, called Partition Tree
(or P-Tree for short), to manage the partitions in the utility

space divided by the hyper-planes. For each point p ∈ D, a

hyper-plane hp,q is built with query point q and is inserted into

the P-Tree. The P-Tree incrementally indexes the partitions

divided by the hyper-planes inserted so far. Upon inserting all

hyper-planes, the partitions in the P-Tree that are covered by

fewer than k negative half-spaces are returned.

1) Partition Tree: In the P-Tree, each leaf node contains

one partition and each internal node contains the union of

partitions from its reachable leaves. When the context is clear,

we also call a union of partitions as a partition. For each

internal/leaf node N , we use a counter Q(N) to record the

number of negative half-spaces that cover the partition stored

in N . Consider Figure 3 as an example. The utility space is

divided into three partitions by two hyper-planes hq,p1 and

hq,p2 . Figure 4 shows the corresponding P-Tree. It has three

leaves that contain partitions c1, c2, and c3, respectively. The

internal node N2 contains partition c2 ∪ c3 since it has two

reachable leaves, containing c2 and c3, respectively. Since par-

tition c2∪c3 is covered by neither h−
q,p1

nor h−
q,p2

, Q(N2) = 0.

The P-Tree is incrementally built by inserting one hyper-

plane at a time. Initially, the root is constructed, whose parti-

tion is the entire utility space. When a hyper-plane is inserted,

the partitions stored in some leaves are divided into smaller

ones, causing those leaves to split. Specifically, each hyper-

plane insertion begins at the root and proceeds downward. At

each node N , the insertion is conducted based on the relation-

ship between hq,p and the partition c stored in N as follows.

Case 1: Half-space h−
q,p covers partition c, i.e., c ⊆ h−

q,p.
We keep partition c unchanged and increase Q(N) by 1.

If Q(N) ≥ k, node N is marked as invalid and will not

be processed by any future hyper-plane insertions. This is

because partition c is already covered by k negative half-

spaces, and thus, none of the utility vectors in c is qualified

to be returned. If Q(N) < k and node N is an internal node,

we process the children of N recursively.

Case 2: Half-space h+
q,p covers partition c, i.e., c ⊆ h+

q,p.
We keep partition c and Q(N) unchanged. The children of N
(if any) will not be recursively processed.

Case 3: Hyper-plane hq,p intersects partition c, i.e., c ∩
h−
q,p �= ∅ and c∩h+

q,p �= ∅ . Hyper-plane hq,p divides partition

c into two sub-partitions. If node N is an internal node, the

insertion proceeds directly to its children. Otherwise, we build

two children N ′ and N ′′ for N , containing the two sub-

partitions of c, respectively. Precisely, the first child contains

partition c′ = c ∩ h−
q,p and Q(N ′) = Q(N) + 1; the second

child contains partition c′′ = c ∩ h+
q,p and Q(N ′′) = Q(N).

Note that for node N ′, if Q(N ′) ≥ k, it will be marked as

invalid, since partition c′ is already covered by k negative

half-spaces, and thus, c′ is not qualified to be returned.

To illustrate, we build a P-Tree based on Figure 3 with

k = 2. In the beginning, the partition in the root is the

entire utility space U and Q(Root) = 0. Assume that the

first hyper-plane inserted is hq,p1 . It divides the utility space

into two partitions h−
q,p1

and h+
q,p1

(Case 3). We build two

children N1 and N2 for the root. Node N1 contains partition

c1 = h−
q,p1

and Q(N1) = 1; node N2 contains partition h+
q,p1

and Q(N2) = 0. The second hyper-plane inserted is hq,p2
.

The insertion first comes to the root. Since hq,p2
intersects

the utility space, the insertion directly proceeds to the children

N1 and N2 of the root (Case 3). For node N1, half-space

h−
q,p2

covers partition c1 (Case 1). We increase Q(N1) by

4104

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

1. Since Q(N1) ≥ k, node N1 is marked as invalid. For

node N2, hyper-plane hq,p2 divides partition h+
q,p1

into two

sub-partitions c2 = h+
q,p1

∩h−
q,p2

and c3 = h+
q,p1

∩h+
q,p2

(Case

3). We build two children N3 and N4 for N2, containing

partitions c2 and c3, respectively, and set Q(N3) = 1 and

Q(N4) = 0. The final P-Tree is shown in Figure 4.

During the insertion, a critical step is to check the rela-

tionship between a hyper-plane and a partition c. We decide

such relationship based on the extreme points (i.e. corner

points [38]) of the partition. Specifically, assume that partition

c has x extreme points e1, e2, ..., ex.

Lemma 5. Given a hyper-plane hq,p, if ∀i ∈ [1, x], ei ∈ h+
q,p

(resp. ei ∈ h−
q,p), partition c is covered by h+

q,p (resp. h−
q,p).

Otherwise, hyper-plane hq,p intersects partition c.

Consider partition c2 ∪ c3 in Figure 3. It is a trapezoid with

four extreme points (shown as black dots). Hyper-plane hq,p2

intersects the partition, since there are two extreme points in

h+
q,p2

and another two in h−
q,p2

. Suppose that a partition has

x extreme points. It takes O(x) time to check the relationship

between all extreme points and the hyper-plane.

2) Acceleration: We develop several strategies to accelerate

the P-Tree construction: (1) reduce the number of hyper-

planes inserted; (2) establish an efficient order for hyper-plane

insertion; (3) speed up the relationship checking between a

hyper-plane and a partition; and (4) reduce the number of

children creation for leaf nodes.

Hyper-plane Reduction. We reduce the number of hyper-

planes inserted into the P-Tree. Consider a hyper-plane hq,p.

Assume that there exist k hyper-planes hq,p′ such that their

negative half-spaces h−
q,p′ cover half-space h−

q,p (i.e., h−
q,p ⊆

h−
q,p′). Then, for any partitions covered by h−

q,p, they are

unqualified since they are already covered by k half-spaces

hq,p′ ; for any partitions covered by h+
q,p, the numbers of

negative half-spaces covering them are not affected by hq,p.

Therefore, the insertion of hyper-plane hq,p does not affect the

qualification of a partition. Based on this idea, we only insert

the hyper-planes into the P-Tree if their negative half-spaces

are covered by fewer than k negative half-spaces. Lemma 6

shows how to check if a negative half-space h−
q,p is covered

by another negative half-space h−
q,p′ . Let vq,p and vq,p′ be

the unit norms of hyper-planes hq,p and hq,p′ , respectively.

Lemma 6. If ∀i ∈ [1, d], vq,p[i] ≥ vq,p′ [i], then h−
q,p ⊆ h−

q,p′ .

Consider Figure 2 as an example. Vectors vq,p2 and vq,p3

represent the unit norms of hyper-planes hq,p2
and hq,p3

,

respectively. Since vq,p3
[1] ≥ vq,p2

[1] and vq,p3
[2] ≥ vq,p2

[2],
half-space h−

q,p3
is covered by half-space h−

q,p2
.

Insertion Order. During the P-Tree construction, a node N
will be marked as invalid and will not be processed by future

hyper-plane insertions if Q(N) ≥ k. We develop an insertion

order for hyper-planes, so that if a node is indeed invalid, it

can be marked as early as possible, reducing the number of

nodes to be processed for hyper-plane insertions.

We utilize the half-spaces covering relationships to deter-

mine the insertion order. Consider two hyper-planes hq,p and

�����

�����

����� ��	���

�������	���

Figure 5: Relationship

�����

�����

�����
�� ����

��
�

Figure 6: Sampled u

hq,p′ , where h−
q,p ⊆ h−

q,p′ . It is easy to see that h−
q,p′ covers

more partitions than h−
q,p. Suppose that we insert hyper-plane

hq,p′ before hq,p. More nodes in the P-Tree will have their

counters Q(N) incremented by 1, and thus, the possibility of

nodes in the P-Tree being marked as invalid increases. Fol-

lowing this intuition, for each hyper-plane hq,p, we compute

the number of negative half-spaces that are covered by h−
q,p,

denote by W (hq,p). Then, we insert hyper-planes into the P-

Tree based on their W (hq,p) in the descending order.

Relationship Checking. We present strategies to speed up the

relationship checking between a partition and a hyper-plane.

Our first strategy is to utilize the hierarchy of the P-Tree.

Assume that node N ′ is a child of node N , where N (resp.

N ′) contains partition c (resp. partition c′).
Lemma 7. If partition c is covered by a half-space h+

q,p (resp.

h−
q,p), partition c′ must be covered by h+

q,p (resp. h−
q,p).

Consider Figure 4. Nodes N3 and N4 are two children of

N2. If there is a half-space covering the partition in node N2,

it must cover the partitions in N3 and N4.

Our second strategy is to approximate partitions as spheres,

since it only takes O(1) time to check the relationship between

a sphere and a hyper-plane. Let dist(h,Bc) denote the smallest

Euclidean distance from a sphere’s center Bc to any point in

a hyper-plane h. If dist(h,Bc) is smaller than the sphere’s

radius, the sphere must intersect the hyper-plane. Otherwise,

we can easily determine which half-space the sphere is in,

by checking the location of the sphere’s center. For example,

in Figure 5, the larger sphere is in half-space h+
q,p1

, since

(1) dist(h,Bc) is larger than the sphere’s radius and (2) the

sphere’s center is in half-space h+
q,p1

.

Consider a partition c that has x extreme points e1, e2, ...,
ex. We define the outer sphere and inner sphere of partition

c as follows. For the outer sphere, we define its center Oc to

be the average of all extreme points (i.e., Oc =
∑x

i=1 ei/x),

and its radius Or to be the largest Euclidean distance from

the center to any extreme point (i.e., Or = max{dist(e1,Oc),
dist(e2,Oc), ..., dist(ex,Oc)}, where dist(ei,Oc) denotes the

Euclidean distance between ei and Oc). Intuitively, the outer

sphere of partition c is a sphere that covers c.

Lemma 8. If a half-space (i.e., h+
q,p or h−

q,p) covers the outer

sphere of a partition, the half-space covers the partition.

Consider the inner sphere of partition c. Assume that there

are y boundary hyper-planes h1, h2, ..., hy of partition c (i.e.,

the hyper-planes that bound partition c). We define the inner

sphere’s center Ic to be the average of all extreme points (i.e.,

Ic =
∑x

i=1 ei/x), and its radius Ir to be the smallest Euclidean

distance from the center to any boundary hyper-plane (i.e.,

4105

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

Ir = min{dist(h1, Ic), dist(h2, Ic), ..., dist(hy, Ic)}, where

dist(hi, Ic) denotes the smallest Euclidean distance from Ic

to any point in hi). Intuitively, the inner sphere of partition c
is a sphere that is covered by c.

Lemma 9. If a hyper-plane intersects the inner sphere of a

partition, the hyper-plane intersects the partition.

Figure 5 shows a partition (represented as a triangle), along

with its outer and inner spheres. Since the outer sphere is in

half-space h+
q,p1

, the partition is also in h+
q,p1

. Since hyper-

plane hq,p2
intersects the inner sphere, hyper-plane hq,p2

also

intersects the partition. Note that if the relationship cannot be

determined using the above two strategies, we can still rely

on the extreme points method as discussed in Section V-A1

Lazy Split. For the P-Tree construction, one time-consuming

step is to create children for the leaves. To accelerate the con-

struction, our idea is to reduce the number of children creation.

Consider a leaf node N . Suppose the partition c in N intersects

a set H(N) of hyper-planes. Since |H(N)| hyper-planes cor-

respond to |H(N)| negative half-spaces, for any utility vector

in partition c, it must be covered by at most Q(N) + |H(N)|
negative half-spaces. If Q(N)+|H(N)| < k, any utility vector

in partition c is covered by fewer than k negative half-spaces.

Thus, partition c could potentially be returned in its entirety,

making the split and children creation for N unnecessary.

Following this idea, we maintain a hyper-plane set H(N)
for each leaf node. When the insertion of a hyper-plane hq,p

comes to a leaf node N and the partition in N intersects hq,p,

we simply store hq,p in set H(N) rather than creating two

children immediately. The children creation is only triggered

when a leaf N has Q(N) + |H(N)| ≥ k. This condition can

be met in two cases. (1) The hyper-plane inserted intersects

the partition c in N (which makes |H(N)| increase by 1).

(2) The negative half-space of the hyper-plane inserted covers

partition c (which makes Q(N) increase by 1).

When Q(N) + |H(N)| ≥ k, we attempt to reduce the

hyper-planes in H(N) by splitting node N . Firstly, we pop out

the oldest hyper-plane hq,p in H(N) and create two children

for node N . One child N ′ contains partition c1 = c∩h−
q,p and

Q(N ′) = Q(N) + 1; the other child N ′′ contains partition

c2 = c ∩ h+
q,p and Q(N ′′) = Q(N). Both children inherit

H(N) from node N . However, since partitions c1 and c2
are sub-partitions of c, the hyper-planes in H(N) may not

intersect partitions c1 or c2. Thus secondly, we refine H(N ′)
and H(N ′′) in nodes N ′ and N ′′, respectively. Consider

node N ′ as an example. For any hyper-plane hq,p ∈ H(N ′),
if its half-space (either h−

q,p or h+
q,p) covers partition c1, we

remove hq,p from H(N ′). Besides, Q(N ′) is updated to be

Q(N ′) = Q(N ′) + 1 if c1 ⊆ h−
q,p. After the refinement, if

Q(N ′) + |H(N ′)| < k, we stop. Otherwise, N ′ is recursively

split. Similarly for node N ′′.
3) Summary and Analysis: The pseudocode of algorithm

E-PT is shown in Algorithm 2. Initially, we reduce the number

of hyper-planes inserted, by filtering out the hyper-planes

whose negative half-spaces are covered by at least k negative

half-spaces (line 3). Then, the remaining hyper-planes are

Algorithm 2: Algorithm E-PT

1 Input: point set D, query point q, parameters k and ε.
2 Output: the set C of qualified partitions.

3 Filter and rank the hyper-planes based on W (hq,p);
4 for each hyper-plane hq,p do
5 Insert(Root, hq,p);

6 return All leaves N with Q(N) + |H(N)| < k.

Insert(node N , hyper-plane hq,p)

7 if c ⊆ h−
q,p then

8 Q(N) = Q(N) + 1;

9 if Q(N) ≥ k then
10 Mark node N invalid;

11 else if node N is an internal node then
12 for each child N ′ of N do
13 Insert(N ′, hq,p);

14 else if Q(N) + |H(N)| ≥ k then
15 Lazy Split(N);

16 else if c ∩ h−
q,p �= ∅ and c ∩ h+

q,p �= ∅ then
17 if node N is an internal node then
18 for each child N ′ of N do
19 Insert(N ′, hq,p);

20 else
21 Add hq,p into H(N);
22 if Q(N) + |H(N)| ≥ k then
23 Lazy Split(N);

Lazy Split(node N)

24 hq,p ← the oldest hyper-plane in H(N);
25 H(N) = H(N) \ {hq,p};

26 Create two children N ′ and N ′′ for N ;

27 c1 = c ∩ h−
q,p; Q(N ′) = Q(N) + 1; H(N ′) = H(N);

28 c2 = c ∩ h+
q,p; Q(N ′′) = Q(N); H(N ′′) = H(N);

29 Refine(N ′); Refine(N ′′);

Refine(node N)

30 for each hyper-plane hq,p in H(N) do
31 if c ⊆ h−

q,p or c ⊆ h+
q,p then

32 Remove hyper-plane hq,p from H(N);
33 if c ⊆ h−

q,p then
34 Q(N) = Q(N) + 1;

35 if Q(N) ≥ k then
36 Mark node N invalid;

37 return;

38 if Q(N) + |H(N)| ≥ k then
39 Lazy Split(N);

4106

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

inserted into the P-Tree in the descending order of their

W (hq,p) (lines 3-5). When all hyper-planes are inserted, the

partitions that (1) are stored in the leaves and (2) are covered

by fewer than k negative half-spaces are returned (line 6).

The insertion of each hyper-plane hq,p is conducted in a

top-down manner. Suppose that the insertion comes to a node

N that stores a partition c. (1) If c ⊆ h−
q,p, Q(N) is updated

to be Q(N) = Q(N) + 1 (lines 7-8). If Q(N) ≥ k, node

N is marked as invalid (lines 9-10). If node N is a valid

internal node, the insertion proceeds to its children recursively

(lines 11-13). If node N is a valid leaf, we check whether

Q(N) + |H(N)| ≥ k and split N if such condition holds

(lines 14-15). (2) Suppose c∩h−
q,p �= ∅ and c∩h+

q,p �= ∅ (line

16). If node N is an internal node, the insertion proceeds to

its children recursively (lines 17-19). If node N is a valid

leaf, we add the hyper-plane to set H(N) (lines 20-21). The

update of H(N) may lead to Q(N) + |H(N)| ≥ k. If this

is the case, we split node N (lines 22-23). To split node N ,

we pop out the oldest hyper-plane hq,p in H(N) and create

two children N ′ and N ′′ for N based on hq,p (lines 24-26).

Each child stores its own partition and counter, and inherits

set H(N) (lines 27-28). Note that H(N ′) and H(N ′′) will be

refined, by only maintaining the hyper-planes that intersect the

new partition in the child (lines 29-37). After the refinement,

if Q(N ′) + |H(N ′)| ≥ k (resp. Q(N ′′) + |H(N ′′)| ≥ k), we

recursively split node N ′ (node N ′′) (lines 38-39).

Denote by O(α) the creation cost of a single node. The fol-

lowing theorem shows the time complexity of our algorithm.

Theorem 2. The time complexity of our algorithm E-PT is

O(α · (k logd−1n
d!)d−1).

Note that O(α) mainly depends on the cost of partition

construction. Our algorithm E-PT constructs partitions incre-

mentally. When building a new partition (either c ∩ h−
q,p or

c ∩ h+
q,p), there is only one hyper-plane hq,p that intersects

the existing partition c. Thus, the time cost for each partition

construction is low [10], [38], resulting in a small O(α).

B. Approximate Algorithm

Algorithm E-PT constructs partitions for internal nodes,

which are important for hierarchical indexing. However, none

of them will be included in the output. This motivates us to

design a more efficient algorithm A-PC, to ensure that each

partition constructed is indeed a qualified partition.

1) Progressive Construction: We randomly sample a set of

utility vectors in the utility space. For each sampled utility

vector u, we compute the k-regret ratio of the query point q,

i.e., k-regratio(q,u). If k-regratio(q,u) < ε, we construct

a partition cu based on u and add cu to the final output.

Specifically, partition cu is the intersection of n half-spaces.

Denote by D+
u (resp. D−

u) the set of points p such that (1−
ε)fu(p) < fu(q) (resp. (1 − ε)fu(p) > fu(q)). These two

sets can be easily computed based on the utilities. We have

cu =

⎛
⎝ ⋂

p∈D+
u

h+
q,p

⎞
⎠ ∩

⎛
⎝ ⋂

p′∈D−
u

h−
q,p′

⎞
⎠ .

Lemma 10. Given partition cu that is constructed based on a

sampled utility vector u, we have u ∈ cu and for any utility

vector u′ ∈ cu, query point q is a (k, ε)-regret point w.r.t. u′.
To illustrate, consider the points in Table II. Suppose that

query point q = (0.4, 0.7) and threshold ε = 0.1. Consider

a sampled utility vector u = (0.5, 0.5). If k = 2, then

k-regratio(q,u) = 0.018 < ε, and thus, query point q is

a (2, 0.1)-regret point w.r.t. u. We build three hyper-planes

and construct a partition cu = h+
q,p1

∩ h−
q,p2

∩ h+
q,p3

.

To avoid constructing the same partition based on different

sampled utility vectors, we use the following lemma to check

if a partition cu based on a sampled u is already constructed.

Lemma 11. If the sampled utility vector u is in a partition c
(i.e., u ∈ c), then partition cu is the same as partition c.

Consider Figure 6 as an example. Suppose that partition

c4 shown in pink is already constructed based on a sampled

utility vector u4. For another sampled utility vector u, we will

not construct the partition repeatedly since u is in partition c4.

2) Acceleration: We develop an effective strategy to reduce

the number of partitions to be constructed. Consider two parti-

tions c4 = h+
q,p1

∩h+
q,p2

∩h+
q,p3

and c5 = h+
q,p1

∩h−
q,p2

∩h+
q,p3

as shown in Figure 6. Since they are the intersections of differ-

ent half-spaces, they are constructed independently based on

different sampled utility vectors if no optimization strategies

are used. However, if we can directly construct the union of

partition c4 and c5 (i.e., partition c4 ∪ c5) based on a sampled

utility vector u, we only need to call the partition construction

once instead of twice. Following this idea, we improve our

method of constructing partitions as follows. Consider any

two sampled utility vectors u1 and u2, where k-regratio(q,
u1) < ε and k-regratio(q,u2) < ε. If D+

u1
⊆ D+

u2
, we create

a partition cu1,u2 based on the points in D+
u1

and D−
u2

, i.e.,

cu1,u2 =

⎛
⎜⎝

⋂

p∈D+
u1

h+
q,p

⎞
⎟⎠ ∩

⎛
⎜⎝

⋂

p′∈D−
u2

h−
q,p′

⎞
⎟⎠

Similarly for the case where D+
u2

⊆ D+
u1

.

Lemma 12. Given partition cu1,u2 that is constructed based on

sampled utility vectors u1 and u2, we have u1,u2 ∈ cu1,u2

and for any utility vector u′ ∈ cu1,u2 , query point q is a

(k, ε)-regret point w.r.t. u′.
Back to the example discussed in Figure 6. For the sampled

utility vector u4, D+
u4

= {p1,p2,p3} and D−
u4

= ∅. For the

sampled utility vector u5, D+
u5

= {p1,p3} and D−
u5

= {p2}.

Since D+
u5

⊆ D+
u4

, we construct a partition based on the

points in D+
u5

and D−
u4

. The partition is c = h+
q,p1

∩ h+
q,p3

,

which is an union of partitions c4 and c5.

3) Summary and Analysis: The pseudocode of algorithm A-
PC is shown in Algorithm 3. Initially, we randomly sample a

set U of utility vectors (line 3). For each vector u, we compute

D+
u and D−

u and only keep u in U if k-regratio(q,u) < ε
(lines 4-7). Then, we refine the utility vectors in U as follows.

For each pair u1 and u2, if D+
u1

⊆ D+
u2

, we only keep one

utility vector, say u1, in U and set D−
u1

= D−
u2

(lines 8-11).

4107

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Algorithm A-PC

1 Input: point set D, query point q, parameters k and ε.
2 Output: the set C of qualified partitions.

3 Randomly sample a set U of utility vectors;

4 for each sampled u ∈ U do
5 Obtain set D+

u and D−
u ;

6 if k-regratio(q,u) > ε then
7 Delete u from U ;

8 for each any pair u1,u2 ∈ U do
9 if D+

u1
⊆ D+

u2
then

10 Update D−
u1

= D−
u2

;

11 Delete u2 from U ;

12 else if D+
u2

⊆ D+
u1

then
13 Update D−

u2
= D−

u1
;

14 Delete u1 from U ;

15 for each u ∈ U do
16 Build a partition based on u and insert it into set C;

17 return The set C of qualified partitions.

Similarly for D+
u2

⊆ D+
u1

(lines 12-14). After the refinement,

we create a partition for each remaining utility vector u in U
based on its D+

u and D−
u (lines 15-16).

Denote by N the total number of sampled utility vectors.

The only remaining issue is to set a proper value for N . If

N is small, it may limit the number of qualified partitions

found. If N is large, excessive sampled vectors may lead to

a high computational cost. To strike a balance, we focus our

sampling strategy on finding “influential” partitions, which

are quantified by their volumes. Intuitively, if a qualified

partition has a large volume, it means that query point q is a

(k, ε)-regret point w.r.t. many utility vectors. We regard such a

partition as an influential partition since if it is not included in

the output, we miss a large number of qualified utility vectors.

Thus, we primarily target at finding qualified partitions whose

volumes are larger than a predefined threshold. Specifically,

let us use Vc (resp. V) to denote the volume of a qualified

partition c (resp. the utility space U). Given a real number ρ,

our goal is to find the qualified partitions such that Vc/V > ρ.

Lemma 13. Given a confidence parameter δ and a sampling

size N = O((1/ρ2)(d+ ln(1/δ)), for each qualified partition

c with Vc/V > ρ, we can find it with confidence 1− δ.

VI. EXPERIMENT

In this section, we present our experimental evaluation. We

begin by describing the experimental setting in Section VI-A.

Then, in Section VI-B, we showcase the benefit of the reverse

regret query, compared to traditional reverse queries that focus

on rankings instead of utilities. Next, we compare the perfor-

mance of our algorithms against existing ones on synthetic and

real datasets in Sections VI-C and VI-D, respectively. Finally,

our findings are summarized in Section VI-E.

A. Experimental Setting

The experiments were run on a machine with 3.10GHz CPU

and 16GB RAM. All programs were implemented in C/C++.

Datasets. We conducted experiments on synthetic and real

datasets that were commonly used in existing studies [17],

[33], [39]. The synthetic datasets are anti-correlated (Anti),

correlated (Cor), and independent (Indep) [17], [39]. They

represent typical data distributions in multi-criteria decision-

making. The real datasets are Island, Weather, Car, and NBA
[10], [33]. Dataset Island contains 63,383 2-dimensional ge-

ographic locations. Dataset Weather includes 178,080 records

described by four attributes. Dataset Car comprises 69,052

used cars described by four attributes. Dataset NBA has

16,916 players and five attributes are used to describe the

performance of each player. For all datasets, each dimension

was normalized to (0, 1]. Note that existing studies [1], [40]

preprocessed datasets to include k-skyband points only. To

maintain consistency and enable a fair comparison of our al-

gorithms with existing ones, we also preprocessed the datasets

in the same manner by retaining only k-skyband points.

Parameter Setting. We evaluated algorithms by varying the

following parameters: (1) parameter k; (2) threshold ε; (3)

the number of dimensions d; (4) the dataset size n; and (5)

the dataset type (e.g., Anti, Cor, and Indep). Unless stated

explicitly, following the default setting of [1], [40], we set k =
10 and ε = 0.1 by default, and the synthetic datasets were set

by default as follows: d = 4, n = 400, 000, and type: Indep.

Algorithms & Measurement. We evaluated our algorithms

Sweeping, E-PT, and A-PC against existing methods LP-CTA
[1] and PBA+ [40] by their execution times. We generated

30 query points by assigning random values within the range

(0, 1] to each dimension. Each algorithm was then tested with

these query points, running 30 times, and the average result

was reported. Since existing algorithms were not designed to

solve our problem originally, we adapted them as follows.

• Algorithm LP-CTA is designed to find customers who are

interested in a given product merely based on the product

rankings. It divides the utility space into partitions using

its designed hyper-planes. We replaced its designed hyper-

planes with ours, and followed its strategy to construct and

return qualified partitions.

• Algorithm PBA+ builds a hierarchical tree-based structure

to store partitions in the utility space. Each partition in the

i-th level corresponds to a point that has the i-th highest

utility w.r.t. any utility vector in the partition. We performed

a top-down search to check the partitions in the tree. For

each partition, we compared its corresponding point with

the query point, and determined whether the partition (or

part of the partition) was qualified to be returned. Note that

algorithm PBA+ builds the hierarchical tree-based structure

in a preprocessing step and uses it in later queries. We re-

ported its querying time as the execution time, excluding its

preprocessing time (which can be more than 104 seconds).

4108

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

B. User Study

To motivate our problem, we explored the difference be-

tween the reverse top-k query and the reverse regret query.

Firstly, following [8], [10], [33], we conducted a user study

on dataset Car to compare (1) the product rankings (used by

the reverse top-k query) and (2) the product utilities (used by

the reverse regret query) for evaluating products. We recruited

thirty participants and used an interactive algorithm Adaptive
[7] to learn their exact utility functions. Based on the learned

utility function, the cars’ utilities were known. We provided

each participant with their top-k cars (i.e., k cars with the high-

est utilities), claiming that these results would be of interest to

them, where k had three settings: k = 1, k = 5, and k = 10.

Then, we found the cars whose k-regratio were smaller than

0.1 and uniformly selected five of them. The participants were

asked to indicate if they were interested in these five selected

cars. We collected two types of results: (1) the percentage of

interest, i.e., the percentages of cars that are of interest to the

participants among the five selected cars; and (2) the average

rank, i.e., the average ranks of the cars that are of interest to the

participants among the five cars. Figure 7 shows the results.

For different k, the percentages of interest are at least 50%

and the average ranks are up to 75.1. These findings suggest

that as secondary sources of information derived from product

utilities, rankings are insufficient for determining customers’

interests. The regret ratio, which focuses on utilities directly,

works better in modeling customer preferences for products.

Secondly, we compared the results of the reverse regret

query with those of the reverse top-k query. Let S denote the

set of utility functions learned in the user study. With different

k and ε, we identified subsets S1 ⊆ S and S2 ⊆ S, which

contained the utility vectors in the result of the reverse top-k
query and the reverse regret query, respectively. Considering

S2 as a hypothetical “ground truth” for comparison purposes

(not the real ground truth), we obtained the precision, recall,

and F1 of S1. Figure 8 shows the results. In many cases, results

S1 are different from S2. These findings, in conjunction with

our earlier observations (the product utilities evaluate products

better than product rankings), suggest that the reverse regret

query is more effective in finding prospective customers.

C. Results on Synthetic Datasets

Accuracy. We conducted a study to explore the effect of the

number N of sampling utility vectors on the output quality and

the execution time in Figure 9(a) and 9(b), respectively. For the

output quality, we quantified it following the accuracy mea-

surement in [41]. Specifically, we (1) randomly selected 10000

utility vectors in U , (2) for each utility vector selected, we

checked if it was a qualified utility vector by verifying if it was

in the partitions returned by the exact algorithm E-PT, and (3)

we reported the accuracy of algorithm A-PC to be the percent-

age of qualified utility vectors that were also in the partitions

returned by A-PC. Figure 9(a) shows the accuracy of A-PC is

high with different sampling sizes. In particular, when more

utility vectors are sampled (i.e., N is larger), the accuracy in-

creases, as expected. Besides, on the four-dimensional dataset,

to achieve the same accuracy, we need to sample more utility

vectors than on the two-dimensional dataset. This is because

the utility space in the four-dimensional dataset is larger, and

thus, there will be more qualified partitions. Moreover, when

the sampling size is larger, it takes more time to process the

samples, leading to a longer execution time (Figure 9(b)). To

strike a balance, we set the sampling size N for algorithm A-
PC to be 10×(d−1) by default in the rest of the experiments.

Two-dimensional Dataset. We compared our algorithms

Sweeping, E-PT, and A-PC against existing ones on a two-

dimensional dataset (i.e., d = 2) by varying parameters k and

ε, where other parameters were set by default. In Figure 10(a),

we varied parameter k from 1 to 40. Our algorithms achieve

significant improvements. They reduce the execution time

by up to 1-2 orders of magnitude compared to the existing

ones. When k increases, the execution times of all algorithms

become longer. This is because the increasing k relaxes

the returned condition, leading to more qualified partitions

to be processed. Nevertheless, our algorithm Sweeping only

increases slightly in execution time since it processes partitions

in linear time. In contrast, the existing algorithm PBA+ is

heavily affected by the increasing k. For example, it runs 2

orders of magnitude slower than the others when k = 40. This

indicates that its hierarchical tree-based index is not efficient

in handling a large number of partitions. In Figure 10(b), we

varied parameter ε from 0 to 0.2. Our algorithms consistently

take the shortest time in all cases. For instance, when ε = 0.2,

algorithm Sweeping is 20 times and 60 times faster than

existing algorithms LP-CTA and PBA+, respectively. More-

over, when ε increases, the execution time of our algorithm

Sweeping is almost indifferent. This again verifies the stability

of algorithm Sweeping under different parameter settings.

Four-dimensional Dataset. We also evaluated our algorithms

on a four-dimensional dataset (i.e., d = 4), where the other pa-

rameters were set by default. Since algorithm Sweeping is only

designed for the two-dimensional special case, we excluded it

from the experiment. Figure 11(a) shows the execution time

of each algorithm when we increased k from 1 to 40. As

shown there, algorithm PBA+ performs the worst. Note that

we do not show the results of algorithm PBA+ in Figure 11(a)

when k ≥ 30 since its pre-processing step (for computing the

tree) costs more than 104 seconds. Algorithm LP-CTA runs 3-

5 times slower than our algorithms on average. This is because

it spends much time checking the relationship between hyper-

planes and partitions via solving the costly Linear Program-

ming (LP) problems. In contrast, our algorithm E-PT adopts

effective strategies to speed up the relationship checking (see

Section V-A2), and our algorithm A-PC even avoids such

costly relationship checking. Although all algorithms need

more time to execute given a larger parameter k, as expected,

our algorithms consistently run the fastest in all cases. In Fig-

ure 11(b), we varied parameter ε from 0 to 0.2. Our algorithms

work the best. They are at least four times faster than the exist-

ing ones. Our algorithm A-PC is 3-10 times faster than E-PT
since it avoids some partition constructions (e.g., the partitions

4109

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

The Percentage of Interest The Average Rank

0%

20%

40%

60%

80%

100%

Top-1 Top-5 Top-10
0

20

40

60

80

100
Th

e
Pe

rc
en

ta
ge

 o
f I

nt
er

es
t

Th
e

Av
er

ag
e

R
an

k

Top-k

Figure 7: User Study

Precision Recall F1

0

0.2

0.4

0.6

0.8

1

 1 5 10 15 20 25 30 35 40

M
ea

su
re

m
en

ts

k

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2

M
ea

su
re

m
en

ts

ε

(a) Vary k (b) Vary ε

Figure 8: The Results of Reverse Top-k Query Compared with

the Results of Reverse Regret Query (User Study)2D Dataset 4D Dataset

60
65
70
75
80
85
90
95

100

10 50 100 500 1k 5k 10k

Ac
cu

ra
cy

 (%
)

Sampling Size

0
0.2
0.4
0.6
0.8

1

10 50 100 500 1k 5k 10k

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sampling Size

(a) Accuracy (b) Time

Figure 9: Accuracy

Sweeping E-PT A-PC LP-CTA PBA+

10-5

10-4

10-3

10-2

10-1

 1 5 10 15 20 25 30 35 40

Ex
ec

ut
io

n
Ti

m
e

(s
)

k

10-5

10-4

10-3

10-2

10-1

0 0.05 0.1 0.15 0.2

Ex
ec

ut
io

n
Ti

m
e

(s
)

ε

(a) Vary k (b) Vary ε

Figure 10: 2D
E-PT A-PC LP-CTA PBA+

10-3
10-2
10-1
100
101
102
103
104

 1 5 10 15 20 25 30 35 40

Ex
ec

ut
io

n
Ti

m
e

(s
)

k

10-3
10-2
10-1
100
101
102

0 0.05 0.1 0.15 0.2

Ex
ec

ut
io

n
Ti

m
e

(s
)

ε

(a) Vary k (b) Vary ε

Figure 11: 4D

Precision Recall F1

0

0.2

0.4

0.6

0.8

1

 1 5 10 15 20 25 30 35 40
M

ea
su

re
m

en
ts

k

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2

M
ea

su
re

m
en

ts

ε

(a) Vary k (b) Vary ε

Figure 12: The Results of Reverse Top-k Query Compared with

the Results of Reverse Regret Query (4D)E-PT
A-PC

LP-CTA
PBA+

10-4
10-3
10-2
10-1
100
101
102

 2 3 4 5

Ex
ec

ut
io

n
Ti

m
e

(s
)

d

Figure 13: Vary d

E-PT
A-PC

LP-CTA
PBA+

10-2

10-1

100

101

100k 200k 400k 800k 1600k

Ex
ec

ut
io

n
Ti

m
e

(s
)

n

Figure 14: Vary n

E-PT A-PC LP-CTA PBA+

10-4
10-3
10-2
10-1
100
101
102
103

Cor Indep Anti

Ex
ec

ut
io

n
Ti

m
e

(s
)

Datasets

Figure 15: TypeSweeping E-PT A-PC LP-CTA PBA+

10-4

10-3

10-2

10-1

 1 5 10 15 20 25 30 35 40

Ex
ec

ut
io

n
Ti

m
e

(s
)

k

10-4

10-3

10-2

10-1

0 0.05 0.1 0.15 0.2

Ex
ec

ut
io

n
Ti

m
e

(s
)

ε

(a) Vary k (b) Vary ε

Figure 16: Island

E-PT A-PC LP-CTA PBA+

10-3
10-2
10-1
100
101
102
103

 1 5 10 15 20 25 30 35 40

Ex
ec

ut
io

n
Ti

m
e

(s
)

k

10-2

10-1

100

101

102

0 0.05 0.1 0.15 0.2

Ex
ec

ut
io

n
Ti

m
e

(s
)

ε

(a) Vary k (b) Vary ε

Figure 17: CarE-PT A-PC LP-CTA PBA+

10-3
10-2
10-1
100
101
102
103
104

 1 5 10 15 20 25 30 35 40

Ex
ec

ut
io

n
Ti

m
e

(s
)

k

10-2

10-1

100

101

102

0 0.05 0.1 0.15 0.2

Ex
ec

ut
io

n
Ti

m
e

(s
)

ε

(a) Vary k (b) Vary ε

Figure 18: Weather

E-PT A-PC LP-CTA PBA+

10-3
10-2
10-1
100
101
102
103
104

 1 5 10 15 20 25 30 35 40

Ex
ec

ut
io

n
Ti

m
e

(s
)

k

10-2

10-1

100

101

102

0 0.05 0.1 0.15 0.2

Ex
ec

ut
io

n
Ti

m
e

(s
)

ε

(a) Vary k (b) Vary ε

Figure 19: NBA

4110

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

in the internal nodes of E-PT). Furthermore, all algorithms

except PBA+ experience a slowdown when ε increases since

more partitions are qualified to be returned, leading to longer

execution times. Note that algorithm PBA+ becomes faster

with larger ε. It pre-constructs partitions without knowing the

regret ratio criterion, resulting in some partitions that need to

be shrunk or refined (e.g., filtering out unqualified utility vec-

tors) before being returned. As ε increases, more utility vectors

become qualified, allowing some partitions to be returned

directly without refinement, which reduces the overall cost.

We also compared the results of the reverse top-k query

with ours (i.e., the results of the reverse regret query) on the

four-dimensional dataset. We assumed that our results were

the ground truth (just for comparison, not the real ground

truth), and obtained the precision, recall, and F1 of the results

of the reverse top-k query. The results are shown in Figure 12.

In all cases, the measurements are low, indicating that the

results of the reverse top-k query differ largely from ours.

Scalability. We studied the scalability of algorithms by varying

the dimension d, the dataset size n, and the type of datasets.

Varying d. In Figure 13, we evaluated the scalability of al-

gorithms w.r.t. the dimension d. Compared with the existing

algorithms, our algorithms E-PT and A-PC consistently take

the shortest execution time for all values of d. For instance,

when d = 4, algorithms LP-CTA and PBA+ run about 2.3 and

3.2 seconds, respectively, while algorithms E-PT and A-PC
finish in 0.5 and 0.1 seconds, respectively.

Varying n. In Figure 14, we studied the scalability of all

algorithms w.r.t. the dataset size n. Our algorithms E-PT
and A-PC scale well. For example, their execution times are

less than 0.75 seconds even if n = 800, 000, and the others

run up to 2.55 seconds. Note that the execution times of all

algorithms become larger with the increasing dataset size,

since more hyper-planes have to be constructed and there are

more qualified partitions to be returned.

Varying type. In Figure 15, we ran all algorithms on three

types of synthetic datasets: anti-correlated (Anti), correlated

(Cor), and independent (Indep). Our algorithms are the best

on all datasets. On the correlated dataset, all the algorithms

run within 10−2 seconds. This is because the attributes in the

dataset are correlated. We only need to build hyper-planes

based on a few points to form partitions in the utility space. In

contrast, all the algorithms run slower on the anti-correlated

dataset. This is because the attributes in the dataset are

anti-correlated with each other, and thus, we need to consider

a lot of points in the dataset in order to decide the qualified

partitions in the utility space.

D. Results on Real Datasets

We studied the performance of our algorithms Sweeping,

E-PT and A-PC, on 4 real datasets by varying parameters k
and ε. The results on datasets Island, Weather, Car, and NBA
are shown in Figures 16, 18, 17, and 19, respectively. We

only present the results of Sweeping on the Island dataset,

as it is only applicable to the two-dimensional special case.

Our algorithms E-PT and A-PC outperform competitors

substantially in execution times. For instance, when k = 40,

both E-PT and A-PC spend at most 15.4 seconds on dataset

NBA, while the existing algorithms LP-CTA and PBA+ take

810.1 seconds and 266.2 seconds, respectively. When k = 35,

our algorithms take within 13.8 seconds on dataset Weather,

while the existing algorithm LP-CTA spends 347.7 seconds.

Note that we do not show the complete results of algorithm

PBA+ on some datasets due to its costly preprocessing step

(more than 104 seconds). Similarly, we omit the results of

LP-CTA when its execution time exceeds 104 seconds.

E. Summary

The experiments demonstrate that our formulation of prob-

lem RRQ provides a better assessment of prospective cus-

tomers. In our user study, the percentages of interest are at least

50% and the average ranks are up to 75.1. Furthermore, our

algorithms exhibit superior performance. (1) Our algorithms

are efficient. For example, our algorithm Sweeping runs 180

times faster than the existing algorithm PBA+ on a two-

dimensional dataset when k = 30; our algorithms E-PT and A-
PC spend at most 6.94 seconds on a four-dimensional dataset

when k = 30, while the existing algorithm PBA+ takes 995.7

seconds. (2) Algorithm A-PC achieves a faster speed (up to

20 times) than algorithm E-PT by providing an approximate

solution, while algorithm E-PT can return an exact solution.

(3) Our algorithms also scale well w.r.t. the type of dataset,

the number of dimensions, and the dataset size. For example,

our algorithm A-PC spends 0.14 seconds on the dataset with

the size of 1600k, while the existing algorithm PBA+ takes

4.5 seconds. In summary, our algorithm Sweeping runs in the

shortest time for the special case of RRQ. Our algorithms E-PT
and A-PC solve the general case of RRQ the most efficiently.

VII. CONCLUSION

In this paper, we aim to identify the prospective customers

for a given product, by finding all utility vectors such that the

given product is a (k, ε)-regret product. Firstly, we focus on a

special case where each product is described by two attributes

(i.e., d = 2). We propose algorithm Sweeping that only takes

linear time. Secondly, we consider the general case where each

product can be described by multiple attributes (i.e., d ≥ 2).

We present an exact algorithm E-PT and an approximate algo-

rithm A-PC, which perform well theoretically and empirically.

Extensive experiments verify that our algorithms are efficient.

As for future work, we want to apply the reverse regret query

under the streaming and dynamic setting (e.g., considering the

time of attribute) and extend the regret condition from a point

to the top as the pivot.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their

constructive comments. The research is supported in part by

China NSFC 62202313, Guangdong Basic and Applied Ba-

sic Research Foundation 2022A1515010120, and NSF grants

2106176 and 2312931.

4111

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. Tang, K. Mouratidis, and M. L. Yiu, “Determining the impact regions
of competing options in preference space,” in Proceedings of the 2017
ACM International Conference on Management of Data, 2017, pp. 805–
820.

[2] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg, “Reverse
top-k queries,” in 2010 IEEE 26th International Conference on Data
Engineering. IEEE, 2010, pp. 365–376.

[3] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Norvag, “Monochromatic
and bichromatic reverse top-k queries,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 23, no. 8, pp. 1215–1229, 2011.

[4] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis, “Branch-and-
bound algorithm for reverse top-k queries,” in Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, 2013,
pp. 481–492.

[5] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu, “Regret-
minimizing representative databases,” in Proceedings of the VLDB
Endowment, vol. 3, no. 1–2. VLDB Endowment, 2010, p. 1114–1124.

[6] M. Xie, R. C.-W. Wong, J. Li, C. Long, and A. Lall, “Efficient k-regret
query algorithm with restriction-free bound for any dimensionality,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM, 2018, p. 959–974.

[7] L. Qian, J. Gao, and H. V. Jagadish, “Learning user preferences by
adaptive pairwise comparison,” in Proceedings of the VLDB Endowment,
vol. 8, no. 11. VLDB Endowment, 2015, p. 1322–1333.

[8] W. Wang, R. C.-W. Wong, and M. Xie, “Interactive search with mixed
attributes,” in IEEE International Conference on Data Engineering
(ICDE), 2023, pp. 2276–2288.

[9] M. Xie, R. C.-W. Wong, P. Peng, and V. J. Tsotras, “Being happy with
the least: Achieving α-happiness with minimum number of tuples,” in
Proceedings of the International Conference on Data Engineering, 2020,
pp. 1009–1020.

[10] M. Xie, R. C.-W. Wong, and A. Lall, “Strongly truthful interactive
regret minimization,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data. New York, NY, USA: ACM, 2019,
p. 281–298.

[11] G. Zhang, N. Tatti, and A. Gionis, “Finding favourite tuples
on data streams with provably few comparisons,” arXiv preprint
arXiv:2307.02946, 2023.

[12] Y. Gao, Q. Liu, B. Zheng, L. Mou, G. Chen, and Q. Li, “On processing
reverse k-skyband and ranked reverse skyline queries,” Information
Sciences, vol. 293, pp. 11–34, 2015.

[13] E. Dellis and B. Seeger, “Efficient computation of reverse skyline
queries,” in Proceedings of the 33rd International Conference on Very
Large Data Bases. VLDB Endowment, 2007, p. 291–302.

[14] X. Lian and L. Chen, “Monochromatic and bichromatic reverse skyline
search over uncertain databases,” in Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, 2008, pp.
213–226.

[15] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides, “Computing k-
regret minimizing sets,” in Proceedings of the VLDB Endowment, vol. 7,
no. 5. VLDB Endowment, 2014, p. 389–400.

[16] W. Cao, J. Li, H. Wang, K. Wang, R. Wang, R. C.-W. Wong, and
W. Zhan, “k-Regret Minimizing Set: Efficient Algorithms and Hard-
ness,” in 20th International Conference on Database Theory. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp.
11:1–11:19.

[17] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,”
in Proceedings of the International Conference on Data Engineering,
2001, p. 421–430.

[18] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Computing
Surveys (CSUR), vol. 40, no. 4, pp. 1–58, 2008.

[19] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R.
Smith, “The onion technique: Indexing for linear optimization queries,”
in Proceedings of the 2000 ACM SIGMOD International Conference on
Management of data, 2000, pp. 391–402.

[20] L. Chen and X. Lian, “Efficient processing of metric skyline queries,”
IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 3,
pp. 351–365, 2008.

[21] Y. Tao, X. Xiao, and J. Pei, “Subsky: Efficient computation of skylines
in subspaces,” in 22nd International Conference on Data Engineering
(ICDE’06). IEEE, 2006, pp. 65–65.

[22] K.-L. Tan, P.-K. Eng, B. C. Ooi et al., “Efficient progressive skyline
computation,” in VLDB, vol. 1, 2001, pp. 301–310.

[23] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progres-
sive algorithm for skyline queries,” in Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, 2003, pp.
467–478.

[24] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Skyline query
processing for incomplete data,” in 2008 IEEE 24th International
Conference on Data Engineering. IEEE, 2008, pp. 556–565.

[25] K. C. Lee, W.-C. Lee, B. Zheng, H. Li, and Y. Tian, “Z-sky: An
efficient skyline query processing framework based on z-order,” The
VLDB Journal, vol. 19, pp. 333–362, 2010.

[26] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’84. New York, NY, USA:
Association for Computing Machinery, 1984, p. 47–57.

[27] T. K. Sellis, N. Roussopoulos, and C. Faloutsos, “The r+-tree: A
dynamic index for multi-dimensional objects,” in Proceedings of the
13th International Conference on Very Large Data Bases, ser. VLDB
’87. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1987, p. 507–518.

[28] W. Wang and R. C.-W. Wong, “Interactive mining with ordered and
unordered attributes,” Proceedings of the VLDB Endowment, vol. 15,
no. 11, pp. 2504–2516, 2022.

[29] Z. Gong, G.-Z. Sun, J. Yuan, and Y. Zhong, “Efficient top-k query
algorithms using k-skyband partition,” in Scalable Information Systems:
4th International ICST Conference, INFOSCALE 2009, Hong Kong,
June 10-11, 2009, Revised Selected Papers 4. Springer, 2009, pp.
288–305.

[30] P. Peng and R. C.-W. Wong, “K-hit query: Top-k query with prob-
abilistic utility function,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
577–592.

[31] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, “Top-k query processing
in uncertain databases,” in 2007 IEEE 23rd International Conference on
Data Engineering. IEEE, 2006, pp. 896–905.

[32] Y. Tao, X. Xiao, and J. Pei, “Efficient skyline and top-k retrieval in
subspaces,” IEEE Transactions on Knowledge and Data Engineering,
vol. 19, no. 8, pp. 1072–1088, 2007.

[33] W. Wang, R. C.-W. Wong, and M. Xie, “Interactive search for one of the
top-k,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data. New York, NY, USA: ACM, 2021.

[34] P. Peng and R. C.-W. Wong, “Geometry approach for k-regret query,”
in Proceedings of the International Conference on Data Engineering,
2014, pp. 772–783.

[35] R. Keeney, H. Raiffa, and D. Rajala, “Decisions with multiple objectives:
Preferences and value trade-offs,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 9, pp. 403 – 403, 08 1979.

[36] J. Dyer and R. Sarin, “Measurable multiattribute value functions,”
Operations Research, vol. 27, pp. 810–822, 08 1979.

[37] W. Wang, R. C.-W. Wong, H. Jagadish, and M. Xie, “Reverse regret
query,” Tech. Rep., 2023. [Online]. Available: https://www.cse.ust.hk/
∼raywong/paper/ReverseRegretQuery-TechnicalReport.pdf

[38] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars, Com-
putational geometry: Algorithms and applications. Springer Berlin
Heidelberg, 2008.

[39] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline com-
putation in database systems,” ACM Transactions on Database Systems,
vol. 30, no. 1, p. 41–82, 2005.

[40] J. Zhang, B. Tang, M. L. Yiu, X. Yan, and K. Li, “T-levelindex:
Towards efficient query processing in continuous preference space,” in
Proceedings of the 2022 International Conference on Management of
Data. New York, NY, USA: Association for Computing Machinery,
2022, p. 2149–2162.

[41] D. Nanongkai, A. Lall, A. Das Sarma, and K. Makino, “Interactive
regret minimization,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data. New York, NY, USA: ACM, 2012,
p. 109–120.

4112

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:25 UTC from IEEE Xplore. Restrictions apply.

