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Abstract—Fairness in machine learning, particularly in clas-
sifiers, is receiving increasing attention. However, most studies
on this topic focus on fairness metrics for a limited number
of predefined groups and do not address fairness across in-
tersectional subgroups. In this paper, we investigate ways to
improve subgroup fairness where subgroups are defined by the
intersection of protected attributes. Specifically, our paper reveals
the correlation between the representation bias of training data
and model fairness. We demonstrate that biased sample collection
due to historical biases and a lack of control over data collection
can lead to unfairness in learned models. We introduce the
concept of an “Implicit Biased Set (IBS)”, which refers to regions
in the intersectional attribute space where positive and negative
examples are not proportionately represented. For example, if
our training data set has a disproportionate representation of
black male recidivists, then criminal risk assessment tools are
more likely to discriminate against black males, even if they are
innocent. We propose an efficient pre-processing approach that
initially identifies IBS and then employs techniques to remedy
the data collection within IBS. Our evaluation shows that our
method effectively mitigates various subgroup biases regardless
of the downstream machine learning models used.

I. INTRODUCTION

Machine Learning (ML) systems have a profound impact

on society and are widely used in various applications. Users

expect these systems to make fair decisions based on historical

data. However, biased or insufficient data collection can lead to

disparate outcomes in ML systems, as seen, for example, in the

higher false positive rate for black individuals in the recidivism

prediction algorithm COMPAS [3] and the lower accuracy

for darker-skinned females in commercial face recognition

services [6]. Ensuring fairness in classification models is a

crucial research area in ML.

There are many definitions of fairness in ML [32], and

various techniques have been developed to achieve fairness at

different stages of the modeling process[5], i.e., pre-processing

[19], [37], in-processing [2], [21], [7], and post-processing

[20], [15], [28].

One prevalent fairness objective is group fairness, which

aims to achieve approximate parity of classifier statistics across

demographic groups, focusing on the outcome rather than the

process. Group fairness is often specified assuming an inde-
pendent setting, where fairness is addressed by considering

only one sensitive attribute (such as gender or race) at a

time. (So, if there are enough women and enough African

Americans, then group counts are satisfied even if there are

few African American women). At best, even if independence

is not explicitly assumed, group fairness is defined to require

parity of some statistical fairness measures over a small

number of pre-defined groups. However, a given algorithm

might be independently fair on the sensitive attribute but not

on intersectional subgroups as shown in Example 1.

Example 1 (Intersectional Biases in COMPAS). ProPublica
released a dataset for evaluating the COMPAS tool [3], which
is used to predict the likelihood of recidivism for criminal
defendants based on their criminal history and demographic
information. One important fairness measure to consider is
“predictive equality”, which aims to ensure that the protected
and unprotected groups have a similar false positive rate
(FPR), where FPR is the probability of a subject in the
negative class receiving a positive prediction. In the COMPAS
dataset, the overall FPR for the entire dataset is 0.088. If
we consider only one sensitive attribute gender, the FPR for
Males and Females are 0.09 and 0.07, respectively, which are
similar to the overall FPR. However, if we look into the in-
tersectional subgroups of multiple attributes, unfair subgroups
can be found, for example, (race = African-American, sex =
Male) has an FPR of 0.15.

Ideally, we would like to require fairness for every inter-

sectional subgroup, a concept that is referred to as subgroup
fairness [22]. Given a set of protected attributes, subgroup

fairness applies a statistical fairness constraint (say, predictive

equality) to the arbitrary intersection of these attributes, rather

than a fixed number of pre-defined groups. The space of

all possible sub-groups is large. Automatic tools, such as

DivExplorer [26] and SliceFinder[10] have been proposed

to efficiently identify significant unfair subgroups in this

extensive space. Fairness gerrymandering [21], [22] uses a

two-player zero-sum game formulation with a Learner and

an Auditor to achieve intersectional fairness. While these

methods can be effective, they are all either post-processing

(manipulating prediction results) or in-processing (altering the

learning process). In this paper, our focus is on the pre-

processing analysis of training data quality—a crucial factor

contributing to system misbehavior, as we elaborate next.

Data collection can introduce various biases originating

from multiple sources. For example, a model used to select

job candidates trained on historical employment data that

favors Caucasian male applicants may continue to perpetuate
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discrimination in its future predictions. Additionally, uninten-

tional biases can arise from errors in data collection, such as

a flawed sampling algorithm that only gathers data from a

limited portion of the population, leading to unrepresentative

data [29]. Regardless of the machine learning model used, if

the data is biased, it poses a significant risk of systematic dis-

crimination. Consequently, addressing these data-related issues

is a fundamental step towards mitigating model unfairness,

without necessitating access to the model training process.
In this paper, we establish a connection between rep-

resentation bias [30], [31] in subgroups and the potential

unfairness in ML predictions. Representation bias occurs and

can be defined in various ways [30], [31]. Here, we focus

specifically on whether the collected datasets contain skewed

subsets, often caused by sampling biases [31]. For instance,

in Example 1, the performance gap in FPR between Afr-Am

males and the entire dataset can be attributed to the dataset

containing an excessive number of positive instances in the

region representing Afr-Am males.
We demonstrate that unfair subgroups are often associated

with specific data subsets (referred to as regions) within these

subgroups, exhibiting a divergent class distribution compared

to other regions. We call such regions in the dataset as Implicit
Biased Sets (IBS). We propose a distance-based notion to

gather instances from other regions in the intersectional space

(referred to as neighboring regions) for this comparison.
With this observation, we are able to mitigate subgroup

unfairness by enhancing the data collection within IBS. We

formulate and propose effective solutions for two tasks: (i)

identifying IBS and (ii) remedying dataset biases to mitigate

subgroup unfairness.
In particular, our contribution includes the following:

• Exploring causes of subgroup unfairness. We propose the

imbalance score as a metric to quantify the data distribu-

tion within intersectional regions. Formally defining the

notion of IBS based on the imbalance score, we provide

both theoretical and empirical evidence to demonstrate

that the biased data collection in IBS can significantly

contribute to performance divergence in unfair subgroups.

• IBS identification. We develop efficient algorithms to

traverse the exponentially large lattice of intersectional

regions to identify IBS. We show that the problem of

IBS identification has no polynomial-time solution. Since

the computation of the imbalance scores for neighboring

regions can overlap across different regions, we propose

an optimized algorithm to support result reuse and mini-

mize the number of neighbors to explore, thus enhancing

efficiency and scalability.

• Mitigating subgroup unfairness. We demonstrate that

addressing biased data collection through dataset pre-

processing and achieving an unbiased class distribution

in IBS effectively mitigates subgroup unfairness.

• Evaluation. We analyze our approach on real datasets,

validate the relationship between IBS and unfair sub-

groups, and assess the trade-off between fairness and

accuracy. Furthermore, we compare our method to a range

TABLE I: Table of notations.

Symbol Description

X A set of protected attributes
Δγg Divergence of g under model statistical measure γ.
ratior Imbalance score for region r
ratiorn Imbalance score for the neighboring region of r
τd, τc Discrimination threshold and imbalance threshold
T Distance threshold of the neighboring region
I Implicit Biased Set (IBS)
H Hierarchy

of state-of-the-art subgroup unfairness mitigation base-

lines [21], [4], [35], [8], [19]. Additionally, we evaluate

the efficiency and scalability of our algorithms.

II. DEFINITIONS

In this section, we first review fairness measures and for-

mally define biased data collection as a critical factor con-

tributing to subgroup fairness. For convenience, we summarize

the core symbols in Table I.

A. Fairness Measures and Unfair Subgroups

We study fairness of binary classifiers. Consider a dataset D
with a set of training features A = {a1, · · · , am}, where the

domain of attribute ai is represented by dom(ai). The input

data for prediction is represented by x = (x1, · · · , xm) ∈
dom(a1) × · · · × dom(am), and the class label of x is yx ∈
{0, 1}. For a given model h : Xd → Yd, trained on the dataset

D = {(x1, y1), · · · , (xk, yk)}, the prediction of the data x is

h(x) ∈ {0, 1}.

We consider the fairness of overlapping subgroups de-

fined by the intersection of protected attributes X =
{ai1, . . . , aij} ⊆ A. Each attribute aik ∈ X takes a cate-

gorical (or discretized) value xik from a finite data domain

dom(aik), as is common in (sub)group fairness definitions

[32], [26]. A subgroup gi is the set of instances that match a

pattern pi given by a conjunction of attribute-value assignment

pi = (ai1 = xi1 ∧ · · · ∧ aij = xij), where values can

be deterministic xik ∈ Dom(aik) or non-deterministic with

‘aik = X’ meaning we do not care about the value assignment

of aik. We use d to represent the number of deterministic

elements in p.

For example, consider the intersection of two attributes X
= {Age, Race}, the subgroup of all African Americans can be

represented by pattern p = (Age = X, Race = Afr-Am) with

d = 1. In later sections, intersectional subgroups are simply

referred to as “subgroups”. Non-deterministic elements will be

omitted from the patterns when clear in context.

In subgroup fairness notions, prior works [26], [21], [24]

have explored various statistical measures to ensure similar

prediction behavior across different subgroups. We will be

concerned about two common statistical measures: false-

positive rates (considered in the equalized opportunity [15],

[23] fairness constraint) and false-negative rates (considered

in the equalized odds [15] fairness constraint).

The computation of the false-positive rate (FPR), expressed

as Pr[h(x) = 1|y = 0], and the false-negative rate (FNR),
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indicated by Pr[h(x) = 0|y = 1], is applicable to both

subgroups and the entire dataset. We use γ to represent the

selected model statistic, with γd representing the statistic

across the entire dataset, and γg representing the statistic for

subgroup g. We focus on γ = {FPR, FNR} for algorithm

demonstration and evaluation, but we also discuss the avail-

ability of other fairness metrics, such as zero-one loss, error

rate, and statistical parity, in Section VI.

We adopt the notion of divergence as proposed in [26]

supporting various γ, expressing the behavioral distinction

between a specific subgroup and the entire dataset. The

divergence of a model statistic γ for a given g relative to

the overall data is defined as follows:

Δγg = |γg − γd|

Therefore, we can formally define the subgroup fairness as:

Definition 1 (Subgroup Fairness). Given a discrimination
threshold τd and a subgroup g, g is said to be τd-fair under
model statistic γ, when Δγg = |γg − γd| ≤ τd.

Example 2. Consider a decision tree model trained on the
ProPublica dataset. The overall FPR is 0.276. Consider two
subgroups, g1: (Age = ‘25-45’, #prior= ‘>3’, Race = Afr-Am)
and g2: (Race = Afr-Am), where #prior is the number of previ-
ous offenses of the defendants. The FPR for g1 is 1, and for g2,
it is 0.369. Suppose we set the discrimination threshold τd to
be 0.1. The divergence of g1 with respect to the FPR statistical
measure is Δγg1 = |1−0.276| = 0.724, which is greater than
the discrimination threshold τd. This result suggests that g1 is
not 0.1-fair under the FPR statistical measure. The divergence
of g2 is Δγg2 = |0.369−0.276| = 0.093, which is less than the
discrimination threshold τd, and indicates that g2 is 0.1-fair
under the FPR statistical measure.

B. Exploring Causes of Subgroup Unfairness

a) Subgroup Features: We first introduce the concept

of dominance relationship, which illustrates that instances

represented by a specific pattern may constitute a subset of

a more general subgroup g delineated by a broader data

pattern. We refer to this set of instances as a region that

is dominated by the subgroup g. We observe that unfair

subgroups arise from regions having biased data representation

within a subgroup, as demonstrated later in this section.

Definition 2 (Dominance Relationship). A region ri is dom-
inated by subgroup gj if pattern pj can be obtained by
replacing any deterministic elements Aik = xik in pi with the
non-deterministic elements Aik = X while keeping the other
deterministic elements unchanged. We denote this dominance
relationship as ri � gj .

Example 3. The region (Age = ‘25-45’, #prior = ‘>3’, Race
= Afr-Am) is dominated by subgroup (Age = ‘25-45’, #prior
= ‘>3’) as the subgroup pattern can be obtained by replacing
the deterministic element “Race = Afr-Am” with “Race = X”.

b) Definition of IBS: We introduce a definition to capture

biased data representation. To begin, we define the imbalance
score based on the ratio of positive and negative instances for

evaluating the class distribution within regions.

Definition 3 (Imbalance Score). Given a region r, we use |r| to
represent the number of instances that belong to r, i.e. |{x|x ∈
r}|, and |r+| represents the number of positive instances in
r, i.e. |{x|x ∈ r ∧ yx = 1}|. Similarly, |r−| represents the
number of negative instances in r, i.e. |{x|x ∈ r ∧ yx = 0}|.
The imbalance score of region r is ratior = |r+|/|r−|. When
|r−| = 0, we set ratior = −1.

Example 4. In the ProPublica dataset, there are 1,279
instances in the region (Age = ‘25-45’, #prior = ‘>3’).
Among these, 882 instances are positive, and 397 are negative.
Therefore, the imbalance score of this region is 882

397 = 2.22.

In order to reduce subgroup performance divergence, we

compare the imbalance score within each given region r to

other regions in the intersectional space. If a region’s imbal-

ance score significantly deviates from others, we consider it a

biased region. We specifically employ a distance metric [27],

[39] to formally define the set of nearby instances within the

intersectional space of protected attributes. We refer to the

union of these regions as the neighboring region of r, defined

using the Euclidean distance metric.

Definition 4 (Neighboring Region). Given a region r defined
by the pattern (a1 = x1 ∧ · · · ∧ am = xm), where ai ∈ A, the
Euclidean distance between r and a region rj is d(r, rj) =
||x − xj|| =

√
(x1 − xj1)2 + · · · (xm − xjm)2. We consider

region rj to be in the neighboring region of region r if, for
a given distance threshold T , the Euclidean distance d(r, rj)
is less than or equal to T . The neighboring region of r is the
union of all regions with a distance ≤ T .

In the basic setting, we consider all values of the attribute to

be one unit distance apart. This approach is generally suitable

for most categorical attributes like gender or race. However,

in cases where there is a meaningful structure within the

attribute value domain, such as a natural numeric ordering

for age groups or educational degrees, it is reasonable and

straightforward to refine the attribute distance accordingly.

When examining the neighboring region, we exclusively

consider regions with identical deterministic attributes. For

example, two regions (Age=25-45’) and (#prior=>3’) are not

regarded as neighboring regions for any value of T , as they

exist in different dimensions and the instances in these regions

are not directly comparable.

In our definition, a default choice for T is 1, indicating that

we only consider the union of regions in close proximity as

the neighboring region. We demonstrate in the evaluation that

this is effective in most cases. However, we can also set T to a

larger value, e.g. T = |X |, where we consider the union of all

intersectional regions of protected attributes as the neighboring

region. We explore this scenario further in Section V-B3.
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Example 5. In the ProPublica dataset, suppose the data
domain of Age and #prior attributes are dom(Age) ={‘>45’,
‘25-45’, ‘<25’}, dom(#prior) ={‘0’, ‘[1-3]’, ‘>3’} 1. The
neighboring region for (Age = ‘25-45’, #prior = ‘>3’) with
T = 1 is the union of all instances that satisfy patterns (Age =
‘25-45’, #prior = ‘0’), (Age = ‘25-45’, #prior =‘[1-3]’), (Age
=‘<25’, #prior =‘>3’), and (Age =>45’ , #prior=‘>3’).

Lastly, we define the Implicit Biased Set (IBS) as regions

whose imbalance score is significantly different from their

neighboring regions. The imbalance score of the neighboring

regions can be computed in a manner similar to Definition 3.

Definition 5 (Implicit Biased Set). For a region r within
the intersectional space of protected attributes X , and its
neighboring region rn, with an imbalance threshold τc, r is
in the implicit biased set if |ratior − ratiorn | > τc. We refer
to r as a biased region.

Example 6. Continuing with the running example, let us
consider a region (Age = ‘25-45’, #prior = ‘>3’). We have
computed its imbalance score in Example 4 as ratior = 2.2.
The neighboring region of this region (given in Example 5)
has an imbalance score ratiorn = 0.64. Therefore, with an
imbalance threshold τc = 0.3, we can compare it with the
neighboring region using |ratior − ratiorn | = |2.2− 0.64| >
0.3. Thus, this region is in IBS.

c) Connection between Subgroup Unfairness and IBS:
In this subsection, we establish a formal connection between

the set of unfair subgroups and the Implicit Biased Set (IBS).
Additionally, we provide both theoretical insight and a pre-

liminary case study to support our hypothesis.

Hypothesis 1. In dataset D, let X be a set of protected at-
tributes. Let G be the set of unfair subgroups in the prediction
result of any machine learning classifier, and let I be the set
of IBS. We propose that the biased class distribution in I can
contribute to subgroup unfairness in G. Specifically, subgroups
that have biased class distribution or dominate significant
regions in I are more likely to suffer from unfairness.

Theoretical Insight for Hypothesis 1 Consider a set of

protected attributes denoted as X , and let C represent the set

of all combinations of the protected attribute values, where

each ci ∈ C represents a region/subgroup in the intersectional

space. We begin with the simplest case where there is only

one protected attribute, i.e. |X |=1. Assuming for any ci ∈ C,

it contains more positive records than its neighboring region

Cn
i = C{cj∈C|cj �=ci}. In a machine learning classifier opti-

mized for accuracy, it tends to favor the majority class (say,

the positive class) in ci, resulting in a higher probability of

misclassifying a negative example as positive than in Cn
i , thus

leading to performance divergence in the false positive rate on

the protected attribute. Extending this analysis to an arbitrary

number of protected attributes, when considering the largest

1For simplicity, each attribute value is assumed to be one unit distance apart
with no numeric ordering.

available value of the distance threshold T (where T = |X |),
any intersectional region and its neighboring region (the rest

of the subsets in C) are equivalent to the ci and Cn
i in the

single protected attribute situation. For smaller values of T , we

are effectively examining a subset of Cn
i . Local performance

divergence is likely to occur in this case, potentially leading to

subgroup unfairness, even though constructing comprehensive

theoretical support remains a challenge. �
To further substantiate Hypothesis 1, we proceed with a case

study on the running example, delving into the cause of the

unfairness of a specific subgroup. Furthermore, we provide a

comprehensive discussion on the correlation between all unfair

subgroups and the set of IBS in Section V-B1.

Case 1 (IBS and Subgroup Unfairness.). Let us analyze the
decision tree model trained on the ProPublica dataset, where
the overall FPR is 0.276. We observe an unfair subgroup g :
(Age =‘25-45’, #prior = ‘>3’) with an FPR of 0.965, which is
significantly higher than the overall FPR. Individuals in this
subgroup are more likely to be wrongly classified as having
a high risk of reoffending compared to the overall dataset.
The imbalance score of g is 2.22, significantly higher than its
neighboring region’s score of 0.64. This discrepancy indicates
a biased data collection in the class distribution within g,
where there are excessive positive records. Consequently, the
decision tree classifier is more likely to predict instances in g
as positive, thus resulting in a higher FPR of g.

C. Problem Definition
To tackle the underlying causes of unfairness in intersec-

tional subgroups, our objective is to identify and remedy all

regions with biased data representation in the intersectional

space of the protected attributes. We may ignore regions with

a small number of instances as they may have minimal impact

on classification results and model fairness [21], [26]. We only

consider significant regions in IBS with a size greater than k.

Here we use the rule-of-thumb from the central limit theorem

and set k to a default value of 30.
We now define the IBS identification problem as follows:

Problem 1 (Implicit Biased Set Identification). Given a
dataset D, and an imbalance threshold τc, find all biased
regions I within the protected attribute set X with a size
greater than k.

Theorem 1. The IBS identification problem has no
polynomial-time solution.

The IBS identification problem involves an analogous task

to finding frequent patterns, a well-established task in data

mining. In our case, we seek to identify regions represented

by their patterns with a size greater than k and an imbalance

ratio difference greater than τc. While efficient heuristic algo-

rithms exist for frequent itemset mining, the problem lacks a

polynomial time solution [14].
In the subsequent sections, we present algorithms for IBS

identification in Section III, and discuss strategies for mit-

igating representation bias within IBS through data remedy

approaches in Section IV.
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Level

0

1

2

3
Age<25 ..., #prior =0
..., race = Afr-Am ...

Age=X, #prior=X,
race=X

Age=X, #prior =0
..., race = Afr-Am ...

Age<25 ..., #prior
=0 ..., race=X

Age=X, #prior=X,
race = Afr-Am ...

Age<25 ...,#prior
=X, race =X

Age<25 ..., #prior=X,
race = Afr-Am ...

Age=X, #prior=0
...,  race=X

Fig. 1: Hierarchy of regions on X = {Age, #prior, Race}.

III. IBS IDENTIFICATION

We first introduce a data structure, called hierarchy, to

facilitate the traversal of all regions within the intersectional

space defined by protected attributes X .

The hierarchy is constructed based on the dominance re-

lationship discussed in Definition 2. In the hierarchy, we

represent all regions/subgroups by their patterns and group the

patterns having the same deterministic attributes into a node.

As seen in Figure 1, considering the intersectional space of

three protected attributes {Age, #prior, Race}, each node in

the hierarchy contains the set of patterns that have the same

deterministic attributes but with different value assignments.

For instance, (Race = Hispanic) and (Race = Afr-Am) are

both in the first node at level 1. The levels are determined by

the number of deterministic elements in their patterns. Leaf-

level subgroups have no non-deterministic elements, while

the group at level 0 is the entire dataset. Lines indicate the

parent/child relationship between the nodes: for each region

rc in the child node, there exists a subgroup gp in the parent

node, such that rc�gp.

To identify IBS, we traverse the hierarchy from the leaf

level to level 1, where the number of nodes is exponential in

the number of protected attributes. We first present a naı̈ve

algorithm to illustrate the main idea and then introduce an

optimized algorithm with a lower time overhead.

A. Naı̈ve Algorithm

The naı̈ve algorithm to identify IBS involves the following

steps. Firstly, we traverse the hierarchy in a bottom-up manner.

For each region with a size greater than k, to determine

whether the region is in IBS, we compute the imbalance score

ratior for it, and ratiorn for its neighboring region.

The ratior can be easily obtained by computing the number

of positive and negative instances in r. The computation of

ratiorn is illustrated in Figure 2. Consider a set of protected

attributes X = {Age, #prior, Race} with attribute domains

shown on the axes. For example, in Figure 2a, the region

(Age=‘[25,45]’, #prior=‘>3’, Race=Afr-Am) is marked in

red, and the green cubes represent its neighboring region

with T = 1. The algorithm calculates the |r+| and |r−|
within the red cube and computes its imbalance score as

ratior = |r+|/|r−|. Next, it computes the ratio for the

neighboring region by calculating |r+ni| and |r−ni| for each of

the green cubes rni, and thus ratiorn =
∑

i |r+ni|∑
i |r−ni|

.

Age:
<25 [25, 45] >45Race:

Afr-Am

Cauc

Others

#prior:

>3

[1,3]

0

(a) (‘[25,45]’, ‘>3’, ‘Afr-Am’)

Age:
<25 [25, 45] >45Race:

Afr-Am

Cauc

Others

#prior:

>3

[1,3]

0

(b) (‘[25,45]’, X, ‘Afr-Am’)

Fig. 2: The neighboring region, X={Age, #prior, Race}.

While a top-down traversal could be an alternative, the non-

monotonicity of the biased region definition prevents effective

pruning or optimization in this approach. Therefore, we focus

on the bottom-up search in the IBS identification.

However, the naı̈ve algorithm calculates ratiorn by sum-

ming the counts of positive and negative instances from r’s

neighbors. With c being the average cardinality of protected

attributes X , this leads to exploring (c−1) ·d · T neighbors (d
is the number of deterministic elements in p, T is a constant in

the neighboring region definition). For instance, with T = 1,

to compute ratiorn for the region represented by the red

cube in Figure 2a, the naı̈ve algorithm computes the counts of

positive and negative instances of (3−1)×3 = 6 green cubes.

Similarly, in Figure 2b, it explores the counts of (3−1)×2 = 4
green cuboids to compute ratiorn for the region represented

by the red cuboid.

B. Optimized Algorithm

The naı̈ve algorithm counts the neighbors of r separately

in the computation of |r+n | and |r−n | which is inefficient and

contains repeated operations. A more efficient approach is to

group the neighbors into more general regions and use their

counts to calculate ratiorn . To create these general regions,

we consider a set of regions that dominate r and are T levels

up in the hierarchy. We denote this set as Rd.

To obtain Rd, we start with the pattern p in r and remove

one deterministic element at a time. We can then calculate the

imbalance score of the neighboring region using the formula:

ratiorn =
∑

rk∈Rd
|r+k |−|Rd|×|r+|

∑
rk∈Rd

|r−k |−|Rd|×|r−| , where |Rd| is the size of

Rd and also the over-counting factor for |r+| and |r−| in the

neighboring regions.

Example 7. In Figure 2a, the set of dominating regions of
r = (Age=‘[25,45]’, #prior=‘>3’, Race=Afr-Am) with T = 1
is Rd = {(Age=‘[25,45]’, Race=Afr-Am), (Age=‘[25,45]’,
#prior= ‘>3’), (#prior= ‘>3’, Race=Afr-Am)}. These regions
are represented by the three cuboids covering the red cube.
If we sum up the counts of positive and negative instances in
these three cuboids to obtain the counts of the neighboring
region, we will overcount |r+| and |r−| for the red cube (rep-
resenting r) threefold as it does not belong to rn. Therefore,
to calculate |r+n |, we need to sum the positive instances of
dominating regions and subtract 3×|r+|. The same approach
applies to computing |r−n |.

2155

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:19 UTC from IEEE Xplore.  Restrictions apply. 



To avoid redundant computation, the optimized algo-

rithm also maintains counts of dominating regions. Consider

three regions (Age=‘[25, 45]’, Race=Afr-Am), (Age=‘<25’,
Race=Afr-Am), and (Age=‘>45’, Race=Afr-Am), which have

the same deterministic element on the Race attribute. To assess

whether each of these regions is an IBS, we consistently

require the count of the dominating region (Race=Afr-Am)
with the Age attribute’s element removed. Therefore, we

propose maintaining the counts of Rd’s for regions within the

same node in the hierarchy. This is because regions in the

same node share overlapping sets of dominating regions. This

strategy allows the optimized algorithm to reduce the number

of counts that need to be computed and stored.
Algorithm 1 presents the optimized algorithm for identify-

ing IBS. First, the algorithm creates the hierarchy H based

on the set of protected attributes (line 1) and then filters the

regions with a size greater than k in the hierarchy (line 2).

For each node v in H, the algorithm obtains the set of its

parent nodes Vp and stores the counts for all regions R in Vp

(lines 3-6). Next, it enumerates the regions in v (line 7), for

each region r in v, calculates the imbalance score ratior for

r (line 8), and determines the set of its dominating regions

Rd (line 9). The algorithm employs the precomputed counts

for each dominating region in Rd to calculate ratiorn (line

10). If the difference between the imbalance scores for r
and its neighboring region rn exceeds the specified imbalance

threshold, r is added to the set of IBS (lines 11-12).
Complexity Analysis. In Theorem 1, we establish that the

IBS identification problem does not have a polynomial-time

solution. Unlike frequent pattern mining, IBS identification

not only considers regions with a size exceeding k but also

requires an imbalanced score surpassing τc. Consequently,

existing pruning-based algorithms [14] for frequent pattern

mining are ineffective in optimizing IBS identification. In the

worst case, the hierarchy contains c|X | regions to explore,

where c denotes the average protected attribute cardinality, and

|X | is the number of protected attributes. However, in explor-

ing each region, compared with the naive algorithm, Algorithm

1 reduces the neighbors to explore from (c−1)×d · T , to d×T
for each region. This optimization, in practice, results in a

substantial reduction in time overhead given the exponential

number of regions to explore, as we will show in Section V-B5.
For example, in Figure 2a, with T = 1, to compute ratiorn ,

the algorithm only explores d = 3 cuboids for the region

represented by the red cube, while for the region represented

by the red cuboid in Figure 2b, it only needs to explore d = 2
cuboids, representing (Age=‘[25,45]’) and (Race=Afr-Am).

IV. DATASET REMEDY

To address representation bias in IBS, we aim to adjust the

class distribution |r+|/|r−|, computed as the imbalance score,

within each r in IBS so that |ratior − ratiorn | < τc. To

achieve this, we employ pre-processing sampling techniques

to transform the class distribution within each region.

Definition 6 (Number of Instances to Update). Given a region
r with |ratior − ratiorn | > τc. Let pr denote the number of

Algorithm 1: Implicit Biased Set Identification

input : Dataset D, imbalance threshold τc, and a set

of protected attributes X , size threshold k.

output: Implicit Biased Set I.

Initialize the set of IBS as I = {}.

1 Ho ← CONSTRUCTHIERARCHY (X ).

2 H ← FILTERREGIONSBYSIZE (Ho, k).

3 foreach node v in H do
4 Vp ← GETPARENTNODE (v).

5 R ← GETREGIONS (Vp).

6 Compute and store the counts of regions in R
7 foreach region r ∈ v do
8 raior ← |r+|/|r−|
9 Obtain the set of dominating regions Rd ⊆ R

that dominate r.

10 ratiorn ←
∑

rni∈Rd
|r+ni|−|Rd|×|r+|

∑
rni∈Rd

|r−ni|−|Rd|×|r−| .

11 if |ratior − ratiorn | > τc then
12 I.add(r)

13 return I

positive instances to be updated in r, and let nr denote the
number of negative instances to be updated in r. These updates
are chosen such that the updated imbalance score for r is
equal to ratiorn . The values of pr and nr can be computed
using the following equation:

|r+|+ pr
|r−|+ nr

= ratiorn (1)

Here, |r+| and |r−| represent the number of positive and
negative instances in r, respectively.

The values of pr and nr vary with different pre-processing

techniques, as demonstrated later. If the values of pr and nr

are not integers, they will be rounded to the nearest integer.

We next formalize the data remedy problem:

Problem 2 (Dataset Remedy). Given a dataset D and the
Implicit Biased Set I, compute pr and nr for each r ∈ I and
mitigate the biased data representation in r by updating pr
positive instances and nr negative instances.

Algorithm 2 outlines the process for remedying biased

data representation in I. This data remedy process requires

iterative IBS identification at each node since adjusting the

class distribution for specific regions will impact the imbalance

score of all regions that either dominate or are dominated

by them. The algorithm begins by constructing the hierarchy

H from the original dataset and protected attributes (line

1). For each node v, the algorithm uses the same process

described in Algorithm 1 to identify the set of biased regions

Iv belonging to v (lines 2-3). Next, for each region, r ∈ Iv ,

the number of positive instances to update pr and the number

of negative instances to update nr are then computed based on

the chosen pre-processing technique, and the dataset is updated
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Algorithm 2: Dataset Remedy

input : Dataset D, a set of protected attributes X , and

a pre-processing technique alg.

output: Dataset after remedy Dr.

1 H ← CONSTRUCTHIERARCHY (X ).

2 foreach node v in H do
3 Iv ← GETBIASEDREGIONS (v).

4 foreach region r ∈ Iv do
5 pr, nr = COMPUTEUPDATES (alg, r)

6 Dr ← UPDATEDATASET (D, pr, nr, alg)

7 return Dr

accordingly (lines 4-6). Next, we talk about the pre-processing

techniques used to transform the class distribution.

A. Pre-processing Techniques

In this section, we discuss four pre-processing techniques:

oversampling, undersampling, preferential sampling, and data
massaging. These techniques are incorporated into Algorithm

2 in the UPDATEDATASET procedure.

a) Oversampling: The objective of oversampling [25] is

to adjust the biased class distribution by duplicating instances

from the minority class in each subgroup. If a region has

ratior > ratiorn , meaning that more negative instances are

needed, pr is set to 0, and nr can be computed using Equation

(1) as
|r+|

|r−|+nr
= ratiorn . Similarly, if ratior < ratiorn , nr

is set to 0, and pr is computed using
|r+|+pr

|r−| = ratiorn . For

each biased region, after determining pr and nr, instances in

r+ or r− are randomly selected for duplication. Oversampling

is a simple method that doesn’t require changing any existing

instances but may result in an increase in storage overhead or

model overfitting.

b) Undersampling: Undersampling [25] aims at reducing

the data collection of the majority class in biased regions.

If a region exhibits ratior > ratiorn , indicating a need to

remove positive instances, nr is set to 0, and pr is calculated

using
|r+|+pr

|r−| = ratiorn , with pr < 0 indicating the removal

of instances from r+. Similarly, if ratior < ratiorn , pr is

set to 0, and nr is computed as
|r+|

|r−|+nr
= ratiorn , with

nr < 0. In undersampling, instances from the majority class

are selected and skipped uniformly. It is preferred when the

dataset is large, but can lead to the loss of information and

affect model accuracy when the dataset is small.

c) Preferential Sampling: Preferential sampling [19] is

a combination of the previous two methods which assigns a

higher priority to borderline instances for being duplicated

or skipped. It uses a ranker, such as a Naı̈ve Bayes model,

to identify the borderline instances, which have a higher

probability of belonging to another class. If a region has

ratior > ratiorn , we duplicate the top-k instances from the

negative class and remove the top-k instances from the positive

class, where |pr| = |nr| = k. In Equation (1), the values

of pr and nr can be computed using
|r+|+pr

|r−|+nr
= ratiorn ,

where pr < 0 and nr > 0 indicate that positive instances

are removed and negative instances are added. Similarly, if

ratior < ratiorn , positive instances are duplicated, and

negative instances are removed. Preferential sampling provides

a more refined approach to remedying the dataset by taking

into account the instance’s risks, although it might have a

higher time overhead of ranking the instances.

d) Data Massaging: Data massaging [18] aims to select

the set of best candidates to relabel. As in preferential sam-

pling, a ranker is used in the massaging technique to select the

borderline instances to relabel. In the data massaging, we flip

the label of the top-k majority class to reduce the number

of majority instances and increase the number of minority

instances. If a region has ratior > ratiorn , we relabel pr
positive instances as negative, and pr can be computed by
|r+|−pr

|r−|+pr
= ratiorn . If a group has ratior < ratiorn , we

relabel nr negative instances as positive, ensuring
|r+|+nr

|r−|−nr
=

ratiorn . Data massaging has been shown to be effective in

removing biases in prediction results [19], and it doesn’t

change the size of the dataset. However, the data massaging

algorithm can be intrusive as it changes labels, which may

compromise the validity of the results.

Example 8. Continuing with Example 6, consider the region
(Age = ‘25-45’, #prior = ‘>3’), with ratior = 2.2 and
ratiorn = 0.64. The region contains 882 positive instances
and 397 negative instances. To address the biased class
distribution and adhere to Equation (1): (1) Oversampling:
add 984 negative instances uniformly to r, s.t. ratior =

882
397+984 = 0.64. (2) Undersampling: remove 629 positive
instances uniformly from r, s.t. ratior = 882−659

397 = 0.64. (3)
Preferential sampling: remove 384 borderline positives and
add 384 borderline negatives in r, s.t. ratior = 882−384

397+384 =
0.64. (4) Data massaging: flip the label of 384 borderline
positives to negative in r, s.t. ratior = 882−384

397+384 = 0.64.

V. EXPERIMENTAL STUDY

The first question to examine is whether representation bias

in the Implicit Biased Set (IBS) is the key cause of subgroup

unfairness. We examined this question by comparing the set

of IBS to unfair subgroups under different statistical measures

(γ = FPR, FNR) and machine learning classifiers. We also

explored the fairness-accuracy trade-off of our approach and

discussed the impact of different parameters. Moreover, we

conducted a comparative analysis against state-of-the-art base-

lines in mitigating subgroup unfairness. Lastly, we evaluated

the time performance of our algorithms under varying numbers

of protected attributes and data sizes.

A. Experimental Setup

We implemented all algorithms in Python 3.7 and conducted

experiments on a Linux machine with a 3.8 GHz Intel Xeon

processor and 64GB memory. Code is available 2.

2https://github.com/niceIrene/remedy
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TABLE II: Dataset characteristics.

|A| |X | Protected attributes Data size

Adult 13 6
age, race, gender, marital-status,

relationship, country
45,222

ProPublica 6 3 age,race,sex 6,172

Law School 12 4 age, gender, race, family-income 4,590

a) Data Sets: We used three real-world datasets com-

monly utilized in fairness literature [5], [22], [39]. For each

dataset, we randomly split the data into 70% as training and

30% as testing. The test set is used exclusively for evaluation

and no data remedy is applied to it. We performed standard

pre-processing of the datasets, which includes removing any

missing values and bucketizing continuous values for protected

attributes. For each dataset, we adhered to the guidelines in

Equality Act 2010 [1] to define the set of protected attributes.

We present a summary of the dataset characteristics in Table II.

• AdultCensus [12]. Contains 45,222 records about individ-

uals’ annual income based on census data. The protected

attributes include age, race, gender, and so on.

• ProPublica [3]. Contains 6,172 records about the demo-

graphic information and criminal history of defendants.

We included age, race, and gender as protected attributes.

• Law School [33]. Contains information on over 4,000 law

students, including details on demographics and school

performance. Since the original dataset was extremely

imbalanced with respect to the prediction label, we con-

ducted uniform sampling, resulting in an equal number

of positive and negative records. Additionally, to prevent

discrimination against students from economically dis-

advantaged backgrounds, we incorporated family income

alongside age, race, and gender as protected attributes.

b) Classification Models and Methods: Our proposed

approach to mitigate subgroup unfairness is model agnostic

and can be applied to any machine learning (ML) classifiers.

To evaluate our approach, we considered four downstream

classifiers: decision tree (DT), random forest (RF), logistic
regression (LG), and neural network (NN). For each classifier,

we used grid search to obtain the optimal hyperparameters.

To identify IBS, our algorithms traverse the lattice space

of the hierarchy. We compared our approach, Lattice, against

two methods: one concentrating exclusively on intersectional

regions at the leaf level (Leaf ) and another specifically ad-

dressing biases at the highest hierarchical level (Top). This

comparison aims to underscore that a comprehensive approach

is necessary, as solely focusing on groups defined by the

protected attribute or their intersections, as demonstrated by

Top and Leaf, are insufficient for achieving subgroup fairness.

Additionally, we examined the time efficiency of the IBS

identification algorithms by comparing the runtime of the

Naı̈ve algorithm in Section III-A to the Optimized algorithm
in Section III-B.

To address representation bias in IBS, we evaluated the

runtime and effectiveness of the remedy algorithm with pre-

processing techniques: Oversampling, Undersampling, Pref-
erential Sampling, and Data Massaging in Section IV-A.

c) Baselines: We compared our approach to the follow-

ing baselines aimed at addressing subgroup unfairness, in-

cluding four pre-processing algorithms and one in-processing

algorithm.

• Coverage [4] is a pre-processing technique that identifies

subgroups lacking sufficient representation in the dataset

and addresses both the identification and the enhancement

of lack of data coverage. For additional tuples required

by [4] to augment the coverage of a subgroup g, we

randomly sampled additional tuples from that subgroup.

• Reweighing method [19] generates weights for train-

ing instances for each (subgroup, label) combination to

achieve equivalent class distribution across all subgroups.

• FairBalance [35] also proposes a reweighing algorithm

to ensure not only equal but also balanced (1:1) class

distribution in all subgroups to achieve equalized odds.

• Fair-SMOTE [8] serves a similar purpose to the previous

baseline by oversampling training data with synthetic data

points from the minority class in each subgroup.

• GerryFair [21] is an in-processing algorithm that trains

fair classifiers and audits classifier predictions for sub-

group fairness violations.

d) Metrics: While divergence can be used to measure

the unfairness of a specific subgroup, there is a lack of a

measure to evaluate subgroup unfairness for the entire dataset.

Previous studies [21] have suggested focusing solely on the

most significant unfair subgroup, but this approach may not

be sufficient as it overlooks other unfair subgroups. To assess

the effectiveness of our algorithms in mitigating unfairness

across the dataset, we introduce a Fairness Index to quantify

overall subgroup unfairness. The index is calculated as the

sum of the divergences for each unfair subgroup with a

support (as a fraction of the dataset size) over 0.1 and a

statistically significant divergence (as determined by the t-

test). The fairness index represents the weighted sum of the

divergence for all significant unfair subgroups. Lower values

indicate higher levels of fairness.

We utilized DivExplorer [26], a highly efficient automated

tool to identify all unfair subgroups in the dataset. Given a

statistical measure γ, DivExplorer provides a set of unfair

subgroups with their support and performance divergence, and

ranks them based on the performance divergence.

B. Performance Analysis

1) Validation: Connection between Representation Bias in
IBS and Unfair Subgroups: We first investigated the correla-

tion between unfair subgroups and regions having biased data

collection in IBS, utilizing the ProPublica dataset.

Specifically, we examined the cause of subgroup unfairness

under both statistical measures—FPR and FNR—for all four

machine learning models: DT, RF, LG, and NN. Employing

our method with τc = 0.1 and T = 1, we identified the set of

IBS and compared it with the unfair subgroups.

In Figure 3, we depicted all unfair subgroups in the predic-

tion outcome under γ = FPR of all ML models. We marked

each subgroup in grey if the corresponding region (represented
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   Regions in IBS Dominate regions in IBS   

Fig. 3: Unfair subgroups in the prediction outcomes of DT,

RF, LG, and NN, within IBS or dominate regions within IBS.

by the same data pattern) exhibits representation bias, i.e.,

belonging to IBS. We marked each unfair subgroup in blue if

it dominates significant biased regions.

As illustrated in Figure 3, nearly all unfair subgroups

exhibit representation bias, displaying significantly divergent

class distributions compared to their neighboring regions. The

remaining two subgroups marked in blue (age = 1, race=1)

and (age = 2, race=1) also dominate significant regions in IBS,

specifically: (age = 1, race=1, sex =1) � (age = 1, race=1) and

(age = 2, race=1, sex =0) � (age = 2, race=1). Furthermore,

we observed that regions in IBS with ratior > ratiorn
are consistently associated with unfair subgroups exhibiting

a higher FPR, while unfair subgroups under γ = FNR tend

to have ratior < ratiorn or dominate such regions. This

is because, in the biased regions, the majority class is more

likely to be preferred in the classification results. Therefore,

subgroups with a higher percentage of positive samples are

more likely to have high FPR, and vice versa.

2) The Fairness-accuracy Trade-off: We next evaluated

the trade-off between accuracy and fairness for all datasets.

For identifying IBS, we compared our method of exploring

the Lattice space to baselines that only identify IBS on the

Top or Leaf level in the hierarchy. For addressing biased

data collection in IBS, we compared the results of all pre-

processing techniques mentioned in Section IV-A. Our ex-

periments show that the Lattice and Preferential Sampling
(PS) methods yield the best fairness and accuracy. Thus,

we employed the Lattice method for IBS identification when

comparing different pre-processing techniques, and used the

PS method for pre-processing when comparing different IBS

identification methods. For parameters, we selected T = 1
and τc = 0.1 for the ProPublica and Law School datasets,

and τc = 0.5 for the Adult dataset for optimal performance,

as elaborated later in Section V-B3.

The experimental results for the three datasets are shown

in Figure 4, 5, and 6. We started by comparing different IBS

identification algorithms. We reported the fairness index under

statistical measures γ = FPR (Figure 4a, 5a and 6a) and FNR

(Figure 4b, 5b and 6b), as well as the model accuracy (Figure

4c, 5c and 6c).

For the Lattice algorithm, it demonstrates a significant

enhancement in the fairness index. Additionally, we observed

that it can simultaneously mitigate subgroup unfairness for

both statistical measures FPR and FNR. This is because,

by addressing biased class distribution in regions having

ratior > ratiorn and ratior < ratiorn , we are able to

effectively improve both types of unfairness concurrently. For

instance, our method reduces the fairness index of the Adult
dataset from as high as 0.6 to less than 0.05, as illustrated

in Figure 4a. It also at the same time mitigates subgroup

unfairness under FNR by reducing the fairness index from

over 1.5 to less than 0.4, as depicted in Figure 4b.

This improvement was consistently observed across differ-

ent ML models, statistical measures, and datasets. The model

accuracy for Lattice also decreases by less than 0.1 across

all ML algorithms and datasets. This decline in accuracy is

attributed to the remedy of the biased class distributions in

IBS, resulting in discrepancies between the distribution of

the training and testing sets. Similar accuracy reductions are

commonly observed in fairness mitigation approaches [17].

For the Leaf baseline, as it updated a smaller fraction of the

dataset, its accuracy performance is better than Lattice while

having a poorer fairness performance (does not significantly

improve the fairness index). The Top baseline performs coarse-

level modifications to the datasets and exhibits less effective-

ness in fairness improvement.

In Figures 4d, 5d, and 6d, we compared different pre-

processing techniques used in the data remedy algorithm

(PS = preferential sampling, US = undersampling, DP =

oversampling, Massaging). We presented the fairness index

under the statistical measure γ = FPR and the model fairness

of different ML models.

For large datasets like Adult, both preferential sampling and

undersampling have good fairness and accuracy performance,

with a fairness index below 0.05 and an accuracy decrease of

less than 0.1. However, the oversampling method exhibits a

substantial increase in memory consumption, as it introduces

a large number of records to the dataset. we show this effect in

our scalability experiments. On the other hand, the massaging
method, being a more intrusive approach that alters data labels,

shows comparatively poorer accuracy performance.

Similar trends are observed across other datasets and also

indicate that preferential sampling tends to yield slightly

better fairness performance (lower fairness index) compared

to undersampling when the dataset sizes are relatively smaller.

3) Effects of Parameters: We discussed the impact of

parameters in our proposed method, which include two tunable

parameters: the imbalanced threshold τc and the distance

threshold T of the neighboring region. We used the ProPublica
and Adult datasets with decision tree in this discussion.

The imbalanced threshold, as in Definition 5, determines

how much disparity in class distribution is considered “bi-

ased”. A smaller value of τc typically identifies more regions

as biased, resulting in more instance updates to adjust class

distribution within these regions. In Figure 7, with T = 1,

we varied τc from 0.1 to 0.9, reporting the fairness index

(γ = FPR) and accuracy. Figure 7a demonstrates that lower

τc values, leading to more instance updates, generally result

in greater fairness improvement but lower model accuracy,
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(a) Preferential sampling, FPR (b) Preferential sampling, FNR (c) Preferential sampling, acc (d) Pre-processing methods comparison

Fig. 4: The fairness-accuracy trade-off (Adult).

(a) Preferential sampling, FPR (b) Preferential sampling, FNR (c) Preferential sampling, acc (d) Pre-processing methods comparison

Fig. 5: The fairness-accuracy trade-off (Law School).

(a) Preferential sampling, FPR (b) Preferential sampling, FNR (c) Preferential sampling, acc (d) Pre-processing methods comparison

Fig. 6: The fairness-accuracy trade-off (ProPublica).

especially evident in the ProPublicadataset. However, the

Adult dataset, with more protected attributes (6 compared to

3 in ProPublica), could exhibit robust fairness performance

even at higher τc values. This is because a larger number of

protected attributes may lead to a larger set of IBS, ensuring

sufficient updates of the datasets.

The distance threshold T determines the neighboring region

for each r. When T = |X |, we compare the class distribution

of r to the class distribution of all regions in the intersectional

space of X . Conversely, when T = 1, we compare r’s class

distribution to the class distribution of only regions in close

proximity. In Figure 7, we compared the effects of T = |X |
and T = 1 for the two datasets, reporting the fairness index

under γ = FPR and FNR, as well as model accuracy. We

observed that both T values mitigate subgroup unfairness in

all cases. For datasets with a smaller number of protected

attributes, e.g., |X | = 3 in the ProPublica dataset, T = |X |
outperforms T = 1. However, for datasets with a larger

number of protected attributes, such as Adult, T = 1 is more

likely to achieve optimal fairness performance. This means as

the number of protected attributes grows, ensuring equivalent

class distribution in all subgroups becomes less effective.

4) Comparisons with Subgroup Unfairness Mitigation
Baselines: The in-processing method GerryFair utilizes a dis-

tinct subgroup fairness metric based on fairness violation, de-

fined as the subgroup with the greatest performance divergence

multiplied by its violated group size. For a fair comparison,

we used this fairness violation as the evaluation metric for

the pre-processing methods in this discussion. We considered

the logistic regression as the ML classification model for all

pre-processing baselines because it is a linear model as in

the GerryFair classifier. We focused on the Adult dataset and

considered two protected attributes {Race, Gender} as in [35],

since certain baselines provide poorer support for a larger set

as we demonstrated later. For our Remedy approach, we set

τc = 0.1 and T = 1. Optimal parameter settings were also

utilized for all other baselines.

In Table III, we presented the fairness violation, model

accuracy, and execution time for all approaches. We observed

fairness improvements in all baselines except for Coverage, in-

dicating that the under-representation identified and enhanced

in Coverage is not a significant factor contributing to sub-

group behavioral divergence. However, enhancing Coverage
improves overall prediction accuracy.

Among pre-processing methods, Reweighing achieves opti-

mal performance, reducing fairness violation to 0 by ensuring

equivalent class distribution across intersectional subgroups.

However, in our analysis with a larger set of protected at-
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Fig. 7: Fairness index and model accuracy, varying τc.
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Fig. 8: Fairness index and model accuracy under different T .

tributes as in Table II, Remedy outperforms Reweighing by

achieving class distribution equivalence only in neighboring

regions. In addition, Reweighing requires the learner to accept

sample weights and provide no evidence of the causes of

subgroup biases, reducing its flexibility and reliability.

Both FairBalance and Fair-SMOTE improve fairness by

ensuring both equal and balanced class distribution among

subgroups. However, in real-world datasets, which are rarely

balanced, such approaches are likely to incur low accuracy

as observed in Table III due to the significant distribution

difference between the new training set and the test set.

GerryFair is also prone to lower accuracy performance when

confronted with imbalanced datasets [21].

For time efficiency, Fair-SMOTE incurs a long execution

time as it utilizes the k-nearest-neighbors to generate the new

synthetic data, which is impractical for large datasets and

numerous protected attributes. Similarly, the in-processing al-

gorithm GerryFair exhibits lower efficiency compared to other

methods, with training times escalating significantly as dataset

sizes and subgroup numbers increase. Other pre-processing

approaches complete within a reasonable timeframe (< 3s),

while our Remedy method requires slightly more time to train

the ranker for preferential sampling.

5) Scalability: We reported results on the Adult dataset, to

maximize variation in protected attributes and data sizes. To

assess algorithm efficiency regarding the number of protected

attributes, we expanded the set of protected attributes with two

additional categorical attributes: education and occupation,

despite them not being protected characteristics in the dataset.

We reported the runtime for IBS identification using the

Naiv̈e algorithm and the Optimized algorithm under varying

numbers of protected attributes and data sizes. Additionally,

we recorded the runtime for remedying biased data collection

in IBS using different pre-processing techniques.

Figure 9a depicts the runtime for IBS identification under

varying numbers of protected attributes. The runtime expe-

riences an exponential increase with the growing number of

protected attributes, attributed to the exponential expansion of

regions to explore in the hierarchy. Our Optimized algorithm

showcases better efficiency compared to the Naı̈ve algorithm,

TABLE III: Fairness violation, model accuracy, and execution

time, compared with baselines, X = {Race, Gender} (Adult).

Approach Fairness violation Accuracy Time

Original 0.0210 0.813 -

Remedy 0.0055 0.793 2.62
Coverage [4] 0.0218 0.815 0.73
FairBalance [35] 0.0040 0.735 1.16
Fair-SMOTE [8] 0.0120 0.726 1065.6
Reweighing [19] 0 0.802 1.02
GerryFair [21] 0.0032 0.789 593.7

consistently remaining up to 5 times more efficient than the

Naı̈ve approach, which reaches as high as 600 seconds.

In contrast to the IBS identification time, we observed

that the remedy algorithm, regardless of the pre-processing

technique employed, can be completed within a shorter time

frame (as shown in Figure 9b). The runtime is predominantly

influenced by the number of biased regions in IBS, thereby

increasing as the number of protected attributes grows. The

oversampling method exceeded the memory resource limit by

introducing an excessive number of instances to the dataset

and hence is excluded from this analysis.

We then set the size of the protected attributes to 8 (max-

imal) and examined the impact of data sizes. In Figure 9c,

although the time complexity of the algorithms is not directly

related to data sizes, the growth of data sizes increases the

number of candidate regions (regions with a size greater than

k = 30) to explore, thereby escalating the IBS identification

runtime. For the data remedy, in Figure 9d, the execution

time for all pre-processing techniques is within an acceptable

range and only relates to the number of biased regions in IBS.

However, the massaging and preferential sampling techniques

have a comparatively longer execution time (up to 50s) as they

require training a ranker to obtain borderline instances.

VI. DISCUSSION

Fairness metrics. In this paper, we focus on fairness metrics

based on the model statistics FPR and FNR. Although there

are other statistical measures for classification models such as

zero-one loss (
∑n

i=1 I(h(xi) 	= yi)), error rate (P (h(x) 	=y)),
or accuracy (P (h(x) = y)) [9], we do not consider these

measures in our evaluation. This is because these measures

are based on prediction accuracy, which can be affected when

there is a difference in the data distribution between the

training set and the test set. Without any pre-processing on the

test set, the accuracy of the model as well as these fairness

measures can be affected by such distribution differences.

Furthermore, our evaluation is based on the assumption that

the data distribution of the test set is also biased (they are

usually drawn from the same distribution), which can impact

the accuracy-related fairness measures. Therefore, we limit our

evaluation in this paper to FPR and FNR, which are more

robust to these distributional differences. However, it is worth

noting that representation bias is also closely related to unfair

subgroups under accuracy-related statistical measures.

Another fairness metric, statistical parity [13], compares

the predicted outcomes for protected groups and aims to
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Fig. 9: Runtime for IBS identification and remedy, varying # of protected attributes, data sizes (Adult).

ensure equal outcomes across groups (P (h(x) = 1|A =
a) = P (h(x) = 1|A = ā)). Unlike other fairness metrics,

statistical parity only considers predicted outcomes and does

not take into account actual outcomes (yx). Our mitigation

approach can also be applied to mitigate statistical parity. For

example, in a hiring model that considers race and gender

as protected attributes, the acceptance rate for green females

and purple males is 50%, while it is 0% for green males and

purple females. Analyzing each attribute independently would

suggest fairness, but our method could detect representation

bias in each subgroup and help mitigate such biases.

Limitations. Our method mitigates subgroup unfairness

by establishing a correlation between representation bias

and performance divergence within subgroups. However, this

correlation is mainly applicable to classifiers optimized for

accuracy, as suggested by the theoretical insight. For cost-

sensitive classifiers [36] optimized for misclassification cost,

this correlation may not remain valid. In addition, the remedy

algorithm does not guarantee achieving an optimal dataset

where the difference between the imbalance score and that of

the neighboring region is zero for all regions, as adjustments

in one region may impact others. Nevertheless, our evaluation

shows minimal impact on effectiveness, affirming the validity

of our approach.

VII. RELATED WORK

Most existing research in algorithmic group fairness has

focused on the simplest scenario, where groups are defined

based on a single protected attribute that is independent of the

prediction outcome [13]. Subgroup fairness (aka. intersectional

fairness) [22] instead demands statistical notions of fairness

across the intersections of protected attributes. A subgroup is

considered unfair when its behavior under certain statistical

measures deviates significantly from the overall performance

[26]. Automated tools like DivExplorer [26], SliceFinder [10],

and DENOUNCER [24] have been developed to identify sub-

groups in which a model performs poorly, based on statistics

computed from classifiers. These tools help to identify and

analyze unfair subgroups more efficiently.

In this paper, we discuss approaches to mitigate subgroup

unfairness. Bias mitigation techniques can be categorized into

three types: pre-processing interventions [19], [37], [38], [39],

[35], [8], in-processing interventions [2], [21], [7], [38], and

post-processing interventions [20], [15], [28]. A comprehen-

sive comparison of these approaches can be found in [17]. For

mitigating subgroup unfairness, various in-processing tech-

niques have been discussed in the literature [16], [34], [21],

[22], which aim to ensure that the subgroup statistics are

approximately equal to that of the entire population. Fairness

Gerrymandering [21] aims to audit binary classifiers by solv-

ing for the equilibrium in a two-player zero-sum game between

a learner and the auditor. Hebert-Johnson et al. [16] propose

a notion called multicalibration that is similar to subgroup

fairness and proposes an iterative algorithm to ensure the

calibration constraints using the online learning framework.

Yang et al. [34] characterize population optimal predictions

by which they propose a weighted empirical risk minimization

(ERM) approach for fair classification. While in-processing

methods demonstrate effectiveness, our paper focuses on pre-

processing techniques, as they offer more flexibility and can

be applied to any model without the need to access prediction

results or modify classifiers.

Existing pre-processing methods for mitigating bias involve

techniques such as data sampling, reweighing, and data mas-

saging, aiming to eliminate group-based discrimination [19].

iFlipper [39] introduces label flipping to enhance individual

fairness in predictions, while [11] proposes a probabilistic

framework for discrimination prevention. However, these ap-

proaches often necessitate predefined protected groups or a

similarity measure for individuals, aspects that are orthogonal

to the subgroup fairness measures discussed in our paper.

Pre-processing techniques for subgroup fairness have received

comparatively less attention. FairBalance [35] calculates and

assigns weights to training data to improve equalized odds for

subgroup fairness. Fair-SMOTE [8] oversamples training data

from minority groups with synthetic data points to achieve

balanced class distributions within subgroups. In comparison,

our focus lies on illustrating the impact of biased class

distribution within subgroups [31] on subgroup unfairness.

VIII. CONCLUSION

This paper explores the causes of subgroup unfairness

and proposes a pre-processing method to mitigate this issue.

We studied representation bias as the discrepancy in class

distribution among subgroups and explored its role in subgroup

unfairness. Then, we solved the problem of identifying and

remedying the Implicit Biased Set (IBS) to address such

representation bias. Extensive experiments were conducted

to validate the effectiveness and efficiency of our proposed

methods in mitigating subgroup unfairness.
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