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Abstract—Fairness in machine learning, particularly in clas-
sifiers, is receiving increasing attention. However, most studies
on this topic focus on fairness metrics for a limited number
of predefined groups and do not address fairness across in-
tersectional subgroups. In this paper, we investigate ways to
improve subgroup fairness where subgroups are defined by the
intersection of protected attributes. Specifically, our paper reveals
the correlation between the representation bias of training data
and model fairness. We demonstrate that biased sample collection
due to historical biases and a lack of control over data collection
can lead to unfairness in learned models. We introduce the
concept of an “Implicit Biased Set (IBS)”, which refers to regions
in the intersectional attribute space where positive and negative
examples are not proportionately represented. For example, if
our training data set has a disproportionate representation of
black male recidivists, then criminal risk assessment tools are
more likely to discriminate against black males, even if they are
innocent. We propose an efficient pre-processing approach that
initially identifies IBS and then employs techniques to remedy
the data collection within IBS. Our evaluation shows that our
method effectively mitigates various subgroup biases regardless
of the downstream machine learning models used.

[. INTRODUCTION

Machine Learning (ML) systems have a profound impact
on society and are widely used in various applications. Users
expect these systems to make fair decisions based on historical
data. However, biased or insufficient data collection can lead to
disparate outcomes in ML systems, as seen, for example, in the
higher false positive rate for black individuals in the recidivism
prediction algorithm COMPAS [3] and the lower accuracy
for darker-skinned females in commercial face recognition
services [6]. Ensuring fairness in classification models is a
crucial research area in ML.

There are many definitions of fairness in ML [32], and
various techniques have been developed to achieve fairness at
different stages of the modeling process[5], i.e., pre-processing
[19], [37], in-processing [2], [21], [7], and post-processing
[20], [15], [28].

One prevalent fairness objective is group fairness, which
aims to achieve approximate parity of classifier statistics across
demographic groups, focusing on the outcome rather than the
process. Group fairness is often specified assuming an inde-
pendent setting, where fairness is addressed by considering
only one sensitive attribute (such as gender or race) at a
time. (So, if there are enough women and enough African
Americans, then group counts are satisfied even if there are
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few African American women). At best, even if independence
is not explicitly assumed, group fairness is defined to require
parity of some statistical fairness measures over a small
number of pre-defined groups. However, a given algorithm
might be independently fair on the sensitive attribute but not
on intersectional subgroups as shown in Example 1.

Example 1 (Intersectional Biases in COMPAS). ProPublica
released a dataset for evaluating the COMPAS tool [3], which
is used to predict the likelihood of recidivism for criminal
defendants based on their criminal history and demographic
information. One important fairness measure to consider is
“predictive equality”, which aims to ensure that the protected
and unprotected groups have a similar false positive rate
(FPR), where FPR is the probability of a subject in the
negative class receiving a positive prediction. In the COMPAS
dataset, the overall FPR for the entire dataset is 0.088. If
we consider only one sensitive attribute gender, the FPR for
Males and Females are 0.09 and 0.07, respectively, which are
similar to the overall FPR. However, if we look into the in-
tersectional subgroups of multiple attributes, unfair subgroups
can be found, for example, (race = African-American, sex =
Male) has an FPR of 0.15.

Ideally, we would like to require fairness for every inter-
sectional subgroup, a concept that is referred to as subgroup
fairness [22]. Given a set of protected attributes, subgroup
fairness applies a statistical fairness constraint (say, predictive
equality) to the arbitrary intersection of these attributes, rather
than a fixed number of pre-defined groups. The space of
all possible sub-groups is large. Automatic tools, such as
DivExplorer [26] and SliceFinder[10] have been proposed
to efficiently identify significant unfair subgroups in this
extensive space. Fairness gerrymandering [21], [22] uses a
two-player zero-sum game formulation with a Learner and
an Auditor to achieve intersectional fairness. While these
methods can be effective, they are all either post-processing
(manipulating prediction results) or in-processing (altering the
learning process). In this paper, our focus is on the pre-
processing analysis of training data quality—a crucial factor
contributing to system misbehavior, as we elaborate next.

Data collection can introduce various biases originating
from multiple sources. For example, a model used to select
job candidates trained on historical employment data that
favors Caucasian male applicants may continue to perpetuate
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discrimination in its future predictions. Additionally, uninten-
tional biases can arise from errors in data collection, such as
a flawed sampling algorithm that only gathers data from a
limited portion of the population, leading to unrepresentative
data [29]. Regardless of the machine learning model used, if
the data is biased, it poses a significant risk of systematic dis-
crimination. Consequently, addressing these data-related issues
is a fundamental step towards mitigating model unfairness,
without necessitating access to the model training process.

In this paper, we establish a connection between rep-
resentation bias [30], [31] in subgroups and the potential
unfairness in ML predictions. Representation bias occurs and
can be defined in various ways [30], [31]. Here, we focus
specifically on whether the collected datasets contain skewed
subsets, often caused by sampling biases [31]. For instance,
in Example 1, the performance gap in FPR between Afr-Am
males and the entire dataset can be attributed to the dataset
containing an excessive number of positive instances in the
region representing Afr-Am males.

We demonstrate that unfair subgroups are often associated
with specific data subsets (referred to as regions) within these
subgroups, exhibiting a divergent class distribution compared
to other regions. We call such regions in the dataset as Implicit
Biased Sets (IBS). We propose a distance-based notion to
gather instances from other regions in the intersectional space
(referred to as neighboring regions) for this comparison.

With this observation, we are able to mitigate subgroup
unfairness by enhancing the data collection within IBS. We
formulate and propose effective solutions for two tasks: (i)
identifying IBS and (ii) remedying dataset biases to mitigate
subgroup unfairness.

In particular, our contribution includes the following:

o Exploring causes of subgroup unfairness. We propose the
imbalance score as a metric to quantify the data distribu-
tion within intersectional regions. Formally defining the
notion of IBS based on the imbalance score, we provide
both theoretical and empirical evidence to demonstrate
that the biased data collection in IBS can significantly
contribute to performance divergence in unfair subgroups.

e IBS identification. We develop efficient algorithms to
traverse the exponentially large lattice of intersectional
regions to identify IBS. We show that the problem of
IBS identification has no polynomial-time solution. Since
the computation of the imbalance scores for neighboring
regions can overlap across different regions, we propose
an optimized algorithm to support result reuse and mini-
mize the number of neighbors to explore, thus enhancing
efficiency and scalability.

Mitigating subgroup unfairness. We demonstrate that
addressing biased data collection through dataset pre-
processing and achieving an unbiased class distribution
in IBS effectively mitigates subgroup unfairness.

Evaluation. We analyze our approach on real datasets,
validate the relationship between IBS and unfair sub-
groups, and assess the trade-off between fairness and
accuracy. Furthermore, we compare our method to a range
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TABLE I: Table of notations.

Symbol  Description
X A set of protected attributes
A~y Divergence of g under model statistical measure ~.
ratio, Imbalance score for region r
ratior,  Imbalance score for the neighboring region of r
Td, Te Discrimination threshold and imbalance threshold
T Distance threshold of the neighboring region
s Implicit Biased Set (IBS)
H Hierarchy

of state-of-the-art subgroup unfairness mitigation base-
lines [21], [4], [35], [8], [19]. Additionally, we evaluate
the efficiency and scalability of our algorithms.

II. DEFINITIONS

In this section, we first review fairness measures and for-
mally define biased data collection as a critical factor con-
tributing to subgroup fairness. For convenience, we summarize
the core symbols in Table I.

A. Fairness Measures and Unfair Subgroups

We study fairness of binary classifiers. Consider a dataset D
with a set of training features A = {ay,- - ,a,,}, where the
domain of attribute a; is represented by dom(a;). The input
data for prediction is represented by = = (21, -+ ,Zy) €
dom(ay) X - -+ X dom(a,,), and the class label of x is y, €
{0, 1}. For a given model h : X;; — Yy, trained on the dataset
D = {(z,y"), -, (xF,y*)}, the prediction of the data z is
h(x) € {0, 1}.

We consider the fairness of overlapping subgroups de-
fined by the intersection of protected attributes X
{ai1,...,a;;} C A. Each attribute a;, € X takes a cate-
gorical (or discretized) value x;; from a finite data domain
dom(a;i), as is common in (sub)group fairness definitions
[32], [26]. A subgroup g; is the set of instances that match a
pattern p; given by a conjunction of attribute-value assignment
pi = (ail = T;1 N - A A5 = l‘ij), where values can
be deterministic x;;, € Dom(a;;) or non-deterministic with
‘a;r, = X’ meaning we do not care about the value assignment
of a;;. We use d to represent the number of deterministic
elements in p.

For example, consider the intersection of two attributes X’
= {Age, Race}, the subgroup of all African Americans can be
represented by pattern p = (Age = X, Race = Afr-Am) with
d = 1. In later sections, intersectional subgroups are simply
referred to as “subgroups”. Non-deterministic elements will be
omitted from the patterns when clear in context.

In subgroup fairness notions, prior works [26], [21], [24]
have explored various statistical measures to ensure similar
prediction behavior across different subgroups. We will be
concerned about two common statistical measures: false-
positive rates (considered in the equalized opportunity [15],
[23] fairness constraint) and false-negative rates (considered
in the equalized odds [15] fairness constraint).

The computation of the false-positive rate (FPR), expressed
as Pr[h(z) = 1y = 0], and the false-negative rate (FNR),
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indicated by Pr[h(z) Oly 1], is applicable to both
subgroups and the entire dataset. We use 7 to represent the
selected model statistic, with v, representing the statistic
across the entire dataset, and v, representing the statistic for
subgroup g. We focus on v = {FPR, FNR} for algorithm
demonstration and evaluation, but we also discuss the avail-
ability of other fairness metrics, such as zero-one loss, error
rate, and statistical parity, in Section VI.

We adopt the notion of divergence as proposed in [26]
supporting various <, expressing the behavioral distinction
between a specific subgroup and the entire dataset. The
divergence of a model statistic 7 for a given g relative to
the overall data is defined as follows:

Ayy = |7g - d|

Therefore, we can formally define the subgroup fairness as:

Definition 1 (Subgroup Fairness). Given a discrimination
threshold T4, and a subgroup g, g is said to be Ty4-fair under
model statistic vy, when Avg = |vg — V4| < Ta.

Example 2. Consider a decision tree model trained on the
ProPublica dataset. The overall FPR is 0.276. Consider two
subgroups, g1: (Age = 25-45’, #prior= >3’, Race = Afr-Am)
and gs: (Race = Afr-Am), where #prior is the number of previ-
ous offenses of the defendants. The FPR for g1 is 1, and for go,
it is 0.369. Suppose we set the discrimination threshold 1, to
be 0.1. The divergence of g1 with respect to the FPR statistical
measure is Ay, = |1—0.276| = 0.724, which is greater than
the discrimination threshold T4. This result suggests that gy is
not 0.1-fair under the FPR statistical measure. The divergence
of g2 is Avyg, = 10.369—0.276| = 0.093, which is less than the
discrimination threshold 1,4, and indicates that go is 0.1-fair
under the FPR statistical measure.

B. Exploring Causes of Subgroup Unfairness

a) Subgroup Features: We first introduce the concept
of dominance relationship, which illustrates that instances
represented by a specific pattern may constitute a subset of
a more general subgroup g delineated by a broader data
pattern. We refer to this set of instances as a region that
is dominated by the subgroup g. We observe that unfair
subgroups arise from regions having biased data representation
within a subgroup, as demonstrated later in this section.

Definition 2 (Dominance Relationship). A region r; is dom-
inated by subgroup g; if pattern p; can be obtained by
replacing any deterministic elements A;, = x;, in p; with the
non-deterministic elements A;,, = X while keeping the other
deterministic elements unchanged. We denote this dominance
relationship as r; = gj.

Example 3. The region (Age = ‘25-45°, #prior = “>3’, Race
= Afr-Am) is dominated by subgroup (Age = 25-45°, #prior
= >3’) as the subgroup pattern can be obtained by replacing
the deterministic element “Race = Afr-Am” with “Race = X”.
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b) Definition of IBS: We introduce a definition to capture
biased data representation. To begin, we define the imbalance
score based on the ratio of positive and negative instances for
evaluating the class distribution within regions.

Definition 3 (Imbalance Score). Given a region r, we use |r| to
represent the number of instances that belong to r, i.e. |{z|z €
r}|, and |r™| represents the number of positive instances in
r, Le. {z|x € r Ny, = 1}|. Similarly, |r~| represents the
number of negative instances in r, i.e. |{z|x € r Ay, = 0}/.
The imbalance score of region v is ratio, = |r|/|r~|. When
|r~| =0, we set ratio, = —1.

Example 4. In the ProPublica dataset, there are 1,279
instances in the region (Age 25-45°, #prior >3’).
Among these, 882 instances are positive, and 397 are negative.
Therefore, the imbalance score of this region is 552 = 2.22.

397

In order to reduce subgroup performance divergence, we
compare the imbalance score within each given region r to
other regions in the intersectional space. If a region’s imbal-
ance score significantly deviates from others, we consider it a
biased region. We specifically employ a distance metric [27],
[39] to formally define the set of nearby instances within the
intersectional space of protected attributes. We refer to the
union of these regions as the neighboring region of r, defined
using the Euclidean distance metric.

Definition 4 (Neighboring Region). Given a region r defined
by the pattern (a1 = x1 A+ Ny, = Ty,), where a; € A, the
Euclidean distance between r and a region r; is d(r,r;) =
Ix — x| = /(z1 —2j1)2 + - (T — Tjm)?. We consider
region r; to be in the neighboring region of region r if, for
a given distance threshold T, the Euclidean distance d(r,7;)
is less than or equal to 'T'. The neighboring region of r is the
union of all regions with a distance <T.

In the basic setting, we consider all values of the attribute to
be one unit distance apart. This approach is generally suitable
for most categorical attributes like gender or race. However,
in cases where there is a meaningful structure within the
attribute value domain, such as a natural numeric ordering
for age groups or educational degrees, it is reasonable and
straightforward to refine the attribute distance accordingly.

When examining the neighboring region, we exclusively
consider regions with identical deterministic attributes. For
example, two regions (Age=25-45") and (#prior=>3") are not
regarded as neighboring regions for any value of 7', as they
exist in different dimensions and the instances in these regions
are not directly comparable.

In our definition, a default choice for 7" is 1, indicating that
we only consider the union of regions in close proximity as
the neighboring region. We demonstrate in the evaluation that
this is effective in most cases. However, we can also set 7" to a
larger value, e.g. T' = |X|, where we consider the union of all
intersectional regions of protected attributes as the neighboring
region. We explore this scenario further in Section V-B3.
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Example 5. In the ProPublica dataset, suppose the data
domain of Age and #prior attributes are dom(Age) ={>45’,
25-45°, <25}, dom(#prior) ={‘0°, [1-3]’, >3’} . The
neighboring region for (Age = 25-45°, #prior = “>3’) with
T =1 is the union of all instances that satisfy patterns (Age =
25-45°, #prior = ‘0°), (Age = 25-45°, #prior =[1-3]’), (Age
=‘<25’, #prior =>3°), and (Age =>45" , #prior=">3").

Lastly, we define the Implicit Biased Set (IBS) as regions
whose imbalance score is significantly different from their
neighboring regions. The imbalance score of the neighboring
regions can be computed in a manner similar to Definition 3.

Definition 5 (Implicit Biased Set). For a region r within
the intersectional space of protected attributes X, and its
neighboring region r,, with an imbalance threshold t., r is
in the implicit biased set if |ratio, — ratio,, | > 1.. We refer
to r as a biased region.

Example 6. Continuing with the running example, let us
consider a region (Age = ‘25-45°, #prior = >3’). We have
computed its imbalance score in Example 4 as ratio, = 2.2.
The neighboring region of this region (given in Example 5)
has an imbalance score ratio,., = 0.64. Therefore, with an
imbalance threshold 7. = 0.3, we can compare it with the
neighboring region using |ratio, — ratio, | = 2.2 —0.64| >
0.3. Thus, this region is in IBS.

c) Connection between Subgroup Unfairness and IBS:
In this subsection, we establish a formal connection between
the set of unfair subgroups and the Implicit Biased Set (IBS).
Additionally, we provide both theoretical insight and a pre-
liminary case study to support our hypothesis.

Hypothesis 1. In dataset D, let X be a set of protected at-
tributes. Let G be the set of unfair subgroups in the prediction
result of any machine learning classifier, and let T be the set
of IBS. We propose that the biased class distribution in T can
contribute to subgroup unfairness in G. Specifically, subgroups
that have biased class distribution or dominate significant
regions in T are more likely to suffer from unfairness.

Theoretical Insight for Hypothesis 1 Consider a set of
protected attributes denoted as X', and let C' represent the set
of all combinations of the protected attribute values, where
each ¢; € C represents a region/subgroup in the intersectional
space. We begin with the simplest case where there is only
one protected attribute, i.e. |X|=1. Assuming for any ¢; € C,
it contains more positive records than its neighboring region
Cl' = C{c;eC|e;#¢,}- In a machine learning classifier opti-
mized for accuracy, it tends to favor the majority class (say,
the positive class) in ¢;, resulting in a higher probability of
misclassifying a negative example as positive than in C}’, thus
leading to performance divergence in the false positive rate on
the protected attribute. Extending this analysis to an arbitrary
number of protected attributes, when considering the largest

IFor simplicity, each attribute value is assumed to be one unit distance apart
with no numeric ordering.

available value of the distance threshold T (where T' = | X)),
any intersectional region and its neighboring region (the rest
of the subsets in (') are equivalent to the ¢; and C} in the
single protected attribute situation. For smaller values of 1", we
are effectively examining a subset of C*. Local performance
divergence is likely to occur in this case, potentially leading to
subgroup unfairness, even though constructing comprehensive
theoretical support remains a challenge. l

To further substantiate Hypothesis 1, we proceed with a case
study on the running example, delving into the cause of the
unfairness of a specific subgroup. Furthermore, we provide a
comprehensive discussion on the correlation between all unfair
subgroups and the set of IBS in Section V-BI.

Case 1 (IBS and Subgroup Unfairness.). Let us analyze the
decision tree model trained on the ProPublica dataset, where
the overall FPR is 0.276. We observe an unfair subgroup g :
(Age =25-45", #prior = “>3’) with an FPR of 0.965, which is
significantly higher than the overall FPR. Individuals in this
subgroup are more likely to be wrongly classified as having
a high risk of reoffending compared to the overall dataset.
The imbalance score of g is 2.22, significantly higher than its
neighboring region’s score of 0.64. This discrepancy indicates
a biased data collection in the class distribution within g,
where there are excessive positive records. Consequently, the
decision tree classifier is more likely to predict instances in g
as positive, thus resulting in a higher FPR of g.

C. Problem Definition

To tackle the underlying causes of unfairness in intersec-
tional subgroups, our objective is to identify and remedy all
regions with biased data representation in the intersectional
space of the protected attributes. We may ignore regions with
a small number of instances as they may have minimal impact
on classification results and model fairness [21], [26]. We only
consider significant regions in IBS with a size greater than k.
Here we use the rule-of-thumb from the central limit theorem
and set k to a default value of 30.

We now define the IBS identification problem as follows:
Problem 1 (Implicit Biased Set Identification). Given a
dataset D, and an imbalance threshold 7., find all biased
regions T within the protected attribute set X with a size
greater than k.

Theorem 1. The IBS
polynomial-time solution.

identification problem has no

The IBS identification problem involves an analogous task
to finding frequent patterns, a well-established task in data
mining. In our case, we seek to identify regions represented
by their patterns with a size greater than & and an imbalance
ratio difference greater than 7.. While efficient heuristic algo-
rithms exist for frequent itemset mining, the problem lacks a
polynomial time solution [14].

In the subsequent sections, we present algorithms for IBS
identification in Section III, and discuss strategies for mit-
igating representation bias within IBS through data remedy
approaches in Section IV.
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Age=X, #prior=X;
race=X

Age=X, #prior=X;
ace = Afr-Am ...

Age<25 ..., #prior
=X, race =X

Age=X, #prior=

Age=X, #prior =0

Age<25 ..., #prior=X;
., race = Afr-Am ... 9 p

race = Afr-Am ...

Age<25 ..., #prior =0
-, Face = Afr-Am ..

Fig. 1: Hierarchy of regions on X’ = {Age, #prior, Race}.

IIT. IBS IDENTIFICATION

We first introduce a data structure, called hierarchy, to
facilitate the traversal of all regions within the intersectional
space defined by protected attributes X'.

The hierarchy is constructed based on the dominance re-
lationship discussed in Definition 2. In the hierarchy, we
represent all regions/subgroups by their patterns and group the
patterns having the same deterministic attributes into a node.
As seen in Figure 1, considering the intersectional space of
three protected attributes {Age, #prior, Race}, each node in
the hierarchy contains the set of patterns that have the same
deterministic attributes but with different value assignments.
For instance, (Race = Hispanic) and (Race = Afr-Am) are
both in the first node at level 1. The levels are determined by
the number of deterministic elements in their patterns. Leaf-
level subgroups have no non-deterministic elements, while
the group at level O is the entire dataset. Lines indicate the
parent/child relationship between the nodes: for each region
. in the child node, there exists a subgroup g, in the parent
node, such that r.=g,.

To identify IBS, we traverse the hierarchy from the leaf
level to level 1, where the number of nodes is exponential in
the number of protected attributes. We first present a naive
algorithm to illustrate the main idea and then introduce an
optimized algorithm with a lower time overhead.

A. Naive Algorithm

The naive algorithm to identify IBS involves the following
steps. Firstly, we traverse the hierarchy in a bottom-up manner.
For each region with a size greater than k, to determine
whether the region is in IBS, we compute the imbalance score
ratio, for it, and ratio,  for its neighboring region.

The ratio, can be easily obtained by computing the number
of positive and negative instances in r. The computation of
ratio,,, is illustrated in Figure 2. Consider a set of protected
attributes X = {Age, #prior, Race} with attribute domains
shown on the axes. For example, in Figure 2a, the region
(Age="[25,45]’, #prior=">3", Race=Afr-Am) is marked in
red, and the green cubes represent its neighboring region
with T 1. The algorithm calculates the |[r*| and |r~|
within the red cube and computes its imbalance score as
ratio, |r™|/|r~|. Next, it computes the ratio for the
neighboring region by calculating || and |r£l\ for each of

Tl

the green cubes r,;, and thus ratio,,
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(a) (‘[2545], *>3’, ‘Afr-Am’) (b) (‘[25,45]", X, ‘Afr-Am’)
Fig. 2: The neighboring region, X={Age, #prior, Race}.

While a top-down traversal could be an alternative, the non-
monotonicity of the biased region definition prevents effective
pruning or optimization in this approach. Therefore, we focus
on the bottom-up search in the IBS identification.

However, the naive algorithm calculates ratio,, by sum-
ming the counts of positive and negative instances from r’s
neighbors. With ¢ being the average cardinality of protected
attributes X', this leads to exploring (¢—1)-d - T neighbors (d
is the number of deterministic elements in p, 7" is a constant in
the neighboring region definition). For instance, with 7' = 1,
to compute ratio,, for the region represented by the red
cube in Figure 2a, the naive algorithm computes the counts of
positive and negative instances of (3—1) x 3 = 6 green cubes.
Similarly, in Figure 2b, it explores the counts of (3—1)x2 =4
green cuboids to compute ratio,, for the region represented
by the red cuboid.

B. Optimized Algorithm

The naive algorithm counts the neighbors of r separately
in the computation of |r;F'| and |r, | which is inefficient and
contains repeated operations. A more efficient approach is to
group the neighbors into more general regions and use their
counts to calculate ratio,,, . To create these general regions,
we consider a set of regions that dominate 7 and are 7 levels
up in the hierarchy. We denote this set as R,.

To obtain R4, we start with the pattern p in 7 and remove
one deterministic element at a time. We can then calculate the
imbalance score of the neighboring region using the formula:
Sy ery ITH 1= Ral x|t
Sreny Ty = 1Ralx|r=|?
R, and also the over-counting factor for |[r*| and |r~| in the
neighboring regions.

ratioy.,, where |Ry| is the size of

Example 7. In Figure 2a, the set of dominating regions of
r = (Age="[25,45]’, #prior=">3", Race=Afr-Am) with T =1
is Ry {(Age="[25,45]’, Race=Afr-Am), (Age=‘[2545]’,
#prior= >3’), (#prior= >3, Race=Afr-Am)}. These regions
are represented by the three cuboids covering the red cube.
If we sum up the counts of positive and negative instances in
these three cuboids to obtain the counts of the neighboring
region, we will overcount |r*| and |r~| for the red cube (rep-
resenting r) threefold as it does not belong to r,,. Therefore,
to calculate |r}}|, we need to sum the positive instances of
dominating regions and subtract 3 x |r|. The same approach
applies to computing |r, |.
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To avoid redundant computation, the optimized algo-
rithm also maintains counts of dominating regions. Consider
three regions (Age=°[25, 45]’, Race=Afr-Am), (Age=‘<25’,
Race=Afr-Am), and (Age=">45", Race=Afr-Am), which have
the same deterministic element on the Race attribute. To assess
whether each of these regions is an IBS, we consistently
require the count of the dominating region (Race=Afr-Am)
with the Age attribute’s element removed. Therefore, we
propose maintaining the counts of R;’s for regions within the
same node in the hierarchy. This is because regions in the
same node share overlapping sets of dominating regions. This
strategy allows the optimized algorithm to reduce the number
of counts that need to be computed and stored.

Algorithm 1 presents the optimized algorithm for identify-
ing IBS. First, the algorithm creates the hierarchy H based
on the set of protected attributes (line 1) and then filters the
regions with a size greater than k in the hierarchy (line 2).
For each node v in 7, the algorithm obtains the set of its
parent nodes V), and stores the counts for all regions R in V},
(lines 3-6). Next, it enumerates the regions in v (line 7), for
each region 7 in v, calculates the imbalance score ratio, for
r (line 8), and determines the set of its dominating regions
R4 (line 9). The algorithm employs the precomputed counts
for each dominating region in R, to calculate ratio,, (line
10). If the difference between the imbalance scores for r
and its neighboring region r,, exceeds the specified imbalance
threshold, r is added to the set of IBS (lines 11-12).

Complexity Analysis. In Theorem 1, we establish that the
IBS identification problem does not have a polynomial-time
solution. Unlike frequent pattern mining, IBS identification
not only considers regions with a size exceeding k but also
requires an imbalanced score surpassing 7.. Consequently,
existing pruning-based algorithms [14] for frequent pattern
mining are ineffective in optimizing IBS identification. In the
worst case, the hierarchy contains ¢/ regions to explore,
where ¢ denotes the average protected attribute cardinality, and
|X| is the number of protected attributes. However, in explor-
ing each region, compared with the naive algorithm, Algorithm
1 reduces the neighbors to explore from (¢c—1)xd - T, to dxT
for each region. This optimization, in practice, results in a
substantial reduction in time overhead given the exponential
number of regions to explore, as we will show in Section V-B5.

For example, in Figure 2a, with T" = 1, to compute ratio,., ,
the algorithm only explores d = 3 cuboids for the region
represented by the red cube, while for the region represented
by the red cuboid in Figure 2b, it only needs to explore d = 2
cuboids, representing (Age=‘[25,45]’) and (Race=Afr-Am).

IV. DATASET REMEDY

To address representation bias in IBS, we aim to adjust the
class distribution |r*|/|r~|, computed as the imbalance score,
within each r in IBS so that |ratio, — ratio,,| < 7.. To
achieve this, we employ pre-processing sampling techniques
to transform the class distribution within each region.

Definition 6 (Number of Instances to Update). Given a region
r with |ratio, — ratio,,| > 7. Let p, denote the number of

Algorithm 1: Implicit Biased Set Identification

input : Dataset D, imbalance threshold 7., and a set
of protected attributes X, size threshold k.
output: Implicit Biased Set 7.

Initialize the set of IBS as Z = {}.
1 H, < CONSTRUCTHIERARCHY (X).
2 H+ FILTERREGIONSBYSIZE (H,, k).
3 foreach node v in H do

4 V) ¢~ GETPARENTNODE (V).

5 | R< GeTREGIONS (V)).

6 | Compute and store the counts of regions in R
7 | foreach region r € v do

8 raio, < |rT|/|r7|

9 Obtain the set of dominating regions Ry C R

that dominate 7. . N
10 ratioy, « =it lr’i""ileleT ‘.
" X eny IThil = Ralx|rT]

11 if |ratio, — ratio,, | > 7. then

12 | Z.add(r)
13 return 7

positive instances to be updated in r, and let n, denote the
number of negative instances to be updated in r. These updates
are chosen such that the updated imbalance score for r is
equal to ratio,, . The values of p, and n, can be computed
using the following equation:

|7n+‘ + DPr

= ratio, 1
Ir=|+n; " M

Here, |r*| and |r~| represent the number of positive and
negative instances in r, respectively.

The values of p, and n, vary with different pre-processing
techniques, as demonstrated later. If the values of p, and n,
are not integers, they will be rounded to the nearest integer.
We next formalize the data remedy problem:

Problem 2 (Dataset Remedy). Given a dataset D and the
Implicit Biased Set I, compute p, and n, for each r € T and
mitigate the biased data representation in r by updating p,
positive instances and n, negative instances.

Algorithm 2 outlines the process for remedying biased
data representation in Z. This data remedy process requires
iterative IBS identification at each node since adjusting the
class distribution for specific regions will impact the imbalance
score of all regions that either dominate or are dominated
by them. The algorithm begins by constructing the hierarchy
‘H from the original dataset and protected attributes (line
1). For each node v, the algorithm uses the same process
described in Algorithm 1 to identify the set of biased regions
7, belonging to v (lines 2-3). Next, for each region, r € Z,,
the number of positive instances to update p, and the number
of negative instances to update 7, are then computed based on
the chosen pre-processing technique, and the dataset is updated
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Algorithm 2: Dataset Remedy

input : Dataset D, a set of protected attributes X, and
a pre-processing technique alg.
output: Dataset after remedy D,..

1 H 4+ CONSTRUCTHIERARCHY (X).

2 foreach node v in H do

3 | Z, <+ GETBIASEDREGIONS (v).

4 foreach region r € 7,, do

5 Pr, Ny = COMPUTEUPDATES (alg, 1)

6 LDT < UPDATEDATASET (D, py, Ny, alg)

7 return D,.

accordingly (lines 4-6). Next, we talk about the pre-processing
techniques used to transform the class distribution.

A. Pre-processing Techniques

In this section, we discuss four pre-processing techniques:
oversampling, undersampling, preferential sampling, and data
massaging. These techniques are incorporated into Algorithm
2 in the UPDATEDATASET procedure.

a) Oversampling: The objective of oversampling [25] is
to adjust the biased class distribution by duplicating instances
from the minority class in each subgroup. If a region has
ratio, > ratio,,, meaning that more negative instances are
needed, p, is set to 0, and n, can be computed using Equation
(1) as \T‘Ji:-ln, = ratio,, . Similarly, if ratio, < ratio,,, n,
is set to 0, and p, is computed using ‘Tlil% = ratio,.,. For
each biased region, after determining p,- and n,., instances in
r* or r~ are randomly selected for duplication. Oversampling
is a simple method that doesn’t require changing any existing
instances but may result in an increase in storage overhead or
model overfitting.

b) Undersampling: Undersampling [25] aims at reducing
the data collection of the majority class in biased regions.
If a region exhibits ratio, > ratio,,, indicating a need to

remove Eositive instances, n,. is set to 0, and p,. is calculated
[r™ [ +pr

using BT ratioy, , with p, < 0 indicating the removal
of instances from r*. Similarly, if ratio, < ratioy, , pr 1S
Irt]

set to 0, and n, is computed as T = ratioy, , with
n, < 0. In undersampling, instances from the majority class
are selected and skipped uniformly. It is preferred when the
dataset is large, but can lead to the loss of information and
affect model accuracy when the dataset is small.

c) Preferential Sampling: Preferential sampling [19] is
a combination of the previous two methods which assigns a
higher priority to borderline instances for being duplicated
or skipped. It uses a ranker, such as a Naive Bayes model,
to identify the borderline instances, which have a higher
probability of belonging to another class. If a region has
ratio, > ratio,, , we duplicate the top-k instances from the
negative class and remove the top-k instances from the positive
class, where |p.| = |n,| = k. In Equation (1), the values

. + .
of p. and n, can be computed using ll,:_“iff = ratio,,,
.

where p, < 0 and n, > 0 indicate that positive instances
are removed and negative instances are added. Similarly, if
ratio, < ratio,, , positive instances are duplicated, and
negative instances are removed. Preferential sampling provides
a more refined approach to remedying the dataset by taking
into account the instance’s risks, although it might have a
higher time overhead of ranking the instances.

d) Data Massaging: Data massaging [18] aims to select
the set of best candidates to relabel. As in preferential sam-
pling, a ranker is used in the massaging technique to select the
borderline instances to relabel. In the data massaging, we flip
the label of the top-k majority class to reduce the number
of majority instances and increase the number of minority
instances. If a region has ratio, > ratio,,, we relabel p,

positive instances as negative, and p, can be computed by
Ir™|—pr

e = ratioy, . If a group has ratio, < ratio,, , we
. . .. . \7‘+\+n7\
relabel n, negative instances as positive, ensuring T

ratioy, . Data massaging has been shown to be effective in
removing biases in prediction results [19], and it doesn’t
change the size of the dataset. However, the data massaging
algorithm can be intrusive as it changes labels, which may
compromise the validity of the results.

Example 8. Continuing with Example 6, consider the region
(Age = 25-45°, #prior = >3°), with ratio, = 2.2 and
ratio,, = 0.64. The region contains 882 positive instances
and 397 negative instances. To address the biased class
distribution and adhere to Equation (1): (I) Oversampling:
add 984 negative instances uniformly to r, s.t. ratio, =
% = 0.64. (2) Undersampling: remove 629 positive
instances uniformly from r, s.t. ratio, = % =0.64. (3)
Preferential sampling: remove 384 borderline positives and
add 384 borderline negatives in r, s.t. ratio, = % =
0.64. (4) Data massaging: flip the label of 384 borderline

positives to negative in r, s.t. ratio, = % = 0.64.

V. EXPERIMENTAL STUDY

The first question to examine is whether representation bias
in the Implicit Biased Set (IBS) is the key cause of subgroup
unfairness. We examined this question by comparing the set
of IBS to unfair subgroups under different statistical measures
(y = FPR, FNR) and machine learning classifiers. We also
explored the fairness-accuracy trade-off of our approach and
discussed the impact of different parameters. Moreover, we
conducted a comparative analysis against state-of-the-art base-
lines in mitigating subgroup unfairness. Lastly, we evaluated
the time performance of our algorithms under varying numbers
of protected attributes and data sizes.

A. Experimental Setup

We implemented all algorithms in Python 3.7 and conducted
experiments on a Linux machine with a 3.8 GHz Intel Xeon
processor and 64GB memory. Code is available 2.

Zhttps://github.com/nicelrene/remedy
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TABLE II: Dataset characteristics.
[A] [X] Protected attributes Data size
Adult 3 6 age, race, gendg, marital-status, 45222
relationship, country
ProPublica 6 3 age,race,sex 6,172
Law School 12 4 age, gender, race, family-income 4,590

a) Data Sets: We used three real-world datasets com-
monly utilized in fairness literature [5], [22], [39]. For each
dataset, we randomly split the data into 70% as training and
30% as testing. The test set is used exclusively for evaluation
and no data remedy is applied to it. We performed standard
pre-processing of the datasets, which includes removing any
missing values and bucketizing continuous values for protected
attributes. For each dataset, we adhered to the guidelines in
Equality Act 2010 [1] to define the set of protected attributes.
We present a summary of the dataset characteristics in Table II.

o AdultCensus [12]. Contains 45,222 records about individ-
uals’ annual income based on census data. The protected
attributes include age, race, gender, and so on.
ProPublica [3]. Contains 6,172 records about the demo-
graphic information and criminal history of defendants.
We included age, race, and gender as protected attributes.
Law School [33]. Contains information on over 4,000 law
students, including details on demographics and school
performance. Since the original dataset was extremely
imbalanced with respect to the prediction label, we con-
ducted uniform sampling, resulting in an equal number
of positive and negative records. Additionally, to prevent
discrimination against students from economically dis-
advantaged backgrounds, we incorporated family income
alongside age, race, and gender as protected attributes.

b) Classification Models and Methods: Our proposed
approach to mitigate subgroup unfairness is model agnostic
and can be applied to any machine learning (ML) classifiers.
To evaluate our approach, we considered four downstream
classifiers: decision tree (DT), random forest (RF), logistic
regression (LG), and neural network (NN). For each classifier,
we used grid search to obtain the optimal hyperparameters.

To identify IBS, our algorithms traverse the lattice space
of the hierarchy. We compared our approach, Lattice, against
two methods: one concentrating exclusively on intersectional
regions at the leaf level (Leaf) and another specifically ad-
dressing biases at the highest hierarchical level (Zop). This
comparison aims to underscore that a comprehensive approach
is necessary, as solely focusing on groups defined by the
protected attribute or their intersections, as demonstrated by
Top and Leaf, are insufficient for achieving subgroup fairness.
Additionally, we examined the time efficiency of the IBS
identification algorithms by comparing the runtime of the
Naive algorithm in Section III-A to the Optimized algorithm
in Section III-B.

To address representation bias in IBS, we evaluated the
runtime and effectiveness of the remedy algorithm with pre-
processing techniques: Oversampling, Undersampling, Pref-
erential Sampling, and Data Massaging in Section IV-A.
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¢) Baselines: We compared our approach to the follow-
ing baselines aimed at addressing subgroup unfairness, in-
cluding four pre-processing algorithms and one in-processing
algorithm.
Coverage [4] is a pre-processing technique that identifies
subgroups lacking sufficient representation in the dataset
and addresses both the identification and the enhancement
of lack of data coverage. For additional tuples required
by [4] to augment the coverage of a subgroup g, we
randomly sampled additional tuples from that subgroup.
Reweighing method [19] generates weights for train-
ing instances for each (subgroup, label) combination to
achieve equivalent class distribution across all subgroups.
FairBalance [35] also proposes a reweighing algorithm
to ensure not only equal but also balanced (1:1) class
distribution in all subgroups to achieve equalized odds.
Fair-SMOTE [8] serves a similar purpose to the previous
baseline by oversampling training data with synthetic data
points from the minority class in each subgroup.
GerryFair [21] is an in-processing algorithm that trains
fair classifiers and audits classifier predictions for sub-
group fairness violations.

d) Metrics: While divergence can be used to measure
the unfairness of a specific subgroup, there is a lack of a
measure to evaluate subgroup unfairness for the entire dataset.
Previous studies [21] have suggested focusing solely on the
most significant unfair subgroup, but this approach may not
be sufficient as it overlooks other unfair subgroups. To assess
the effectiveness of our algorithms in mitigating unfairness
across the dataset, we introduce a Fairness Index to quantify
overall subgroup unfairness. The index is calculated as the
sum of the divergences for each unfair subgroup with a
support (as a fraction of the dataset size) over 0.1 and a
statistically significant divergence (as determined by the t-
test). The fairness index represents the weighted sum of the
divergence for all significant unfair subgroups. Lower values
indicate higher levels of fairness.

We utilized DivExplorer [26], a highly efficient automated
tool to identify all unfair subgroups in the dataset. Given a
statistical measure v, DivExplorer provides a set of unfair
subgroups with their support and performance divergence, and
ranks them based on the performance divergence.

B. Performance Analysis

1) Validation: Connection between Representation Bias in
IBS and Unfair Subgroups: We first investigated the correla-
tion between unfair subgroups and regions having biased data
collection in IBS, utilizing the ProPublica dataset.

Specifically, we examined the cause of subgroup unfairness
under both statistical measures—FPR and FNR—for all four
machine learning models: DT, RF, LG, and NN. Employing
our method with 7. = 0.1 and 7" = 1, we identified the set of
IBS and compared it with the unfair subgroups.

In Figure 3, we depicted all unfair subgroups in the predic-
tion outcome under v = FPR of all ML models. We marked
each subgroup in grey if the corresponding region (represented
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Fig. 3: Unfair subgroups in the prediction outcomes of DT,
RF, LG, and NN, within IBS or dominate regions within IBS.

by the same data pattern) exhibits representation bias, i.e.,
belonging to IBS. We marked each unfair subgroup in blue if
it dominates significant biased regions.

As illustrated in Figure 3, nearly all unfair subgroups
exhibit representation bias, displaying significantly divergent
class distributions compared to their neighboring regions. The
remaining two subgroups marked in blue (age = 1, race=1)
and (age = 2, race=1) also dominate significant regions in IBS,
specifically: (age = 1, race=1, sex =1) < (age = 1, race=1) and
(age = 2, race=1, sex =0) < (age = 2, race=1). Furthermore,
we observed that regions in IBS with ratio, > ratio,,
are consistently associated with unfair subgroups exhibiting
a higher FPR, while unfair subgroups under v = FNR tend
to have ratio, < ratio,, or dominate such regions. This
is because, in the biased regions, the majority class is more
likely to be preferred in the classification results. Therefore,
subgroups with a higher percentage of positive samples are
more likely to have high FPR, and vice versa.

2) The Fairness-accuracy Trade-off: We next evaluated
the trade-off between accuracy and fairness for all datasets.
For identifying IBS, we compared our method of exploring
the Lattice space to baselines that only identify IBS on the
Top or Leaf level in the hierarchy. For addressing biased
data collection in IBS, we compared the results of all pre-
processing techniques mentioned in Section IV-A. Our ex-
periments show that the Lattice and Preferential Sampling
(PS) methods yield the best fairness and accuracy. Thus,
we employed the Lattice method for IBS identification when
comparing different pre-processing techniques, and used the
PS method for pre-processing when comparing different IBS
identification methods. For parameters, we selected 7' = 1
and 7. = 0.1 for the ProPublica and Law School datasets,
and 7. = 0.5 for the Adult dataset for optimal performance,
as elaborated later in Section V-B3.

The experimental results for the three datasets are shown
in Figure 4, 5, and 6. We started by comparing different IBS
identification algorithms. We reported the fairness index under
statistical measures v = FPR (Figure 4a, 5a and 6a) and FNR
(Figure 4b, 5b and 6b), as well as the model accuracy (Figure
4c, 5¢ and 6¢).

For the Lattice algorithm, it demonstrates a significant
enhancement in the fairness index. Additionally, we observed
that it can simultaneously mitigate subgroup unfairness for
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both statistical measures FPR and FNR. This is because,
by addressing biased class distribution in regions having
ratio, > ratio,, and ratio, < ratio., , we are able to
effectively improve both types of unfairness concurrently. For
instance, our method reduces the fairness index of the Adult
dataset from as high as 0.6 to less than 0.05, as illustrated
in Figure 4a. It also at the same time mitigates subgroup
unfairness under FNR by reducing the fairness index from
over 1.5 to less than 0.4, as depicted in Figure 4b.

This improvement was consistently observed across differ-
ent ML models, statistical measures, and datasets. The model
accuracy for Lattice also decreases by less than 0.1 across
all ML algorithms and datasets. This decline in accuracy is
attributed to the remedy of the biased class distributions in
IBS, resulting in discrepancies between the distribution of
the training and testing sets. Similar accuracy reductions are
commonly observed in fairness mitigation approaches [17].

For the Leaf baseline, as it updated a smaller fraction of the
dataset, its accuracy performance is better than Lattice while
having a poorer fairness performance (does not significantly
improve the fairness index). The 7op baseline performs coarse-
level modifications to the datasets and exhibits less effective-
ness in fairness improvement.

In Figures 4d, 5d, and 6d, we compared different pre-
processing techniques used in the data remedy algorithm
(PS = preferential sampling, US = undersampling, DP =
oversampling, Massaging). We presented the fairness index
under the statistical measure v = FPR and the model fairness
of different ML models.

For large datasets like Adult, both preferential sampling and
undersampling have good fairness and accuracy performance,
with a fairness index below 0.05 and an accuracy decrease of
less than 0.1. However, the oversampling method exhibits a
substantial increase in memory consumption, as it introduces
a large number of records to the dataset. we show this effect in
our scalability experiments. On the other hand, the massaging
method, being a more intrusive approach that alters data labels,
shows comparatively poorer accuracy performance.

Similar trends are observed across other datasets and also
indicate that preferential sampling tends to yield slightly
better fairness performance (lower fairness index) compared
to undersampling when the dataset sizes are relatively smaller.

3) Effects of Parameters: We discussed the impact of
parameters in our proposed method, which include two tunable
parameters: the imbalanced threshold 7. and the distance
threshold 7’ of the neighboring region. We used the ProPublica
and Adult datasets with decision tree in this discussion.

The imbalanced threshold, as in Definition 5, determines
how much disparity in class distribution is considered “bi-
ased”. A smaller value of 7. typically identifies more regions
as biased, resulting in more instance updates to adjust class
distribution within these regions. In Figure 7, with 7' = 1,
we varied 7. from 0.1 to 0.9, reporting the fairness index
(v = FPR) and accuracy. Figure 7a demonstrates that lower
7. values, leading to more instance updates, generally result
in greater fairness improvement but lower model accuracy,

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 21,2024 at 17:29:19 UTC from IEEE Xplore. Restrictions apply.



B DT BRF LG NN W DT MRF LG NN
0.8 20
5 0.6 % 15
° °
£ £
o 04 o 1.0
0 0
9] 9]
£ £
® 02 ‘® 05
w w
0.0
Ongmal Lamce Leaf To Onglnal Lamce Leaf To

(a) Preferential sampling, FPR (b) Preferential sampling, FNR

Fig. 4: The fairness-

B DT BRF
0.20

LG NN B DT BRF

0.8

LG NN

0.15 0.6

0.10 0.4

Fairness index
Fairness index

0.05 0.2

0.00 0.0

Original Lattice Leaf Top Original Lattice Leaf Top

(a) Preferential sampling, FPR (b) Preferential sampling, FNR

Fig. 5: The fairness-accuracy trade-off (Law School).

B DT EMRF
0.4

LG NN W DT BMRF

0.4

LG NN

0.3 0.3
0.2

0.1

Fairness score
Fairness score

0.0

Original Lattice Leaf Top Original Lattice Leaf Top

(a) Preferential sampling, FPR (b) Preferential sampling, FNR

.DT B RF

ol

LG

B DT BRF
0.85

LG

Fairness index

0.

o

0

o Original  PS DP US Massaging
o
g 0.75 M DOoT BMRF LG M NN
(5
s}
< 070 2 0.82
el | RTTR [ET
0.65 < l 1T

Original Lattice Leaf  Top 0.74

Orignal  PS DP US Massaging

(c) Preferential sampling, acc (d) Pre-processing methods comparison

accuracy trade-off (Adult). EDOT HRF LG M NN
g o4
l DT M RF LG £ 03
2 0.2
e o1
s 00
w Original  PS DP US Massaing
>
E B oT MRF LG M NN
3
3 o 0.8
< 06 g 07
506
i [
0.4
Original Lattice Leaf Top Original  PS US Massaging

(c) Preferential sampling, acc (d) Pre-processing methods comparison

EOT BRF LG H NN
E 0.6
B DT M RF LG NN E 0.4
& 02
£
‘®w 0.0
. 06 w Original  PS DP US Massaging
O
s EoT ERF LG HAN
(53
Q
< 08 g o065
3 055
< |
Leaf 0.45

Original Lattice Top

Original us Massaglng
(c) Preferential sampling, acc (d) Pre—processmg methods comparison

Fig. 6: The fairness-accuracy trade-off (ProPublica).

especially evident in the  ProPublicalataset. However, the
Adult dataset, with more protected attributes (6 compared to
3 in ProPublica), could exhibit robust fairness performance
even at higher 7. values. This is because a larger number of
protected attributes may lead to a larger set of IBS, ensuring
sufficient updates of the datasets.

The distance threshold 7" determines the neighboring region
for each 7. When T' = |X|, we compare the class distribution
of r to the class distribution of all regions in the intersectional
space of X. Conversely, when T' = 1, we compare 7’s class
distribution to the class distribution of only regions in close
proximity. In Figure 7, we compared the effects of T = | X|
and 7" = 1 for the two datasets, reporting the fairness index
under v = FPR and FNR, as well as model accuracy. We
observed that both 7" values mitigate subgroup unfairness in
all cases. For datasets with a smaller number of protected
attributes, e.g., |X| = 3 in the ProPublica dataset, T = |X|
outperforms 7' 1. However, for datasets with a larger
number of protected attributes, such as Adult, T =1 is more
likely to achieve optimal fairness performance. This means as
the number of protected attributes grows, ensuring equivalent
class distribution in all subgroups becomes less effective.

4) Comparisons with Subgroup Unfairness Mitigation
Baselines: The in-processing method GerryFair utilizes a dis-

tinct subgroup fairness metric based on fairness violation, de-
fined as the subgroup with the greatest performance divergence
multiplied by its violated group size. For a fair comparison,
we used this fairness violation as the evaluation metric for
the pre-processing methods in this discussion. We considered
the logistic regression as the ML classification model for all
pre-processing baselines because it is a linear model as in
the GerryFair classifier. We focused on the Adult dataset and
considered two protected attributes {Race, Gender} as in [35],
since certain baselines provide poorer support for a larger set
as we demonstrated later. For our Remedy approach, we set
7. = 0.1 and T' = 1. Optimal parameter settings were also
utilized for all other baselines.

In Table III, we presented the fairness violation, model
accuracy, and execution time for all approaches. We observed
fairness improvements in all baselines except for Coverage, in-
dicating that the under-representation identified and enhanced
in Coverage is not a significant factor contributing to sub-
group behavioral divergence. However, enhancing Coverage
improves overall prediction accuracy.

Among pre-processing methods, Reweighing achieves opti-
mal performance, reducing fairness violation to 0 by ensuring
equivalent class distribution across intersectional subgroups.
However, in our analysis with a larger set of protected at-
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tributes as in Table II, Remedy outperforms Reweighing by
achieving class distribution equivalence only in neighboring
regions. In addition, Reweighing requires the learner to accept
sample weights and provide no evidence of the causes of
subgroup biases, reducing its flexibility and reliability.

Both FairBalance and Fair-SMOTE improve fairness by
ensuring both equal and balanced class distribution among
subgroups. However, in real-world datasets, which are rarely
balanced, such approaches are likely to incur low accuracy
as observed in Table III due to the significant distribution
difference between the new training set and the test set.
GerryFair is also prone to lower accuracy performance when
confronted with imbalanced datasets [21].

For time efficiency, Fair-SMOTE incurs a long execution
time as it utilizes the k-nearest-neighbors to generate the new
synthetic data, which is impractical for large datasets and
numerous protected attributes. Similarly, the in-processing al-
gorithm GerryFair exhibits lower efficiency compared to other
methods, with training times escalating significantly as dataset
sizes and subgroup numbers increase. Other pre-processing
approaches complete within a reasonable timeframe (< 3s),
while our Remedy method requires slightly more time to train
the ranker for preferential sampling.

5) Scalability: We reported results on the Adult dataset, to
maximize variation in protected attributes and data sizes. To
assess algorithm efficiency regarding the number of protected
attributes, we expanded the set of protected attributes with two
additional categorical attributes: education and occupation,
despite them not being protected characteristics in the dataset.
We reported the runtime for IBS identification using the
Naive algorithm and the Optimized algorithm under varying
numbers of protected attributes and data sizes. Additionally,
we recorded the runtime for remedying biased data collection
in IBS using different pre-processing techniques.

Figure 9a depicts the runtime for IBS identification under
varying numbers of protected attributes. The runtime expe-
riences an exponential increase with the growing number of
protected attributes, attributed to the exponential expansion of
regions to explore in the hierarchy. Our Optimized algorithm
showcases better efficiency compared to the Naive algorithm,
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TABLE III: Fairness violation, model accuracy, and execution
time, compared with baselines, X = {Race, Gender} (Adujt

Approach Fairness violation  Accuracy  Time
Original 0.0210 0.813 -
Remedy 0.0055 0.793 2.62
Coverage [4] 0.0218 0.815 0.73
FairBalance [35] 0.0040 0.735 1.16
Fair-SMOTE (8] 0.0120 0.726 1065.6
Reweighing [19] 0 0.802 1.02
GerryFair [21] 0.0032 0.789 593.7

consistently remaining up to 5 times more efficient than the
Naive approach, which reaches as high as 600 seconds.

In contrast to the IBS identification time, we observed
that the remedy algorithm, regardless of the pre-processing
technique employed, can be completed within a shorter time
frame (as shown in Figure 9b). The runtime is predominantly
influenced by the number of biased regions in IBS, thereby
increasing as the number of protected attributes grows. The
oversampling method exceeded the memory resource limit by
introducing an excessive number of instances to the dataset
and hence is excluded from this analysis.

We then set the size of the protected attributes to 8 (max-
imal) and examined the impact of data sizes. In Figure 9c,
although the time complexity of the algorithms is not directly
related to data sizes, the growth of data sizes increases the
number of candidate regions (regions with a size greater than
k = 30) to explore, thereby escalating the IBS identification
runtime. For the data remedy, in Figure 9d, the execution
time for all pre-processing techniques is within an acceptable
range and only relates to the number of biased regions in IBS.
However, the massaging and preferential sampling techniques
have a comparatively longer execution time (up to 50s) as they
require training a ranker to obtain borderline instances.

VI. DISCUSSION

Fairness metrics. In this paper, we focus on fairness metrics
based on the model statistics FPR and FNR. Although there
are other statistical measures for classification models such as
zero-one loss (Y 1(h(x;) # v;)), error rate (P(h(z) #)),
or accuracy (P(h(x) = y)) [9], we do not consider these
measures in our evaluation. This is because these measures
are based on prediction accuracy, which can be affected when
there is a difference in the data distribution between the
training set and the test set. Without any pre-processing on the
test set, the accuracy of the model as well as these fairness
measures can be affected by such distribution differences.
Furthermore, our evaluation is based on the assumption that
the data distribution of the test set is also biased (they are
usually drawn from the same distribution), which can impact
the accuracy-related fairness measures. Therefore, we limit our
evaluation in this paper to FPR and FNR, which are more
robust to these distributional differences. However, it is worth
noting that representation bias is also closely related to unfair
subgroups under accuracy-related statistical measures.

Another fairness metric, statistical parity [13], compares
the predicted outcomes for protected groups and aims to
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Fig. 9: Runtime for IBS identification and remedy, varying # of protected attributes, data sizes (Adult).

ensure equal outcomes across groups (P(h(zx) 1]A
a) = P(h(x) = 1|A = a)). Unlike other fairness metrics,
statistical parity only considers predicted outcomes and does
not take into account actual outcomes (). Our mitigation
approach can also be applied to mitigate statistical parity. For
example, in a hiring model that considers race and gender
as protected attributes, the acceptance rate for green females
and purple males is 50%, while it is 0% for green males and
purple females. Analyzing each attribute independently would
suggest fairness, but our method could detect representation
bias in each subgroup and help mitigate such biases.

Limitations. Our method mitigates subgroup unfairness
by establishing a correlation between representation bias
and performance divergence within subgroups. However, this
correlation is mainly applicable to classifiers optimized for
accuracy, as suggested by the theoretical insight. For cost-
sensitive classifiers [36] optimized for misclassification cost,
this correlation may not remain valid. In addition, the remedy
algorithm does not guarantee achieving an optimal dataset
where the difference between the imbalance score and that of
the neighboring region is zero for all regions, as adjustments
in one region may impact others. Nevertheless, our evaluation
shows minimal impact on effectiveness, affirming the validity
of our approach.

VII. RELATED WORK

Most existing research in algorithmic group fairness has
focused on the simplest scenario, where groups are defined
based on a single protected attribute that is independent of the
prediction outcome [13]. Subgroup fairness (aka. intersectional
fairness) [22] instead demands statistical notions of fairness
across the intersections of protected attributes. A subgroup is
considered unfair when its behavior under certain statistical
measures deviates significantly from the overall performance
[26]. Automated tools like DivExplorer [26], SliceFinder [10],
and DENOUNCER [24] have been developed to identify sub-
groups in which a model performs poorly, based on statistics
computed from classifiers. These tools help to identify and
analyze unfair subgroups more efficiently.

In this paper, we discuss approaches to mitigate subgroup
unfairness. Bias mitigation techniques can be categorized into
three types: pre-processing interventions [19], [37], [38], [39],
[35], [8], in-processing interventions [2], [21], [7], [38], and
post-processing interventions [20], [15], [28]. A comprehen-
sive comparison of these approaches can be found in [17]. For
mitigating subgroup unfairness, various in-processing tech-
niques have been discussed in the literature [16], [34], [21],
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[22], which aim to ensure that the subgroup statistics are
approximately equal to that of the entire population. Fairness
Gerrymandering [21] aims to audit binary classifiers by solv-
ing for the equilibrium in a two-player zero-sum game between
a learner and the auditor. Hebert-Johnson et al. [16] propose
a notion called multicalibration that is similar to subgroup
fairness and proposes an iterative algorithm to ensure the
calibration constraints using the online learning framework.
Yang et al. [34] characterize population optimal predictions
by which they propose a weighted empirical risk minimization
(ERM) approach for fair classification. While in-processing
methods demonstrate effectiveness, our paper focuses on pre-
processing techniques, as they offer more flexibility and can
be applied to any model without the need to access prediction
results or modify classifiers.

Existing pre-processing methods for mitigating bias involve
techniques such as data sampling, reweighing, and data mas-
saging, aiming to eliminate group-based discrimination [19].
iFlipper [39] introduces label flipping to enhance individual
fairness in predictions, while [11] proposes a probabilistic
framework for discrimination prevention. However, these ap-
proaches often necessitate predefined protected groups or a
similarity measure for individuals, aspects that are orthogonal
to the subgroup fairness measures discussed in our paper.
Pre-processing techniques for subgroup fairness have received
comparatively less attention. FairBalance [35] calculates and
assigns weights to training data to improve equalized odds for
subgroup fairness. Fair-SMOTE [8] oversamples training data
from minority groups with synthetic data points to achieve
balanced class distributions within subgroups. In comparison,
our focus lies on illustrating the impact of biased class
distribution within subgroups [31] on subgroup unfairness.

VIII. CONCLUSION

This paper explores the causes of subgroup unfairness
and proposes a pre-processing method to mitigate this issue.
We studied representation bias as the discrepancy in class
distribution among subgroups and explored its role in subgroup
unfairness. Then, we solved the problem of identifying and
remedying the Implicit Biased Set (IBS) to address such
representation bias. Extensive experiments were conducted
to validate the effectiveness and efficiency of our proposed
methods in mitigating subgroup unfairness.
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