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Abstract
We prove that a subset of the hypercube (0, 1)d with volume sufficiently close to 1

2 has
(relative) perimeter greater than or equal to 1, recovering a result byAcerbi, Fusco, and
Morini. We also prove that, in contrast with what happens for the high-dimensional
sphere Sd , the isoperimetric profile of the hypercube (0, 1)d does not converge to the
Gaussian isoperimetric profile as d → ∞.

1 Introduction

For an open set� ⊆ R
d , the relative isoperimetric problem in� consists ofminimizing

the perimeter (in �) of a set E ⊆ � with fixed volume. So, given 0 < λ < |�|, one
is interested in the minimization problem

I�(λ) := inf
{
Per(E,�) : E ⊆ � so that |E | = λ

}
, (1.1)

where Per(E,�) denotes the perimeter of E inside�; if E has a smooth boundary then
Per(E,�) coincides with H d−1(� ∩ ∂E) (see Sect. 2.2 for the general definition).
The (relative) isoperimetric profile of �, denoted by I� : [0, |�|] → [0,∞) is the
function so that I�(λ) is the value of the infimumappearing in Eq. (1.1) (and I�(0) = 0
and I�(|�|) = 0 if |�| < ∞).

The (relative) isoperimetric problem is a classical question with a multitude of
applications that has received considerable attention recently. The vast literature on
the topic makes it hard to give a complete list of references, so we refer the reader to
the three recent works [4, 17, 19] and to the references therein. This paper investigates
in particular the isoperimetric profile of the d-dimensional hypercube (0, 1)d .
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F. Glaudo

1.1 The relative isoperimetric problem in (0, 1)d

To frame appropriately our results, let us recall what is known about the relative
isoperimetric problem in the hypercube.

Via a symmetrization argument [26, Sect. 1.5], one can show that the isoperimetric
profile of the hypercube (0, 1)d coincides with the isoperimetric profile of the d-
dimensional torus Td .

In the case of the square (0, 1)2, the isoperimetric profile (alongwith theminimizers
of the relative isoperimetric problem) is known [11]. In dimension d = 3 (so, for
the cube (0, 1)3), it is conjectured [26, pg. 11] (see also [24, Theorem 9]) that the
only minimizers are balls, cylinders, and half-spaces intersected with the cube; under
this assumption one can determine exactly the isoperimetric profile of (0, 1)3. In any
dimension, since (0, 1)d is a polytope, for small volumes theminimizers of the relative
isoperimetric problem are balls centered at the vertices of (0, 1)d (see [25, Theorem
6.8] or [22, Remark 3.11]). As an immediate consequence, one gets

I(0,1)d (λ) = 1

2
d

∣∣∣BR
d

1

∣∣∣
1
d

λ
d−1
d for 0 < λ < λ0(d),

where BR
d

1 denotes the unit ball in R
d and λ0(d) is a dimensional constant that goes

to 0 as d → ∞.
In every dimension d ≥ 1, it was proven by Hadwiger [18] that I(0,1)d (

1
2 ) = 1, or

equivalently that if E ⊆ (0, 1)d has measure |E | = 1
2 then its perimeter is at least 1

(i.e., splitting the cube with a hyperplane parallel to one of its faces is optimal).
We show that the same result holds also if the set E has measure sufficiently close

to 1
2 . This statement was part of an open problem stated by Brezis and Bruckstein

[12, Open Problem 10.1] (see also [11, Remark 2]). The result is not novel (see [1,
Theorem 5.3, Remark 5.4]) but the proof we provide is simpler than the existing one.

Theorem 1.1 For d ≥ 1, there exists εd > 0 so that I(0,1)d (λ) = 1 for all λ ∈ [ 12 −
εd ,

1
2 + εd ]. Equivalently, any set of finite perimeter E ⊆ (0, 1)d with ||E | − 1

2 | ≤ εd

satisfies Per(E, (0, 1)d) ≥ 1. Moreover, Per(E, (0, 1)d) = 1 if and only if (up to a
negligible set) E = {x ∈ (0, 1)d : v̂ · x ≤ |E |} or E = {x ∈ (0, 1)d : v̂ · x ≥ 1−|E |}
for some v̂ ∈ {e1, e2, . . . , ed}.

For values of the volume distinct from 1
2 , the exact value of I(0,1)d is not known,

but a remarkable lower bound with the Gaussian isoperimetric profile was established
in [8, Theorem 7] (see also [26, Theorem 7], [3, (2.2)]).

Theorem ( [8, Theorem 7]) Let Iγ :=ϕ ◦ �−1 be the Gaussian isoperimetric profile
(see Sect. 2.2), where ϕ(t):= 1√

2π
exp(− 1

2 t
2) and �(t):= ∫ t

∞ ϕ(s) ds.

For any d ≥ 1, it holds that I(0,1)d ≥ √
2π Iγ ; equivalently

Per(E, (0, 1)d) ≥ √
2π Iγ (|E |) (1.2)

for any set E ⊆ (0, 1)d of finite perimeter.
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On the isoperimetric profile of the hypercube

Fig. 1 The blue dashed graph represents the conjectural profile of the cube (0, 1)3; the optimal shapes
depend on the volume: balls centered at a vertex, cylinders centered at a side, half-spaces parallel to a face.
The figure shows a number of features of the problem: the isoperimetric profile is concave, the lower bound√
2π Iγ is remarkably close to the actual value of I

(0,1)d , the profile I
(0,1)d is constant in a neighborhood

of λ = 1
2 , the profiles I(0,1)d are decreasing with respect to the dimension d ≥ 1 (color figure online)

The lower bound shown in this theorem is remarkably precise already in dimensions
d = 2, 3 (see Fig. 1) and its precision can only improve in higher dimension as I(0,1)d
is decreasing with respect to the dimension d. Furthermore, if instead of the cube
(0, 1)d , one considers the case of the sphere S

d (i.e., one studies the isoperimetric
problem in the Riemannian manifold Sd ), it turns out that its isoperimetric profile ISd ,
appropriately rescaled, converges to Iγ as the dimension d → ∞ (see [7, Theorem
10, Proposition 11] or [26, Theorem 21]).

The facts mentioned in the previous paragraph may lead one to expect that, as the
dimension d → ∞, the isoperimetric profile of the cube I(0,1)d converges to

√
2π Iγ .

This is true when evaluating it at λ ∈ {0, 1
2 , 1}. Unexpectedly for the author, we show

that this claim is false, i.e., that there is a gap between infd≥1 I(0,1)d and
√
2π Iγ .

Theorem 1.2 For all d ≥ 1, we have I(0,1)d+1 ≤ I(0,1)d ; let I(0,1)∞ = infd≥1 I(0,1)d .
The function I(0,1)∞ : [0, 1] → [0, 1] is a concave function such that

I(0,1)∞(λ) >
√
2π Iγ (λ) f orall λ ∈ (0, 1) \ { 12 }.

The proof of Theorem 1.2 is quantitative (i.e., no compactness is used) and thus one
could keep track of all the constants and dependences on λ and find an explicit function
g : [0, 1] → [0,∞) (strictly positive on (0, 1) \ { 12 } with 0 = g(0) = g( 12 ) = g(1))
such that

I(0,1)d (λ) ≥ √
2π Iγ (λ) + g(λ) for all 0 ≤ λ ≤ 1.
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We decided not to do this because it would make the proof more cumbersome and the
resulting function g would not be optimal in any sense.

Let us remark that Theorem1.2may also be interpreted as a dimension-free stability
result for the isoperimetric inequality Eq. (1.2).

1.2 Open questions

The results of this paper naturally raise some further questions that we collect here.

Open question 1.1 Does the statement of Theorem 1.1 hold also with an ε independent
of the dimension? Equivalently, is there an ε > 0 so that I(0,1)d (λ) = 1 for all
λ ∈ [ 12 − ε, 1

2 + ε] and for all d ≥ 1?

Open question 1.2 Is it true that for any λ ∈ [0, 1], the sequence (I(0,1)d (λ))d≥1 is
eventually constant? Equivalently, for each λ, does it hold that I(0,1)d (λ) = I(0,1)∞(λ)

for all d sufficiently large (see Theorem 1.2 for the definition of I(0,1)∞ )?

Open question 1.3 Is there an explicit formula for the limiting isoperimetric profile
I(0,1)∞?

1.3 Methods and organization of the paper

The foundation of the proofs of the twomain results of this paper (namelyTheorems1.1
and1.2) is the rigidity of the inequalityEq. (1.2), i.e., if Per(E, (0, 1)d) = √

2π Iγ (|E |)
then E is a half-cube. We state and prove this rigidity in Sect. 3.

Then, in Sect. 4 we prove Theorem 1.1. The proof is by compactness.
Finally, in Sect. 5 we show Theorem 1.2. The main idea is to reduce the relative

isoperimetric problem in (0, 1)d to the following penalized isoperimetric problem in
the Gaussian space (Rd , γd):

inf
F⊆Rd : γd (F)=λ

Perγd (F) +
∫

∂F

√√√√
d∑

i=1

(ν∂F )2i exp(x
2
i ) − 1 dH d−1

γd
(x),

where ν∂F denotes the unit normal to the boundary of F (see Sect. 2.2 for the definitions
of γd ,H d−1

γd
,Perγd ). Then, by using the dimension-free stability of the Gaussian

isoperimetric inequality (see [5, 15, 23]), we prove that the two terms of the penalized
problem cannot be simultaneously minimized unless λ ∈ {0, 1

2 , 1}. The result follows.
Let us remark that (even though our proof does not employ this perspective) the

statement of Theorem 1.1 can be interpreted as the fact that for volumes close to 1
2

the penalized problem is solved by affine half-spaces. This is not the first instance of
penalization of the Gaussian isoperimetric problem that preserves the optimality of
half-spaces [6].
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On the isoperimetric profile of the hypercube

2 Notation and preliminaries

2.1 Gaussianmeasure

Let ϕ : R ∪ {±∞} → (0, 1√
2π

] be the function ϕ(t):= 1√
2π

exp(− 1
2 t

2). Denote with

γ ∈ P(R) the Gaussian (probability) measure on R, i.e., the measure with density ϕ.
Let us define the d-dimensional versions of ϕ and γ as follows. For any d ≥ 1, let

ϕd : Rd → (0, (2π)−d/2] be

ϕd(x) := 1

(2π)d/2 exp
( − 1

2 |x |2
) = ϕ(x1)ϕ(x2) · · · ϕ(xd).

Let γd ∈ P(Rd) be the d-dimensional Gaussian (probability) measure, i.e., the mea-
sure with density ϕd or equivalently γd = γ ⊗ γ ⊗ · · · ⊗ γ where we are taking the
product of d copies of γ .

2.2 Hausdorff measure and perimeter

We denote with | · | the Lebesgue measure in the Euclidean space (of any dimension).
We denote withH k the k-dimensional Hausdorff measure in the Euclidean space (of
any dimension).

For a set E ⊆ R
d of finite perimeter (for the theory of sets of finite perimeter

we suggest the reader to consult [20]), we denote with ∂∗E its reduced boundary
[20, Chapter 15] (which coincides with the topological boundary if E is sufficiently
regular). Let us recall that the reduced boundary is a (d − 1)-rectifiable set and thus
admits a normal vectorH d−1-almost everywhere. The perimeter of E in an open set
� is defined as1

Per(E,�):= ‖D1E‖ (�) = H d−1(∂∗E ∩ �).

Let us now give the analogous definitions in the Gaussian setting. Let us denote
with H k

γd
:=ϕdH k the k-dimensional Hausdorff measure in R

d weighted by ϕd . For

E ⊆ R
d a set of locally finite perimeter, its Gaussian perimeter is defined as

Perγd (E) = H d−1
γd

(∂∗E) =
∫

∂∗E
ϕd dH

d−1.

2.3 The Gaussian isoperimetric inequality

Let � : R ∪ {±∞} → [0, 1] be the function �(t):= ∫ t
−∞ ϕ(s) ds = γ ((∞, t)) and

let Iγ : [0, 1] → [0, 1] be Iγ = ϕ ◦ �−1. The function Iγ is the isoperimetric profile
for the Gaussian space in any dimension, that is, for any positive integer d ≥ 1 and for

1 Since E is a set of finite perimeter, its indicator function 1E is a function of bounded variation and thus
its distributional derivative is a measure.
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any set E ⊆ R
d of finite perimeter, we have (see [10, 28], and [9, 13] for the equality

cases)

Perγd (E) ≥ Iγ (γd(E))

and the equality holds if and only if E is an affine half-space.

3 Rigidity of half-cubes

In this sectionwe study the equality cases of Eq. (1.2).We show that if a set E ⊆ (0, 1)d

satisfies Per(E, (0, 1)d) = √
2π Iγ (|E |) then |E | ∈ {0, 1

2 , 1} and if |E | = 1
2 then E

is a half-cube. This result is already present in [18], but we will need our proof of the
rigidity (which is different from and slightly stronger than the one given by Hadwiger)
as a building block of the proof of Theorem 1.2. Therefore we report it here.

For the proof, we will need the following simple lemma. This formula for the
Jacobian of the restriction to a hyperplane is likely well known, but we could not find
any reference.

Lemma 3.1 Fix d ≥ 2. Let A ∈ GL(d,R) be a linear transformation and let ν ∈ R
d

be a unit vector. The Jacobian determinant of the restriction of A to the subspace
orthogonal to ν is |det(A)| · |(Aᵀ)−1ν|.
Proof Take a Borel set S ⊆ ν⊥. By Fubini’s Theorem, we have

|S + {tν : 0 < t < 1}| = H d−1(S). (3.3)

Moreover,

|A(S + {tν : 0 < t < 1})| = |det(A)| · |S + {tν : 0 < t < 1}|. (3.4)

Write Aν = u + ũ, where u is the orthogonal projection of Aν on the hyperspace
A(ν⊥). Notice that, for all x ∈ R

d , 〈(Aᵀ)−1ν, Ax〉 = 〈ν, x〉, so (Aᵀ)−1ν is orthogonal
to the hyperspace A(ν⊥). In particular, ũ is a multiple of (Aᵀ)−1ν . Hence, we have

|ũ| = |〈Aν, (Aᵀ)−1ν〉|
|(Aᵀ)−1ν| = 1

|(Aᵀ)−1ν| . (3.5)

Thanks to Fubini’s Theorem, we get

|A(S + {tν : 0 < t < 1})| = |A(S) + {tu + t ũ : 0 < t < 1})| = H d−1(A(S))|ũ|
(3.6)

Combining Eqs. (3.3)–(3.6), we obtain H d−1(A(S)) = |det(A)| ·
|(Aᵀ)−1ν|H d−1(S) which is equivalent to the desired statement. ��
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On the isoperimetric profile of the hypercube

Proposition 3.2 (Rigidity for the Gaussian isoperimetric inequality in the cube) For
E ⊆ (0, 1)d a set of finite perimeter, it holds that

Per(E, (0, 1)d) ≥ √
2π Iγ (|E |).

This inequality is an equality if and only if (up to a negligible set) E = ∅ or E = (0, 1)d

or E = {x ∈ (0, 1)d : v̂ · x ≤ 1
2 } or E = {x ∈ (0, 1)d : v̂ · x ≥ 1

2 } for some
v̂ ∈ {e1, e2, . . . , ed}.
Proof We follow the proof of [26, Theorem 7].

Let �d : Rd → (0, 1)d be the map (see Sect. 2.3 for the definition of �)

�d(x1, x2, . . . , xd):=(�(x1),�(x2), . . . , �(xd)).

Notice that ϕd is the density of the Gaussian measure on R
d and that �d is a diffeo-

morphism such that (�d)∗(γd) = L d |(0,1)d , in particular the Jacobian of �d satisfies
|det D�d | = ϕd(x).

For a finite perimeter set E ⊆ (0, 1)d , the area formula [16, Theorem 3.2.3]
combined with Lemma 3.1 tells us that

Per(E, (0, 1)d) =
∫

∂∗(�−1
d (E))

|det D�d | ·
∣∣∣
(
(D�d)

ᵀ)−1
ν

∣∣∣ dH d−1, (3.7)

where ν denotes the normal to the reduced boundary ∂∗(�−1
d (E)). We have that

∣∣∣
(
(D�d)

ᵀ)−1
ν

∣∣∣ = √
2π

√√√√
d∑

i=1

ν2i e
x2i ≥ √

2π (3.8)

and such inequality holds as an equality if and only if, for all i = 1, 2, . . . , d, we have
νi xi = 0. Combining Eqs. (3.7 and 3.8), we obtain

1√
2π

Per(E, (0, 1)d) ≥
∫

∂∗(�−1
d (E))

ϕd dH
d−1 = Perγd (�

−1
d (E)), (3.9)

and equality holds if and only if for H d−1-almost every point x ∈ ∂∗(�−1
d (E)), we

have νi (x)xi = 0 for all i = 1, 2, . . . , d. The Gaussian isoperimetric inequality (see
Sect. 2.3) tells us that

Perγd (�
−1
d (E)) ≥ Iγ

(
γd(�

−1
d (E))

) = Iγ (|E |), (3.10)

and equality holds if and only if �−1
d (E) is an affine half-space (in particular, the

normal ν to its boundary is constant) or it is the empty set or it is the whole Rd .
Combining Eqs. (3.9 and (3.10) we obtain the desired inequality. If the inequality

of the statement is an equality, then in particular both Eqs. (3.9) and (3.10) must
be equalities. So, either E = ∅ or E = (0, 1)d or �−1

d (E) is an affine half-space

123



F. Glaudo

and the normal ν to its boundary satisfies νi xi = 0 for all x ∈ ∂(�−1
d (E)) and all

i = 1, 2, . . . , d. In the latter case, take 1 ≤ j ≤ d such that ν j �= 0. Then x j = 0
for all x ∈ ∂(�−1

d (E)) and thus �−1
d (E) = {x ∈ R

d : x · v̂ ≤ 0} with v̂ = e j or
v̂ = −e j . The sought characterization for E follows. ��

4 Proof of Theorem 1.1

As in [1, Theorem 5.3], the proof of Theorem 1.1 is based on a compactness argument.
The idea is that a sequence of perimeter-minimizing sets En ⊆ (0, 1)d with |En| → 1

2
converges in a very strong sense to a minimizer with measure 1

2 , and such a minimizer
must be a half-cube thanks to Proposition 3.2.

Proof of Theorem 1.1 Let (En)n∈N ⊆ (0, 1)d be a sequence of sets of finite perimeter
such that

• |En| → 1
2 as n → ∞.

• The set En minimizes Per(En, (0, 1)d) among the sets with measure equal to |En|.
The existence of En is standard [20, Proposition 12.30]. By [20, Theorem 17.20], we
know that its reduced boundary ∂∗En ∩ (0, 1)d is a free-boundary integral rectifiable
varifold in (0, 1)d with constant mean curvature.

We will prove that, for n sufficiently large, En coincides (up to negligible sets)
with {x ∈ (0, 1)d : x · v̂ ≤ |En|} or {x ∈ (0, 1)d : x · v̂ ≥ 1 − |En|} for some
v̂ ∈ {e1, e2, . . . , ed}. The desired statement follows immediately.

Let us show that the mean curvature of En goes to 0 as n → ∞. The isoperimetric
profile I(0,1)d is concave [21, Corollary 6.11] and satisfies (see Proposition 3.2)

√
2π Iγ (λ) ≤ I(0,1)d (λ) ≤ 1

for all 0 ≤ λ ≤ 1. Notice that the lower bound and the upper bound for I(0,1)d are both
smooth concave functions, they have the same value at λ = 1

2 , and the derivatives at
λ = 1

2 are equal to 0. Since I(0,1)d is trapped between two such functions, it follows
that ∂ I(0,1)d (λ) → {0} as λ → 1

2 , where ∂ f denotes the superdifferential2 of the
concave function f . Since En is a minimizer for the relative isoperimetric inequality,
its mean curvature belongs to ∂ I(0,1)d (|En|) as proven in [25, Proposition 4.8] (see
also [27, Corollary 2.9.] for the case of ambient spaces with smooth boundary) and
therefore we deduce that the mean curvature of En goes to 0 as n → ∞.

By compactness [20, Theorem 12.26], up to taking a subsequence, we may assume

that En converges to E∞ in the sense that1En → 1E∞ in L1 and D1En

∗
⇀D1E∞ in the

open set (0, 1)d . Notice that Per(En, (0, 1)d) ≤ 1 and therefore, by lower semicontinu-
ity of the perimeter, we have Per(E∞, (0, 1)d) ≤ 1. Moreover |E∞| = lim|En| = 1

2 .
Thus, by Proposition 3.2, we obtain that, without loss of generality, E∞ = {x ∈
(0, 1)d : xd ≤ 1

2 }. In particular, we have Per(En, (0, 1)d) → Per(E∞, (0, 1)d) and

2 The superdifferential ∂ f (λ) of a concave function f at a point λ is the set of slopes v ∈ R so that
f (λ + t) ≤ f (λ) + vt for all t ∈ R so that λ + t belongs to the domain of f .
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On the isoperimetric profile of the hypercube

thus, applying [2, Theorem6.4], the boundaries ∂∗En converge to ∂∗E∞ in the varifold
sense.

We have verified all the assumptions necessary to apply [2, Regularity Theorem] in
the interior and [14, Theorem 1.1] at the boundary,3 thuswe have that, for n sufficiently
large, ∂∗En ∩ (0, 1)d is a graph over ∂∗E∞ ∩ (0, 1)d = {x ∈ (0, 1)d : xd = 1

2 }. Since
∂∗E∞ ∩ (0, 1)d is flat, it follows in particular that

Per(En, (0, 1)
d) = H d−1(∂∗En ∩ (0, 1)d) ≥ H d−1(∂∗E∞ ∩ (0, 1)d) = 1,

with equality if and only if ∂∗En is the graph of a constant function over ∂∗E∞, which
is exactly the desired statement. ��

5 Proof of Theorem 1.2

We will need two simple technical lemmas. Let us emphasize that the theme of this
whole section is obtaining estimates that do not depend on the dimension d.

Lemma 5.1 Let F ⊆ R
d be a set of locally finite perimeter and let H ⊆ R

d be an
affine half-space. Let �:= dist(0Rd , ∂H) (observe that H d−1

γd
(∂H) = ϕ(�)) and let

π∂H : R
d → ∂H be the projection on the hyperplane ∂H. For any positive real

number r > 0, we have

H d−1
γd

(
π∂H

(
∂∗F ∩ {x : dist(x, ∂H) < r})

)
≥ ϕ(�) − ϕ(�)

ϕ(� + r)

γd(F�H)

r
.

Proof Let V :=π∂H
(
∂∗F ∩ {x : dist(x, ∂H) < r}). Let ν∂H be the normal to ∂H ,

oriented so that �ν∂H ∈ ∂H . For each x ∈ ∂H , let us consider the 1-dimensional
slice Fx :=F ∩ {x + tν∂H : t ∈ R}; define Hx analogously. For H d−1-almost every
x ∈ ∂H , the set Fx is (locally) made of finitely many disjoint intervals and all the
extreme points of such intervals belong to ∂∗F (see [20, Remark 18.13]).

For H d−1-almost every x ∈ ∂H \ V , we have4 that Fx ∩ (x + ν∂H (−r , r)) is
either empty or equal to x+ν∂H (−r , r) (up to negligible sets) because Fx cannot have
any boundary point in the interval x + ν∂H (−r , r). In both cases, H 1

γd
(Fx�Hx ) ≥

rϕd(x + rν∂H ).
Observe that ϕd(x + rν∂H ) = ϕ(�+r)

ϕ(�)
ϕd(x). By Fubini’s Theorem, we get

γd(F�H) ≥
∫

∂H\V
H 1

γd
(Fx�Hx ) dH

d−1(x)

≥ r
∫

∂H\V
ϕd(x + rν∂H ) dH d−1(x) = r

ϕ(� + r)

ϕ(�)
H d−1

γd
(∂H \ V )

and the desired statement follows. ��
3 One could avoid taking care of the convergence at the boundary by exploiting the equivalence between
the isoperimetric profile of the hypercube (0, 1)d and the isoperimetric profile of the torus Td mentioned
in the introduction.
4 With x + ν∂H (−r , r) we denote the set {x + tν∂H : t ∈ (−r , r)}.
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We will apply the following lemma only with the function f (t) = exp( 12 t
2) and it

is possible to prove a sharper result in this case, but we decided to prioritize clarity.
Informally, the following lemma is a quantitative way to state the fact that a hyperplane
with distance � from the origin cannot be a subset of the strip {x ∈ R

d : |xi | < �
2 }.

Lemma 5.2 For any � > 0 there is a constant c = c(�) > 0 such that the following
statement holds.

Let 
 ⊆ R
d be an affine hyperplane with dist(0Rd , 
) = � (which is equivalent

to H d−1
γd

(
) = ϕ(�)). For any Borel subset V ⊆ 
 and any nondecreasing function
f : [0,∞) → [0,∞), we have

∫

V
f (|xi |) dH d−1

γd
(x) ≥ (

c − H d−1
γd

(
 \ V )
)
f ( �

2 )

for any i ∈ {1, 2, . . . , d}.
Proof Since f is nondecreasing, we have

∫

V
f (|xi |) dH d−1

γd
(x) ≥ H d−1

γd
(V ∩ {x : |xi | ≥ �

2 }) f ( �
2 )

≥ [
ϕ(�) − H d−1

γd
(
 ∩ {x : |xi | < �

2 }) − H d−1
γd

(
 \ V )
]
f ( �

2 ),

therefore to prove the statement it is sufficient to show that there exists a constant
c = c(�) so that

H d−1
γd

(
 ∩ {x : |xi | < �
2 }) ≤ ϕ(�) − c.

Let σ1, σ2, . . . , σd ∈ R
d be an orthonormal basis such that
 = �σd+〈σ1, . . . , σd−1〉.

In particular, σd is the unit normal to 
. Up to rotation, we may assume that ei ∈
〈σ1, σd〉, where ei is the i-th element of the standard basis of Rd (so that ei · x = xi ).

Then, it must be ei = (σd)iσd +
√
1 − (σd)

2
i σ1. Using the parametrization of 
 given

by Rd−1 � y �→ y1σ1 + · · · + yd−1σd−1 + �σd , we get

H d−1
γd

(
 ∩ {x : |xi | < �
2 })

= ϕ(�)γd−1

({
y ∈ R

d−1 : |(σd)i� +
√
1 − (σd)

2
i y1| < �

2

})

= ϕ(�)γ1

({
t ∈ R : |(σd)i� +

√
1 − (σd)

2
i t | < �

2

})
.

Let q:=(σd)i . Consider the set appearing at the right-hand side of the last equation.
It is a (possibly empty) interval with length �√

1−q2
(empty if |q| = 1) and it contains

0 if and only if |q| < 1
2 . So, either it does not contain zero and thus its Gaussian

measure is less than 1
2 or its length is bounded by 2�√

3
and thus its Gaussian measure

is bounded by 1 − c(�) for a suitable constant c(�) > 0. In both cases, the desired
statement follows. ��
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We are now ready to prove Theorem 1.2. The proof lives in the Gaussian space
(Rd , γd) instead of the cube (0, 1)d (we move everything there with the same map
that appeared in the proof of Proposition 3.2). Oversimplifying, the idea of the proof
is that if the statement were false, then we would find a set F ⊆ R

d that is almost a
half-space and minimizes a boundary integral (see Eq. (5.11)) that is not minimized
by half-spaces; this yields a contradiction.

Proof of Theorem 1.2 The inequality I(0,1)d+1 ≤ I(0,1)d follows from the fact that the
map E �→ E × (0, 1) transforms a subset of (0, 1)d into a subset of (0, 1)d+1 with
the same perimeter and the same measure. The concavity of I(0,1)∞ follows from the
concavity of I(0,1)d [21, Corollary 6.11].

For the second part of the statement, fix a dimension d ≥ 1 and 0 < λ < 1
different from 1

2 . Let E ⊆ (0, 1)d be a set of finite perimeter such that |E | = λ

and Per(E, (0, 1)d) = I(0,1)d (λ) (a set E with these properties exists thanks to [20,
Proposition 12.30]). By repeating the proof of Proposition 3.2 for the set E , we obtain
that

1√
2π

I(0,1)d (λ) − Iγ (λ)

≥ Perγd (F) − Iγ (λ) +
∫

∂∗F

√√√√
d∑

i=1

(ν∂∗F )2i e
x2i − 1 dH d−1

γd
(x), (5.11)

where F = �−1
d (E) and ν∂∗F is the normal to ∂∗F . Notice that γd(F) = λ. The

intuitive idea is that the two terms at the right-hand side cannot be simultaneously
small: Perγd (F) − Iγ (λ) is small if ∂∗F is close to an affine hyperplane, while the
integral is strictly positive if ∂∗F is an affine half-space not containing the origin
(which is guaranteed by the condition |E | �= 1

2 ). There is a crucial difficulty: all
our estimates must be uniform in the dimension d, because we want to show that
1√
2π

I(0,1)d (λ) − Iγ (λ) is bounded away from 0 for all d ≥ 1.

Let δ:=Perγd (F) − Iγ (λ). We are going to prove that there exist two constants
δ1(λ) and c1(λ) (independent of d) so that

if δ < δ1 then
∫

∂∗F

√√√√
d∑

i=1

(ν∂∗F )2i e
x2i − 1 dH d−1

γd
(x) ≥ c1. (5.12)

Assuming that Eq. (5.12) holds, thanks to Eq. (5.11), we deduce 1√
2π

I(0,1)d (λ) −
Iγ (λ) ≥ min{δ1, c1} and therefore the statement of the Theorem follows.

Let us now prove Eq. (5.12). As will be clear from the proof, one can choose

δ1:=min{1, ( |�−1(λ)|
4

)4} (notice that �−1(λ) �= 0 because λ �= 1
2 ). By the dimen-

sion free stability of the Gaussian isoperimetric inequality [5, Main Theorem and
Proposition 4], there is an affine half-space H ⊆ R

d with γd(H) = γd(F) = λ so
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that

γd(F�H) ≤ C1δ
1
2 , (5.13)

for a constant C1 = C1(λ) > 0 independent of the dimension d. Let ν∂H ∈ R
d be the

outer normal to the affine hyperplane ∂H . Let � > 0 denote the distance between ∂H
and 0Rd . Notice that Iγ (λ) = H d−1

γd
(∂H) = ϕ(�) (therefore if a constant depends

only on � then it depends only on λ). We also know [5, Corollary 2 and Proposition
4]

∫

∂∗F
|ν∂∗F − ν∂H |2 dH d−1

γd
≤ C2δ, (5.14)

for a constant C2 = C2(λ) > 0 independent of the dimension d.
By Jensen’s inequality applied in the integrand (on the concave function

√ · − 1;
observe that

∑d
i=1(ν∂∗F )2i = 1), we have

∫

∂∗F

√√√√
d∑

i=1

(ν∂∗F )2i e
x2i − 1 dH d−1

γd
(x)

≥
d∑

i=1

∫

∂∗F
(ν∂∗F )2i

[
exp

( 1
2 x

2
i

) − 1
]
dH d−1

γd
(x).

Define Ui :={x ∈ ∂∗F : ν∂∗F (x)2i ≥ 1
2 (ν∂H )2i }. Using the newly-defined sets Ui , we

can continue the chain of inequalities

≥ 1

2

d∑

i=1

(ν∂H )2i

∫

Ui

[
exp

( 1
2 x

2
i

) − 1
]
dH d−1

γd
(x). (5.15)

We show that for many indexes i , the set Ui almost saturates ∂∗F . We have

1

2

d∑

i=1

(ν∂H )2i H
d−1

γd
(∂∗F \Ui ) ≤

d∑

i=1

∫

∂∗F\Ui

|ν∂∗F (x)2i − (ν∂H )2i | dH d−1
γd

(x)

≤
∫

∂∗F

d∑

i=1

|ν∂∗F (x)2i − (ν∂H )2i | dH d−1
γd

(x).
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For any two vectors u, v ∈ R
d , the Cauchy-Schwarz inequality implies

∑d
i=1|u2i −

v2i | ≤ |u − v||u + v|, and thus we can continue the chain of inequalities as follows

≤ 2
∫

∂∗F
|ν∂∗F (x) − ν∂H | dH d−1

γd
(x)

≤ 2

(∫

∂∗F
|ν∂∗F (x) − ν∂H |2 dH d−1

γd
(x)

) 1
2

Perγd (F)
1
2 ≤ 2

√
C2δ Perγd (F)

1
2

where in the last step we have applied Eq. (5.14). Hence (assuming δ ≤ 1, so that
Perγd (F) is controlled) we deduce

d∑

i=1

(ν∂H )2i H
d−1

γd
(∂∗F \Ui ) ≤ C3δ

1
2 ,

where C3 = C3(λ) > 0 is a constant. Hence, there is a subset J ⊆ {1, 2, . . . , d} such
that

∑

i∈J

(ν∂H )2i ≥ 1

2
and H d−1

γd
(∂∗F \Ui ) ≤ 2C3δ

1
2 for all i ∈ J .

Now, fix i ∈ J . We show a lower bound for
∫
Ui

exp( 12 x
2
i ) − 1 dH d−1

γd
(x) by

projecting onto ∂H . Let π∂H : Rd → ∂H be the orthogonal projection on the affine
hyperplane ∂H . Denote with B(∂H , r) the set of points with distance < r from
∂H , i.e., B(∂H , r):={x ∈ R

d : dist(x, ∂H) < r}. Observe that for any subset
U ⊆ B(∂H , r), since π∂H is 1-Lipschitz, the area formula [16, Theorem 3.2.3] gives5

H d−1
γd

(U ) ≥
∫

∂H

∑

y∈π−1
∂H (x)∩U

ϕd(y) dH
d−1(x)

≥
∫

∂H

∑

y∈π−1
∂H (x)∩U

ϕ(� + r)

ϕ(�)
dH d−1

γd
(x)

≥ ϕ(� + r)

ϕ(�)
H d−1

γd
(π∂H (U )),

hence

H d−1
γd

(
π∂H (U )

) ≤ ϕ(�)

ϕ(� + r)
H d−1

γd
(U ). (5.16)

5 To justify the second step notice that y ∈ π−1
∂H (x)∩ B(∂H , r) implies y = x+ tν∂H for some t ∈ [−r , r ]

and thus ϕd (y) = ϕd (x + tν∂H ) = ϕ(�+t)
ϕ(�)

ϕd (x) ≥ ϕ(�+r)
ϕ(�)

ϕd (x).
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Define the subset Vi ⊆ ∂H as

Vi := π∂H

(
Ui ∩ B(∂H , δ

1
4 )

)
.

Let us show that Vi saturates ∂H ,

H d−1
γd

(Vi ) ≥ H d−1
γd

(
π∂H

(
∂∗F ∩ B(∂H , δ

1
4 )

))

− H d−1
γd

(
π∂H

(
(∂∗F \Ui ) ∩ B(∂H , δ

1
4 )

))

≥ ϕ(�) − ϕ(�)

ϕ(� + δ
1
4 )

γd(F�H)

δ
1
4

− ϕ(�)

ϕ(� + δ
1
4 )
H d−1

γd

(
∂∗F \Ui

)
,

(5.17)

where we have used Lemma 5.1 and Eq. (5.16). Combining the latter inequality with

Eq. (5.13) and with the estimate H d−1
γd

(∂∗F\Ui ) ≤ 2C3δ
1
2 , if δ is sufficiently small

with respect to � (which depends only on λ), we obtain

H d−1
γd

(Vi ) ≥ ϕ(�) − C4δ
1
4 , (5.18)

for a constant C4 = C4(λ) > 0.
For a real parameter 0 < κ , let Lκ : R → R be the function

Lκ(s):=

⎧
⎪⎨

⎪⎩

s + κ if s ≤ −κ,

0 if − κ ≤ s ≤ κ,

s − κ if κ ≤ s.

Observe that, if x ∈ ∂H and y = x+ tν∂H , then exp( 12 y
2
i )−1 ≥ exp( 12 Lνi t (xi )

2)−1.
Therefore, by repeating the same argument we employed to establish Eq. (5.16), we
get

∫

Ui

exp
( 1
2 x

2
i

) − 1 dH d−1
γd

(x) ≥ ϕ(� + δ
1
4 )

ϕ(�)

∫

Vi
exp

( 1
2 Lνi δ

1
4
(xi )

2) − 1 dH d−1
γd

(x).

Applying Lemma 5.2, if we assume that νiδ
1
4 < �/4, the last estimate implies

∫

Ui

exp
( 1
2 x

2
i

) − 1 dH d−1
γd

(x) ≥ c5,

for some constant c5 = c5(�) > 0 which does not depend on the dimension d.
Combining the latter inequality with Eq. (5.15), we obtain

∫

∂∗F

√√√√
d∑

i=1

(ν∂∗F )2i e
x2i − 1 dH d−1

γd
(x)
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≥ 1

2

∑

i∈J

(ν∂H )2i

∫

Ui

[
exp

( 1
2 x

2
i

) − 1
]
dH d−1

γd
(x)

≥ 1

2
c5

∑

i∈J

(ν∂H )2i ≥ 1

4
c5,

that concludes the proof of Eq. (5.12) as c5 is a positive constant that does not depend
on the dimension d ≥ 1. ��
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