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Abstract

We prove that a subset of the hypercube (0, 1)¢ with volume sufficiently close to % has
(relative) perimeter greater than or equal to 1, recovering a result by Acerbi, Fusco, and
Morini. We also prove that, in contrast with what happens for the high-dimensional
sphere S¢, the isoperimetric profile of the hypercube (0, 1)¢ does not converge to the
Gaussian isoperimetric profile as d — oo.

1 Introduction

Foran openset 2 C R, the relative isoperimetric problem in € consists of minimizing
the perimeter (in €2) of a set E € Q with fixed volume. So, given 0 < A < |€2|, one
is interested in the minimization problem

Io(A) :=inf{Per(E, Q): EC Qsothat |[E| = A}, (1.1)

where Per(E, 2) denotes the perimeter of E inside €2; if E has a smooth boundary then
Per(E, ) coincides with 24~ 1(Q N 9E) (see Sect. 2.2 for the general definition).
The (relative) isoperimetric profile of €2, denoted by Ig : [0, |2]] — [0, co) is the
function so that I (1) is the value of the infimum appearing in Eq. (1.1) (and I (0) = 0
and Io(|R2]) = 0if || < o0).

The (relative) isoperimetric problem is a classical question with a multitude of
applications that has received considerable attention recently. The vast literature on
the topic makes it hard to give a complete list of references, so we refer the reader to
the three recent works [4, 17, 19] and to the references therein. This paper investigates
in particular the isoperimetric profile of the d-dimensional hypercube (0, 1)¢.
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1.1 The relative isoperimetric problem in (0, 1)¢

To frame appropriately our results, let us recall what is known about the relative
isoperimetric problem in the hypercube.

Via a symmetrization argument [26, Sect. 1.5], one can show that the isoperimetric
profile of the hypercube (0, 1)¢ coincides with the isoperimetric profile of the d-
dimensional torus T¢.

In the case of the square (0, 1), the isoperimetric profile (along with the minimizers
of the relative isoperimetric problem) is known [11]. In dimension d = 3 (so, for
the cube (0, 1)3), it is conjectured [26, pg. 11] (see also [24, Theorem 9]) that the
only minimizers are balls, cylinders, and half-spaces intersected with the cube; under
this assumption one can determine exactly the isoperimetric profile of (0, 1)3. In any
dimension, since (0, l)d is a polytope, for small volumes the minimizers of the relative
isoperimetric problem are balls centered at the vertices of (0, 1)‘1 (see [25, Theorem
6.8] or [22, Remark 3.11]). As an immediate consequence, one gets

1 R4 % d—1
lopi() = 5d ‘Bl AT for0 < & < Ag(d),

where B]le denotes the unit ball in R¢ and Ao(d) is a dimensional constant that goes
to0asd — oo.

In every dimension d > 1, it was proven by Hadwiger [18] that I(O’l)d(%) =1,or
equivalently that if E C (0, 1)¢ has measure |E| = 1 then its perimeter is at least 1
(i.e., splitting the cube with a hyperplane parallel to one of its faces is optimal).

We show that the same result holds also if the set E has measure sufficiently close
to % This statement was part of an open problem stated by Brezis and Bruckstein
[12, Open Problem 10.1] (see also [11, Remark 2]). The result is not novel (see [1,
Theorem 5.3, Remark 5.4]) but the proof we provide is simpler than the existing one.

Theorem 1.1 For d > 1, there exists ¢4 > 0 so that I 1ya(A) = 1 for all A € [% -
&d, % + &41. Equivalently, any set of finite perimeter E C (0, 1)¢ with ||E| — %| <eé&4q
satisfies Per(E, (0, D) > 1. Moreover, Per(E, (0, 1)%) = 1 if and only if (up to a
negligible set) E = {x € (0, )¢ : 0-x < |E|}orE={x € (0, )¢ : 0.x > 1—|E|}
for some v € {e1, ez, ...,eq}.

For values of the volume distinct from %, the exact value of I ©,1)4 is not known,
but a remarkable lower bound with the Gaussian isoperimetric profile was established
in [8, Theorem 7] (see also [26, Theorem 7], [3, (2.2)]).

Theorem ( [8, Theorem 7]) Let I,:=¢ o &~ be the Gaussian isoperimetric profile
(see Sect. 2.2), where <p(r):=JL27T exp(—3t%) and ®(1):= [ ¢(s) ds.
Foranyd > 1, it holds that 1y 1y« > ~/ 27 I,,; equivalently

Per(E, (0, D)%) > N2, (JE]) 1.2)
for any set E C (0, 1)¢ of finite perimeter.
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On the isoperimetric profile of the hypercube
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Fig. 1 The blue dashed graph represents the conjectural profile of the cube (0, 1)3; the optimal shapes
depend on the volume: balls centered at a vertex, cylinders centered at a side, half-spaces parallel to a face.
The figure shows a number of features of the problem: the isoperimetric profile is concave, the lower bound
V27 I, is remarkably close to the actual value of / ©.1)d> the profile / 1) is constant in a neighborhood

of A = %, the profiles / ©,1)d e decreasing with respect to the dimension d > 1 (color figure online)

The lower bound shown in this theorem is remarkably precise already in dimensions
d = 2, 3 (see Fig. 1) and its precision can only improve in higher dimension as /(g jy«
is decreasing with respect to the dimension d. Furthermore, if instead of the cube
(0, )4, one considers the case of the sphere S9 (i.e., one studies the isoperimetric
problem in the Riemannian manifold S%), it turns out that its isoperimetric profile Isa,
appropriately rescaled, converges to [, as the dimension d — oo (see [7, Theorem
10, Proposition 11] or [26, Theorem 21]).

The facts mentioned in the previous paragraph may lead one to expect that, as the

dimension d — oo, the isoperimetric profile of the cube [ jy« converges to v/27 [,

This is true when evaluating it at A € {0, %,

that this claim is false, i.e., that there is a gap between infg>1 /g 1)« and v/27 1y, .

1}. Unexpectedly for the author, we show

Theorem 1.2 For all d > 1, we have I(O,l)d'H < I(O,I)d" let 1(0’1)00 = infdzl I(O,l)d'
The function I, 1y~ : [0, 1] — [0, 1] is a concave function such that

o1y~ (A) > V211, (A) forall € (0, 1)\ {}}.

The proof of Theorem 1.2 is quantitative (i.e., no compactness is used) and thus one
could keep track of all the constants and dependences on X and find an explicit function
g : [0, 1] — [0, co) (strictly positive on (0, 1) \ {5} with 0 = g(0) = g(3) = g(1))
such that

I(O’l)d()\.) >2rl,(A) +g(A) forall0 <A <1
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We decided not to do this because it would make the proof more cumbersome and the
resulting function g would not be optimal in any sense.

Let us remark that Theorem 1.2 may also be interpreted as a dimension-free stability
result for the isoperimetric inequality Eq. (1.2).

1.2 Open questions
The results of this paper naturally raise some further questions that we collect here.

Open question 1.1 Does the statement of Theorem 1.1 hold also with an ¢ independent
of the dimension? Equivalently, is there an ¢ > 0 so that [ jy¢(A) = 1 for all

rel[t—et+elandforalld > 1?

Open question 1.2 s it true that for any A € [0, 1], the sequence (/g 1ya(A))a>1 is
eventually constant? Equivalently, for each A, does it hold that [ 1ya (A) = I(0,1) ()
for all d sufficiently large (see Theorem 1.2 for the definition of /(g 1y~)?

Open question 1.3 Is there an explicit formula for the limiting isoperimetric profile

1.3 Methods and organization of the paper

The foundation of the proofs of the two main results of this paper (namely Theorems 1.1
and 1.2) is the rigidity of the inequality Eq. (1.2),i.e., if Per(E, (0, )?) = /271, (|E])
then E is a half-cube. We state and prove this rigidity in Sect. 3.

Then, in Sect. 4 we prove Theorem 1.1. The proof is by compactness.

Finally, in Sect. 5 we show Theorem 1.2. The main idea is to reduce the relative
isoperimetric problem in (0, 1)¢ to the following penalized isoperimetric problem in
the Gaussian space (R4, Vd):

d
inf Per, (F +/ vy )2 exp(x? —ld%”d_lx,
pegil™ o PeruB) + | E( oF)} exp(x7) ()

where vy r denotes the unit normal to the boundary of F' (see Sect. 2.2 for the definitions
of 4, %ﬁ’l,PerYd). Then, by using the dimension-free stability of the Gaussian
isoperimetric inequality (see [5, 15, 23]), we prove that the two terms of the penalized
problem cannot be simultaneously minimized unless A € {0, %, 1}. The result follows.

Let us remark that (even though our proof does not employ this perspective) the
statement of Theorem 1.1 can be interpreted as the fact that for volumes close to %
the penalized problem is solved by affine half-spaces. This is not the first instance of
penalization of the Gaussian isoperimetric problem that preserves the optimality of
half-spaces [6].
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On the isoperimetric profile of the hypercube

2 Notation and preliminaries
2.1 Gaussian measure

. 1 i =1 _ 12 i
Letp : RU {£o0} — (O, m] be the function gp(t).—m exp(—51~). Denote with
y € P(R) the Gaussian (probability) measure on R, i.e., the measure with density ¢.
Let us define the d-dimensional versions of ¢ and y as follows. For any d > 1, let
@a 1 R — (0, 27)~4?] be

() = exp (= Lx2) = p(r)e(x2) - 0(xa)
(/A% '_(zn)d/zep ZX = gX1)p(x2 PXd).

Let y; € P(RY) be the d-dimensional Gaussian (probability) measure, i.e., the mea-
sure with density ¢4 or equivalently y; =y ® ¥y ® - - - ® y where we are taking the
product of d copies of y.

2.2 Hausdorff measure and perimeter

We denote with | - | the Lebesgue measure in the Euclidean space (of any dimension).
We denote with .#* the k-dimensional Hausdorff measure in the Euclidean space (of
any dimension).

For a set E C R? of finite perimeter (for the theory of sets of finite perimeter
we suggest the reader to consult [20]), we denote with d*E its reduced boundary
[20, Chapter 15] (which coincides with the topological boundary if E is sufficiently
regular). Let us recall that the reduced boundary is a (d — 1)-rectifiable set and thus
admits a normal vector .7#?~!-almost everywhere. The perimeter of E in an open set
Q is defined as!

Per(E, Q):=||D1g|| () = #4(O*E N Q).

Let us now give the analogous definitions in the Gaussian setting. Let us denote
with %’;’Z :=pq /" the k-dimensional Hausdorff measure in R¢ weighted by ¢,. For

E C R? a set of locally finite perimeter, its Gaussian perimeter is defined as

Per,,(E) = ff;j”(a*E):/

©d de1,
*E

2.3 The Gaussian isoperimetric inequality

Let ® : RU {£o0} — [0, 1] be the function d>(t):=fioo o(s)ds = y((oco, t)) and
let I, : [0,1] — [0,1]be I, =¢o ®~!. The function I, is the isoperimetric profile
for the Gaussian space in any dimension, that is, for any positive integer d > 1 and for

1 Since E is a set of finite perimeter, its indicator function 1 g is a function of bounded variation and thus
its distributional derivative is a measure.
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any set £ C RY of finite perimeter, we have (see [10, 28], and [9, 13] for the equality
cases)

Per,, (E) > I,,(ya(E))

and the equality holds if and only if E is an affine half-space.

3 Rigidity of half-cubes

In this section we study the equality cases of Eq. (1.2). We show thatifaset E C (0, 1)¢
satisfies Per(E, (0, 1)) = v27 I, (|E|) then |E| € {0, 5, 1} and if |E| =  then E
is a half-cube. This result is already present in [18], but we will need our proof of the
rigidity (which is different from and slightly stronger than the one given by Hadwiger)
as a building block of the proof of Theorem 1.2. Therefore we report it here.

For the proof, we will need the following simple lemma. This formula for the
Jacobian of the restriction to a hyperplane is likely well known, but we could not find
any reference.

Lemma3.1 Fixd > 2. Let A € GL(d, R) be a linear transformation and let v € R4
be a unit vector. The Jacobian determinant of the restriction of A to the subspace
orthogonal to v is |det(A)| - [(AT) 1|

Proof Take a Borel set S C v1. By Fubini’s Theorem, we have
IS+ {tv:0 <1t < 1} =2971). (3.3)
Moreover,
[A(S+{tv:0<t <1} =|det(A)|-|[S+{tv:0<t <1} 34)

Write Av = u + u, where u is the orthogonal projection of Av on the hyperspace
A(v1). Notice that, forallx € R, ((AT)" v, Ax) = (v, x), so (AT)"!v is orthogonal
to the hyperspace A(v1). In particular, i is a multiple of (AT)~!v . Hence, we have

[(Av, (AT) "l 1
(AT~ Tv| [(AT)" 1]

(3.5)

Thanks to Fubini’s Theorem, we get

JAS +{tv:0 <t <1} =|AS) + {tu+ti:0 <t < 1})| = 21 AWl
(3.6)

Combining Egs. (3.3)-(3.6), we obtain 29 "1(A(S)) = |det(A)
|(AT)_1 vly“i”d_l (S) which is equivalent to the desired statement. O
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On the isoperimetric profile of the hypercube

Proposition 3.2 (Rigidity for the Gaussian isoperimetric inequality in the cube) For
E C (0, l)d a set of finite perimeter, it holds that

Per(E, (0, ) > v2r 1, (|E|).

This inequality is an equality if and only if (up to a negligible set) E = $or E = (0, 1)¢
orE={x e @D%: d-x < %}orE ={xe@OD): v-x > %}forsome
veler, e, ..., eq}.

Proof We follow the proof of [26, Theorem 7].
Let &, : RY — (0, 1)4 be the map (see Sect. 2.3 for the definition of ®)

Di(x1,x2, ..., x3):=(P(x1), P(x2), ..., P(xyg)).

Notice that ¢, is the density of the Gaussian measure on R? and that ®, is a diffeo-
morphism such that (@), (yy) = £ d | 0,1y in particular the Jacobian of & satisfies
|det DDy| = @q(x).

For a finite perimeter set £ < (0, 1)‘1 , the area formula [16, Theorem 3.2.3]
combined with Lemma 3.1 tells us that

Per(E, (0, D) = /

det DD - ‘((D@d)T)_lv‘ a1 37
(@7 (E)

where v denotes the normal to the reduced boundary 8*(@;1 (E)). We have that

d
)((chd)T)*‘v) = V2r |3 02 = Vom (3.8)
i=1
and such inequality holds as an equality if and only if, foralli = 1, 2, ..., d, we have

v;x; = 0. Combining Egs. (3.7 and 3.8), we obtain

1
per(. 0.1 = [ pa d AT = Per, (07 (E)),  (3.9)
V2 (@7 (E)) e Td
and equality holds if and only if for .?~!-almost every point x € E)"‘(CI);1 (E)), we
have v;(x)x; = Oforalli = 1,2, ..., d. The Gaussian isoperimetric inequality (see
Sect. 2.3) tells us that

Per,, (0, (E)) > I, (va(®, ' (E))) = I, (IE)), (3.10)

and equality holds if and only if @;1(E ) is an affine half-space (in particular, the
normal v to its boundary is constant) or it is the empty set or it is the whole R¢.
Combining Egs. (3.9 and (3.10) we obtain the desired inequality. If the inequality
of the statement is an equality, then in particular both Egs. (3.9) and (3.10) must
be equalities. So, either E = @ or E = (0, D4 or @;1 (E) is an affine half-space
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and the normal v to its boundary satisfies v;x; = O for all x € 8(d>;1(E)) and all
i =1,2,...,d. In the latter case, take 1 < j < d such that v; # 0. Then x; = 0
for all x € 3(®,' (E)) and thus &' (E) = {x e R : x - § < 0} with § = ¢; or

A

v = —e;. The sought characterization for £ follows. O

4 Proof of Theorem 1.1

Asin [1, Theorem 5.3], the proof of Theorem 1.1 is based on a compactness argument.
The idea is that a sequence of perimeter-minimizing sets £, < (0, D4 with |E,| — %
converges in a very strong sense to a minimizer with measure %, and such a minimizer
must be a half-cube thanks to Proposition 3.2.

Proof of Theorem 1.1 Let (E,)nen < (0, 1)4 be a sequence of sets of finite perimeter
such that

o |E,| > %asn—> 00.
e The set E,, minimizes Per(E,, (0, 1)9) among the sets with measure equal to | E},|.

The existence of E,, is standard [20, Proposition 12.30]. By [20, Theorem 17.20], we
know that its reduced boundary 8*E,, N (0, 1)¢ is a free-boundary integral rectifiable
varifold in (0, 1) with constant mean curvature.

We will prove that, for n sufficiently large, E, coincides (up to negligible sets)
with {x € (0, )¢ : x -0 < |Epl}or{x € (0,1)¢ : x -0 > 1 — |E,|} for some
v € {e1, ez, ...,eq}. The desired statement follows immediately.

Let us show that the mean curvature of E,, goes to 0 as n — oo. The isoperimetric

profile Lo 1) is concave [21, Corollary 6.11] and satisfies (see Proposition 3.2)

V2L, (W) = Lo pa(d) =1

forall 0 < A < 1. Notice that the lower bound and the upper bound for / (0,1yd are both
smooth concave functions, they have the same value at A = %, and the derivatives at
A= % are equal to 0. Since /(g 1)« is trapped between two such functions, it follows
that 97 ya(X) — {0} as A — %, where 3 f denotes the superdifferential® of the
concave function f. Since E,, is a minimizer for the relative isoperimetric inequality,
its mean curvature belongs to /(g 1y« (| E»|) as proven in [25, Proposition 4.8] (see
also [27, Corollary 2.9.] for the case of ambient spaces with smooth boundary) and
therefore we deduce that the mean curvature of E,, goes to 0 as n — o0.

By compactness [20, Theorem 12.26], up to taking a subsequence, we may assume

that E,, converges to Eo inthe sense that 1z, — 1 inL'and D1, —*\D]IEOO inthe
openset (0, 1)4. Notice that Per(E,, (0, D9) < 1and therefore, by lower semicontinu-
ity of the perimeter, we have Per(E o, (0, l)d) < 1. Moreover |Ex| = lim|E,| = %
Thus, by Proposition 3.2, we obtain that, without loss of generality, Eoc = {x €
(0, )7 : x4 < 1}. In particular, we have Per(E,, (0, 1)¢) — Per(Ex, (0, 1)¢) and

2 The superdifferential 9 f (1) of a concave function f at a point A is the set of slopes v € R so that
f+1) < f(X) + vt forall r € R so that A + ¢ belongs to the domain of f.
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On the isoperimetric profile of the hypercube

thus, applying [2, Theorem 6.4], the boundaries 0™ E;, converge to 3* E «, in the varifold
sense.

We have verified all the assumptions necessary to apply [2, Regularity Theorem] in
the interior and [ 14, Theorem 1.1] at the boundary,3 thus we have that, for n sufficiently
large, 3*E, N (0, 1)? is a graph over 3* Eoo N (0, ¥ = {x € (0, ¥ : x4 = %}. Since
0*Eqs N (0, l)d is flat, it follows in particular that

Per(E,, (0, D)9) = 297 0*E, N (0, )9) = #771(8*Eoo N (0, 1)?) =1,

with equality if and only if 3* E}, is the graph of a constant function over 9* E o, which
is exactly the desired statement. O

5 Proof of Theorem 1.2

We will need two simple technical lemmas. Let us emphasize that the theme of this
whole section is obtaining estimates that do not depend on the dimension d.

Lemma5.1 Let F C R? be a set of locally finite perimeter and let H € R? be an
affine half-space. Let £:=dist(Oga, dH) (observe that %”yi_l (0H) = ¢)) and let
on : R — 9H be the projection on the hyperplane dH. For any positive real
number r > 0, we have

%ﬂyj*l(na,,(a*Fm {x : dist(x, 9H) < r})) > ooy - 2O _raFLH)

o +r) r

Proof Let V::naH(a*F N{x : dist(x,dH) < r}). Let vyy be the normal to 0 H,
oriented so that fvyy € dH. For each x € dH, let us consider the 1-dimensional
slice Fy:=F N {x + tvyy : t € R}; define H, analogously. For 271 almost every
x € dH, the set Fy is (locally) made of finitely many disjoint intervals and all the
extreme points of such intervals belong to 3* F (see [20, Remark 18.13]).

For 279~ 1_almost every x € 0H \ 'V, we have® that F, N (x + vyg (—=r, 7)) is
either empty or equal to x + vy (—7, r) (up to negligible sets) because F, cannot have
any boundary point in the interval x + vyg (—r, r). In both cases, %‘}}i (FyAH,) >
reqd(x +rvyg).

Observe that g (x + rvgy) = %(pd (x). By Fubini’s Theorem, we get

yd(FAH)zf ) (Fe AHy) d A (x)
OH\V
Lettn)

o QHAY)

> r/ 04 (x + rvar) d A () =
IH\V

and the desired statement follows. O

3 One could avoid taking care of the convergence at the boundary by exploiting the equivalence between
the isoperimetric profile of the hypercube (0, 1)? and the isoperimetric profile of the torus T4 mentioned
in the introduction.

4 With x + vy (—r,r) we denote the set {x +tvgy : t € (—r,r)}.
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We will apply the following lemma only with the function f(¢) = exp(%tz) and it
is possible to prove a sharper result in this case, but we decided to prioritize clarity.
Informally, the following lemma is a quantitative way to state the fact that a hyperplane
with distance ¢ from the origin cannot be a subset of the strip {x € RY : |x;| < %}.

Lemma 5.2 For any £ > O there is a constant ¢ = c¢(£) > 0 such that the following
statement holds.

Let ¥ C R? be an affine hyperplane with dist(Opa, ) = £ (which is equivalent
to %”yifl (Z) = ¢(£)). For any Borel subset V C X and any nondecreasing function
f 10, 00) — [0, 00), we have

/V FUxiDdAL (x) = (c = ALH(E\V))F(5)

foranyi e {1,2,...,d}.

Proof Since f is nondecreasing, we have

/Vf(lxil)d%ﬁ’l(x) > ANV l = DAY
> [p0) = AL (E N {x s Inl < §H — 20 AW FG).

therefore to prove the statement it is sufficient to show that there exists a constant
¢ = c¢(£) so that

HALTNEN x| < 5D <@ —c

Letoy, 02, ..., 04 € RY be an orthonormal basis such that ¥ = o+ (01, ...,04-1).
In particular, oy is the unit normal to X. Up to rotation, we may assume that ¢; €
(o1, 04), where ¢; is the i-th element of the standard basis of R9 (so that ¢; - x = x;).

Then, it must be ¢; = (04)ioq+,/1 — (0,1)[-201. Using the parametrization of X given
by RI-1 5 Yy yio1 + -+ yi—104-1 + Log, we get

%’j,’j_l(ﬁ Ni{x: |x;] < %})
= o@yai Iy e B2 ot + 1 — 0ainl < 4})

Let g:=(0y);. Consider the set appearing at the right-hand side of the last equation.

It is a (possibly empty) interval with length —~— (empty if |¢| = 1) and it contains
S

0 if and only if |g| < % So, either it does not contain zero and thus its Gaussian

measure is less than % or its length is bounded by 2_2 and thus its Gaussian measure

is bounded by 1 — c(£) for a suitable constant ¢(£) > 0. In both cases, the desired
statement follows. O
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On the isoperimetric profile of the hypercube

We are now ready to prove Theorem 1.2. The proof lives in the Gaussian space
(R, y,;) instead of the cube (0, 1)¢ (we move everything there with the same map
that appeared in the proof of Proposition 3.2). Oversimplifying, the idea of the proof
is that if the statement were false, then we would find a set FF C R that is almost a
half-space and minimizes a boundary integral (see Eq. (5.11)) that is not minimized
by half-spaces; this yields a contradiction.

Proof of Theorem 1.2 The inequality /(o jya+1 < (g 1)« follows from the fact that the
map E — E x (0, 1) transforms a subset of (0, l)d into a subset of (0, l)d‘H with
the same perimeter and the same measure. The concavity of (g, 1) follows from the
concavity of I 1y« [21, Corollary 6.11].

For the second part of the statement, fix a dimensiond > 1 and 0 < A < 1
different from % Let E C (0, l)d be a set of finite perimeter such that |[E| = A
and Per(E, (0, D)%) = .1y () (a set E with these properties exists thanks to [20,
Proposition 12.30]). By repeating the proof of Proposition 3.2 for the set E, we obtain
that

1
E](o,l)d()‘) —I,()
> Pery, (F) — I,(A) ~|—/ Z(VB*F)ZEX' — ld%d 1(x), (5.11)
i=1

where F = CIDJI(E) and vy«p is the normal to 9*F. Notice that y;(F) = A. The
intuitive idea is that the two terms at the right-hand side cannot be simultaneously
small: Per,, (F) — I,,(1) is small if 3* F' is close to an affine hyperplane, while the
integral is strictly positive if 9*F is an affine half-space not containing the origin
(which is guaranteed by the condition |E| # %). There is a crucial difficulty: all
our estimates must be uniform in the dimension d, because we want to show that
ﬁl(o’ 1yd (A) — I, () is bounded away from O for all d > 1.

Let 6:=Pery,(F) — I,,(1). We are going to prove that there exist two constants
81(A) and c1 (1) (independent of d) so that

if § < 81 then Z(uw)ze - ldj‘fd L(x) > ¢;. (5.12)

0*F

Assuming that Eq. (5.12) holds, thanks to Eq. (5.11), we deduce \/4271(0’1)4 A) —
I,,(A) > min{é1, c1} and therefore the statement of the Theorem follows.

Let us now prove Eq. (5.12). As will be clear from the proof, one can choose
81:=min{l, (wy‘} (notice that ®~1(1) # O because A # ). By the dimen-
sion free stability of the Gaussian isoperimetric inequality [5, Main Theorem and
Proposition 4], there is an affine half-space H R4 with va(H) = ya(F) = X so
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that
va(FAH) < €167, (5.13)

for a constant C; = C1(A) > 0 independent of the dimension d. Let vy € R? be the
outer normal to the affine hyperplane d H. Let £ > 0 denote the distance between 0 H
and Oga. Notice that I, (1) = f/}i_l (0H) = ¢(£) (therefore if a constant depends
only on ¢ then it depends only on A). We also know [5, Corollary 2 and Proposition
4]

/ lvoer — vau | dALT < €8, (5.14)
*F

for a constant C» = C>(A) > 0 independent of the dimension d.
By Jensen’s inequality applied in the integrand (on the concave function /- — 1;

observe that Z;Ll (\J3*F)iz = 1), we have
Z(Va*F)z T 1d A0 ()

/(;*F i=1

>Z/ (vgrp)? exp( )—l]d%”d "),

Define U;:={x € 0*F : va*p(x)l.2 > %(vaH)iz}. Using the newly-defined sets U;, we
can continue the chain of inequalities

d
1 _
52 (vom)? /U [exp (357) = 1] a8~ (o), (5.15)
We show that for many indexes i, the set U; almost saturates 0* F. We have

d
1
7 LA OTF AU < Z f e (@ = Qo P d AL o)

P*F\U;

< / Zwa*F(x)% — o1 d A ().
I =
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For any two vectors u, v € R?, the Cauchy-Schwarz inequality implies Z?:l |I/tl~2 -
vi2| < |u — v||u + v|, and thus we can continue the chain of inequalities as follows

< 2/ Vo (X) — vor | AL (x)
*F
1
2
<2 (/ [vgeF (x) — vaH|2d%ﬂVj—l(x)) Per,, (F)2 < 2,/Cy8 Per,, (F)?
*F

where in the last step we have applied Eq. (5.14). Hence (assuming § < 1, so that
Per,, (F) is controlled) we deduce

d
1
> am); AL @ F \ Up) < 367,

where C3 = C3()) > 0 is a constant. Hence, there is a subset J C {1,2,...,d} such
that

1
dwan)} =5 and ATN@UF\ U 26387 foralli € J.
iel

Now, fix i € J. We show a lower bound for fU,- exp(%xiz) - ld%i—l(x) by

projecting onto d H. Let wyy : RY — 9 H be the orthogonal projection on the affine
hyperplane d H. Denote with B(dH, r) the set of points with distance < r from
9H, ie., BOH,r):={x € R? : dist(x,dH) < r}. Observe that for any subset
U C B(0H, r),since myy is 1-Lipschitz, the area formula [16, Theorem 3.2.3] gives5

ALY = /a Y ea(y)da T (x)

yena}} x)NU

L
YA

v

yer, 4 ()NU
_ et

<%pd 1 U i
Z =0 (mou (U))

hence

O a1y, (5.16)

AL man (U)) < o

5 To justify the second step notice that y € nL,H(x)ﬂB(&H r)implies y = x +tvyy forsomet € [—r, r]

and thus ¢4 (¥) = ga (x + ) = Lot g (x) = 20t g (1),
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Define the subset V; C 0H as
Vi = n3H<Ui n B(aH,si)).
Let us show that V; saturates 0 H
ALV = A8 (o (07 F 0 BOH, 51)) )

- ffyﬁ‘l(ﬂaﬁ((a*F \Ui) N BOH, 55>)) (5.17)
() ya(FAH)  ¢(f)

> p(0) - e ;
ple+85) 51 g +6)

A (a*F \ U,-),

where we have used Lemma 5.1 and Eq. (5.16). Combining the latter inequality with
Eq. (5.13) and with the estimate %’fi—l (0*F\U;) < 2C38%, if § is sufficiently small
with respect to £ (which depends only on A), we obtain

ANV = p(0) — Cudt, (5.18)

for a constant C4 = C4(1) > 0.
For a real parameter 0 < «, let L, : R — R be the function

s+ K if s < —«,
Lc(s):=130 if —x <s <x,
S —K ifk <s.
Observe that, if x € 9H and y = x +tvy g, then exp(%yiz)—l > exp(%L,,l.,(xi)z)— 1.

Therefore, by repeating the same argument we employed to establish Eq. (5.16), we
get

1
12 d—1 p(£+38%) | 2 d—1
/;]i exp (zxi) — ld%d (x) > W . exp (sziS% (x7) ) — 1d%/d (x).
Applying Lemma 5.2, if we assume that v;§ T<t /4, the last estimate implies

/U‘ exp (3x7) — 1dAL " (x) = cs,

for some constant ¢c5 = c¢5(¢) > 0 which does not depend on the dimension d.
Combining the latter inequality with Eq. (5.15), we obtain

d

[ | X weiet —1a8
0*F

i=1
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1 -
= 3 Yo [ [exe(3) — 1] a0
. U;
ieJ !
1 , 1
Z 565 Z(VSH),' > —cs,
iel

that concludes the proof of Eq. (5.12) as c5 is a positive constant that does not depend
on the dimension d > 1. O
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