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ABSTRACT
The plane-wave pseudopotential (PW-PP) formalism is widely used for the first-principles electronic structure calculation of extended peri-
odic systems. The PW-PP approach has also been adapted for real-time time-dependent density functional theory (RT-TDDFT) to investigate
time-dependent electronic dynamical phenomena. In this work, we detail recent advances in the PW-PP formalism for RT-TDDFT, partic-
ularly how maximally localized Wannier functions (MLWFs) are used to accelerate simulations using the exact exchange. We also discuss
several related developments, including an anti-Hermitian correction for the time-dependent MLWFs (TD-MLWFs) when a time-dependent
electric field is applied, the refinement procedure for TD-MLWFs, comparison of the velocity and length gauge approaches for applying an
electric field, and elimination of long-range electrostatic interaction, as well as usage of a complex absorbing potential for modeling isolated
systems when using the PW-PP formalism.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0211238

I. INTRODUCTION

In recent decades, the explicit real-time propagation approach
to time-dependent density functional theory (RT-TDDFT)1–5 has
garnered substantial interest as a powerful approach for investi-
gating time-dependent electron dynamics. While linear response
(LR)-TDDFT6 has long established itself for studying optical
excitation,7,8 RT-TDDFT has further expanded the applicability of
TDDFT9 for the investigation of various nonequilibrium dynam-
ics of electrons. Beyond its broader utility for studying both lin-
ear and nonlinear responses to external perturbations on equal
footing,10 RT-TDDFT is an attractive approach even for the opti-
cal absorption spectrum of large extended systems because of
how its computational cost scales.11–13 With its appealing balance
between accuracy and computational cost, along with access to the

time-dependent nonequilibrium electron density, RT-TDDFT has
proven invaluable in investigating a myriad of excited state phe-
nomena such as optical absorption,14,15 electronic stopping,16–22

electronic circular dichroism spectra,10,23 topological quantum
matter,24–26 and high harmonic generation.27,28 The popularity
of RT-TDDFT has led to its implementation in a variety of
electronic structure codes, including SALMON,29 SIESTA,30,31

CP2K,32 GAUSSIAN,33,34 Q-Chem,35,36 NWChem,37,38 Octopus,39,40

TDAP,41,42 INQ,43 and Qbox/Qb@ll.44–47 Implementation details
vary greatly by code, particularly in terms of the basis set used,
ranging from real-space grids, Gaussian-type orbitals, numeric
atomic-orbitals, to plane-waves (PW).

The plane-wave pseudopotential (PW-PP) implementation,
utilizing plane-waves (PW) as the basis set and non-local pseudopo-
tentials to reproduce core electron effects,48,49 has a long history
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in studies of extended periodic systems,50–52 with several imple-
mentations of the RT-TDDFT method using this formalism, such
as the Qb@ll version of the Qbox code.4,47 The PW-PP formalism
is particularly convenient when the electronic excitation exhibits
an ionization character because the PW basis functions are inde-
pendent of the locations of the atomic nuclei. At the same time,
the use of modern exchange-correlation (XC) functionals requiring
exact exchange (EXX) becomes computationally prohibitive in the
PW-PP implementation.53 Studying isolated systems like molecules
using the PW-PP approach is also not always straightforward, unlike
for calculations of ground-state properties, as briefly mentioned in
Ref. 12.

In this work, we report recent advances on a few key aspects of
the PW-PP implementation for the RT-TDDFT method. We discuss
how the unitary transformation to maximally localized Wannier
functions (MLWFs) can be used to reduce the computational cost of
the exact exchange by recognizing the nearsightedness principle of
electrons.54,55 Such an approach has been previously demonstrated
in the context of first-principles molecular dynamics (FPMD) sim-
ulation,56 and we extend the idea to RT-TDDFT simulation. We
showcase the efficiency of this approach by calculating the absorp-
tion spectra of extended periodic systems, first with crystalline
silicon and then with the one-dimensional hydrogen chain system,
which is often used to test XC functionals. We further introduce an
anti-Hermitian correction for preserving the orthonormality of the
time-dependent MLWFs (TD-MLWFs), which becomes a practical
concern when an electric field is applied through the length gauge
(LG) in real-time simulations of extended systems. We subsequently
extend the refinement approach of Stengel and Spaldin57 to TD-
MLWFs and illustrate how their refinement scheme can be used to
accelerate the convergence of the calculation of absorption spectra
with respect to simulation cell size. Importantly, we also address the
question of gauge invariance for the application of electric field to an
extended system within the PW-PP formalism in the context of RT-
TDDFT, comparing the length and velocity gauges (VGs). We com-
pare the results using the conventional velocity gauge and the length
gauge (using TD-MLWFs) to represent the external electromagnetic
field. This is particularly informative because the use of non-local
pseudopotentials, strictly speaking, violates this gauge invariance.58

Finally, we address numerical complications that arise when model-
ing nonequilibrium electron excitation in isolated systems using the
PW-PP formalism. All the developments are implemented with the
Qb@ll version of the Qbox code, a massively parallel open-source
code written in C++.4,47 As the Qb@ll version is no longer updated,
the new implementations discussed here are available under a new
forked version, Qb@ch.59

II. EFFICIENT EXACT EXCHANGE FOR REAL-TIME
PROPAGATION

Given the great popularity of density functional theory (DFT)
in various areas of computational sciences at present, the devel-
opment of increasingly accurate and efficient exchange-correlation
(XC) functionals for Kohn–Sham (KS) DFT60–62 is an important sci-
entific endeavor with substantial potential impacts. For ground-state
DFT calculations, highly sophisticated XC approximations such as
those based on the exact exchange (EXX) and the random phase

approximation (RPA) for the correlation have been utilized with
great success.63–66 While the computational cost of these “non-
standard” XC functionals, especially those on the fifth rung of the
so-called Jacob’s ladder of DFT,67,68 remains prohibitive for most
applications, we are hopeful as we continue to witness great advances
in computing hardware. At the same time, the use of advanced
XC functionals is much more restricted for TDDFT, especially
for RT-TDDFT methods. For RT-TDDFT simulations of com-
plex extended systems, the local-density approximation (LDA)69

and semi-local generalized gradient approximation (GGA) func-
tionals such as Perdew–Burke–Ernzerhof (PBE)70 remain domi-
nant, particularly for the PW-PP implementation. Meta-GGA func-
tionals, which incorporate the kinetic energy density into the
XC approximation,71,72 have become more prevalent over the past
decade and are actively being examined and improved.73

Hybrid XC functionals, incorporating some fraction of exact
exchange, have been shown to improve key quantities such as
binding energies74,75 and bandgaps,76,77 and akin to DFT, many
RT-TDDFT applications have shown improved results when using
hybrid XC functionals, including those focused on charge trans-
fer and optical properties.37,78–80 However, calculation of the
EXX for extended systems presents a high (and sometimes insur-
mountable) computational cost, particularly for the PW-PP for-
malism in which the basis sets are not spatially localized (thus
unable to benefit from the long history of clever techniques like
the resolution-of-identity81), and the delocalized nature of the KS
orbitals makes the evaluation of the exchange integrals very time
consuming. Additionally, with the need for small (atto-second)
time steps in RT-TDDFT simulations, studies that require any-
thing more than a few femtoseconds (fs), such as the calculation
of optical absorption spectra, quickly become inaccessible. Recent
work by Lin and co-workers has shown that utilizing the so-called
parallel transport gauge accelerates PW-PP based RT-TDDFT simu-
lations by limiting the oscillations of the KS orbitals. This allows for
larger time steps, reducing the number of times the EXX integrals
need to be calculated.82 When paired with the adaptively com-
pressed exchange (ACE) operator method, which simultaneously
lowers (compresses) the rank of the exchange operator to limit the
cost of each step,53,83 additional acceleration was observed for large
systems.

Here we demonstrate how transforming the KS orbitals into
an alternative gauge, the maximally localized Wannier functions
(MLWFs) gauge, can also be used to achieve similar acceleration
in RT-TDDFT simulations of extended systems that utilize hybrid
XC functionals. At the heart of the RT-TDDFT simulation, the
time-dependent Kohn–Sham (TD-KS) equation reads

i
d
dt
�ψn(t)�=�−1

2
∇2

r + v̂ext(r, t)+� dr′ ρ�r′, t�
�r − r′� + v̂XC(r, t)��ψn(t)�,

(1)

where ψn(r, t) are the time-dependent single-particle Kohn–Sham
orbitals and ρ(r′, t) is the electron density. The external potential,
v̂ext , accounts for all external potentials acting on the electrons, and
v̂XC is the XC potential. The − 1

2∇2
r term is the kinetic energy opera-

tor, represented as T̂ in the following, and ∫dr′ ρ�r′ ,t�
�r−r′� = v̂H[ρ(r, t)] is
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the Hartree potential. The corresponding Kohn–Sham Hamiltonian
is

Ĥ(t) = T̂ + v̂ext(r, t) + v̂H[ρ(r, t)] + v̂XC[{ψn(r, t)}]. (2)

We assume there is no vector potential in the Hamiltonian for
simplicity. For hybrid XC functionals, the exchange-correlation
potential can be generally written as

v̂XC[{ψn(r, t)}] = (1 − α) ⋅ v̂X[ρ(r, t)]
+ α ⋅ v̂EXX

X [{ψn(r, t)}] + v̂C[ρ(r, t)], (3)

where v̂X and v̂C are the exchange and correlation potentials from
a local or semi-local functional, respectively. v̂EXX

X is the exact
exchange, and α is the mixing fraction for the exact exchange. The
energy expression in RT-TDDFT47 now contains the exact exchange
energy,

EEXX
X (t) = −1

2�ij �
ψ∗i (r′, t)ψj(r′, t)ψi(r, t)ψ∗j (r, t)

�r − r′� drdr′. (4)

For isolated molecules, increased accuracy has made the use of
hybrid XC functionals quite common, as calculating the EXX is
not prohibitive, even within the PW-PP formalism. We demon-
strate this by calculating the absorption spectra of gas-phase water,
where hybrid functionals, as expected, show much better agree-
ment with experimental results (see Fig. S1 in the supplementary
material). For extended periodic systems, however, the TD-KS
orbitals take the form of Bloch states, and as a result, every orbital
pair in Eq. (4) needs to be evaluated at each time step of the
RT-TDDFT simulation, leading to a significant increase in com-
putational cost. While many approaches have been proposed for
reducing the cost of EXX computation when atom-centered basis
functions are used,5 the PW-PP implementation requires a differ-
ent solution.53,83,84 We exploit the gauge freedom of the TD-KS
orbitals, as any unitary transformation that preserves the electron
density of the system will preserve the physical properties of the sys-
tem, and employ the MLWF gauge.85 Previous work with DFT86 and
first-principles molecular dynamics (FPMD)56 has utilized the spa-
tial localization of MLWFs for efficient calculations using hybrid XC
functionals, and we extend the idea to RT-TDDFT simulations using
TD-MLWFs.4,12 TD-MLWFs tend to remain highly localized, even
in RT-TDDFT simulations, and minimal overlap is expected for dis-
tant TD-MLWFs in large systems. Exploiting the spatially localized
exchange interaction of electrons in a localized representation we
define a cutoff distance (denoted Rcutoff ) based on the geometric
centers of the TD-MLWFs such that the exact exchange integral is
calculated only for the orbital pairs within the specified distance.
Therefore, the exact exchange potential, v̂EXX

X (t), applied to the
Wannier function wi(r, t) can be defined as

v̂ X
EXX(t)wi(r, t) = −�

j
� w∗j (r′, t)wi(r′, t)

�r − r′� wj(r, t)dr′, (5)

such that the integrand is non-zero when

��wi�r̂�wi�� − ��wj �r̂�wj�� < Rcutof f . (6)

Here, the position operator r̂ is defined to be compatible with
extended systems as87

�r̂� = L
2π

Im ln�ψ�ei 2π
L ⋅r̂ �ψ�, (7)

where L is the lattice vector of the periodic simulation cell.88 By elim-
inating the calculation of integrals that contribute minimally to the
total EXX, the cost of employing hybrid XC functionals for extended
systems can be significantly reduced without sacrificing accuracy, as
demonstrated in the following two applications.

A. Demonstration 1: Crystalline silicon
Particularly when studying extended systems that require a

large simulation cell, the reduction in computational cost through
the use of MLWFs becomes increasingly significant. We demon-
strate such an advantage by calculating the optical absorption spec-
trum of crystalline silicon using a large simulation cell. Here we
employ the popular hybrid XC functional approximation PBE0.89

First, we determine the smallest Rcutoff , which can be used for an
accurate evaluation of the EXX when using MLWFs. We expect
this Rcutoff to be largely independent of the simulation cell size,
but rather a material-specific property.54,55 To determine Rcutoff ,
we utilized a 128-atom silicon cell elongated in the x-direction by
repeating a small 8-atom supercell 16 times. To generate the absorp-
tion spectra, we applied a delta kick, in the form of an 0.001 a.u.
electric field, in the x-direction to the ground-state MLWFs. The
electric field was then turned off, and the TD-MLWFs were prop-
agated for an additional 250 a.u. using a 0.05 a.u. time step and
the enforced time-reversal symmetry propagator (ETRS) propaga-
tor.90 This sudden delta kick of the electric field induces a phase in
the wavefunctions, causing oscillations of the TD-MLWFs, which
in turn can be used to calculate the electric dipole. The electric
dipole is subsequently used to calculate the macroscopic current,
which is then used to determine the imaginary part of the dielec-
tric function (optical absorption for extended systems), as detailed
in our previous work (Ref. 12). Simulations here were performed
using a 15 Ry. cutoff for the kinetic energy in the plane-wave expan-
sion of the TD-KS orbitals, and all atoms were represented by
Hamann–Schluter–Chiang–Vanderbilt (HSCV) norm-conserving
pseudopotentials.91 Figure 1 shows how the cutoff distance affects
the computed absorption spectra for the small 128-atom (512
electron) simulation cell, and that computed spectrum remains
unchanged until the cutoff distance is reduced below 15 bohrs.

Next, using the cutoff of 15 bohrs, we then calculated the optical
absorption spectrum of crystalline silicon by employing a 2048-atom
(8192 electron) simulation cell [see Fig. 2(a)]. This simulation cell
size was determined to be fully converged with respect to the cell
size (see Fig. S2 in the supplementary material), and with the cut-
off, only 4.06% of EXX pairs are needed for this PBE0 calculation.
An electric field with an amplitude of 0.001 a.u. was applied in
the x-direction for 0.2 a.u. time to excite the system. The electric
field was subsequently turned off, and the system was propagated
in the MLWF gauge for an additional 225 a.u. using a 0.2 a.u. time
step, the ETRS90 propagator, and a plane-wave kinetic energy cut-
off of 15 Ry. The cutoff energy of 15 Ry. was found to be large
enough to give a converged result (see Fig. S3 in the supplementary
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FIG. 1. Absorption spectra for a 128-atom crystalline silicon cell for varying MLWF
cutoff distances (Rcutoff) using the PBE0 XC functional.

material). Termination of the numerical simulation leads to artifi-
cial “wiggles” in the absorption spectra. To remove these wiggles,
we applied a damping function in the Fourier transform of the cur-
rent, f(t) = e−βt, using β = 150 as the damping coefficient. As seen in
Fig. 2(b), the cutoff significantly reduces the computational cost of
the PBE0 calculation by an order of magnitude. In this RT-TDDFT
simulation with 8192 electrons, the PBE0 hybrid XC approximation
is only 12 times more expensive than the standard semi-local PBE
XC approximation. Figure 2(c) shows the resulting PBE0 absorp-
tion spectra, along with those of LDA, and the experimental spectra
for comparison.92 While PBE0 offers a significant improvement over
the reference LDA spectrum, as it shifts the higher energy peak
to the same position as the experimental spectra, the lower energy
peak is still severely underestimated. Nonetheless, we demonstrate

here that the EXX reduction method based on the MLWFs allows
us to perform large-scale RT-TDDFT simulations with hybrid
XC approximations.

B. Demonstration 2: Hydrogen chain
Let us now discuss how our ability to perform RT-TDDFT sim-

ulation of extended systems with hybrid XC approximations helps
to improve the description. In particular, we examine the case of the
one-dimensional infinite chain of hydrogen atoms. The hydrogen
chain is often used as a test system for studying excitonic effects in
the absorption spectra of extended systems, as the physical proper-
ties significantly depend on the bond distances between hydrogen
atoms.93 We first consider a chain with alternating bond distances of
2.0 and 2.5 a.u. with the geometry shown in Fig. 3(a). At this spacing,
the chain is known to exhibit a strongly bound exciton, a fea-
ture whose accurate description often requires XC approximations
beyond the semi-local approximation.94,95 By using the TD-MLWF
cutoff scheme outlined earlier, we employ several hybrid XC func-
tionals to compute the optical absorption spectrum and compare
them directly to local and semi-local XC functionals.

To obtain the absorption spectrum, a 0.001 a.u. delta kick in the
form of an electric field was applied in the x-direction for 0.05 a.u.
time to the system. The electric field was subsequently turned off,
and the system was propagated in the MLWF gauge using the ETRS
propagator90 for an additional 400 a.u. time and a 0.05 a.u. time step.
All spectra use the damping function f(t) = e−βt with β = 150, as
discussed earlier. A plane-wave cutoff of 30 Ry was used, and a sim-
ulation cell of 522 × 20 × 20 bohrs, consisting of 116 H2 units, was
sufficient for avoiding periodic interactions in the y and z directions.

FIG. 2. (a) The 2048 atom crystalline silicon structure used to model the absorption spectra. (b) Computational cost of the PBE0 functional, relative to PBE, both with and
without the MLWF cutoff scheme. Simulations were performed on ALCF-Theta using 32 768 processors (512 KNL nodes) and only MPI. (c) Optical absorption spectra of
crystalline silicon using LDA and PBE0. The experimental spectrum is provided for comparison.92
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FIG. 3. (a) Geometry of the 2.0/2.5 a.u. spaced infinite hydrogen chain. Periodic boundaries are represented by blue lines. (b) A representative Bloch state and its correspond-
ing TD-MLWF resulting from the unitary transformation. (c) Optical absorption spectra for the hydrogen chain obtained using a variety of XC approximations in RT-TDDFT.
The BSE result, with GW quasiparticle energy shift, is shown in black for Ref. 94.

116 H2 units were found to give fully converged spectra with respect
to chain length (see Fig. S4 in the supplementary material). All atoms
were represented by HSCV norm-conserving pseudopotentials.91

As shown in Fig. 3(b), the transformation of Bloch states to
TD-MLWFs results in highly localized Wannier functions in space.
For hybrid XC functionals, a cutoff distance (Rcutoff ) of 30 bohrs
was needed for obtaining a converged spectrum. This reduces the
number of EXX integrals calculated to 11% and lowers the com-
putational cost of hybrid XC functionals to ∼5 times that of GGA
(see Figs. S5 and S6 for details in the supplementary material). Addi-
tional information on parallelization and scaling is also included
in the supplementary material (see Fig. S7). Figure 3(c) shows
the resulting optical absorption spectra calculated for a variety
of XC functionals of different sophistications, from LDA, GGA
(PBE), and meta-GGAs (SCAN96 and TASK71) to hybrids (PBE0,89

B3LYP,97 HSE,98 and CAM-B3LYP99). The Bethe–Salpeter equa-
tion (BSE)100,101 result is also shown for comparison. Excitons are

described explicitly as particle-hole excitation in BSE via the two-
particle Green’s function, and the excitonic features are evident in
the optical absorption spectrum of the H2 chain.95 LDA, GGA, and
meta-GGA functionals (LDA, PBE, SCAN, and TASK) yield absorp-
tion spectra that are much broader than the BSE spectrum and
significantly red-shifted in energy. The hybrid XC functionals all
offer improvements in terms of both peak position and shape. PBE0
and B3LYP approximations perform similarly, yielding an energy
difference of less than 0.1 eV compared to BSE. CAM-B3LYP, a pop-
ular range-corrected hybrid XC approximation for molecules, does
not perform as well for this extended system, and the absorption
peak is blue-shifted.

By changing the spacing to alternating distances of 2.0/2.05 a.u.
between the hydrogen atoms in the chain [see Fig. 4(a)], the elec-
tronic properties of the chain become notably different. The exciton
is more delocalized,95 and we find less spatially localized Wannier
functions when performing the MLWF transform [see Fig. 4(b)]. For

FIG. 4. (a) Geometry of the 2.0/2.05 a.u. spaced infinite hydrogen chain, with periodic boundaries represented by blue lines. (b) A representative Bloch state and its
corresponding MLWF resulting from the unitary transformation. (c) Optical absorption spectra for the hydrogen chain obtained using a variety of XC approximations in
RT-TDDFT. The BSE result, with GW quasiparticle energy shift, is shown in black for Refs. 102 and 103.
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this 2.0/2.05 a.u. spaced chain, all simulation parameters were kept
the same as the above 2.0/2.5 a.u. chain case, except for total sim-
ulation time, chain length, and simulation cell size. Here, a larger
simulation cell containing 232 H2 units (correspondingly, a 939.6× 20 × 20 bohrs simulation cell) was needed for obtaining converged
spectra (see Fig. S8 in the supplementary material for details). Addi-
tionally, simulations were run for 600 a.u. time following the delta
kick. For this case, with more delocalized MLWFs, an Rcutoff of 100
bohrs was used, requiring 21% of the EXX integrals to be calculated.
Despite the smaller savings we obtain, the cost of hybrid XC calcu-
lation is only 9 times that of PBE, compared to 23 times if all EXX
pairs are needed (see Figs. S9 and S10 in the supplementary material
for details). Figure 4(c) shows the calculated optical absorption
spectrum using RT-TDDFT simulation with the same XC func-
tionals as the 2.0/2.5 a.u. spaced hydrogen chain. While the hybrid
XC functionals show improvement in terms of the peak position,
all spectra show a peak significantly below the energy predicted by
the BSE@GW calculation. Although these well-recognized hybrid
XC approximations do not perform as well as one would hope,
recent dielectric and other spatially dependent hybrid XC approx-
imations for extended systems might fare better. The new hybrid
XC implementation scheme based on the TD-MLWFs will allow
RT-TDDFT simulations to benefit from new XC development.

III. OTHER RELATED DEVELOPMENTS
A. Anti-Hermitian correction of position operator
in real-time dynamics

In the context of studying extended quantum systems, the ques-
tion of how the quantum mechanical position operator r̂ should
be defined is a longstanding challenge. Indeed, multiple formalisms
have been proposed to address the definition of the position opera-
tor, as highlighted by previous studies in Refs. 104–106. In this work,
we adopt Resta’s definition88 as expressed in Eq. (7), which is widely
accepted in the electronic structure theory community. Applying
this formalism to the TD-KS framework, the Slater determinant con-
sists of the TD-KS orbitals in the occupied/valence band manifold of
N states, particularly when considering the Γ point approximation
within the Brillouin Zone (BZ) sampling. Then, the time-dependent
expectation value of the position operator at time t is given by

�r̂(t)� = L
2π

Im ln det (S(t)), (8)

where the N ×N matrix S is

Smn(t) = �ψm(t)�ei 2π
L r̂ �ψn(t)�. (9)

This formulation is often known as the time-dependent Berry phase
approach. In the real-time propagation of electron dynamics with
an electric field applied through the length gauge, the position oper-
ator on a TD-KS state can be calculated by taking the functional
derivative of Eq. (8) above,107

r̂�ψn(t)� = δ�r̂(t)�
δ�ψn(t)� =

L
2π

Im�
m

ei 2π
L r̂ �ψm(t)�S−1

mn(t), (10)

where S−1
mn represents the mnth element of the matrix inverse of S. By

evolving the electron density using TD-MLWFs, denoted as �wn(t)�,

the above-mentioned formulation can be readily simplified to

�r̂(t)� =�
n

r0
n(t), (11)

where r0
n is the position center (the expectation value for the position

operator) for the nth TD-MLWF, defined as

r0
n(t) = �wn(t)�ei 2π

L r̂ �wn(t)�, (12)

and Eq. (10) can be further transformed into

r̂�wn(t)� = L
2π

Im
ei 2π

L r̂ �wn(t)�
r0

n(t) . (13)

The definition of the position operator is solely provided
through its expectation value, lacking an explicit formula for the
operator itself. A direct consequence of the definition through the
functional derivative is that the position operator may not inherently
exhibit Hermitian properties. Anti-Hermitian characteristics might
unphysically manifest into physical phenomena; the tunneling cur-
rent across a thin insulating film is, for example, often non-zero
although exponentially diminishing with film thickness, as discussed
by Stengel and Spaldin.108 In RT-TDDFT simulations, this small
but finite anti-Hermitian contribution can accumulate during the
propagation, and the time-evolution operator could cease to be uni-
tary. Consequently, the orthonormality of TD-KS orbitals can be
disrupted during the propagation of real-time dynamics.

In order to illustrate how we can mitigate this potential prob-
lem, we consider the real-time dynamics of a polarized capacitor
subjected to a perturbed electric field. In essence, the tunneling
current component must be neglected by modifying the posi-
tion operator such that Hermicity is restored. We introduce the
Hermitian-corrected position operator as

r̂ corr �wn(t)� =�
m

1
2
�wm(t)�(�wm�r̂�wn� + �wn�r̂ �wm�∗). (14)

To highlight the importance of the anti-correction scheme for
the position operator, we present a simple example here. We con-
sider the situation where a constant electric field, denoted as E(t)= E0, is applied to trans-polyacetylene along its chain direction. The
strength of the electric field, E0, is chosen to be 0.0010 a.u., which is
below the condition of dielectric breakdown.25 Without employing
the above-discussed correction to the position operator, the elec-
tronic energy of the system continuously increases erroneously, as
shown in Fig. 5, while it should be constant.47 With the corrected
position operator, the simulation remains stable, and the energy
remains constant despite small oscillatory behavior. We gain fur-
ther insight by examining the TD-MLWF dynamics, as shown in
Fig. 6. Although the displacements of the TD-MLWF centers do not
show significant changes with or without the correction, the time-
dependent changes in their spreads are quite different. Without the
correction, the averaged spread values continue to increase gradually
with time without reaching a plateau until the simulation eventually
crashes. This phenomenon can be attributed to the presence of an
unphysical tunneling current, resulting in the accumulation of delo-
calization in the TD-MLWFs. Furthermore, due to the breakdown
of unitarity, there is a continual loss of total electrons from the sys-
tem. Therefore, in practical calculations, particularly for real-time
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FIG. 5. Change in energy for trans-polyacetylene under a constant 0.0010 a.u.
electric field with and without the anti-Hermitian correction applied.

simulations involving a continuous applied electric field,12,25,26 it is
essential to consider the anti-Hermitian correction to avoid these
nonphysical features.

B. Refinement scheme with TD-MLWF
In traditional methods for computing polarization, such as the

standard Berry-phase approach by King-Smith and Vanderbilt109,110

and alternative formulas based on Wannier functions as proposed
by Marzari and Vanderbilt,85 a slow convergence, approximately
O(L−2), is observed with BZ sampling.111 Here, L represents the
linear dimension of the simulation cell (supercell) containing the
isolated molecule or, alternatively, the resolution of the k-point
mesh.57 Consequently, for calculations with sparse BZ k-point grids,
particularly when the Γ point approximation is employed, finite size

effects can introduce significant errors in the evaluation of polar-
ization. To address this limitation in ground-state calculations, a
“refinement” technique was introduced where minimal computa-
tional resources are needed.57 This refinement approach capitalizes
on the existence of a well-localized set of MLWFs, and the con-
vergence of simulation supercell size or, equivalently, BZ k-point
sampling, can be drastically improved in the polarization calcula-
tions of the ground state. Here, we extend this formalism to real-time
dynamics using the TD-MLWFs. We begin this extension by evalu-
ating the expectation value of a local operator V(r) for each Wannier
function wn in real space

�wn�V �wn� = �
R3
�wn(r)�2V(r)dr, (15)

equivalently in the momentum q-space, we have

�wn�V �wn� = ��q�<Ecut

Ṽ ∗(q)̃ρn(q)dq, (16)

where ρ̃n(q) is the continuous Fourier transformation of the Wan-
nier density ρn(r) = �wn(r)�2. When working with localized Wan-
nier functions that have negligible values beyond a specific distance
from their centers, it becomes possible to confine the corresponding
integrals to a well-defined spatial region. This region can take the
form of a cubic box centered around the region where the Wannier
density is non-zero. Therefore, the q-space integral in Eq. (16) can be
transformed into a summation over a distinct set of reciprocal space
vectors, which remain finite due to the plane-wave cutoff, Ecut . If this
integration box is smaller than the region where the Wannier density
is non-zero, an error arises from the reciprocal-space summation.
This error is due to the overlap of the tails of Wannier functions

FIG. 6. Displacement of the C–C double bond Wannier centers (red) and C–C single bond Wannier centers (green) (a) with the anti-Hermitian correction and (b) without the
correction. Average spread of the C–C double bond Wannier centers (red) and C–C single bond Wannier centers (green) (c) with the anti-Hermitian correction and (d) without
the correction.
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and their artificially duplicated images. The magnitude of this over-
lap depends on the localization properties of the Wannier state and,
specifically, diminishes exponentially to zero when wn(r) exhibits
exponential localization. The refinement scheme is reliant on the
exponential decay characteristics of the Wannier functions. By per-
forming q-space integrals across the Born–von-Kármán (BvK) cell
and assuming exponential decay for the Wannier functions, we can
achieve exponential convergence in the calculated expectation val-
ues for any operator. Ideally, the integration domain in real space
should correspond to a Wigner–Seitz BvK cell centered around the
Wannier function. We can then define a correction operator for local
operator V(r) as

Ṽ(b) = 1
VBvK

�
Wigner−Seitz

e−ibrV(r)dr. (17)

Subsequently, the expectation value is merely expressed as

�wn�V �wn� = VBvK�
b

Ṽ ∗(b)̃ρ(b). (18)

For the refinement of the position operator of a supercell calculation
at the Γ point, we seek the refined expectation value of the position
as

�rn� = �r0
n� + �rn. (19)

Here, r0
n is specified by Eq. (10) and �rn is the refinement we seek

to compute. The νth Cartesian component of �rn, denoted as �rn,ν,
can be computed in real space using a periodic saw-tooth function
Xn,ν(rν) centered at the MLWF center r0

n.
Then, the refined position operator can be expressed as

�rn,ν = �wn�un,ν�, (20)

where un,ν(r) ∶= Xn,ν(rν)wn(r). Given that the TD-MLWFs exhibit
exponential decay in real space, the discontinuity of the saw-tooth

function does not substantially influence the numerical stability
of the refinement process.107 The refinement scheme also con-
tributes when applying a length-gauge external electric field in
RT-TDDFT propagation, as the refined position operator can be
defined as

r̂ref
ν �wn(t)� = r̂0

ν �wn(t)� + �un,ν(t)�, (21)

Xn,ν(rν) =
�������������

rν − r0
n,ν + Lν if rν − r0

n,ν ≤ −Lν�2,
rν − r0

n,ν if rν − r0
n,ν ∈ (−Lν�2, Lν�2),

rν − r0
n,ν − Lν if rν − r0

n,ν ≥ Lν�2.
(22)

To demonstrate the utility of this refinement approach, par-
ticularly with an applied electric field, computation of the optical
absorption spectrum of crystalline silicon using RT-TDDFT simu-
lation is considered. A delta kick in the form of an impulsive electric
field was applied for a time duration of 0.05 a.u. The electric field
was subsequently turned off, and the system was propagated for an
additional 250 a.u. time in the MLWF gauge using the (ETRS)90

propagator and a 0.05 a.u. time step. A kinetic energy cutoff of
40 Ry was used for plane-wave expansion of the TD-KS orbitals.
Even using an unsatisfactorily small 8-atom (32 electron) super-
cell, the refinement approach can improve the spectrum, reducing
noise above 4 eV and enhancing the higher energy peak, as shown in
Fig. 7(a). Using the more reasonable 128-atom (512 electron) super-
cell, which is elongated in the x-direction by repeating the 8-atom
cell 16 times, the refinement approach shows improvement even
though it is not as significant [Fig. 7(b)]. Importantly, this absorp-
tion spectrum agrees almost identically with the result using a larger
256-atom supercell (1024 electron) elongated in the x-direction. In
essence, the refinement method allows us to employ a smaller super-
cell than normally possible to obtain a converged result for extended
systems,12 yielding significant savings in the computational
cost.

FIG. 7. Optical absorption spectrum for (a) an 8-atom silicon cell and (b) an 128-atom silicon cell with and without refinement for the TD-MLWFs. Although a larger improvement
is observed for the smaller silicon cell, the refined result for the 128-atom cell gives an identical result to that of a 256-atom cell (dashed black line).
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C. Length vs velocity gauge for extended systems
RT-TDDFT allows us to model the dynamic response of

electrons to classical electromagnetic fields, with applications
ranging from optical excitation112–114 to plasmonics115,116 and
magnetic circular dichroism.10,117,118 The electric field is typi-
cally incorporated into the Hamiltonian using the long-wavelength
approximation.23,119,120 Despite the formal limitation regarding the
homogeneous field applied to extended systems in the Runge–Gross
theorem, requiring time-dependent current density functional the-
ory (TDCDFT),121 empirical observations indicate that many
response properties can be accurately acquired within the frame-
work of TDDFT using RT-TDDFT simulation.12,29 Beyond this
formal theoretical issue for applying the electric field, the PW-PP
implementation of TDDFT faces another practical question. When
the potential in the Hamiltonian [Eq. (2)] is local, the electric field
exhibits gauge invariance such that it can be represented through the
scalar potential or the vector potential in the Hamiltonian, namely
the length gauge or the velocity gauge. However, as Starace and
others122–124 have noted, when a non-local potential is present within
the Hamiltonian, the gauge invariance is no longer preserved. In the
PW-PP implementation, non-local pseudopotentials are utilized to
model core electrons, and strictly speaking, the length and veloc-
ity gauges are no longer equivalent. Although previous studies on
isolated systems have addressed this issue23,125 and demonstrated
that both gauges yield equivalent results, it has remained a persis-
tent problem for the optical properties of extended systems. In the
more-widely used length gauge, the electric field is represented as an
additional scalar potential in the KS Hamiltonian [Eq. (2)],

v̂E(t) = eE(t)r̂, (23)

where E(t) is the time-dependent electric field and r̂ is the position
operator. Then, the TD-KS equation becomes

i
d
dt
�ψn(r, t)� = �−1

2
∇2

r + v̂ext(r, t) +� dr′ ρ�r′, t�
�r − r′�

+ v̂XC(r, t) + eE(t)r̂��ψn(r, t)�. (24)

The choice of v̂E(t) here is not unique, however. Through the gauge
invariance principle of electrodynamics, the physical properties of
the system do not change even if it is subjected to another scalar
potential

v̂′E(t) = v̂E(t) + d
dt

χ(r, t). (25)

Here, χ(t) defines the gauge transform from the length gauge to the
velocity gauge

χ(r, t) = −r ⋅A(t), (26)

where A(t) is the corresponding magnetic field given by the vector
potential

A(t) = −c� t
E(t′)dt′. (27)

With the transformation in Eq. (25), the KS orbitals change as
ψn(r, t)→ ψ′n(r, t) = eiχ(r,t)ψn(r, t), (28)

where the prime corresponds to the gauge-transformed orbitals. If
the potential is strictly local in the Hamiltonian, the resulting TD-KS
equation in the so-called velocity gauge can be expressed as

i
d
dt
�ψ′n(r, t)� = �1

2
�−i∇r + e

c
A(t)�2 + v̂ext(r, t)

+ � dr′ ρ�r′, t�
�r − r′� + v̂XC(r, t)��ψ′n(r, t)�. (29)

Both Eqs. (24) and (29) yield the same set of physical
observables,23,122,124 and the transformation is gauge invariant
for a local potential. However, as noted earlier, the PW-PP imple-
mentation uses non-local pseudopotentials, which makes v̂ext
non-local. Note that the XC potential could also be non-local for
certain types of XC approximations, such as hybrids. In practice, the
external potential in the PW-PP implementation is expressed as the
sum of local and non-local (nl) potentials,

v̂ext(r, t) = v̂local
ext (r, t) + v̂nl

ext(t). (30)

With the gauge specified by Eq. (26), the non-local part of the
potential transforms as

v̂nl
ext(t)→ v̂nl

ext(t)′ = eiχ(r,t) v̂nl
ext(t)e−iχ(r,t)

= e−ir⋅A(t) v̂nl
ext(t)eir⋅A(t), (31)

making the non-local potential gauge dependent, as it contains the
vector potential. In practical calculations, an approximate form is
often used.126,127 For extended periodic systems, the velocity-gauge
is widely used in TDDFT29,114,128 because delocalized KS orbitals
complicate the use of the length gauge with the periodic boundary
conditions. However, with TD-MLWFs and the position operator
defined as Eq. (7), the same electric field can be applied to individual
TD-MLWFs129 as described in our previous work.12 Alternatively,
the same electric field can be applied using the velocity gauge via the
vector potential, as typically performed for extended systems.94

We here examine the extent to which the difference between
using the length and velocity gauges manifests in PW-PP based RT-
TDDFT simulations by calculating optical absorption spectra. We
again turn to the one-dimensional hydrogen chain, specifically the
optical excitation of the 2.0/2.5 a.u. spaced chain [see Fig. 3(a)]. For
the length gauge, we followed the procedure detailed in Sec. II B
to determine the optical absorption. For the velocity gauge, the
same simulation cell was used, containing 116 H2 units along with
the HSCV pseudopotential for hydrogen. A delta kick was applied
through a step function in the vector potential

A(t) = �������
0 a.u. t < 0 a.u.,
0.001 a.u. t ≥ 0 a.u.,

(32)

with the magnitude chosen to match that of the length gauge electric
field pulse. The TD-KS wavefunctions were propagated for 400 a.u.
time using the ETRS propagator90 and a 0.05 a.u. time step. From
the simulation, we obtain the macroscopic current

J(t) = 1
2 � dr�

n
fnψ∗n (r, t)∇ψn(r, t) + c.c., (33)
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FIG. 8. Optical absorption spectra for the 2.0/2.5 a.u. spaced hydrogen chain using
the velocity gauge (dashed lines) and length gauge (solid lines) for a variety of XC
functionals.

where fn is the occupation of the TD-KS wavefunctions, and the
current is used to calculate the dielectric function using the same
prescription as detailed in Ref. 12. The same damping function, as
used with the length gauge and described in Sec. II B, was used.
Figure 8 shows the resulting absorption spectra from the length
gauge (LG) (solid lines) and velocity gauge (VG) (dashed lines) for a
variety of XC functionals. The peak positions are identical for both
gauges. Interestingly, we observe what is commonly identified as
an artificial peak, or “fake plasmon,” around 0 eV for the velocity
gauge58,130,131 for all functionals except the hybrid B3LYP functional.
Note that this artificial peak can be removed by subtracting the back-
ground current, as detailed in Ref. 113, or by using a very dense
k-grid, as detailed in Ref. 130. We include this peak to highlight
its presence when studying extended systems utilizing the veloc-
ity gauge and how the peak vanishes when moving to the B3LYP
functional. Additionally, the agreement for the hybrid XC func-
tionals (B3LYP, PBE0, and CAM-B3LYP) is notable here, as hybrid
XC approximations introduce an additional non-local potential
in the KS Hamiltonian. To confirm the generality of the gauge
equivalence, we compared the optical spectra of the 2.0/2.05 a.u.
spaced hydrogen chain using both the length and velocity gauges.
As expected, the peak positions were identical (see Fig. S11 in the
supplementary material for details). The potential effect of gauge
invariance arises directly from the use of non-local pseudopotentials
and not from the system being studied. Therefore, while the con-
clusion could be affected if the pseudopotentials are not constructed
properly, it should remain consistent across different systems oth-
erwise. Therefore, despite formal and practical complications, both
gauges can be used to reliably acquire key response properties of
extended systems.

D. Modeling isolated systems using
the PW-PP formalism

While the PW-PP formulation is highly efficient and widely
used when studying extended periodic systems, certain care must be
taken when it is applied to isolated systems, especially for the calcu-
lation of excited-state properties. A simulation cell of a 15 × 15 × 15
bohrs3 is large enough to minimize interactions with its periodic
images, for instance, when calculating most ground-state properties

FIG. 9. Dipole strength function (absorption spectrum) of gas-phase water, using
the LDA XC functional and a 40 Ry cutoff energy, at different cell sizes.

of gas-phase water. However, when modeling properties involving
electronic excitation, such as optical absorption spectra, interactions
with periodic images in RT-TDDFT simulation can lead to signifi-
cant errors, as shown in Fig. 9. An enormous simulation cell, as large
as 100 × 100 × 100 bohrs3, is needed to obtain the fully converged
optical spectra.12 This significantly increases the number of basis
set functions from 57 657 plane-waves for the (15 bohrs)3 cell to
17 088 048 plane-waves for the (100 bohrs)3 cell needed for a kinetic
energy cutoff of 40 Ry. RT-TDDFT PW-based codes scale at a rate of
O(NnNpw log Npw), where Nn is the number of Kohn–Sham states
and Npw is the number of plane-waves in the basis set. Therefore, the
use of a (100 bohrs)3 cubic cell makes the calculation ∼450× more
expensive. For optical absorption spectra calculations, which typi-
cally require a minimum of a few femto-seconds (fs) to converge,
the increased computational cost can quickly become untenable.
By eliminating spurious interactions of the isolated system with
its periodic images, the cell size needed for RT-TDDFT calcula-
tions (and, in turn, the computational cost) can be significantly
reduced.

One cause of the spurious interactions arises from long-range
electrostatic interactions between neighboring periodic cells. We
first examine the Martyna–Tuckerman (MT) approach132 to remove
these types of interactions, the basic idea being simply to modify the
Hartree potential such that it is still periodic but free from contribu-
tions from neighboring cells.133 The Hartree potential is expressed
in real space using Green’s function as

vH(r) = � dr′ρ�r′, t�G(r − r′), (34)

where Green’s function for isolated systems is given by

G(r − r′) = 1�r − r′� . (35)

In practical PW-PP based calculations, the Hartree potential in the
periodic simulation cell is evaluated in the reciprocal space using a
discrete set of wave vectors, g, to expand the function. However, in
practice, the calculation of the Fourier transform (FT) of Eq. (35)
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results in unavoidable periodic interactions. The Fourier transform
of Eq. (35) is calculated as

G̃(g) = �∞ G(r)e−ig⋅rdr = �
�
�

R
G(r + R)e−ig⋅rdr

= �
�

Gp(r)e−ig⋅rdr, (36)

where Gp(r) is the periodic Green’s function in real space and
� is the periodic simulation cell volume.134 This Fourier trans-
form of Green’s function unavoidably includes interactions from
periodic images. Instead of Gp(r), we wish to build the Green’s
function as

G(r) =�
g

G(g)e−ig⋅r, (37)

where G(g) are the Fourier series coefficients of the true non-
periodic Hartree potential. We express the Fourier series coefficients
as the sum of the Fourier transform of Green’s function, G̃(g), with
an auxiliary function to correct the FT for the incorrect interactions
with periodic images,

G(g) = G̃(g) + �G(g), (38)

where �G(g) is the auxiliary function correction. Assuming that
the simulation cell is large enough so that the Fourier transform
of short-range potentials is correct, only long-range corrections
need to be determined. For our work, this amounts to correcting
the long-range Coulomb and pseudopotential terms as described
by Hine et al.133 In terms of the corresponding Hartree potential,
we have

vH(r) =�
g

4π
�

ρ(g, t)�1 − δg,0

g2 + �G(g)�eig⋅r, (39)

with

�G(0) = lim
g→0
�G̃(g) − 1

g2 �, (40)

and

�G(g) = �
�

e−ig⋅r erf(αr)
r

dr, (41)

where α is the parameter that determines the short to long range
transition point, such that the correct behavior of the Green’s func-
tion for isolated systems [Eq. (35)] is restored in the reciprocal
space.134

Figure 10 shows the effect of the MT correction in the RT-
TDDFT simulation for calculating the optical absorption spectra of
a gas-phase water molecule. A small but noticeable improvement is
observed for the (15 bohrs)3 simulation cell, as shown in Fig. 10(a).
Using a slightly larger simulation cell, the spectra with and without
the MT corrected potential are now identical, as seen in Fig. 10(b).
However, the unphysical “wiggles” are still present in the absorp-
tion spectrum. These results indicate that long-range electrostatic
interaction is not the major source of error.

Another possible source of error in the calculation of optical
absorption spectra is ionized electrons reaching the simulation cell
boundaries. Even though it may not be large, a finite (non-zero)
probability density reaches the boundaries during the RT-TDDFT
simulation, and this density could interact with the periodic images.
One practical approach to mitigate this problem is to set up a spa-
tial region near the boundaries of the simulation cell such that the
electron density is effectively removed from the simulation.135,136

Here, we examine the idea of using a complex absorbing potential
(CAP) by modifying the Hamiltonian [Eq. (2)] such that a com-
plex (imaginary) potential at the boundaries of the simulation cell
absorbs any finite probability density.112,137,138 This approach has
been previously used successfully in RT-TDDFT simulation with a
real-space grid basis for investigating the optical absorption spectra

FIG. 10. Dipole strength function (absorption spectrum) with (cyan) and without (magenta) the MT correction for gas-phase water in (a) 15 bohrs cubic cell and (b) 25 bohrs
cubic cell. All simulations are performed using the LDA functional and a cutoff energy of 40 Ry.
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FIG. 11. Dipole strength function (absorption spectra) with (red) and without (blue) a complex absorbing potential (CAP) for gas-phase water in a (a) 20 bohrs cubic cell and
a (b) 30 bohrs cubic cell. The absorption spectrum for a 100 bohrs cubic cell is shown in black for comparison. All simulations are performed using the LDA functional and a
cutoff energy of 40 Ry.

of molecules112 and the photo-emission spectra of 2D materials.139

We extend the idea to the PW-PP formalism and employ a CAP of
the following form:

vabs(r, t > 0) = −iW(r) =
���������

0 (0 < r < R),
−iW0

r − R
�R

(R < r < R + �R),
(42)

where W0 is the maximum of the chosen potential, R is the posi-
tion of the front boundary (starting point) of the CAP, and �R is
the width of the CAP. For gas-phase water, we tested a 20 bohrs
cubic simulation cell with a CAP of W0 = 1.2 a.u., R = 9.0 a.u., and
�R = 14.0 a.u., and a 30 bohrs cubic simulation cell with a CAP of
W0 = 1.2 a.u., R = 12.0 a.u., and �R = 20.0 a.u. As shown in Fig. 11(a),
for the 20 bohrs cell, the CAP significantly reduces wiggles in the
spectra, and the result is in close agreement with that of the fully con-
verged 100 bohrs cell. For the larger 30 bohrs cell [Fig. 11(b)], using
the CAP results in a nearly identical spectra to that of the 100 bohrs
cell. Compared to the 17 088 048 plane-waves required for simulat-
ing a water molecule in the 100 bohrs cell, only 461 165 plane-waves
are needed for the 30 bohrs cell, and the CAP does not incur
any additional computational cost. The computational cost of the
30 bohrs cell is thus lowered to only 9.5× more expensive than
that of the 15 bohrs cell, significantly less than the cost of the
100 bohrs cell (450× more expensive). While care should be taken
in determining the parameters of the absorbing potential to prevent
reflection,137 its usage can significantly reduce the cost of modeling
isolated systems using RT-TDDFT simulation based on the PW-PP
formalism.

IV. CONCLUSION
In this work, we provide and document several recent devel-

opments of RT-TDDFT in the PW-PP formalism. In addition to
demonstrating the reduction in the computational cost of the exact

exchange calculation when using time-dependent maximally local-
ized Wannier functions (TD-MLWFs), we discuss several related
developments that are useful for the community. Additional devel-
opments include the anti-Hermitian correction for TD-MLWFs
when a continuous electric field is applied through the length gauge,
the refinement procedure for the TD-MLWFs, the assessment of the
velocity and length gauge approaches for applying an electric field,
and the usage of a complex absorbing potential (CAP), as well as
the periodic image correction when modeling isolated systems in the
PW-PP formalism. All the developments discussed in this work are
available as open-source code under a new forked version, Qb@ch.59

SUPPLEMENTARY MATERIAL

See the supplementary material for calculation of isolated sys-
tems using EXX, details on the convergence of the silicon cell with
respect to cell size and cutoff energy, determination of the cell
size and the Rcutoff needed for the hydrogen chains, the compu-
tational cost of different XC functionals for the hydrogen chains,
scaling for the 2.0/2.5 a.u. spaced chain when using hybrid func-
tionals, and additional comparisons between the length and velocity
gauges.

ACKNOWLEDGMENTS
This work was partially supported by the National Science

Foundation under Award Nos. CHE-1954894 and OAC-2209858
for the development of RT-TDDFT methodologies. We acknowl-
edge the Research Computing at the University of North Carolina at
Chapel Hill for computer resources. An award of computer time was
also provided by the Innovative and Novel Computational Impact
on Theory and Experiment (INCITE) program. This research used
resources from the Argonne Leadership Computing Facility (ALCF),
which is a DOE Office of Science User Facility supported under
Contract No. DE-AC02-06CH11357.

J. Chem. Phys. 161, 024111 (2024); doi: 10.1063/5.0211238 161, 024111-12

Published under an exclusive license by AIP Publishing

 10 July 2024 12:51:47

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.7293310


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

C.S. and R.Z. led and contributed equally to the work. All
authors discussed the results and contributed to the final article.

Christopher Shepard: Conceptualization (equal); Data curation
(equal); Formal analysis (equal); Investigation (equal); Methodology
(equal); Writing – original draft (equal); Writing – review & edit-
ing (equal). Ruiyi Zhou: Conceptualization (equal); Data curation
(equal); Formal analysis (equal); Investigation (equal); Methodology
(equal); Writing – original draft (equal); Writing – review & edit-
ing (equal). John Bost: Formal analysis (equal); Writing – review &
editing (equal). Tom Carney: Formal analysis (equal); Writing –
review & editing (equal). Yi Yao: Conceptualization (equal); For-
mal analysis (equal); Investigation (equal); Methodology (equal);
Writing – review & editing (equal). Yosuke Kanai: Conceptualiza-
tion (equal); Formal analysis (equal); Funding acquisition (equal);
Methodology (equal); Project administration (equal); Writing –
review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are available

from the corresponding author upon reasonable request. The code
used in the current study is available on GitHub (https://github.
com/chrsshpr/QBACH).

REFERENCES
1K. Yabana and G. F. Bertsch, Phys. Rev. B 54, 4484 (1996).
2X. Li, N. Govind, C. Isborn, A. E. I. DePrince, and K. Lopata, Chem. Rev. 120,
9951 (2020).
3K. Yabana and G. Bertsch, Int. J. Quantum Chem. 75, 55 (1999).
4C. Shepard, R. Zhou, D. C. Yost, Y. Yao, and Y. Kanai, J. Chem. Phys. 155, 100901
(2021).
5J. Xu, T. E. Carney, R. Zhou, C. Shepard, and Y. Kanai, J. Am. Chem. Soc. 146,
5011 (2024).
6M. E. Casida, “Time-dependent density functional response theory for
molecules,” in Recent Advances in Density Functional Methods, edited by
D. P. Chong (World Scientific, Singapore, 1995), Vol. 1, pp. 155–192.
7M. E. Casida and M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012).
8K. Burke, J. Werschnik, and E. K. U. Gross, J. Chem. Phys. 123, 62206 (2005).
9E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
10J. J. Goings and X. Li, J. Chem. Phys. 144, 234102 (2016).
11R. G. Fernando, M. C. Balhoff, and K. Lopata, J. Chem. Theory Comput. 11, 646
(2015).
12D. C. Yost, Y. Yao, and Y. Kanai, J. Chem. Phys. 150, 194113 (2019).
13W.-H. Liu, Z. Wang, Z.-H. Chen, J.-W. Luo, S.-S. Li, and L.-W. Wang, Wiley
Interdiscip. Rev.: Comput. Mol. Sci. 12, e1577 (2022).
14S. Tussupbayev, N. Govind, K. Lopata, and C. J. Cramer, J. Chem. Theory
Comput. 11, 1102 (2015).
15K. Lopata, B. E. Van Kuiken, M. Khalil, and N. Govind, J. Chem. Theory
Comput. 8, 3284 (2012).
16C. Shepard, D. C. Yost, and Y. Kanai, Phys. Rev. Lett. 130, 118401 (2023).
17C. Shepard and Y. Kanai, J. Phys. Chem. B 127, 10700 (2023).
18D. C. Yost, Y. Yao, and Y. Kanai, J. Phys. Chem. Lett. 11, 229 (2020).

19J. M. Pruneda, D. Sánchez-Portal, A. Arnau, J. I. Juaristi, and E. Artacho, Phys.
Rev. Lett. 99, 235501 (2007).
20A. Schleife, Y. Kanai, and A. A. Correa, Phys. Rev. B 91, 014306 (2015).
21Y. Yao, D. C. Yost, and Y. Kanai, Phys. Rev. Lett. 123, 066401 (2019).
22D. C. Yost and Y. Kanai, J. Am. Chem. Soc. 141, 5241 (2019).
23J. Mattiat and S. Luber, J. Chem. Theory Comput. 18, 5513 (2022).
24H. Hübener, M. A. Sentef, U. De Giovannini, A. F. Kemper, and A. Rubio,
Nat. Commun. 8, 13940 (2017).
25R. Zhou, D. C. Yost, and Y. Kanai, J. Phys. Chem. Lett. 12, 4496 (2021).
26R. Zhou and Y. Kanai, J. Phys. Chem. Lett. 14, 8205 (2023).
27M. S. Mrudul, N. Tancogne-Dejean, A. Rubio, and G. Dixit, npj Comput. Mater.
6, 10 (2020).
28N. Tancogne-Dejean, O. D. Mücke, F. X. Kärtner, and A. Rubio, Phys. Rev. Lett.
118, 087403 (2017).
29M. Noda, S. A. Sato, Y. Hirokawa, M. Uemoto, T. Takeuchi, S. Yamada,
A. Yamada, Y. Shinohara, M. Yamaguchi, K. Iida, I. Floss, T. Otobe, K.-M. Lee,
K. Ishimura, T. Boku, G. F. Bertsch, K. Nobusada, and K. Yabana, Comput. Phys.
Commun. 235, 356 (2019).
30J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and
D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
31Y. Takimoto, F. D. Vila, and J. J. Rehr, J. Chem. Phys. 127, 154114 (2007).
32T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein,
T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm,
S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S.
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