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A novel signal processing approach to estimate Heart Rate Variability (HRV) from wearable
magnetocardiography (MCQG) sensors in high noise environments.

Take-Home Messages

e We report a novel signal processing approach, namely BEAT ESTIMATION, that is capable of pinpointing a
patient’s heart beats and estimating heart rate variability (HRV) using in-house wearable
magnetocardiography (MCQG) sensors that detect the extremely weak magnetic fields of the heart.

o BEAT ESTIMATION is the first to render wearable MCG sensors capable of accurately estimating HRV metrics,
despite the low signal to noise ratio (SNR) levels associated with sensor operation.

e Seamless and non-contact acquisition of HRV metrics using the magnetic field of the heart can be game-
changing in assessing heart health, cardiovascular fitness, stress levels, cognitive workload, and more.

e BEAT ESTIMATION relies on correlation of a single heartbeat with the remainder signal to identify the beat
locations of MCG signals having SNR as low as -7 dB and to estimate HRV metrics using the resulting beat
locations as opposed to traditional R-peak-based approaches.

e Ultimately, BEAT ESTIMATION can be applied to other periodic, low-SNR signals, besides MCG.
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Abstract—We report BEAT ESTIMATION, a novel method used
to calculate Heart Rate Variability (HRV) from low Signal to
Noise Ratio (SNR) data (-7 dB to -4 dB in this work) acquired
via wearable magnetocardiography (MCG). MCG activity is
first collected using an in-house wearable sensor and filtered to
remove noise outside the band of interest. BEAT ESTIMATION
extracts a single heart beat from the filtered recording and
correlates it with a small number of beats individually to average
out the remaining noise. The de-noised beat is then correlated
with the full recording to identify the location of each of the
heart beats. Using these locations, HRV parameters are, finally,
calculated. Results show ~99.9% accuracy in estimating HRV
metrics using beat-to-beat intervals as opposed to traditional R-
to-R-peak intervals. The average accuracy of detecting the true
location of beats is shown to increase to 96.43% using BEAT
ESTIMATION as opposed to 59.98% using our previous method
that relied on R-peak detection. In summary, BEAT ESTIMATION
renders wearable MCG sensors capable of accurately estimating
HRY, despite the low SNR levels associated with sensor operation.
The approach can be game-changing in assessing heart health,
cardiovascular fitness, stress levels, cognitive workload, and more.

Keywords—Heart rate variability, magnetic fields, magnetocar-
diography, sensors, signal to noise ratio.

I. INTRODUCTION

AGNETOCARDIOGRAPHY (MCQG) is a non-invasive

sensing technique that detects the weak magnetic field
generated by the electrical activity of the heart [1]. Com-
pared to electrocardiography (ECG), MCG can provide three-
dimensional mapping of the heart, is highly sensitive to
tangential and vortex currents, and is robust to the presence of
biological tissues that are inherently non-magnetic [2]. In turn,
MCG has major clinical applications that include detection
of myocardial ischemia and viability, arrhythmogenic risk
assessment, cardiac source localization, and more [3].

More recently, we demonstrated the use of MCG to measure
Heart Rate Variability (HRV) [4]. Traditionally, HRV has been
measured using ECG, photoplethysmography (PPG), and radar
sensing, among others [5], [6], [7]. ECG is viewed as the
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“gold standard” but requires electrodes in contact with the
skin that make it obtrusive. PPG and radar-based approaches
are contactless, but lack accuracy and reliability [8], [9], [10].
Hence, MCG was brought forward as a non-contact (and,
therefore, much more seamless) alternative to conventional
ECG, as well as a more reliable alternative to PPG and radar-
based approaches. In this case, focus has been on the R-
peak detection of the MCG signal, with applications including,
but not limited to, cardiovascular diseases [11], [12], sleep
disorders [13], assessing heart health, stress levels, cognitive
workload, and more [14], [15].

Unfortunately, capturing MCG activity is challenging as
attributed to the low value of the heart’s magnetic fields (50-
100 pT). An overview of technologies used to sense MCG
signals is available in [16], [17]. In brief, superconductive
quantum interference devices (SQUIDs) are the most used
and accurate magnetometers [18]. Their operation is based
on the expulsion of magnetic fields when cooled to very
low temperatures (as close as absolute zero) [19], allowing
superconducting materials to conduct electrical current for
long periods while avoiding energy losses [20]. However,
SQUIDs suffer from drawbacks that limit their clinical usage,
including bulkiness, high cost [21], [22], and sophisticated
fabrication [17]. Atomic magnetometers (AMs) capture MCG
signals with sensitivity similar to that of SQUIDs while being
smaller and avoiding the need of cryogenics [23]. However,
they are required to be heated to a high temperature (150
°C), and because of the presence of alkali atoms, they can be
dangerous [24].

To overcome these limitations, we recently reported a pas-
sive, compact (in the order of centimeters), lightweight (in the
order of grams), and sensitive (as low as pT/\/Hiz) sensor
capable of detecting MCG signals in unshielded settings,
without needing any heated alkali atoms nor cryogenics [25],
[26]. The sensor is envisioned to be wearable and operates
based on Faraday’s law where voltage is induced on coils
placed upon the chest as the varying magnetic flux from the
heart is incident upon them. Its compactness and lightweight
are directly related to the sensing coils used. These coils
have been designed based on the model of a tightly winded
air core induction coil. Contrary to previous designs [27],
our coils do not require an iron core, hence resulting in
significant weight savings. In addition, optimization of the coil
length to outer diameter ratio as well as the outer diameter to
inner diameter ratio, as explained in detail in [25], result in
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TABLE I
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significant improvements in sensitivity. Recently, this sensor
was used to detect the QRS complex of the heart by averaging
the coil measurements over time, as well as to calculate HRV
by locating R-peaks in real-time [2].

However, a major limitation of our previous work [2] is that
the digital signal processing (DSP) methods applied on the
collected MCG signal cannot significantly reduce the noise
level. Notably, noise has been estimated to be more than 5
times higher than the signal. This increases the difficulty of
extracting features of interest that are buried in or distorted by
noise. In the case of HRV detection, our previous approach
leads to: (a) miss-detection of R-peaks and (b) classification
of high-amplitude noise as R-peaks, resulting in wrong cal-
culations. For example, only 3 mins out of the 5 mins MCG
recordings were identified as usable in [4].

In the literature, several techniques have been developed to
detect R-peaks as a goal of calculating HRV parameters from
heart signals that are challenging in terms of abnormalities in
the waveform. For example, the wavelet transform’s ability to
display spectral components of a signal as time elapses makes
it a relevant means of analysis [28]. The approach has achieved
good accuracy in detecting the QRS complex as well as wave
peaks (such as the P and T) in the ECG signal [29]. Neural
networks have also shown effectiveness in detecting ECG
signal waveforms and their R-peaks [30], [31]. By contrast,
referring to Table I, previous approaches for QRS detection
rely on less noisy signals and/or known signal waveforms.
Specifically, QRS detection based on wavelet transform has
utilized ECG signals with SNR higher than 20 dB [14], [32],
[33]. MCG has been considered, but only in the case of high
temperature SQUIDs employed in a shielded room, which is
known to provide signals with relatively high SNR [34], [35].
In other cases, QRS detection based on neural networks has
been demonstrated [36], [37], but this requires training on large
datasets that are currently only available for ECG and high
SNR values. The approach is also computationally expensive
and complex to implement.

To overcome these limitations in the state-of-the-art, we
propose a method called BEAT ESTIMATION that relies on

correlating a random heart beat with the full signal to point
out the exact beat locations which are otherwise buried in or
distorted by noise. The capitalization of the subject term is to
emphasize on the name of the algorithm and to help distinguish
it when utilized within the context of a sentence. The key
novelty of this work lies in the detection of HRV parameters
from wearable MCG signals that have: (a) very low SNR (-4
dB demonstrated in this work in measurements and as low
as -14 dB in simulations), and (b) an unknown waveform for
the signal itself. We demonstrate that BEAT ESTIMATION can
effectively locate the heart beats even in environments with
noise levels that are 5 times higher than the signal. We also
demonstrate the ability of BEAT ESTIMATION to accurately
capture HRV by validating it on both ECG and MCG data.
To our knowledge, this is the first signal processing method
to empower HRV detection from wearable MCG sensors that
are inherently very noisy.

The rest of the paper is organized as follows: Section II de-
scribes BEAT ESTIMATION step by step. Section III confirms
the ability of BEAT ESTIMATION’s beat-to-beat intervals to
estimate HRV metrics equivalent to those of traditional R-
to-R intervals, as validated upon ECG signals. Section IV
describes an experimental setup for the acquisition of MCG
signals on human subjects, applies BEAT ESTIMATION on
the collected MCG signals, reports HRV estimations, and
compares these estimations to the ground truth. Section V
includes a discussion of the findings. The paper concludes
in Section VI

II. BEAT ESTIMATION METHOD DESCRIPTION
A. Estimating the Average Duration of a Heart Beat

To apply BEAT ESTIMATION, an estimate of the average
duration of a heart beat, denoted as 14y, must first be
obtained. To do this, we need to refer to the auto-correlation
profile of the signal. An example is shown in Fig. 1 that plots
the auto-correlation profile of an MCG signal acquired on a
human subject (red, dashed line). For comparison purposes,
ECG activity is also recorded for the same individual and
its auto-correlation profile is super-imposed in Fig. 1 (blue,
solid line). Here, ECG and MCG signals were recorded
simultaneously by using an off-the-shelf 3-lead ECG sensor
and our in-house wearable MCG sensor [4], respectively, as
described in detail in Section IV. The y-axis in Fig. 1 (namely,
normalized power) is the normalized auto-correlation %
of a discrete-time signal x(n) at time lag 7, with the auto-
correlation R, (7) being computed as:

N—-1-1

Z z(n)x(n — 1) (1

n=0

1
N—T1

Ryr(7) =

where N is the total number of samples.

Referring to Fig. 1, the average duration of a heart beat,
Tsva, can be estimated by taking the difference of the timing
between the peak in the middle (i.e., the peak which represents
the highest correlation between the signal and itself and that of
the noise) and the following peak (estimated to represent the
correlation of the signal with itself solely, without noise).As
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Fig. 1: Auto-correlation profile of ECG (blue) and MCG (red)
signals from an example human subject recording.

would be expected, for the example of Fig. 1, both ECG and
MCG result in a secondary peak at the same location. They
achieve T4y ¢ = 0.85s (approximately 67 bpm), which is
a reasonable number for a healthy individual. Since patients
were sitting during the MCG recordings, the obtained T4y
is assumed constant throughout the recording. That is, T4y g
does not vary significantly from its calculated value and there
is no need to re-calculate it periodically. Accordingly, due to
the patient sitting and associated lack of motion, there are no
rapid changes in the heart rate; the latter is relatively constant
throughout the recording.

We note that the reason why the other peaks in the MCG
auto-correlation profile of Fig. 1 decay over time is the noise
level overcoming the level of the signal which is inherently
not perfectly periodic (the time interval between adjacent heart
beats varies over time). If the signal was perfectly periodic,
multiple sub-peaks would be visible at every heart beat loca-
tion. Indeed, Eq. 1 shows that as N increases, the value of
R, (7) decreases for a signal x that is not perfectly periodic.
That is, the obtained value of 7’4y ¢ is an approximation of the
actual value. We also note that a higher Signal-to-Noise Ratio
(SNR) is expected to yield better auto-correlation profiles.
Per the well-known Eq. 2, an increasing SNR is the result
of an increase in the signal level compared to that of the
noise. Indeed, for the ECG auto-correlation profile, the sub-
peaks do not decay as fast as those of MCG because its SNR
(SNRgcg =1 dB) is higher than that of MCG (SNRycq
= -4 dB) for this specific recording. Note that this SNR for
the ECG signal is still relatively low compared to other ECG
signals captured by more advanced sensors. We also note
that the MCG signal has negative SNR as obtained from
the autocorrelation profile, indicating that the noise power is
stronger than that of the signal. Specifically, the MCG signal
can me modeled as z[n] = s[n]+n[n] where s[n| denotes the
signal part and n[n] denotes the noise. Given the independence
assumption of noise, the MCG signal’s autocorrelation can
be written as R,[t] = Rs[t] + Ry[t], where R;[t] and R, [t]
are the signal’s and the noise’s autocorrelation, respectively.

Assuming white gaussian noise, we have R,[t] = P, if t=0
and 0 for all other t. Also, since s[n] is periodic with period
equal to L samples, we have that Ry [kL] = P, for every
integer k. Then, R,[0] = P+ P, and R,[L] = P+ 0= P;
(i.e., first period). Therefore, to calculate the signal’s SNR,
we can obtain the amplitude of the middle peak and the next
available peak in Fig. 1 and plug those values in Eq. 2. In this
work, the SNR range is -4 dB to -7dB for the MCG signals,
which is the same as that in [2].

2

Signal P
SN Rup = 101og,g (W)

NoisePower

B. Detecting Heart Beats and Generating Peaks at the Cor-
responding Locations

Algorithm 1 describes the proposed approach of detecting
heart beats in the noisy signal and generating peaks at the
corresponding locations. We note that, prior to applying Algo-
rithm 1, the MCG signal (also applicable to ECG) is band-pass
filtered in the range [6-36 Hz] to eliminate unnecessary noise
outside the band of interest [25], [38]. Once the recording is
filtered and an approximate of T4y ¢ is obtained (per Section
II-A), BEAT ESTIMATION can be applied.

Referring to Algorithm 1, let S be the recording of interest
and define B; to be the first beat of this recording with length
(duration) Lp. First, the initial beat is taken as a reference
signal. Second, this reference signal is correlated with the next
available beat, i.e., By, in search for the best estimate of the
relative shift that maximizes the correlation, Z, between the
beat estimate and the current available beat, where the beat
estimate is the initial extracted beat that is being updated after
every correlation.

Algorithm 1 Beat Finding Algorithm

B + S(l : TAvg)
Lp < numel(B1)
for i =2 to M do

By = S(TAVG * (7, — 1) +1:Tava *Z)

7 = if ft(conj(f ft(B1)). = (f FH(Bar))

[Valp, Locp] = max(abs(Z))

if Locp > LB/2 then

Loc, = Locp — Lp — 1

end if

By = (*=1) % By + () * cireshift(Ba, —Locp)
end for
Beat_FEstimate = if ft(conj(f ft(B1)). * (fft(S)))

Note that this method works under the assumption that
the variations in the estimated value of T4y are small.
The process is repeated until M beats are used, where M
denotes a small number of beats. The chosen value of M is a
trade-off between reducing the time needed for the correlation
process to finish and getting the best estimate for the heart
beat. The obtained estimate is, finally, correlated with the
full recording to generate peaks whenever a heart beat is
detected. The correlation is performed as multiplication in
the frequency domain for computational efficiency purposes.
The block diagram in Fig. 2 provides a visualization of the
algorithm’s operating principle.



IEEE JOURNAL OF ELECTROMAGNETICS, RF AND MICROWAVES IN MEDICINE AND BIOLOGY 4

By

~ | Update

p

C*)—Fo At
]

Xn
[n] J—BF

Fig. 2: Block diagram of BEAT ESTIMATION

III. ESTIMATING HRV USING BEAT ESTIMATION:
PROOF-OF-CONCEPT VALIDATION FOR ECG SIGNALS

A. Method

We first apply BEAT ESTIMATION on a a publicly available
database of ECG signals as a low-risk approach to validate
its accuracy in calculating HRV as compared to traditional
methods that rely on R-peak (i.e., instead of beat) detection.
The term traditional R-peak methods” refers to the methods
that rely on R-peaks to acquire HRV, as opposed to our work
where heartbeats are used to calculate HRV. The metrics of
interest are: (a) the average duration of the difference in dis-
tance between consecutive R-peaks (a metric known as mean
values of adjacent R-peaks, or MeanRR, in traditional HRV
calculation on ECG signals), and (b) their standard deviation (a
metric known as standard deviation of RR intervals, or SDRR,
in traditional HRV calcuation on ECG signals). To this end,
we utilize the MIT-BIH Arrhythmia Database [39] which is
known for its quality of a substantial number of annotated
ECG recordings collected under controlled conditions. The
database has been used for basic research of cardiac dynamics
at about 500 sites worldwide since 1980 [40].

A zoom-in on an example ECG recording from the MIT-
BIH Database is shown in Fig. 3. To calculate HRV, two
methods are applied: (a) BEAT ESTIMATION (with beats
detected being marked as circles in the top figure) and (b)
traditional R-peak detection (with R-peaks detected using
Matlab’s findpeaks function being marked as circles in the
bottom figure).

First, the average R-R interval for the ECG signal is
calculated using the location of the R-peaks identified in the
bottom plot of Fig. 3:

1 N-1
EX]= 5 D Xin = X, 3)
=1

where X; is the index of an R-peak.
Then, the standard deviation of the difference between R-
peaks is calculated according to:

o o

Power (mW)
o
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Time (s)

Fig. 3: Example ECG signal from the MIT-BIH Database
with circles representing R-peaks (bottom) and beats estimated
through the proposed BEAT ESTIMATION method (top).

(Xip1 — X; —E[Xip1 — Xi))2 @

where E[.] represents the mean of the R-R interval. The
abovementioned E[X] and ox are the same as MeanRR and
SDRR, which are standard HRV metrics and similar to those
calculated in [4].

In the same fashion, we calculate the average Beat-Beat
interval (E[B — B]) and its standard deviation (cp_pg) by
changing the index of an R-peak (X) to the index of a heart
beat in Eq. 3 and Eq. 4 for the corresponding top plot of Fig.
3 that uses BEAT ESTIMATION.

B. Results

Six (6) ECG recordings, each of 512 sec in duration, were
randomly selected from the MIT-BIH Arrhythima Database to
validate the ability of BEAT ESTIMATION to accurately esti-
mate HRV. Table II shows a summary of the calculated results.
Here, ECG g_ g refers to the use of BEAT ESTIMATION on the
ECG signal, while ECG g _ g, refers to the use of the traditional
R-peak detection method on the ECG signal.

The HRV % error was calculated according to the following
formula:

ECGr_-r— ECGp_B
ECGRr-r

%error =

(&)

Using Eq. (5), the % error of using the beats to calculate
the indirect HRV metrics of Eq. (3) and Eq. (4) is negligible
compared to obtaining the same metrics using R-peaks. This
proves that once BEAT ESTIMATION is applied on the signal
to identify the beats, HRV parameters can then be accurately
calculated as a next step.
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TABLE 11
COMPARISON OF BEAT ESTIMATION VS. TRADITIONAL
R-PEAK DETECTION IN CALCULATING HRV PARAMETERS
FOR ECG RECORDINGS

Recording ECGRr_Rr ECGp_pB Percentage
Parameters =\, (ms) (ms) Error (%)
Elz_x] 1 583.81 583.81 0

2 560.65 560.65 0
3 685.36 684.45 0.13
4 664.30 665.16 0.12
5 741.61 741.61 0
6 615.99 616.62 0.1
o 1 54.76 54.72 0.07
2 70.32 70.22 0.14
3 98.48 96.27 0.02
4 59.93 56.44 0.05
5 106.65 106.68 0.02
6 54.76 51.41 6.11
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Fig. 4: Performance comparison of BEAT ESTIMATION vs.
traditional R-peak detection at varying SNR levels.

IV. VALIDATION FOR MCG SIGNALS
A. Simulation Results

We carried out a simulation study with an MCG signal at
varying noise levels and calculated the detection accuracy per
Eq. 6 using: (a) the proposed BEAT ESTIMATION method and
(b) the method reported in [2]. Results are summarized in Fig.
4 showing that BEAT ESTIMATION was capable of detecting
heart beats at 100% detection accuracy for SNR as low as -14
dB whereas the method reported in [2] failed at around -10
dB. The accuracy was calculated according to the following
formula:

# of detected peaks

x 100
# of true peaks

(6)

Detection Accuracy =

where the ECG signal was used as reference to determine the
true location of R-peaks.

B. Experimental Setup

The experimental setup used to collect MCG activity on
human subjects is shown in Fig. 5. It comprises of: (a) an

array of seven (7) coils placed upon the chest to sense the
magnetic field of the heart, followed by an amplifier array to
amplify the collected signals (as described in [4], (b) a 3-lead
off-the-shelf ECG sensor used to produce a reference signal
to compare with, (c) an Analog to Digital Converter (ADC)
used to digitize the signals, and (d) a laptop used for signal
processing.

For the purposes of this study, MCG (and concurrent ECG)
data were collected on six (6) different subjects. The protocol
was approved by The Ohio State University Institutional
Review Board (protocol # 2019H0259). There were no re-
strictions on the sex of the subjects. The MCG sensor was
secured on the chest without any gap. It was fixed in place
using tape, yet it can be seamlessly embedded in a garment
in the future. Though exact measurements of the heart-to-coil
distance are not possible to acquire, all subjects had a healthy
body mass index (BMI< 30kg/m?) to ensure the MCG signal
gets picked up. In the future, advances in the MCG sensor
design will overcome this limitation. Data collection for each
subject lasted 5 min. Throughout this duration, the subjects
were sitting still on a chair.

C. Challenges with Previously Reported Methods

In our previous work [25], denoising of the MCG signal
consisted of two steps. First, the signals of each coil were
band-passed in the interval [6-36 Hz] to remove noise outside
the band of interest. Next, the outputs of the 7 coils were
averaged together to strengthen the amplitude of the obtained
signal. Averaging was done as:

L7
Mave = §ZM¢

i=1

(7

where M; is the output of a single coil.

Fig. 6 shows the resulting MCG signal (i.e., after filtering
and averaging) for one of the subjects (blue, solid line). For
comparison, the collected ECG signal is super-imposed (red,
dashed line). The equivalent MCG and ECG signals for other
subjects look similar, as are the recordings throughout the 5
min for each subject.

The sensor in hand operates based on Faraday’s law, where
the changing magnetic flux of the heart results in a time-
varying voltage across the coils. Therefore, there exists a
derivative relationship between MCG and ECG (which directly
measures the electrical activity of the heart). Per [2], even
though in a given period there will be the same number of

Fig. 5: Experimental setup used to collect MCG and ECG
activity on human subjects.
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cardiac cycles, perfect alignment of R-peaks between ECG
and MCG is not expected due to the derivative relationship.
Indeed, in Fig. 6, where we are looking directly at the R-peaks
between ECG and MCG, we do not see alignment due to the
derivative relationship.

It is evident that locating R-peaks in the averaged MCG
signal is highly problematic because of the high noise level.
That is, multiple fake peaks show up in the vicinity of the true
R-peak. Thus, calculating HRV parameters from this recording
is expected to result in a high percentage of error. Indeed, as
shown in Table III, the accuracy of detecting R-peaks for the
six (6) human subjects using this method (namely MCGgr_g
in Table III) ranges from 28.4% to 94.8% with an average of
59.98 %. The wide range of accuracies is directly related to
the recording and how noisy it is. The variation in the SNR
of the signal varies the detection accuracy as well.

To have an intuition on the noise power, the SNR is
calculated by using Eq. 2 where the values of the signal power
and noise power can be estimated from the auto-correlation
profile in Fig. 1. Here, the peak in the middle represents the
normalized power of the signal plus noise, whereas the second
largest peak represents the normalized signal power only. Even
though the noise is assumed to be White Gaussian Noise, its
auto-correlation profile is not represented by a single peak
at 7=0, but might show some smoothing effects or tapering
towards the edges due to the finite duration. Using Eq. 2, the
SNR for the averaged MCG signal was estimated to range
between -7 dB and -4 dB across all experimental trials.

D. BEAT ESTIMATION Performance

To overcome the low SNR and achieve our ultimate goal of
accurately calculating HRV parameters from wearable MCG
sensors, BEAT ESTIMATION was applied on the filtered and
averaged MCG signal. Fig. 7 shows the resultant MCG signal
following BEAT ESTIMATION (blue, solid line) as well as the
ECG signal for comparison (red, dashed line). As seen, beat
locations on the MCG signal (marked with a blue cross) can
be clearly identified despite the noise level being 3 to 5 times
stronger than the signal level. By inspecting the zoomed-in
plot of the third beat, one can realize that only a single peak
is present, unlike the one in Fig. 6 where multiple fake peaks
are present.

We remark that the peaks in Fig. 7 represent heart beats
(not R-peaks, by contrast to Fig. 6), as they are the resultant
of correlating a single heartbeat with the full recording. Such
correlation projects the MCG recording into a new domain, the
signal domain, where peaks appear whenever similarity occurs
between the extracted heartbeat and the recording. Hence, no
delay is expected between MCG and ECG in Fig. 7.

The process was repeated for all six (6) human subjects and
achieved 84.6%, 96.24%, 99%, 99.9%, 99%, and 99.9% beat
detection accuracy, where the accuracy was calculated accord-
ing to Eq.(6). By comparing the aforementioned accuracies to
those in Sec. IV-B, one can see the improvement achieved
in detecting the true location of beats with a noticeable
improvement in the average accuracy that increased from
59.98% to 96.43%.

MCG

Voltage (V)
Voltage (mV)

“60 62 64 p po 70 7 7 76
Time (s)
Fig. 6: Performance of previously reported method [2] for
HRYV calculation from MCG signals: comparison of MCG vs.
gold-standard ECG for subject 3.

Once the beat locations are identified, HRV parameters can
be calculated. Table III shows a summary of the obtained
results, where ECGp_g refers to the traditional calculation
of HRV metrics using R-peak detection on an ECG signal,
MCGR_g refers to our previously reported approach [4]
of calculating HRV metrics using R-peak detection on an
MCG signal, and MCGp g refers to the proposed BEAT
ESTIMATION method used to estimate HRV metrics from beats
detected on an MCG signal.

As seen, the HRV percentage error for M CGp_p ranges
from 0.03% to 0.63% with an average of 0.25%, where the
percentage error was calculated according to Eq. (5). The %
error for the standard deviation witnesses higher values as
it is highly sensitive to miss-detected beats; it, thus, results
in higher error values even when the beat detection accuracy
is high but not equal to 100%. As for the HRV percentage
errors for MCGRr_gr, they range from 4.04% to 38.95% with
an average of 20.61%, which is 32.2 times higher than that
obtained in MCGp p

V. DISCUSSION

Accurate acquisition of HRV using wearable, non-contact,
and seamless sensing solutions, such as the MCG sensor of
Fig. 5, brings forward unprecedented clinical opportunities for
monitoring heart health, cardiovascular fitness, stress levels,
cognitive workload, and more, in the individual’s real-world



IEEE JOURNAL OF ELECTROMAGNETICS, RF AND MICROWAVES IN MEDICINE AND BIOLOGY

TABLE II1
BEAT ESTIMATION ON MCG Vs. ECG

Gold Previous Method Proposed BEAT ESTIMATION Method
Standard
. . HRV . HRV
Parameters RecI?Irdlng ECGr_r| MCGRr_gr R:Eea.k Detecl;lon Percentage MCGp_p BAeat Detect:yon Percentage
o. (ms) (ms) ccuracy (%) Error (%) (ms) ccuracy (%) Error (%)
Elz_x] 1 854.01 960.64 44.6 12.49 859.43 84.6 0.63
2 940.47 768.19 65 18.32 936.82 96.2 0.39
3 929.45 567.42 28.4 38.95 929.71 99.0 0.03
4 745.00 775.15 94.8 4.04 746.99 99.9 0.26
5 809.53 539.11 62.5 334 810.45 99.0 0.11
6 1024.85 856.1 64.6 16.46 1025.5 99.9 0.06
o 1 56.87 586.8 —_— 931.82 340.19 —_— 498.18
2 84.06 516.46 _ 514.39 115.84 e 37.81
3 85.63 393.44 — 359.46 93.46 e 9.14
4 55.1 214.71 o 289.67 46.21 e 16.13
5 59.57 397.87 E— 567.9 59.04 e 0.84
6 64.2 465.04 - 624.36 65.67 - 2.29
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Fig. 7: Performance of the proposed BEAT ESTIMATION
method in calculating HRV metrics from MCG signals: com-
parison of MCG vs. gold-standard ECG for subject 3.

environment (i.e., outside the clinic). However, the presence
of high levels of noise associated with wearable MCG sensing
can yield false results [41], [42]. In turn, methods that have
high noise tolerance should be adopted to compensate for the
low SNR.

To decide on the number of human subjects used for valida-
tion, we relied upon previous proof-of-concept studies on QRS

detection. Referring to Table I, past studies (excluding neural
network approaches) either did not use any human subject
data or were limited to one to two human subjects. Here,
6 patients were used to conduct the experiment. Considering
the first two subjects in Table III, the average beat detection
accuracy is 90.4 %. By continuously adding subjects 3, 4, 5,
and 6, the accuracy increases to reach 98.46 %, which is very
close to the beat detection accuracy of the individual subjects.
Thus, adding more subjects at this level of accuracy will
not significantly affect the average beat detection accuracy.
Furthermore, validation done on ECG signals from the MIT-
BIH datasets showed that the accuracy saturates at around 99
% when adding more recordings. Finally, it is worth noting
that the full 5 minutes of the recordings were used, unlike [2]
where only ~3 minutes of each recording were used due to
noise. A more extensive study with more patients (including
BMI and sex considerations) will be performed in the future.
Also, respiratory movement will cause the sensor’s coil to
move, in turn generating voltage across its terminals according
to Faraday’s law. However, the respiratory frequencies are very
low compared to the frequencies of the MCG signal, implying
that they are filtered out.

In our work, we introduced BEAT ESTIMATION as a novel
method that achieves high accuracy in computing HRV metrics
from MCG recordings with low SNR. In brief, the method
identifies heart beats within noisy heart beat recordings and
these beats are subsequently used to estimate HRV metrics.
When tested on ECG signals obtained from the MIT-BIH
dataset, the percentage error between the average R-R in-
tervals (traditional approach) and beat-to-beat (B-B) intervals
(proposed approach) was very low. Validating on this dataset
provided confidence that HRV metrics can indeed be estimated
using B-B intervals instead of R-R intervals. This is an im-
portant finding for signals where R-peaks are non-obtainable
due to high noise, such as in our MCG recordings. When
tested on MCG signals obtained using wearable sensors on
human subjects, high accuracies were achieved in both beat
detection and HRV metric estimation. Quantitative results are
summarized in Table. ITII. Compared to our previously reported
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method that estimated HRV metrics from R-peak detection
within the MCG recording [2], the proposed BEAT ESTIMA-
TION approach is considerably more reliable and accurate.
Note that missing a couple of beats is sufficient to induce
high standard deviation % errors, thus explaining the results
indicated in Table III.

Today’s clinically acceptable “gold standard” for HRV en-
tails the measurements acquired through ECG. An example is
the note on the blood oxygen application measurements of the
Apple Watch Series 6 indicating that it is “not intended for
medical use [43]. In turn, our goal is to get as close to the
ECG accuracy as possible, hence the comparison vs. the ECG
performance in Table III. Notably, the HRV percentage error
we demonstrate for the mean beat-to-beat interval is as low as
0.63%. In the literature [44], standard deviation of consecutive
heart beats, has been identified as the metric associated with
the greatest amount of error. Of the five (5) PPG devices
identified in [43], only 1, with a mean+SD device-observer
difference of -1.2+15.87mmHg for systolic blood pressure,
was recommended for self/home measurements in adults [45].
As for the others, they were not suitable for outpatient clinical
trials as their reliability values compared to the reference
(ECG) was about 77%. In our work, the highest HRV per-
centage error achieved for average beat-to-beat interval was
0.63%. Of course, even though previous wearable devices have
reported errors in HRV when compared to ECG, these devices
can still be considered for non-clinical-grade applications that
leverage their utility and cost-benefit [46].

It is worth noting that BEAT ESTIMATION assumes that the
average duration of heart beat (noted as 0.85s in Section II-A)
of the patient will not deviate much from the average value
obtained from the auto-correlation profile. If significantly
shorter or longer heart beat durations occur (e.g., due to
sudden movements of the patient during the recording or other
conditions), the results for that interval might be inaccurate
as the window size of the reference beat is fixed. In the
future, this limitation can be overcome by developing a tracker
that adjusts the window size of the reference beat based on
the difference in timing between two current successive heart
beats.

VI. CONCLUSION

BEAT ESTIMATION is an effective method of estimating
HRV metrics from MCG signals acquired through wearable
sensors that exhibit noise levels higher than that of the signal.
The method detects beats, as opposed to R-peaks, and uses
the intervals between beats to subsequently calculate HRV
metrics. When tested on six (6) ECG recordings from the MIT-
BIH dataset, an accuracy of 99.9% in beat detection and a
negligible HRV percentage error was achieved, validating this
method as an accurate means of comparison between HRV
obtained through R-R and B-B. Upon applying it on MCG data
acquired on six (6) human subjects, the resultant beat detection
accuracy were 84.6%, 96.24%, 99%, 99.9%, 99%, and 99.9%,
respectively. This is a remarkable improvement as compared to
our previously reported method of R-peak detection on MCG
signals that resulted in R-peak detection accuracies of 44.6%,
65.0%, 28.4%, 94.8%, 62.5%, and 64.6%, respectively.

HRV acquired from seamless and non-contact MCG
sensors can have crucial clinical impacts in applications as
diverse as Arrhythmia detection, cardiac function assessment,
cognitive workload classification, and more. Future work
will consider motion and subjects in non-sitting positions,
necessitating the study of a variable window size for T4y ¢
(i.e., recalculation of Ty throughout the recording).
Ultimately, BEAT ESTIMATION can be applied to other
periodic, low-SNR signals, besides MCG.
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