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Abstract—Integrating distributed energy resources (DERs) into
a power system requires more advanced control mechanisms.
One of the control strategies used for Volt-VAR control (VVC)
is to manage voltage and reactive power. With the increase
in the complexity of the power system, there is a need to
develop an autonomous and robust control mechanism using deep
reinforcement learning (DRL) to enhance grid performance and
adjust voltage and reactive power settings. These adjustments
minimize losses and enhance voltage stability in the grid. In this
paper, we proposed a novel approach to develop a DRL-based
VVC framework and mitigation techniques to protect against
stealthy white-box attacks targeting the trained control policies
of the DRL model. The mitigation technique on the trained
DRL is proposed to control the voltage violations on the smart
grid to enhance the stability of the grid and minimize voltage
irregularities. Our proposed mitigation technique provided better
control policies for DRL-based VVC, successfully mitigating 100
percent of voltage violations in the smart grid environment. The
results show that the mitigation technique enhances the security
and robustness of trained DRL VVC agents.

Index Terms—adversarial attacks, distributed energy resources
(DERs), deep reinforcement learning (DRL), grid security, smart
grid, Volt-VAR Control (VVC), reinforcement learning (RL)

I. INTRODUCTION

Smart grids are enhanced by integrating an advanced dis-
tributed management system (ADMS) and control mechanisms
to optimize electricity generation, distribution, and consump-
tion. The Volt-VAR control (VVC) mechanism technique is
used to regulate voltage levels typically between 0.95 and 1.05
p-u. of voltage according to the ANSI C84.1-2020 standard
[1], ensures efficient power delivery and grid stability. Adver-
sarial attacks disrupt the normal operation of ADMS. These
adversarial attacks, such as injecting false data [2], involve
injecting false voltage or reactive power measurements into
the power system. Denial of service attacks [3] target the
communication infrastructure of VVC systems. Data valida-
tion and filtering defense mechanisms detect and mitigate the
false data injection [4], [5]. These defense mechanisms are
crucial for ensuring the reliable and secure operation of smart
grid VVC applications. The utilization of artificial intelligence
(AI) with DRL models for the enhancement of control logic
and its capacity to adjust grid conditions is becoming common
in smart grids. The adversarial attacks on DRL models [6]
manipulate control policies and cause vulnerabilities in the
model. The defense mechanisms such as Adversarial training
[7] to mitigate the adversarial attack impact. The risk of
adversarial attacks [8] is increasing because attackers exploit
vulnerabilities in the AI model, leading to unexpected results.

In the last five years, research studies have proposed
methods for centralized resilient secondary control of energy
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storage systems versus DoS attacks [9] with multi-agent rein-
forcement learning. The researchers proposed a few defense
mechanisms [10], [11] that detect and prevent adversarial
attacks in smart grids. These attacks are modeled on datasets,
and the authors propose mitigating strategies using DRL for
modeled attack datasets.

Based on the literature conducted by the author in the
field of power systems, especially in VVC, it has been
observed that the proposed strategies and techniques are
developed on input or historical data sets. However, there
seems to be a lack of mitigation techniques and strategies
for the trained DRL-based model. In light of this, we pro-
posed a clipping technique that could potentially mitigate
attacks on trained DRL-based VVC models in the smart grid.
The key contributions of our research are:

o Developed a DRL framework for VVC policies for the
distribution grid for regulating bus voltages and optimiz-
ing power distribution.

o Proposed a stealthy cyberattack technique on the trained
advantage actor-critic (A2C) DRL agent, which compro-
mises the control policies of VVC.

o Proposed mitigation techniques against stealthy cyber-
attacks to enhance grid stability and minimize voltage
irregularities in the smart grid.

o Performed impact analysis to determine the effectiveness
of the mitigation technique on the IEEE-13 bus system.

The paper is organized as follows. Section II proposed a DRL-
based VVC framework for smart grids. Section III proposes
stealthy cyberattacks and mitigation strategies for the trained
DRL-based VVC model. Section IV demonstrates and eval-
uates the mitigation technique on the trained DRL model
for the IEEE-13 bus system. Finally, Section V presents the
conclusion.

II. PROPOSED DRL-BASED VOLT-VAR CONTROL
FRAMEWORK FOR SMART GRID

In this section, we propose a DRL-based VVC using the
Markov Decision Process (MDP) modeled with the IEEE-13
circuit OpenDSS datasets and train with the A2C DRL model.

A. MDP for DRL

In a smart grid environment, the VVC manages voltage
levels and reactive power, and it is designed as an MDP.
The state space Sy in MDP is defined by voltage and reactive
power levels, while the action space A; represents the possible
adjustments to reactive power. The reward function encourages
the agent to maintain voltage levels within the desired range
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while minimizing the cost of reactive power generation. At
each discrete time step ¢, the agent takes an action during the
periods. The goal of the agent is to maximize the cumulative
reward over these actions while taking into account the control
error fey1, power 10ss fpower, and voltage violation fyoy as
shown in (1) of the reward function over a time period. The
detailed reward function is described here [12].

R(57 50, Z) = *fvolt(so) - fctrl(57 50, Z) - fpower(SO) (D
In the given scenario, s refers to all observations, whereas sg
refers to the next step. The variable 7 indicates the episode step,
which ranges from 0 to H — 1, where [ is the total number
of timesteps in the MDP. The control error f. measures
the deviation between the agent’s intended reactive power
adjustments of regulators, capacitors, and batteries and the
actual state of the smart grid system. fyower is the ratio of power
loss to total power, and f,, represents the sum of voltage
violations in all phases and nodes of the system. The reward
function stated in (1) tends to indicate better performance and
lower susceptibility to anomalies when the reward value is
closer to zero.

B. Data Preparation and Feature Extraction for DRL Model

In the data preparation and feature extraction, we simu-
late the circuit components (buses, lines, transformers, etc.)
with their respective properties. Voltage magnitudes V =
v1,Va,...,V, are collected at various bus locations using the
OpenDSS API query functions for each time step. After load-
ing the circuit topology, a graph representation is constructed
using circuit information. Each node corresponds to a bus,
and the edges represent the connections (lines, transformers)
between the buses. The state includes voltage magnitudes and
power flow information about the current grid conditions and
records voltage values over time to analyze voltage trends.

C. A2C DRL algorithm for VVC

The Advantage Actor-Critic algorithm (A2C) is a model for
decision-making in an environment that combines actor and
critic networks. The A2C algorithm uses value- and policy-
based approaches to improve exploration and exploitation
while minimizing voltage perturbations at each bus and max-
imizing overall reward. The actor-network, also known as the
policy network, selects actions based on the current state of
the environment and outputs a probability distribution over
possible actions. The action a is sampled using a Gaussian
distribution. 7(a|s; Oaeor) is the stochastic policy, where 7(als)
is the probability of taking action a given state s, and 6,
are the parameters of the policy of the actor neural network
as shown in Fig. 1. The critic network, also known as the
value network, estimates the expected cumulative reward of
being in a particular state and following the actor’s policy. It
inputs the current state and outputs a value function as V(s).
The estimated value of state s under the value function of the
critic is represented by V'(s; Ogsitic ), where 6ce represents the
parameters of the critic neural network as shown in Fig. 1.

In the A2C algorithm, The actor-network uses the critic’s
evaluation with temporal difference (TD) error to adjust the
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policy and favor actions expected to yield higher rewards. It
creates a continuous feedback loop, where the actor learns to
improve its policy based on the critic’s assessments. Improve
voltage adjustment based on current levels and estimate ex-
pected rewards while mitigating voltage violations.
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Fig. 1: Proposed DRL-based VVC framework for stealthy
attack and mitigation.

III. PROPOSED STEALTHY CYBERATTACK AND
MITIGATION STRATEGIES ON THE DRL MODEL

In this section, we propose a technique to address potential
stealthy cyberattacks on the DRL model deployed in the smart
grid. The focus is on mitigating voltage violations in the smart
grid system and improving overall reward performance. It is
needed as we know that IT security ensures data integrity
and provides secure communication between data and the
environment, but no system is fully secured, so each part has
to be secure individually. We assume that attackers pass IT
security and have access to the trained DRL model.

A. Stealthy Cyberattacks on Action Vectors in DRL Model

Stealthy cyberattacks target the actions available to the agent
in a given state of the environment. These attacks, known as
action vector attacks in DRL models, aim to manipulate or
perturb the action choices made by the DRL model without
being detectable. The goal of these attacks is to degrade the
decision-making process of the DRL agent, causing unusual
behavior on the smart grid VVC application component.

1) Stealthy white-box attack on A2C model for action vec-
tor: A stealthy white box attack is a kind of adversarial attack
in which the attacker gains access to the internal parameters
of the actor O, and critic .. networks, including neural
network weights and architecture, responsible for determining
the model action vector and estimating the value function for a
given state. It is different from a black-box attack, as the black-
box attacker has limited or no knowledge about the internal
workings of the target system. In this attack vector, the attacker
has only access to the control action vector of the DRL VVC
agent.

The paper discusses how the control policies of the DRL
VVC model are targeted by attackers through a series of
stealthy cyberattacks. The attackers intentionally modify the
control policies, which undermines the decisions made by the
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model and disrupts the functionality of the actuators in the
smart grid VVC. The attackers focus on the action vectors
of the trained DRL model rather than modifying its internal
parameters, as modifying the internal parameters affects the
behavior and performance of the overall DRL model, but we
cannot analyze the individual components (batteries, capaci-
tors, and regulators) of the smart grid environment, which are
key factors in decision making of voltage levels and reactive
power. The attacker’s primary objective is to maximize the
expected reward by perturbing the actions generated by the
A2C model to improve voltage control. Fig. 1 shows how
the IEEE-13 distribution test feeders are compromised due to
control actions by DRL VVC, which hampers the operational
functionalities of capacitors, batteries, and regulators.

max E[R(m(a+d,s))] (2

The action vector in VVC often includes adjustments to the
reactive power generation in the voltage regulators, capacitors,
and regulators of the smart grid, which aim to control voltage
levels within a desired range. The perturbations () to the
action vector cause changes to the control actions and alter
the expected reward, ultimately degrading the voltage control
as defined in (2). The expected reward R in (2) quantifies
how good or bad a state s action a pair achieves the agent’s
objectives by maximizing the expected cumulative reward over
time in the policy 7.

B. Proposed detection and mitigation techniques against
stealthy white-box attacks on trained DRL model

In this section, we propose a detection and mitigation strat-
egy to reduce VVC bus voltage violations in the trained A2C
DRL model. We first detected the attacks and incorporated
a few techniques to improve the effectiveness of voltage
violation mitigation on the trained model.

1) Detection of stealthy attack for DRL action vector: We
detect attacks by creating the detector module D as shown in
Fig. 1, which continuously monitors the control actions of the
DRL VVC agent and checks actions that violate operational
constraints or safety limits according to the ANSI standard
[1].

2) Enforcing Constraint on DRL Attack Action Vector:
In this method, the L2-norm constraint, as shown in (3), is
used to measure the quantification of the perturbation vector
0, which changes in control actions that impact voltage and
reactive power levels, and its magnitude signifies the degree
of deviation from optimal control actions. By constraining the
L2-norm( ||d]|2) of & to be less than or equal to a specified
threshold represented by ¢ as shown in (3), the constraint
ensures that control actions remain within certain predefined
limits to maintain the stability and effectiveness of VVC

operations.
16|z < € 3)

3) Mitigation with clipping action vector during inference:
To further protect VVC operations during inference, the action
vector is clipped. This technique modifies control actions
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by limiting the action vector to prevent potential stealthy
adversarial white-box attacks, as shown in (4).
a’ = clip(a + 6, Gmin, Gmax) 4)

In (4), the clipped action vector modifies the control actions
used for VVC and is denoted by a’. These clipped actions
are adjusted to ensure that they fall within predetermined safe
bounds, where anyin and amax represent the lower and upper
bounds of the action vector, respectively. apmi, is the mini-
mum allowable setting for control actions related to voltage
regulation and reactive power components of the smart grid
to prevent undervoltage. Conversely, an,y is the upper bound
of the action vector, representing the maximum allowable
setting or adjustment for control actions to avoid overvoltage.
By employing the action clipping technique using (4), the
modified control actions (a’) remain within these predefined
bounds (api, and ay,y), ensuring grid stability and safety and
preventing significant deviations in control actions.

4) Updated Objective with Clipping: The primary aim of
the attacker is to maximize the expected reward by manip-
ulating the actions of the DRL agent, as shown in (5). The
reward function evaluates the expected reward for an agent’s
specific action. The agent policy 7(clip(a + 8, amin, Gmax), S)
determines how it selects actions given the current state s and
the action is clipped to ensure that it stays within the range of
amin and amax €ven as attacker attacks the action vector.

max E[R(7(clip(a + 0, Gmin, Gmax), 5)) )

The objective function in (5) is critical to prevent attackers
from forcing the DRL agent to take actions that result in
voltage or reactive power violations. Even if an attacker tries to
manipulate the agent actions (§), capping the actions ensures
the resulting actions remain within safe operational limits.
However, this clipping differs from DRL in that action clipping
ensures that the sampled actions generated by the policy
network remain within the valid action space. It is a way to
enforce constraints on the actions taken by the agent. The
clipping adds a layer of security to the DRL system, making
it more resilient to adversarial attacks and protecting it against
actions that compromise its safety and reliability.

C. Performance of success

Performance P is calculated as the percentage change in
voltage violations after the attack and mitigation techniques
described in (6).

-V,

Viioassack
P(%) _ ( VlO0attack

10mitigation
100 6
V. > X (6)

1O0attack

IV. TESTBED-BASED IMPLEMENTATION ON
IEEE-13 Bus

In this section, we pre-processed the data and trained the
DRL A2C algorithms on the IEEE-13 Bus distribution grid,
measured the total voltage violation across the nodes in the
trained DRL model, and also performed the stealthy attack
on the trained DRL, and performed a mitigation technique to
reduce the impact of the attack.
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A. Data pre-preprocessing for DRL-based VVC

To pre-process the data for DRL, we load the IEEE-13
circuit model into the simulation and iterate through it for
each time step. We use the OpenDSS with Python API query
functions at each time step to gather voltage magnitudes
(V =wv1,v9,...,v,) at different bus locations. The agent takes
one action per hour over 24 hours, with the number of actions
equal to 24 x T, where T is the number of time steps within
each hourly period. The value of T varies depending on how
time is discretized within each hour. In our scenario, the agent
takes only one action for each time step.

B. Training DRL Algorithm for VVC

After pre-processing the data, the data are passed to the
A2C architecture. #,.; chooses actions that offer the highest
expected rewards, while 6. evaluates the value of states to
determine the quality of the actions. During the training phase,

TABLE I: Voltage violations comparison after white-box at-
tack on trained DRL VVC Components

Attack-vector Voltage Violations across IEEE-13 Node
No Attack 11
Attack on Capacitors 49
Attack on Regulators 81
Attacks on Battery 345
Attacks on All of them 840

we fine-tuned various hyperparameters, such as the learning
rate and discount factor, to ensure that the model could effec-
tively regulate the voltage and control the reactive power. This
involved carefully balancing exploration and exploitation by
configuring these hyperparameters, which enabled the model
to learn optimal control policies. Consequently, the model
maintains grid stability and reduces voltage violations across
all 13 Bus test feeder nodes. To develop the actor and critic,
we implemented a neural network architecture consisting of
two hidden layers, each with 32 neurons ([32, 32]) with a
discount factor of 0.9 and a smaller learning rate of 0.001,
which allowed for smaller steps during training.

After training the DRL A2C algorithms, we discovered that
there were only 11 V,;, instead of 472 V,,;, without trained
DRL algorithms, as demonstrated in Fig. 2a and Fig. 2b.

C. Perform a stealthy attack on trained DRL VVC algorithm

The white-box attack is performed over time (hourly) to
target the action vector of the trained DRL model, which leads
to 840 V,;, from 11 V,;, on the IEEE-13 Bus environment as
shown in Fig. 3a which has one battery and two capacitors and
three regulators as shown in Fig. 1. As shown in Fig. 3a, all
bus voltage levels dropped below the critical threshold of 0.95
pu, posing a significant risk of voltage collapse and potential
power failures and reducing system efficiency.

Furthermore, we quantified the attacked action vector of
dedicated components of the IEEE-13 Bus. Table I shows
that attacks on the action vector of the capacitors caused 49
Viio» While the action vector of the regulators caused 81 V,;,
and the battery had 345 V,,;,, with attacks on all components
leading to 840 V,;,. It gives an insight into the individual

979-8-3503-1360-4/24/$31.00 ©2024 IEEE

Total Voltage Violation: 472

Voltages(pu)

I
3
B

I
o
N

I
o
S

Voltages(pu)

o
©
®

o
©
-

o
©
kS

Time(in Hours)
(b)

Fig. 2: (a) Voltage violations without DRL over the 24-hour
time horizon. (b) Voltage violations with DRL algorithms over
the 24-hour time horizon.

components of the 13Bus grid that get affected and is also
useful for taking appropriate measures to prevent attacks and
improve the overall security of the grid. The reward function is
evaluated, as demonstrated in Fig. 4a. In this study, attacks are
executed on individual capacitors (attackl and attack2), regu-
lators (attack3, attack4, and attackS), and batteries (attack6),
as well as on the three components (attack7), using the action
vector of a trained DRL VVC agent. Fig. 4a illustrates the
impact of multiple stealth attacks on the components of the
IEEE-13 Bus, indicating the number of attacks that caused
the model to perform poorly with new data points. A reward
close to zero suggests that the model is less susceptible to
perturbations, while more negative values indicate suboptimal
system performance characterized by an increased incidence of
control errors, greater power losses, and more frequent voltage
violations.

D. Perform mitigation techniques for voltage violations

The mitigation technique is applied to restrict the ability
of the attacker to modify the action vector within a certain
range. To mitigate the voltage violations, the L2 norm is used,
as described in (3), whereby the value of € is determined
by identifying the maximum magnitude of the action vector.
The clipping parameter is also used, as illustrated in (4). The
process of selecting the best maximum and minimum clipping
boundaries, iy and @44, respectively, is iterative. In this
case, un 1S set to 10 while a4, 1s set to 20 of the action
vector of the trained DRL model. Applying clipping mitigation
strategies reduced voltage violations from 840 to 0, as shown
in Fig. 3b, where all bus voltages are now within acceptable
limits [1]. We measured the performance P as described
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Fig. 3: (a) Voltage violations after stealthy attacks over a
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Fig. 4: (a) Comparison of reward on stealthy attack on the dif-
ferent components of IEEE-13 Bus test feeder. (b) Comparison
of reward after mitigated trained DRL with trained A2C-DRL.

in (6), showing that the proposed mitigation strategies have
successfully mitigated 100% of voltage violations across bus
voltages. The cumulative reward, calculated while using the
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clipping limit as described in (4), is depicted in Fig. 4b, which
demonstrates that the mitigated trained DRL model is a better
reward than the trained DRL model, indicating that the model

is more robust and has better resiliency against attacks.
V. CONCLUSION

This paper presented a mitigation technique to protect
against adversarial attacks on the trained DRL model. First,
we develop the DRL framework to train the A2C DRL model
and perform a stealthy cyberattack on the trained A2C model.
Second, clipping mitigation techniques are used to reduce
voltage violations of the attacked model. With this approach,
we successfully mitigated voltage violations of 100%, and the
reward also performed better than the trained DRL model,
making that model more robust against stealthy adversarial
attacks and improving its accuracy. The future focus will
be developing control policies to improve computational ef-
ficiency and make a robust and interpretable DRL model that
ensures better transparency and trustworthiness.
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