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Abstract—Integrating distributed energy resources (DERs) into
a power system requires more advanced control mechanisms.
One of the control strategies used for Volt-VAR control (VVC)
is to manage voltage and reactive power. With the increase
in the complexity of the power system, there is a need to
develop an autonomous and robust control mechanism using deep
reinforcement learning (DRL) to enhance grid performance and
adjust voltage and reactive power settings. These adjustments
minimize losses and enhance voltage stability in the grid. In this
paper, we proposed a novel approach to develop a DRL-based
VVC framework and mitigation techniques to protect against
stealthy white-box attacks targeting the trained control policies
of the DRL model. The mitigation technique on the trained
DRL is proposed to control the voltage violations on the smart
grid to enhance the stability of the grid and minimize voltage
irregularities. Our proposed mitigation technique provided better
control policies for DRL-based VVC, successfully mitigating 100
percent of voltage violations in the smart grid environment. The
results show that the mitigation technique enhances the security
and robustness of trained DRL VVC agents.

Index Terms—adversarial attacks, distributed energy resources
(DERs), deep reinforcement learning (DRL), grid security, smart
grid, Volt-VAR Control (VVC), reinforcement learning (RL)

I. INTRODUCTION

Smart grids are enhanced by integrating an advanced dis-

tributed management system (ADMS) and control mechanisms

to optimize electricity generation, distribution, and consump-

tion. The Volt-VAR control (VVC) mechanism technique is

used to regulate voltage levels typically between 0.95 and 1.05

p.u. of voltage according to the ANSI C84.1-2020 standard

[1], ensures efficient power delivery and grid stability. Adver-

sarial attacks disrupt the normal operation of ADMS. These

adversarial attacks, such as injecting false data [2], involve

injecting false voltage or reactive power measurements into

the power system. Denial of service attacks [3] target the

communication infrastructure of VVC systems. Data valida-

tion and filtering defense mechanisms detect and mitigate the

false data injection [4], [5]. These defense mechanisms are

crucial for ensuring the reliable and secure operation of smart

grid VVC applications. The utilization of artificial intelligence

(AI) with DRL models for the enhancement of control logic

and its capacity to adjust grid conditions is becoming common

in smart grids. The adversarial attacks on DRL models [6]

manipulate control policies and cause vulnerabilities in the

model. The defense mechanisms such as Adversarial training

[7] to mitigate the adversarial attack impact. The risk of

adversarial attacks [8] is increasing because attackers exploit

vulnerabilities in the AI model, leading to unexpected results.

In the last five years, research studies have proposed

methods for centralized resilient secondary control of energy

storage systems versus DoS attacks [9] with multi-agent rein-

forcement learning. The researchers proposed a few defense

mechanisms [10], [11] that detect and prevent adversarial

attacks in smart grids. These attacks are modeled on datasets,

and the authors propose mitigating strategies using DRL for

modeled attack datasets.

Based on the literature conducted by the author in the

field of power systems, especially in VVC, it has been

observed that the proposed strategies and techniques are

developed on input or historical data sets. However, there

seems to be a lack of mitigation techniques and strategies

for the trained DRL-based model. In light of this, we pro-

posed a clipping technique that could potentially mitigate

attacks on trained DRL-based VVC models in the smart grid.

The key contributions of our research are:

• Developed a DRL framework for VVC policies for the

distribution grid for regulating bus voltages and optimiz-

ing power distribution.

• Proposed a stealthy cyberattack technique on the trained

advantage actor-critic (A2C) DRL agent, which compro-

mises the control policies of VVC.

• Proposed mitigation techniques against stealthy cyber-

attacks to enhance grid stability and minimize voltage

irregularities in the smart grid.

• Performed impact analysis to determine the effectiveness

of the mitigation technique on the IEEE-13 bus system.

The paper is organized as follows. Section II proposed a DRL-

based VVC framework for smart grids. Section III proposes

stealthy cyberattacks and mitigation strategies for the trained

DRL-based VVC model. Section IV demonstrates and eval-

uates the mitigation technique on the trained DRL model

for the IEEE-13 bus system. Finally, Section V presents the

conclusion.

II. PROPOSED DRL-BASED VOLT-VAR CONTROL

FRAMEWORK FOR SMART GRID

In this section, we propose a DRL-based VVC using the

Markov Decision Process (MDP) modeled with the IEEE-13

circuit OpenDSS datasets and train with the A2C DRL model.

A. MDP for DRL

In a smart grid environment, the VVC manages voltage

levels and reactive power, and it is designed as an MDP.

The state space St in MDP is defined by voltage and reactive

power levels, while the action space At represents the possible

adjustments to reactive power. The reward function encourages

the agent to maintain voltage levels within the desired range
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while minimizing the cost of reactive power generation. At

each discrete time step t, the agent takes an action during the

periods. The goal of the agent is to maximize the cumulative

reward over these actions while taking into account the control

error fctrl, power loss fpower, and voltage violation fvolt as

shown in (1) of the reward function over a time period. The

detailed reward function is described here [12].

R(s, s0, i) = −fvolt(s0)− fctrl(s, s0, i)− fpower(s0) (1)

In the given scenario, s refers to all observations, whereas s0
refers to the next step. The variable i indicates the episode step,

which ranges from 0 to H − 1, where H is the total number

of timesteps in the MDP. The control error fctrl measures

the deviation between the agent’s intended reactive power

adjustments of regulators, capacitors, and batteries and the

actual state of the smart grid system. fpower is the ratio of power

loss to total power, and fvolt represents the sum of voltage

violations in all phases and nodes of the system. The reward

function stated in (1) tends to indicate better performance and

lower susceptibility to anomalies when the reward value is

closer to zero.

B. Data Preparation and Feature Extraction for DRL Model

In the data preparation and feature extraction, we simu-

late the circuit components (buses, lines, transformers, etc.)

with their respective properties. Voltage magnitudes V =
v1, v2, . . . , vn are collected at various bus locations using the

OpenDSS API query functions for each time step. After load-

ing the circuit topology, a graph representation is constructed

using circuit information. Each node corresponds to a bus,

and the edges represent the connections (lines, transformers)

between the buses. The state includes voltage magnitudes and

power flow information about the current grid conditions and

records voltage values over time to analyze voltage trends.

C. A2C DRL algorithm for VVC

The Advantage Actor-Critic algorithm (A2C) is a model for

decision-making in an environment that combines actor and

critic networks. The A2C algorithm uses value- and policy-

based approaches to improve exploration and exploitation

while minimizing voltage perturbations at each bus and max-

imizing overall reward. The actor-network, also known as the

policy network, selects actions based on the current state of

the environment and outputs a probability distribution over

possible actions. The action a is sampled using a Gaussian

distribution. π(a|s; θactor) is the stochastic policy, where π(a|s)
is the probability of taking action a given state s, and θactor

are the parameters of the policy of the actor neural network

as shown in Fig. 1. The critic network, also known as the

value network, estimates the expected cumulative reward of

being in a particular state and following the actor’s policy. It

inputs the current state and outputs a value function as V (s).
The estimated value of state s under the value function of the

critic is represented by V (s; θcritic), where θcritic represents the

parameters of the critic neural network as shown in Fig. 1.

In the A2C algorithm, The actor-network uses the critic’s

evaluation with temporal difference (TD) error to adjust the

policy and favor actions expected to yield higher rewards. It

creates a continuous feedback loop, where the actor learns to

improve its policy based on the critic’s assessments. Improve

voltage adjustment based on current levels and estimate ex-

pected rewards while mitigating voltage violations.

Fig. 1: Proposed DRL-based VVC framework for stealthy

attack and mitigation.

III. PROPOSED STEALTHY CYBERATTACK AND

MITIGATION STRATEGIES ON THE DRL MODEL

In this section, we propose a technique to address potential

stealthy cyberattacks on the DRL model deployed in the smart

grid. The focus is on mitigating voltage violations in the smart

grid system and improving overall reward performance. It is

needed as we know that IT security ensures data integrity

and provides secure communication between data and the

environment, but no system is fully secured, so each part has

to be secure individually. We assume that attackers pass IT

security and have access to the trained DRL model.

A. Stealthy Cyberattacks on Action Vectors in DRL Model

Stealthy cyberattacks target the actions available to the agent

in a given state of the environment. These attacks, known as

action vector attacks in DRL models, aim to manipulate or

perturb the action choices made by the DRL model without

being detectable. The goal of these attacks is to degrade the

decision-making process of the DRL agent, causing unusual

behavior on the smart grid VVC application component.

1) Stealthy white-box attack on A2C model for action vec-
tor: A stealthy white box attack is a kind of adversarial attack

in which the attacker gains access to the internal parameters

of the actor θactor and critic θcritic networks, including neural

network weights and architecture, responsible for determining

the model action vector and estimating the value function for a

given state. It is different from a black-box attack, as the black-

box attacker has limited or no knowledge about the internal

workings of the target system. In this attack vector, the attacker

has only access to the control action vector of the DRL VVC

agent.

The paper discusses how the control policies of the DRL

VVC model are targeted by attackers through a series of

stealthy cyberattacks. The attackers intentionally modify the

control policies, which undermines the decisions made by the
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model and disrupts the functionality of the actuators in the

smart grid VVC. The attackers focus on the action vectors

of the trained DRL model rather than modifying its internal

parameters, as modifying the internal parameters affects the

behavior and performance of the overall DRL model, but we

cannot analyze the individual components (batteries, capaci-

tors, and regulators) of the smart grid environment, which are

key factors in decision making of voltage levels and reactive

power. The attacker’s primary objective is to maximize the

expected reward by perturbing the actions generated by the

A2C model to improve voltage control. Fig. 1 shows how

the IEEE-13 distribution test feeders are compromised due to

control actions by DRL VVC, which hampers the operational

functionalities of capacitors, batteries, and regulators.

max
δ

E[R(π(a+ δ, s))] (2)

The action vector in VVC often includes adjustments to the

reactive power generation in the voltage regulators, capacitors,

and regulators of the smart grid, which aim to control voltage

levels within a desired range. The perturbations (δ) to the

action vector cause changes to the control actions and alter

the expected reward, ultimately degrading the voltage control

as defined in (2). The expected reward R in (2) quantifies

how good or bad a state s action a pair achieves the agent’s

objectives by maximizing the expected cumulative reward over

time in the policy π.

B. Proposed detection and mitigation techniques against
stealthy white-box attacks on trained DRL model

In this section, we propose a detection and mitigation strat-

egy to reduce VVC bus voltage violations in the trained A2C

DRL model. We first detected the attacks and incorporated

a few techniques to improve the effectiveness of voltage

violation mitigation on the trained model.

1) Detection of stealthy attack for DRL action vector: We

detect attacks by creating the detector module D as shown in

Fig. 1, which continuously monitors the control actions of the

DRL VVC agent and checks actions that violate operational

constraints or safety limits according to the ANSI standard

[1].

2) Enforcing Constraint on DRL Attack Action Vector:
In this method, the L2-norm constraint, as shown in (3), is

used to measure the quantification of the perturbation vector

δ, which changes in control actions that impact voltage and

reactive power levels, and its magnitude signifies the degree

of deviation from optimal control actions. By constraining the

L2-norm( ||δ||2) of δ to be less than or equal to a specified

threshold represented by ε as shown in (3), the constraint

ensures that control actions remain within certain predefined

limits to maintain the stability and effectiveness of VVC

operations. ||δ||2 ≤ ε (3)

3) Mitigation with clipping action vector during inference:
To further protect VVC operations during inference, the action

vector is clipped. This technique modifies control actions

by limiting the action vector to prevent potential stealthy

adversarial white-box attacks, as shown in (4).

a′ = clip(a+ δ, amin, amax) (4)

In (4), the clipped action vector modifies the control actions

used for VVC and is denoted by a′. These clipped actions

are adjusted to ensure that they fall within predetermined safe

bounds, where amin and amax represent the lower and upper

bounds of the action vector, respectively. amin is the mini-

mum allowable setting for control actions related to voltage

regulation and reactive power components of the smart grid

to prevent undervoltage. Conversely, amax is the upper bound

of the action vector, representing the maximum allowable

setting or adjustment for control actions to avoid overvoltage.

By employing the action clipping technique using (4), the

modified control actions (a′) remain within these predefined

bounds (amin and amax), ensuring grid stability and safety and

preventing significant deviations in control actions.
4) Updated Objective with Clipping: The primary aim of

the attacker is to maximize the expected reward by manip-

ulating the actions of the DRL agent, as shown in (5). The

reward function evaluates the expected reward for an agent’s

specific action. The agent policy π(clip(a + δ, amin, amax), s)
determines how it selects actions given the current state s and

the action is clipped to ensure that it stays within the range of

amin and amax even as attacker attacks the action vector.

max
δ

E[R(π(clip(a+ δ, amin, amax), s)) (5)

The objective function in (5) is critical to prevent attackers

from forcing the DRL agent to take actions that result in

voltage or reactive power violations. Even if an attacker tries to

manipulate the agent actions (δ), capping the actions ensures

the resulting actions remain within safe operational limits.

However, this clipping differs from DRL in that action clipping

ensures that the sampled actions generated by the policy

network remain within the valid action space. It is a way to

enforce constraints on the actions taken by the agent. The

clipping adds a layer of security to the DRL system, making

it more resilient to adversarial attacks and protecting it against

actions that compromise its safety and reliability.

C. Performance of success

Performance P is calculated as the percentage change in

voltage violations after the attack and mitigation techniques

described in (6).

P(%) =

(
Vvioattack

- Vviomitigation

Vvioattack

)
× 100 (6)

IV. TESTBED-BASED IMPLEMENTATION ON

IEEE-13 BUS

In this section, we pre-processed the data and trained the

DRL A2C algorithms on the IEEE-13 Bus distribution grid,

measured the total voltage violation across the nodes in the

trained DRL model, and also performed the stealthy attack

on the trained DRL, and performed a mitigation technique to

reduce the impact of the attack.
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A. Data pre-preprocessing for DRL-based VVC

To pre-process the data for DRL, we load the IEEE-13

circuit model into the simulation and iterate through it for

each time step. We use the OpenDSS with Python API query

functions at each time step to gather voltage magnitudes

(V = v1, v2, . . . , vn) at different bus locations. The agent takes

one action per hour over 24 hours, with the number of actions

equal to 24 x T , where T is the number of time steps within

each hourly period. The value of T varies depending on how

time is discretized within each hour. In our scenario, the agent

takes only one action for each time step.

B. Training DRL Algorithm for VVC

After pre-processing the data, the data are passed to the

A2C architecture. θactor chooses actions that offer the highest

expected rewards, while θcritic evaluates the value of states to

determine the quality of the actions. During the training phase,

TABLE I: Voltage violations comparison after white-box at-

tack on trained DRL VVC Components

Attack-vector Voltage Violations across IEEE-13 Node
No Attack 11

Attack on Capacitors 49
Attack on Regulators 81
Attacks on Battery 345

Attacks on All of them 840

we fine-tuned various hyperparameters, such as the learning

rate and discount factor, to ensure that the model could effec-

tively regulate the voltage and control the reactive power. This

involved carefully balancing exploration and exploitation by

configuring these hyperparameters, which enabled the model

to learn optimal control policies. Consequently, the model

maintains grid stability and reduces voltage violations across

all 13 Bus test feeder nodes. To develop the actor and critic,

we implemented a neural network architecture consisting of

two hidden layers, each with 32 neurons ([32, 32]) with a

discount factor of 0.9 and a smaller learning rate of 0.001,

which allowed for smaller steps during training.

After training the DRL A2C algorithms, we discovered that

there were only 11 Vvio instead of 472 Vvio without trained

DRL algorithms, as demonstrated in Fig. 2a and Fig. 2b.

C. Perform a stealthy attack on trained DRL VVC algorithm

The white-box attack is performed over time (hourly) to

target the action vector of the trained DRL model, which leads

to 840 Vvio from 11 Vvio on the IEEE-13 Bus environment as

shown in Fig. 3a which has one battery and two capacitors and

three regulators as shown in Fig. 1. As shown in Fig. 3a, all

bus voltage levels dropped below the critical threshold of 0.95

pu, posing a significant risk of voltage collapse and potential

power failures and reducing system efficiency.

Furthermore, we quantified the attacked action vector of

dedicated components of the IEEE-13 Bus. Table I shows

that attacks on the action vector of the capacitors caused 49

Vvio, while the action vector of the regulators caused 81 Vvio

and the battery had 345 Vvio, with attacks on all components

leading to 840 Vvio. It gives an insight into the individual
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Fig. 2: (a) Voltage violations without DRL over the 24-hour

time horizon. (b) Voltage violations with DRL algorithms over

the 24-hour time horizon.

components of the 13Bus grid that get affected and is also

useful for taking appropriate measures to prevent attacks and

improve the overall security of the grid. The reward function is

evaluated, as demonstrated in Fig. 4a. In this study, attacks are

executed on individual capacitors (attack1 and attack2), regu-

lators (attack3, attack4, and attack5), and batteries (attack6),

as well as on the three components (attack7), using the action

vector of a trained DRL VVC agent. Fig. 4a illustrates the

impact of multiple stealth attacks on the components of the

IEEE-13 Bus, indicating the number of attacks that caused

the model to perform poorly with new data points. A reward

close to zero suggests that the model is less susceptible to

perturbations, while more negative values indicate suboptimal

system performance characterized by an increased incidence of

control errors, greater power losses, and more frequent voltage

violations.

D. Perform mitigation techniques for voltage violations

The mitigation technique is applied to restrict the ability

of the attacker to modify the action vector within a certain

range. To mitigate the voltage violations, the L2 norm is used,

as described in (3), whereby the value of ε is determined

by identifying the maximum magnitude of the action vector.

The clipping parameter is also used, as illustrated in (4). The

process of selecting the best maximum and minimum clipping

boundaries, amin and amax, respectively, is iterative. In this

case, amin is set to 10 while amax is set to 20 of the action

vector of the trained DRL model. Applying clipping mitigation

strategies reduced voltage violations from 840 to 0, as shown

in Fig. 3b, where all bus voltages are now within acceptable

limits [1]. We measured the performance P as described
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(a)

(b)

Fig. 3: (a) Voltage violations after stealthy attacks over a

24-hour time horizon. (b) Voltage violations after mitigation

technique on the stealthy attack on the trained DRL algorithms

over a 24-hour time horizon.

(a)

(b)

Fig. 4: (a) Comparison of reward on stealthy attack on the dif-

ferent components of IEEE-13 Bus test feeder. (b) Comparison

of reward after mitigated trained DRL with trained A2C-DRL.

in (6), showing that the proposed mitigation strategies have

successfully mitigated 100% of voltage violations across bus

voltages. The cumulative reward, calculated while using the

clipping limit as described in (4), is depicted in Fig. 4b, which

demonstrates that the mitigated trained DRL model is a better

reward than the trained DRL model, indicating that the model

is more robust and has better resiliency against attacks.
V. CONCLUSION

This paper presented a mitigation technique to protect

against adversarial attacks on the trained DRL model. First,

we develop the DRL framework to train the A2C DRL model

and perform a stealthy cyberattack on the trained A2C model.

Second, clipping mitigation techniques are used to reduce

voltage violations of the attacked model. With this approach,

we successfully mitigated voltage violations of 100%, and the

reward also performed better than the trained DRL model,

making that model more robust against stealthy adversarial

attacks and improving its accuracy. The future focus will

be developing control policies to improve computational ef-

ficiency and make a robust and interpretable DRL model that

ensures better transparency and trustworthiness.
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