
HIL Testbed-based Auto Feature Extraction and
Data Generation Framework for ML/DL-based

Anomaly Detection and Classification
Aditya Akilesh Mantha, Member, IEEE,, Arif Hussain, Member, IEEE, Gelli Ravikumar, Member, IEEE,

Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, United States, 50010

Email: aditya98@iastate.edu, hussain@iastate.edu, gelli@iastate.edu

Abstract—In smart grid operations, sufficient data generation,
including events such as faults, cyberattacks, and perturbations,
is one of the key requirements for accurate Machine Learning
(ML) and Deep Learning (DL) based anomaly detection and
classification. However, the public datasets in power systems
pose data sufficiency, bias, and uncertainty challenges. Moreover,
synthetic datasets may only capture some feature vectors in
power systems and complex dynamics, resulting in sub-optimal
performance of ML/DL models. In this paper, we proposed the
Auto Feature Extraction and Data Generation (AFEDG) frame-
work for ML and DL models in smart grid applications such as
anomaly detection and classification. We developed a Python-
based Application Programming Interface (API) to automate
the extraction of feature vectors and data generation processes
by integrating virtual sensors. The API dynamically modulates
parameters and signals within the power system model, ensuring
comprehensive coverage of all event scenarios and generating
unbiased, balanced datasets. The proposed API is designed to
seamlessly integrate with power systems, exhibiting scalability
and adaptability regardless of the number of buses within the
system. We implemented the proposed AFEDG framework on
a Hardware-in-the-Loop (HIL) Cyber-Physical System (CPS)
testbed to generate large-scale real-time datasets. In our case
study, we used the Python API to generate electric fault datasets
on the modified SSN-distribution bus grid model in OPAL-RT,
integrating with RT-LAB and MATLAB.

Index Terms—feature vectors extraction, Python API, real-time
data, RT-LAB, Smart Grid.

I. INTRODUCTION

ML and DL are important in power systems applications

because they are adaptive and data-driven, enabling sophisti-

cated analysis and decision-making in dynamic and complex

scenarios. These applications include anomaly detection, clas-

sification, predicting energy demand, and optimizing energy

distribution. The accuracy, robustness, and reliability of ML

and DL models are directly related to the quality of the data

they are trained on. The readily available and utility datasets

pose unique challenges [1], particularly regarding security

and privacy. The smart grid is also exposed to cyberattacks

[2], and data breaches could lead to privacy intrusions and

even compromise the grid integrity. Several data generation

methodologies have been proposed in the last decade using

generative adversarial networks [3], [4] for smart grids. A

computationally efficient method to create data sets by con-

sidering the security aspects of the power system is proposed

in [5].

In the traditional and state-of-the-art approaches, we typi-

cally use a populated dataset as shown in Fig. 1a, which

Fig. 1. Traditional vs Proposed AFEDG for ML/DL based Applications

might not consider any logic, may contain desired features,

and may not provide all the required features for training

the ML or DL algorithm to achieve the desired objective.

Moreover, for any new data inclusion, we must generate the

new data sets and train the model repeatedly. This process

is cumbersome, ineffective, and a computational burden. So,

there is a need for a robust framework for data generation that

replicates the diverse events encountered in power systems,

from transient disturbances to longer-term system dynamics.

We tried to incorporate the required or desired feature vector

of an application into the API so that it executes the sim-

ulation and generates the data set. The data set follows the

desired feature vectors and ensures the right data set for the

required ML and DL algorithms. Also, automating the data

acquisition and generation process allows it to apply to all the

models, irrespective of the power system. To address the above

challenges, we proposed an Auto-Feature Extraction and Data

Generation (AFEDG) framework for ML and DL-based smart

grid applications by integrating Python-API with a real-time

simulator. The key contributions of our research are:

• Proposed an auto feature extraction and data generation

framework to address the need for high-quality, diverse,

and balanced data sets for ML/DL-based models in smart

grid applications using Python API.

• Developed and designed a Python-API integrated with

RT-Lab and Simulink to generate large-scale real-time

datasets using the proposed AFEDG framework.

• A detailed case study is demonstrated for various fault

events in CPS using the Monte Carlo simulation method

for a modified SSN-distribution grid system available

within the OPAL-RT environment.

979-8-3503-1360-4/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 P
ow

er
 &

 E
ne

rg
y

So
ci

et
y

In
no

va
tiv

e
Sm

ar
t G

rid
 T

ec
hn

ol
og

ie
s C

on
fe

re
nc

e
(I

SG
T)

 |
97

9-
8-

35
03

-1
36

0-
4/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
G

T5
96

92
.2

02
4.

10
45

42
02

Authorized licensed use limited to: Iowa State University. Downloaded on August 23,2024 at 13:22:57 UTC from IEEE Xplore. Restrictions apply.

II. PROPOSED AFEDG FRAMEWORK

The ML and DL models changed the operations and

control of CPS. The interaction of computational devices

and sensors allows seamless communication between cyber

components and physical processes. Due to the unpredictable

nature of events within CPS, these models must be equipped

to rapidly detect, diagnose, and respond to anomalies in real-

time. The Fig. 3 illustrates the proposed AFEDG framework

implemented on the CPS testbed. The models are loaded

into the OP5600 real-time simulator, which emulates the

behavior of the power system model via IP/TCP protocols.

The OP5600 real-time simulator is integrated with virtual

sensors and actuators. These sensors, such as Phasor Measure-

ment Units (PMUs) and Intelligence Edge Devices (IEDs),

are communicated via the IEEE-61850 protocol. Data from

PMUs converge at substation Phasor Data Concentrator (PDC)

and communicate with virtual PMUs in OPAL-RT via IEEE

C37.118 protocol.
A. Taxonomy of Feature Vectors in Cyber-Physical Systems

The power grid integrated with IEDs, Distributed Energy

Resources (DERs), and AI (Artificial Intelligence) transform

it into a sophisticated CPS. This integration brought a change

in operation, communication, and management. As a result,

the grid became more adaptive, predictive, and responsive.

The cyber and physical components in the system influence

the overall grid operation due to various events in the grid,

as shown in Table I. The ability to capture and analyze

these feature vectors is essential in understanding the system’s

behavior and maintaining its robustness and reliability. We
TABLE I

FEATURE VECTORS IN CYBER-PHYSICAL SYSTEM

Events Types Equations
Faults 1. Single line to ground

fault
2. Double line fault
3. Double line to ground
fault
4. Triple line fault
5.Triple line to ground
fault

Fault Current:
If = Vf / Zf

Where If is the fault
current
and Zf is the fault
impedance.

Cyberattacks 1. Denial of Service (DoS)
attacks
2. IT attacks
3. Malware attacks

From [6] represented as
y∗(t) = (1 + βcase) ×
y(t)
y∗(t) comprised signal
βcase is cyber attack events
y(t) represents signal of
normal condition

Perturbations 1. Small perturbations
2.Large perturbations

The small-signal stability:
δ” = [Pm - Pe -D*δ’]/M

Voltage
Fluctuations

1. Short-term voltage fluc-
tuations
2. Long-term voltage fluc-
tuations

ΔV = I*Z, where ΔV
is the voltage fluctuation,
I is the current through
the line, and Z is the
impedance of the line.

can generate comprehensive datasets encompassing a wide

range of power system feature vectors such as faults, cyber

attacks, and perturbations datasets using the proposed Python

API for automated feature extraction. These datasets enhance

the ML/DL models in smart grid applications such as anomaly

detection and classification, thereby contributing to the reliable

and efficient operation of the smart grid.

B. CPS: Actuators, Controllers, and Sensors

The computational devices are integrated into CPS for

seamless communication with physical processes. Within the

modernized power grid, actuators, controllers, and sensors

work together to balance decision-making, action execution,

and system monitoring. The proposed API provides the abil-

ity to interact with the different sensors and configure the

API to generate datasets with distinct sensor characteristics.

The sensors, such as Current Transformers (CTs), Potential

Transformers (PTs), and PMUs, provide accurate and reli-

able information. PTs and CTs are represented in a vector

V = [V1, V2, ..., Vn]
T , I = [I1, I2, ..., In]

T , where Vi, Ii refers

to the voltage and current measured at the bus ’i’ with ’i’ =

1, 2, . . . , n respectively.

C. Data Polling and Sampling rate

In CPS, each device is grounded on standard communication

protocols to exchange data. Communication protocols such

as IEEE C37.118, Modbus, DNP3, and IEC-61850 are used

standards for exchanging data with high-speed retrieval and

data granularity. In PMUs, IEEE C37.118 is used for high-

speed data transfer and to poll the data rates ranging from 10

to 60 samples per second, effectively capturing the system’s

dynamics. However, these complicated details and complex

dynamics of power systems may not be captured in synthetic

datasets. This distinction becomes more prominent in ML/DL

applications in Smart Grid. The OPAL-RT facilitates com-

munication with physical sensors using protocols like DNP3,

MODBUS, and IEC-61850. Data granularity depends on the

sampling rate and influences the accuracy and effectiveness of

system modeling, monitoring, and analysis. According to the

Nyquist-Shannon sampling theorem, the rate must be at least

twice the highest frequency to fully reconstruct the signal.

fs ≥ 2fm (1)

D. Proposed Python API for AFEDG

The proposed API is designed to improve data generation

with auto feature extraction for data-driven power systems

applications. This API automates the process of data gener-

ation and feature selection, which is integrated with virtual

sensors and other relevant data sources. The features are

selected according to the application and configured in API

to extract data with required feature vectors. The feature

extraction process at bus i involves selecting relevant data from

the virtual sensor outputs to capture the unique characteristics

of each event. The extracted features at bus i are denoted as

X
(i)
event(t)

X
(i)
event(t) = F (i)

v (V (i)(t), I(i)(t), . . .) (2)

where:

• F
(i)
v (V (i)(t), I(i)(t), . . .) is the function of voltage

V (i)(t), current I(i)(t), and other relevant variables such

as reactive power, active power, and frequency at bus i.

The API communicates with the real-time simulator through

the RT-LAB and controls the simulation parameters and

979-8-3503-1360-4/24/$31.00 ©2024 IEEE
Authorized licensed use limited to: Iowa State University. Downloaded on August 23,2024 at 13:22:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Flow diagram of Python API

outputs. Fig. 2 illustrates API’s workflow and enumerates

the sequential steps involved in API’s communication. The

power system model is loaded into the real-time simulator and

executed, during which the API retrieves a list of parameters

and signals associated with the power system model. We must

acquire control of these parameters and signals as shown in

Fig. 5 to dynamically control the feature vectors using API.

According to the application, specific parameters & signals

are accessed and configured in API are shown in Fig. 6.

The API generates the data with desired feature vectors and

retrieves the data in the required format. The API overcomes

data sufficiency, uncertainty, and biased challenges as follows:

1) Data Sufficiency: On the one hand, the Python API’s

capability to dynamically adjust and control real-time simula-

tion parameters ensures a consistent flow of comprehensive

datasets. Moreover, the controlled data generation loop is

designed to produce large-scale real-time datasets. The API en-

sures that data is continuously generated, covering all possible

scenarios and edge cases, thereby ensuring sufficiency. Also,

data sufficiency depends on the complexity of the ML/DL

model and application.

2) Uncertainty and Biased : On the other hand, uncertainty

and bias can distort simulation results, leading to incorrect

conclusions. API tackles this issue by varying certain param-

eters during the data generation phase while keeping others

fixed. The variable parameters should be selected such that

there should be a significant change from one data point to

the next data point. This ensures that the generated datasets

represent a broad spectrum of real-world conditions and

are not biased towards any particular state. This systematic

sequence of steps enables the Python API to regulate the

real-time simulator and virtual sensors effectively, generating

comprehensive, event-specific datasets.

III. TESTBED-BASED IMPLEMENTATION AND SIMULATION

In this section, we discussed the process of implementing

the proposed AFEDG framework on testbed-based hardware in

the loop (HIL) simulation to generate fault datasets. Fig. 3 de-

scribes the architecture of our co-simulation testbed consisting

of Cyber-Physical simulation components. We considered the

4-bus distribution grid model available on OPAL-RT, as shown

in Fig. 4. The power system model is implemented on the

Cyber-Physical testbed setup [7] available at the PowerCyber

lab at Iowa State University.

Fig. 3. Hardware-in-Loop simulation testbed architecture for proposed
AFEDG framework

A. Hardware Setup

1) RT-LAB: We implemented our model on RT-LAB ver-

sion 2023. 1. It is a distributed real-time platform that allows

users to test dynamical models built in MATLAB/Simulink

environment for HIL simulation.

2) ARTEMiS: It is a real-time power system solver that

provides high stability for discrete-time state-space models [8].

It facilitates efficient parallel computing of electric circuits

with multiple CPU cores.

Fig. 4. Single line diagram of modified power system model

B. Integrating Power System Model to RT-LAB using Python
API

We modified the existing 4-bus distribution grid model

available on the OPAL-RT. The power system model is

divided into the Master Subsystem (SM) and the Console

subsystem (SC). The signal communication is done across

two subsystems with the help of the opComm block. The

model has utilized the ’opElectricFault’ block to create faults

in the power system model at different locations. We isolated

’opElectricFaultSelector’ block and implemented it in the SM

subsystem to gain control over fault parameters. We used a

Python-based script to integrate MATLAB/Simulink with RT-

LAB using RT-LAB predefined libraries. Upon completing the

979-8-3503-1360-4/24/$31.00 ©2024 IEEE
Authorized licensed use limited to: Iowa State University. Downloaded on August 23,2024 at 13:22:57 UTC from IEEE Xplore. Restrictions apply.

Simulink model, we built it in RT-LAB and loaded it into

the OP-5600 real-time simulator utilizing the available target

subsystem. After successful loading, the model was executed.

We used the Monte Carlo simulation method [9] in Python

API to generate the data and control the simulation of feature

vectors in power systems. The API automates the feature

vector extraction process as shown in Fig. 6 by acquiring

control of parameters and signals within the power system

model as specified.

Fig. 5. System parameters and Signals

Fig. 6. Proposed Python API automating feature vectors

In this model, we have 770 parameters and 579 signals,

of which 12 are fixed and 14 control signals, as shown in

Fig. 5. We used the ’SetAcquisitionWrite’ function to save

data in RT-LAB and dynamically controlled it by Python

API. It provides more flexibility as users can write scripts

to set up data logging, start and stop logging at specific

times, or even perform custom processing on the data as

it’s being captured. The data was saved in a .mat file and

subsequently preprocessed in MATLAB to elucidate the nature

and characteristics of the generated data.

IV. CASE STUDY

This section demonstrates fault datasets generated using

our proposed AFEDG framework. We focused on generating

fault datasets because they are frequent anomalies and greatly

impact system parameters in the power system. We have con-

figured the API to capture the voltage and current values for

fault detection and classification. We generated the 11 faults:

single line-to-ground faults (SLG), line-to-line faults (LL),

double line-to-ground faults (LLG), triple line faults (LLL),

and triple line-to-ground faults (LLLG). We implemented

fault scenarios using the Monte Carlo simulation method [9]

controlled via a Python API. In which we controlled fault type,

fault location, fault start time, fault duration, and fault firing

angle. We have chosen fault parameters for our simulation

based on the studies presented in [10], [11], as detailed in

Table II. To better understand the datasets, we plotted time-

domain plots showcasing voltage and current variations of

generated datasets. We are collecting three-phase voltages and

currents of Bus0 and Bus1, including their respective time

stamps.

TABLE II
CONFIGURATION OF PARAMETERS FOR FAULT DATASETS SIMULATION

Parameter Configuration
Fault Type (A/B/C)G,

AB, AC, BC,
(AB/AC/BC)G,
ABC, or ABCG

Fault Resistance 0.1, 1, 5, 100
Fault Location 4 Locations
Firing Angle 30◦,45◦,90◦,135◦

Fig. 7. SLG Fault: Three-Phase (a) Voltages (b) Currents at BUS0

Fig. 8. LL Fault: Three-Phase (a) Voltages (b) Currents at BUS0

Figs. 7-10 illustrates the real-time signals generated datasets

corresponding to diverse fault scenarios within the system.

979-8-3503-1360-4/24/$31.00 ©2024 IEEE
Authorized licensed use limited to: Iowa State University. Downloaded on August 23,2024 at 13:22:57 UTC from IEEE Xplore. Restrictions apply.

These scenarios encompass the full spectrum of power sys-

tems: SLG, LL, LLG, and LLLG. The simulation parameters

are maintained across all scenarios of all faults at fault location

1 with a fault duration of 0.125 seconds, a fault firing angle

of 30 degrees, and a total simulation duration of 5 seconds. In

these figures, the fault occurs at a 10.680-second time stamp

till 10.805 seconds, maintaining 0.125 seconds as specified.

When the fault happens, there is a voltage dip to zero, as

shown in part (a) of Figs. 7-10, while there is a drastic change

in the current as shown in part (b) Figs. 7-10.

Fig. 9. LLG Fault: Three-Phase (a) Voltages (b) Currents at BUS0

Fig. 10. LLLG Fault: Three-Phase (a) Voltages (b) Currents at BUS0

V. FUTURE WORK

Our future research directions are generating datasets for

cyberattacks, perturbations, and voltage fluctuations using the

proposed framework. Further, we aim to evaluate and validate

the performance of ML/DL models using datasets generated

by our framework for various grid models.

VI. CONCLUSION

The paper presented a comprehensive auto feature extraction

and data generation framework for smart grid ML and DL-

based anomaly detection and classification. We have integrated

the proposed Python API with RT-LAB and Simulink to

generate large-scale and real-time event-driven data sets. Using

the proposed Python API, we controlled the feature vectors and

virtual sensors to accurately capture the complex dynamics of

various power system events. The dynamic modeling of system

parameters by API generates sufficient, unbiased, balanced

large-scale datasets for machine learning and deep learning

models. We generated 704 fault datasets using the Monte

Carlo simulation method with combinations of simulation

parameters shown in Table. II. Further, API was compatible

with any IEEE power system model, regardless of the number

of buses. Overall, the successful validation of the AFEDG

provides a robust framework for large-scale event-driven data

generation in smart grid applications.

ACKNOWLEDGMENT

This research is funded partly by US NSF Grant # CNS

2105269, US DOE CESER Grant DE-CR000016, and Iowa

Energy Center Grant #21-IEC-009.

REFERENCES

[1] N. Kato, B. Mao, F. Tang, Y. Kawamoto, and J. Liu, “Ten challenges
in advancing machine learning technologies toward 6g,” IEEE Wireless
Communications, vol. 27, no. 3, pp. 96–103, 2020.

[2] G. Ravikumar, B. Hyder, and M. Govindarasu, “Next-generation cps
testbed-based grid exercise - synthetic grid, attack, and defense model-
ing,” in 2020 Resilience Week (RWS), 2020, pp. 92–98.

[3] M. N. Fekri, A. M. Ghosh, and K. Grolinger, “Generating energy
data for machine learning with recurrent generative adversarial
networks,” Energies, vol. 13, no. 1, 2020. [Online]. Available:
https://www.mdpi.com/1996-1073/13/1/130

[4] C. Zhang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Genera-
tive adversarial network for synthetic time series data generation in smart
grids,” in 2018 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGrid-
Comm), 2018, pp. 1–6.

[5] A. Venzke, D. K. Molzahn, and S. Chatzivasileiadis, “Efficient creation
of datasets for data-driven power system applications,” Electric Power
Systems Research, vol. 190, p. 106614, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378779620304181

[6] G. Ravikumar and M. Govindarasu, “Anomaly detection and mitigation
for wide-area damping control using machine learning,” IEEE Transac-
tions on Smart Grid, pp. 1–1, 2020.

[7] G. Ravikumar, B. Hyder, and M. Govindarasu, “Efficient modeling of hil
multi-grid system for scalability concurrency in cps security testbed,”
in 2019 North American Power Symposium (NAPS), 2019, pp. 1–6.

[8] C. Dufour, J. Mahseredjian, and J. Belanger, “A combined state-space
nodal method for the simulation of power system transients,” in 2011
IEEE Power and Energy Society General Meeting, 2011, pp. 1–1.

[9] J.-N. Paquin, J. Belanger, L. A. Snider, C. Pirolli, and W. Li, “Monte-
carlo study on a large-scale power system model in real-time using
emegasim,” in 2009 IEEE Energy Conversion Congress and Exposition,
2009, pp. 3194–3202.

[10] J. J. Q. Yu, Y. Hou, A. Y. S. Lam, and V. O. K. Li, “Intelligent
fault detection scheme for microgrids with wavelet-based deep neural
networks,” IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 1694–
1703, 2019.

[11] A. Hussain, C.-H. Kim, and S. Admasie, “An intelligent islanding detec-
tion of distribution networks with synchronous machine dg using ensem-
ble learning and canonical methods,” IET Generation, Transmission &
Distribution, vol. 15, no. 23, pp. 3242–3255, 2021. [Online]. Available:
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/gtd2.12256

979-8-3503-1360-4/24/$31.00 ©2024 IEEE
Authorized licensed use limited to: Iowa State University. Downloaded on August 23,2024 at 13:22:57 UTC from IEEE Xplore. Restrictions apply.

