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Abstract—In smart grid operations, sufficient data generation,
including events such as faults, cyberattacks, and perturbations,
is one of the key requirements for accurate Machine Learning
(ML) and Deep Learning (DL) based anomaly detection and
classification. However, the public datasets in power systems
pose data sufficiency, bias, and uncertainty challenges. Moreover,
synthetic datasets may only capture some feature vectors in
power systems and complex dynamics, resulting in sub-optimal
performance of ML/DL models. In this paper, we proposed the
Auto Feature Extraction and Data Generation (AFEDG) frame-
work for ML and DL models in smart grid applications such as
anomaly detection and classification. We developed a Python-
based Application Programming Interface (API) to automate
the extraction of feature vectors and data generation processes
by integrating virtual sensors. The API dynamically modulates
parameters and signals within the power system model, ensuring
comprehensive coverage of all event scenarios and generating
unbiased, balanced datasets. The proposed API is designed to
seamlessly integrate with power systems, exhibiting scalability
and adaptability regardless of the number of buses within the
system. We implemented the proposed AFEDG framework on
a Hardware-in-the-Loop (HIL) Cyber-Physical System (CPS)
testbed to generate large-scale real-time datasets. In our case
study, we used the Python API to generate electric fault datasets
on the modified SSN-distribution bus grid model in OPAL-RT,
integrating with RT-LAB and MATLAB.

Index Terms—feature vectors extraction, Python API, real-time
data, RT-LAB, Smart Grid.

I. INTRODUCTION

ML and DL are important in power systems applications
because they are adaptive and data-driven, enabling sophisti-
cated analysis and decision-making in dynamic and complex
scenarios. These applications include anomaly detection, clas-
sification, predicting energy demand, and optimizing energy
distribution. The accuracy, robustness, and reliability of ML
and DL models are directly related to the quality of the data
they are trained on. The readily available and utility datasets
pose unique challenges [1], particularly regarding security
and privacy. The smart grid is also exposed to cyberattacks
[2], and data breaches could lead to privacy intrusions and
even compromise the grid integrity. Several data generation
methodologies have been proposed in the last decade using
generative adversarial networks [3], [4] for smart grids. A
computationally efficient method to create data sets by con-
sidering the security aspects of the power system is proposed
in [5].

In the traditional and state-of-the-art approaches, we typi-
cally use a populated dataset as shown in Fig. la, which
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Fig. 1. Traditional vs Proposed AFEDG for ML/DL based Applications
might not consider any logic, may contain desired features,
and may not provide all the required features for training
the ML or DL algorithm to achieve the desired objective.
Moreover, for any new data inclusion, we must generate the
new data sets and train the model repeatedly. This process
is cumbersome, ineffective, and a computational burden. So,
there is a need for a robust framework for data generation that
replicates the diverse events encountered in power systems,
from transient disturbances to longer-term system dynamics.
We tried to incorporate the required or desired feature vector
of an application into the API so that it executes the sim-
ulation and generates the data set. The data set follows the
desired feature vectors and ensures the right data set for the
required ML and DL algorithms. Also, automating the data
acquisition and generation process allows it to apply to all the
models, irrespective of the power system. To address the above
challenges, we proposed an Auto-Feature Extraction and Data
Generation (AFEDG) framework for ML and DL-based smart
grid applications by integrating Python-API with a real-time
simulator. The key contributions of our research are:

e Proposed an auto feature extraction and data generation
framework to address the need for high-quality, diverse,
and balanced data sets for ML/DL-based models in smart
grid applications using Python APIL.

o Developed and designed a Python-API integrated with
RT-Lab and Simulink to generate large-scale real-time
datasets using the proposed AFEDG framework.

o A detailed case study is demonstrated for various fault
events in CPS using the Monte Carlo simulation method
for a modified SSN-distribution grid system available
within the OPAL-RT environment.
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II. PROPOSED AFEDG FRAMEWORK

The ML and DL models changed the operations and
control of CPS. The interaction of computational devices
and sensors allows seamless communication between cyber
components and physical processes. Due to the unpredictable
nature of events within CPS, these models must be equipped
to rapidly detect, diagnose, and respond to anomalies in real-
time. The Fig. 3 illustrates the proposed AFEDG framework
implemented on the CPS testbed. The models are loaded
into the OP5600 real-time simulator, which emulates the
behavior of the power system model via IP/TCP protocols.
The OP5600 real-time simulator is integrated with virtual
sensors and actuators. These sensors, such as Phasor Measure-
ment Units (PMUs) and Intelligence Edge Devices (IEDs),
are communicated via the IEEE-61850 protocol. Data from
PMUs converge at substation Phasor Data Concentrator (PDC)
and communicate with virtual PMUs in OPAL-RT via IEEE
C37.118 protocol.

A. Taxonomy of Feature Vectors in Cyber-Physical Systems

The power grid integrated with IEDs, Distributed Energy
Resources (DERs), and Al (Artificial Intelligence) transform
it into a sophisticated CPS. This integration brought a change
in operation, communication, and management. As a result,
the grid became more adaptive, predictive, and responsive.
The cyber and physical components in the system influence
the overall grid operation due to various events in the grid,
as shown in Table I. The ability to capture and analyze
these feature vectors is essential in understanding the system’s
behavior and maintaining its robustness and reliability. We

TABLE I
FEATURE VECTORS IN CYBER-PHYSICAL SYSTEM

attacks
2. IT attacks
3. Malware attacks

Events Types Equations
Faults 1. Single line to ground | Fault Current:
fault If :Vf/Zf
2. Double line fault Where [; is the fault
3. Double line to ground | current
fault and Zy is the fault
4. Triple line fault impedance.
5.Triple line to ground
fault
Cyberattacks | 1. Denial of Service (DoS) | From [6] represented as

v () = (14 Bease) X
y(t)

y*(t) comprised signal
Bease 1 cyber attack events
y(t) represents signal of
normal condition

Perturbations

1. Small perturbations
2.Large perturbations

The small-signal stability:
0” = [Py, - Pe -D*§’ /M

Voltage
Fluctuations

1. Short-term voltage fluc-
tuations
2. Long-term voltage fluc-
tuations

AV = I*¥Z, where AV
is the voltage fluctuation,
I is the current through
the line, and Z is the

impedance of the line.

can generate comprehensive datasets encompassing a wide
range of power system feature vectors such as faults, cyber
attacks, and perturbations datasets using the proposed Python
API for automated feature extraction. These datasets enhance
the ML/DL models in smart grid applications such as anomaly
detection and classification, thereby contributing to the reliable
and efficient operation of the smart grid.
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B. CPS: Actuators, Controllers, and Sensors

The computational devices are integrated into CPS for
seamless communication with physical processes. Within the
modernized power grid, actuators, controllers, and sensors
work together to balance decision-making, action execution,
and system monitoring. The proposed API provides the abil-
ity to interact with the different sensors and configure the
API to generate datasets with distinct sensor characteristics.
The sensors, such as Current Transformers (CTs), Potential
Transformers (PTs), and PMUs, provide accurate and reli-
able information. PTs and CTs are represented in a vector
V=[Vi,Vo, .. Vi)T, 1= [I1, L5, ..., I,)7, where V;, I refers
to the voltage and current measured at the bus ’i’ with 1’ =
1, 2, ..., n respectively.

C. Data Polling and Sampling rate

In CPS, each device is grounded on standard communication
protocols to exchange data. Communication protocols such
as IEEE C37.118, Modbus, DNP3, and IEC-61850 are used
standards for exchanging data with high-speed retrieval and
data granularity. In PMUs, IEEE C37.118 is used for high-
speed data transfer and to poll the data rates ranging from 10
to 60 samples per second, effectively capturing the system’s
dynamics. However, these complicated details and complex
dynamics of power systems may not be captured in synthetic
datasets. This distinction becomes more prominent in ML/DL
applications in Smart Grid. The OPAL-RT facilitates com-
munication with physical sensors using protocols like DNP3,
MODBUS, and IEC-61850. Data granularity depends on the
sampling rate and influences the accuracy and effectiveness of
system modeling, monitoring, and analysis. According to the
Nyquist-Shannon sampling theorem, the rate must be at least
twice the highest frequency to fully reconstruct the signal.

Is = 2fm (1
D. Proposed Python API for AFEDG

The proposed API is designed to improve data generation
with auto feature extraction for data-driven power systems
applications. This API automates the process of data gener-
ation and feature selection, which is integrated with virtual
sensors and other relevant data sources. The features are
selected according to the application and configured in API
to extract data with required feature vectors. The feature
extraction process at bus ¢ involves selecting relevant data from
the virtual sensor outputs to capture the unique characteristics
of each event. The extracted features at bus ¢ are denoted as

X (t)
X0y = FOWVO @), 19(1),...) )

where:
o EO(V@O(#),10(t),...) is the function of voltage
V@ (t), current () (t), and other relevant variables such
as reactive power, active power, and frequency at bus 4.
The API communicates with the real-time simulator through
the RT-LAB and controls the simulation parameters and
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Fig. 2. Flow diagram of Python API

outputs. Fig. 2 illustrates API's workflow and enumerates
the sequential steps involved in API’s communication. The
power system model is loaded into the real-time simulator and
executed, during which the API retrieves a list of parameters
and signals associated with the power system model. We must
acquire control of these parameters and signals as shown in
Fig. 5 to dynamically control the feature vectors using API.
According to the application, specific parameters & signals
are accessed and configured in API are shown in Fig. 6.
The API generates the data with desired feature vectors and
retrieves the data in the required format. The API overcomes
data sufficiency, uncertainty, and biased challenges as follows:

1) Data Sufficiency: On the one hand, the Python API’s
capability to dynamically adjust and control real-time simula-
tion parameters ensures a consistent flow of comprehensive
datasets. Moreover, the controlled data generation loop is
designed to produce large-scale real-time datasets. The API en-
sures that data is continuously generated, covering all possible
scenarios and edge cases, thereby ensuring sufficiency. Also,
data sufficiency depends on the complexity of the ML/DL
model and application.

2) Uncertainty and Biased : On the other hand, uncertainty
and bias can distort simulation results, leading to incorrect
conclusions. API tackles this issue by varying certain param-
eters during the data generation phase while keeping others
fixed. The variable parameters should be selected such that
there should be a significant change from one data point to
the next data point. This ensures that the generated datasets
represent a broad spectrum of real-world conditions and
are not biased towards any particular state. This systematic
sequence of steps enables the Python API to regulate the
real-time simulator and virtual sensors effectively, generating
comprehensive, event-specific datasets.
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IIT. TESTBED-BASED IMPLEMENTATION AND SIMULATION

In this section, we discussed the process of implementing
the proposed AFEDG framework on testbed-based hardware in
the loop (HIL) simulation to generate fault datasets. Fig. 3 de-
scribes the architecture of our co-simulation testbed consisting
of Cyber-Physical simulation components. We considered the
4-bus distribution grid model available on OPAL-RT, as shown
in Fig. 4. The power system model is implemented on the
Cyber-Physical testbed setup [7] available at the PowerCyber
lab at Iowa State University.

Power System Model
\ : Power System
Model

Integration

[}

Acquire Model
e
[
Controlled Data

L—

Host PC

Generation Loop
[}
a Saving

Data Saving

Fig. 3. Hardware-in-Loop simulation testbed architecture for proposed
AFEDG framework
A. Hardware Setup

1) RT-LAB: We implemented our model on RT-LAB ver-
sion 2023. 1. It is a distributed real-time platform that allows
users to test dynamical models built in MATLAB/Simulink
environment for HIL simulation.

2) ARTEM;iS: Tt is a real-time power system solver that
provides high stability for discrete-time state-space models [8].
It facilitates efficient parallel computing of electric circuits
with multiple CPU cores.

1 BUS 0 BUS 1

FL-1

D Clrendt Breaker (CB) 5 Faull Location (FL)
@ Cenerator (G)
Transmission Line (TL) @ Laad (L)

Fig. 4. Single line diagram of modified power system model
B. Integrating Power System Model to RT-LAB using Python
API

We modified the existing 4-bus distribution grid model
available on the OPAL-RT. The power system model is
divided into the Master Subsystem (SM) and the Console
subsystem (SC). The signal communication is done across
two subsystems with the help of the opComm block. The
model has utilized the ’opElectricFault’ block to create faults
in the power system model at different locations. We isolated
‘opElectricFaultSelector’ block and implemented it in the SM
subsystem to gain control over fault parameters. We used a
Python-based script to integrate MATLAB/Simulink with RT-
LAB using RT-LAB predefined libraries. Upon completing the
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Simulink model, we built it in RT-LAB and loaded it into
the OP-5600 real-time simulator utilizing the available target
subsystem. After successful loading, the model was executed.
We used the Monte Carlo simulation method [9] in Python
API to generate the data and control the simulation of feature
vectors in power systems. The API automates the feature
vector extraction process as shown in Fig. 6 by acquiring
control of parameters and signals within the power system
model as specified.

[General] ATT_VERSION=1

[Size] nbParameters=770; nbValues=770; nbVariables=1; nbParamsVar=1:

[Parameter]

O=ssn_distributiongrid A1/SM_gnd/. . Vanable Frequency Mean value!. Ts{Scalar 1 10{5.0E-51/1/1:493:1213:26:18

1213:13

By ion/'Gain3 Gain.

T689=ssn_distributiongrid AL'SM_grid/.. ‘Model Harmonic Generator/...[Value! |Scalar| 1| LIS88 1.0°11]1:40:264:173)

[FixedSignal]
_distributiongrid_A$/SM_grd/port 10 I ksignal L0V TO
distributiongrid_A1/SM i 20112000

Il=ssn_distributiongrid_A1/SM_grid/port 1 1 1ysignal 1( 111111110

12=ssn_ distibwtiongrid ALSM gridport 112V signal 2R 1112000
[ControlSignal]
I=ssn_distributiongrid_A1/SC_Console/port1(1}signal L acquisition period|14]1/1/110

rt_time( 1] 1411|2100

distributiongnid Al

“onsole/port 1(2)

13=ssn_distnbutiongrid_A1/SC_Console/port1{13)/signal | .
14=ssn_distributi d_ALSC_Console/port1¢ 14 )isignal L Init_faul_delay] 14/1]14] 10}
[Size] nbSignals=579: nbFixedSignals=12; nbControlSignal=14

Fig. 5. System parameters and Signals
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Parameter Access
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Fig. 6. Proposed Python API automating feature vectors

In this model, we have 770 parameters and 579 signals,
of which 12 are fixed and 14 control signals, as shown in
Fig. 5. We used the ’'SetAcquisitionWrite’ function to save
data in RT-LAB and dynamically controlled it by Python
APL It provides more flexibility as users can write scripts
to set up data logging, start and stop logging at specific
times, or even perform custom processing on the data as
it’s being captured. The data was saved in a .mat file and
subsequently preprocessed in MATLAB to elucidate the nature
and characteristics of the generated data.

IV. CASE STUDY

This section demonstrates fault datasets generated using
our proposed AFEDG framework. We focused on generating
fault datasets because they are frequent anomalies and greatly
impact system parameters in the power system. We have con-
figured the API to capture the voltage and current values for
fault detection and classification. We generated the 11 faults:
single line-to-ground faults (SLG), line-to-line faults (LL),
double line-to-ground faults (LLG), triple line faults (LLL),
and triple line-to-ground faults (LLLG). We implemented
fault scenarios using the Monte Carlo simulation method [9]
controlled via a Python API. In which we controlled fault type,
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fault location, fault start time, fault duration, and fault firing
angle. We have chosen fault parameters for our simulation
based on the studies presented in [10], [11], as detailed in
Table II. To better understand the datasets, we plotted time-
domain plots showcasing voltage and current variations of
generated datasets. We are collecting three-phase voltages and
currents of BusO and Busl, including their respective time
stamps.

TABLE II
CONFIGURATION OF PARAMETERS FOR FAULT DATASETS SIMULATION
Parameter Configuration
Fault Type (A/B/C)G,
AB, AC, BC,
(AB/AC/BO)G,
ABC, or ABCG
Fault Resistance 0.1, 1, 5, 100
Fault Location 4 Locations
Firing Angle 30°,45°,90°,135°
ki - l“: T T T T ta) T T T T

| . L - 1 L . L -l i - A L
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Fig. 7. SLG Fault: Three-Phase (a) Voltages (b) Currents at BUSO
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Fig. 8. LL Fault: Three-Phase (a) Voltages (b) Currents at BUSO

Figs. 7-10 illustrates the real-time signals generated datasets
corresponding to diverse fault scenarios within the system.
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These scenarios encompass the full spectrum of power sys-
tems: SLG, LL, LLG, and LLLG. The simulation parameters
are maintained across all scenarios of all faults at fault location
1 with a fault duration of 0.125 seconds, a fault firing angle
of 30 degrees, and a total simulation duration of 5 seconds. In
these figures, the fault occurs at a 10.680-second time stamp
till 10.805 seconds, maintaining 0.125 seconds as specified.
When the fault happens, there is a voltage dip to zero, as
shown in part (a) of Figs. 7-10, while there is a drastic change
in the current as shown in part (b) Figs. 7-10.
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< 10 (a)
. :

™
T

Vaoltage (V)

ra
T

L L A 'S A L ue L L
10.68 10.7 10,72 10,74 10.76 10,78 108 10,82 1084
Time (seconds)

10,86

Current (A)

10.68 10.7 10,72 1074 1076 1078 10.8 10,82 1084
Time (seconds)

10.86

Fi

=

g. 10. LLLG Fault: Three-Phase (a) Voltages (b) Currents at BUSO

V. FUTURE WORK

Our future research directions are generating datasets for
cyberattacks, perturbations, and voltage fluctuations using the
proposed framework. Further, we aim to evaluate and validate
the performance of ML/DL models using datasets generated
by our framework for various grid models.
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VI. CONCLUSION

The paper presented a comprehensive auto feature extraction
and data generation framework for smart grid ML and DL-
based anomaly detection and classification. We have integrated
the proposed Python API with RT-LAB and Simulink to
generate large-scale and real-time event-driven data sets. Using
the proposed Python API, we controlled the feature vectors and
virtual sensors to accurately capture the complex dynamics of
various power system events. The dynamic modeling of system
parameters by API generates sufficient, unbiased, balanced
large-scale datasets for machine learning and deep learning
models. We generated 704 fault datasets using the Monte
Carlo simulation method with combinations of simulation
parameters shown in Table. II. Further, API was compatible
with any IEEE power system model, regardless of the number
of buses. Overall, the successful validation of the AFEDG
provides a robust framework for large-scale event-driven data
generation in smart grid applications.
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