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Tangent ray foliations and their associated outer billiards

Yamile Godoy, Michael Harrison and Marcos Salvai

Abstract. Let v be a unit vector field on a complete, umbilic (but not totally geo-
desic) hypersurface N in a space form; for example, on the unit sphere S 2k—1 - g2k
or on a horosphere in hyperbolic space. We give necessary and sufficient conditions
on v for the rays with initial velocities v (and —v) to foliate the exterior U of N.
We find and explore relationships among these vector fields, geodesic vector fields,
and contact structures on N. When the rays corresponding to each of v foliate U,
v induces an outer billiard map whose billiard table is U. We describe the unit vec-
tor fields on N whose associated outer billiard map is volume preserving. Also we
study a particular example in detail, namely, when N ~ R3 is a horosphere of the
four-dimensional hyperbolic space and v is the unit vector field on N obtained by
normalizing the stereographic projection of a Hopf vector field on S3. In the corre-
sponding outer billiard map we find explicit periodic orbits, unbounded orbits, and
bounded nonperiodic orbits. We conclude with several questions regarding the topol-
ogy and geometry of bifoliating vector fields and the dynamics of their associated
outer billiards.

1. Motivation

We begin with a simple observation: given one of the two unit tangent vector fields on the
unit circle S C R2, the corresponding tangent rays foliate the exterior of S' C R2. This
leads to the following question.

Question 1.1. What conditions on a unit tangent vector field on S*=' ¢ R?** guarantee
that the corresponding tangent rays foliate the exterior of S**~1?

Prototypical examples arise from great circle fibrations of S, for example, the
standard Hopf fibrations. Indeed, each great circle C can be written as the intersection
of §2k=1 with a 2-plane P¢. Since no two great circles intersect, the exterior of §2K~1
can be foliated using the corresponding collection of planes, and the exterior of C in each
such plane Pc is foliated by the rays tangent to C. In this way, Question 1.1 is related to
the study of geodesic fibrations of spheres.
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Figure 1. The outer billiard map in the plane.

Our interest in Question 1.1 also stems from the fact that skew geodesic fibrations of
Euclidean space (that is, fibrations of R” by nonparallel straight lines) can only exist for
odd n. Therefore, the tangent ray foliations we study here may be viewed as an even-
dimensional counterpart to the odd-dimensional phenomenon of skew line fibrations.

Additional motivation for Question 1.1 arises from the study of outer billiards. As sug-
gested by its name, outer billiards is played outside a smooth closed strictly convex curve
y C R2, and can be easily defined as follows: Fix one of the two unit tangent vector fields v
on y, and observe that the corresponding tangent rays foliate the exterior of y. In particu-
lar, for each point x outside of y, there exists exactly one tangent ray passing through x,
and the outer billiard map B is defined by reflecting x about the point of tangency (see
Figure 1). Originally popularized by Moser [20,21], who studied the outer billiard map as
a crude model for planetary motion, the outer billiard has since been studied in a number
of contexts, see [9,25,26,28,29].

When attempting to define outer billiards in higher-dimensional Euclidean space, one
encounters the following issue: Given a smooth closed strictly convex hypersurface N,
there are too many tangent lines passing through each point x outside of N, and so it is not
obvious how to define outer billiards with respect to N. In [27], Tabachnikov resolved this
issue in the even-dimensional Euclidean space R2*, endowed with the standard symplectic
structure w, by appealing to the characteristic line bundle & := ker(w|y) on N. This
line bundle £ has two unit sections v, and each has the property that the corresponding
tangent rays foliate the exterior of N. Thus, choosing either v or —v yields a well-defined,
invertible outer billiard map on the exterior of N; moreover, Tabachnikov proved that
this outer billiard map is a symplectomorphism with respect to w. As an example, when
N = §%~1 the characteristic lines are tangent to the great circles of the Hopf fibration.

We emphasize that the essential ingredient in the outer billiard construction is that
the tangent rays corresponding to both £v foliate the exterior of N. Thus, an additional
motivation for Question 1.1 is the construction of outer billiard systems which may exhibit
interesting dynamical properties.

2. Statement of results

Our main result not only provides a complete answer to Question 1.1, but it also applies
to the more general situation in which the ambient Euclidean space is replaced by the
(n + 1)-dimensional space form M, of constant sectional curvature «, and the role of the
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Figure 2. The exterior U, from left to right, fork = 0, « > 0, and k¥ < 0.

sphere S” C R"*! is played by a complete umbilic hypersurface N C M, which is not
totally geodesic (recall that N C M, is umbilic if all of its principal curvatures are equal).
In particular, the sectional curvature of N is constant and strictly larger than « (as a corol-
lary of the Gauss theorem, see for instance Remark 2.6 in Chapter 6 of [2]).

Specifically, we will consider Question 1.1 in the following five settings:

(1) Kk =0: My = R"*! and N is an n-dimensional round sphere.

(2) k > 0: M, is around sphere and N is a geodesic sphere which is not a great sphere;
that is, its curvature is larger than «.

(3) k < 0: M, is the (n + 1)-dimensional hyperbolic space H"*!. It is convenient to
describe the umbilics in the upper-half space model {(xo. ..., Xx,) € R**! | xo > 0}
with the metric ds? = (dx§ + -+ + dx2)/(—kx}). The umbilic hypersurfaces are
then the intersections with H"*! of hyperspheres and hyperplanes in R**1, and
there are three possibilities for NV:

(3a) N is a geodesic sphere,
(3b) N is a horosphere, which is congruent by an isometry to xo = 1,

(3c) N is congruent by an isometry to the intersection of "1 with a hyperplane
through the origin which is not orthogonal to the hyperplane x¢o = 0.

Observe that, in each case, N is diffeomorphic to a sphere or to Euclidean space.

Next, we define the exterior U of N as the connected component of M, — N into
which the opposite of the mean curvature vector field of N points, except that for « > 0,
we further restrict U to be the zone between N and its antipodal image. The exterior U in
each of the five situations is depicted in Figure 2.

Given u € TM,, we denote by y,, the unique geodesic in M, with initial velocity u,
and we write T, = oo for k <0 and T, = 7/ ./« for k > 0. Note that a unit speed geodesic
of the sphere tangent to N at p travels through U and hits —p € —N at time 7.

Definition 2.1. Let v be a smooth unit vector field on a complete umbilic hypersurface N
of M, which is not totally geodesic, and let U be the exterior of N as defined above. We
say that v:

* forward foliates U if the geodesic rays y,(p) (0, T)) are the leaves of a smooth foliation
of U,

* backward foliates U if the geodesic rays y_y(p)(0, T;) are the leaves of a smooth
foliation of U,

e bifoliates U if v both forward and backward foliates U .
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While a forward or backward foliation induces a dynamical system which may not
be time-reversible, a bifoliation induces a smooth, invertible outer billiard map on U
(see (2.1) for the definition), justifying our interest in this specific notion.

With all of the terminology introduced above, Question 1.1 admits the following gen-
eral formulation:

Question 2.2. Let U be the exterior of a complete umbilic not totally geodesic hypersur-
face N in M. What conditions on a smooth unit vector field v on N guarantee that v
bifoliates U ?

We denote by V the Levi-Civita connection on N. Observe that since v has unit length,
the image of (Vv),, is orthogonal to v(p) for every p € N. In particular, (Vv), is singular
and preserves the subspace v(p)+ C T,N.

We now provide a complete classification of bifoliating vector fields.

Theorem 2.3. Let U be the exterior of a complete umbilic not totally geodesic hypersur-
face N in My, and let v be a smooth unit vector field on N. Then the assertions below are
equivalent:

(a) The vector field v bifoliates U.

(b) For each p € N, any real eigenvalue A of the restriction of the operator (Vv), to
v(p)t C TyN satisfies A2 + k < 0.

(c) Foreach p € N and any real eigenvalue A of (Vv),, the following condition holds:
i) fork=0,A=0,
(i) fork > 0, A = 0 with algebraic multiplicity one,
(iii) forx <0, A% < —«.

Remarks. Regarding Theorem 2.3, we observe the following:

(1) Although it is written without explicit topological restrictions on N, the existence
of v implies that N is not an even-dimensional sphere.

(2) We emphasize a surprising feature of the theorem: the global condition that v bifo-
liates U is characterized by an infinitesimal condition on v, which one might expect
to only guarantee a smooth foliation locally.

(3) Looking at the proof, one can easily deduce conditions for a unit vector field on N
to forward or backward foliate the exterior.

At the beginning of Section 1, we observed that great circle fibrations of odd-dimen-
sional spheres induce bifoliating vector fields. This statement persists in the general set-
ting. A geodesic vector field on N 1is a unit vector field on N whose integral curves are
geodesics. Using the explicit criterion of Theorem 2.3, we show that geodesic vector fields
are bifoliating, but not all bifoliating vector fields are geodesic.

Theorem 2.4. Let U be the exterior of a complete umbilic not totally geodesic hypersur-
face N in M,.
(a) If a smooth unit vector field v on N is geodesic, then v is bifoliating.

(b) If n > 1, there exists a smooth bifoliating vector field on N which is not geodesic.
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The latter statement is credible for the following simple reason: for k > 0, the vector
field v tangent to the Hopf fibration on N = S2¥+1 is both bifoliating and geodesic,
but an arbitrarily small perturbation can ruin the symmetry of the integral curves while
maintaining the open condition that the restriction of the operator (Vv), to v( p)tcC T,N
has no real eigenvalues. This idea motivates the explicit examples which we provide in the
proof of Theorem 2.4.

A geodesic vector field on a Riemannian manifold M determines an oriented geodesic
foliation of M. In this language, Theorem 2.4 says that a geodesic vector field on N
determines both a geodesic foliation of N itself and a bifoliation of the exterior U, but
that some bifoliations of U arise from vector fields on N which do not determine geodesic
foliations.

Geodesic foliations of the space forms M, are of interest in their own right and have
been studied extensively. Great circle fibrations of S 3 are characterized in [6] and studied
in higher dimensions in [7, 17, 19]. Geodesic foliations of R3 and hyperbolic space H3
have been characterized in [10, 11, 14, 16,22,24]. In [4], Gluck proved that the plane field
orthogonal to a great circle fibration of S3 is a tight contact structure. The relationship
between line fibrations of R3 and (tight) contact structures was studied in [1, 15, 16]. We
show that a similar relationship exists for bifoliating vector fields.

Theorem 2.5. Let v be a smooth bifoliating unit vector field on a 3-sphere N C S*. Then
the 1-form dual to v is a contact form.

Remarks. We make several remarks to contextualize Theorem 2.5.

(1) By Theorem 2.3, every bifoliating vector field v on N C S* satisfies a certain con-
dition, namely, that (Vv), has rank 2 for all p € S3. Bifoliating vector fields on
§3 C R* do not necessarily satisfy this nondegeneracy condition; see Proposition 6.1
for an example. However, Theorem 2.5 and its proof do hold for smooth bifoliating
vector fields on §3 C R* if the condition is added as a hypothesis.

(2) Theorem 2.5 fails in higher dimensions for ¥ > 0. In [8], Gluck and Yang construct
examples of unit vector fields on S”, for odd n > 5, which determine great circle
fibrations (and thus are bifoliating by Theorem 2.4) for which the dual form is not
contact.

(3) Theorem 2.5 fails for the horosphere in hyperbolic space, since a constant vector
field is bifoliating, but the dual 1-form is not contact.

(4) We do not know if the contact structures in Theorem 2.5 are tight; see Question 9.1
for discussion.

We now turn our attention to the dynamical properties exhibited by bifoliating vec-
tor fields. A bifoliating vector field v on N induces an outer billiard map B: U — U,
defined by

(2.1 B(yo(p)(=1)) = von (@), (p.1) € N x(0,T).

See Figure 3 for a depiction in hyperbolic space.
Typically, the dynamics of billiard systems can be studied via their symplectic proper-
ties. However, the outer billiard systems induced by bifoliating vector fields are, in general,
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Figure 3. Two iterations of the outer billiard map induced by a bifoliating vector field on a horo-
sphere N, seen in the upper-half space model of hyperbolic space.
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not symplectic. It seems plausible that different techniques are necessary for a careful
study of their dynamics.

On the other hand, we study a particular example in detail, for which N ~ R3 is a
horosphere in H* and v is the unit vector field obtained by normalizing the stereographic
projection of the Hopf vector field on S3. For the associated outer billiard map we find
explicit periodic orbits, unbounded orbits, and bounded nonperiodic orbits, see Proposi-
tion 8.3.

We conclude by studying the relationship between volume-preservation of B and the
characteristic polynomials O (s) := det(s id7,y — (Vv),) of (Vv), for p € N.

Theorem 2.6. Let U be the exterior of a complete umbilic not totally geodesic n-dimen-
sional hypersurface N in My, and let v be a smooth bifoliating unit vector field on N.
Then the associated outer billiard map B: U — U preserves volume if and only if, for all
peNands e R,

Op(=s) = (=1)"Qp(s):
that is, for all p, the parity of Qp coincides with the parity of n.
Corollary 2.7. Let U be the exterior of a complete umbilic not totally geodesic n-dimen-

sional hypersurface N in M, and let B: U — U be the outer billiard map associated to
a bifoliating unit vector field v on N.

(a) If the map B preserves volume, then div v vanishes identically, that is, the flow of v
preserves the volume of N. If additionally n is even, then the restriction of (Vv),
to v(p)*t is singular forall p € N.

(b) If n = 2 (which implies that k < 0, N is diffeomorphic to R?, and its intrinsic
metric has constant Gaussian curvature k, with k < k < 0), then the following are
equivalent:

(i)  the map B preserves volume,
(i) v is orthogonal to a geodesic foliation of N,
(iii) div v vanishes identically.

If N ~ R? C H?3 is a horosphere, the above conditions are equivalent to v being
constant.
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(¢) If n = 3, then the map B preserves volume if and only if div v vanishes identi-
cally. If additionally N = S3 and v is geodesic (that is, v determines a great circle
fibration), then B preserves volume if and only if v is tangent to a Hopf fibration.

We comment that the normalization of a nowhere vanishing Killing field on N C H3
provides an example of a vector field satisfying the conditions in (b).

We would like to share the perspective of one of the referees: Since the space forms
are the Riemannian manifolds with the same local projective connection as Euclidean
space, the theorems of the paper could be written in terms of the underlying projective
connections; this should make the pseudo-Riemannian generalizations easier.

3. Preliminaries on Jacobi fields

Here we provide a brief review of Jacobi fields, which arise naturally when studying varia-
tions of geodesics, and thus play a central role in the proofs of the main theorems. A more
thorough treatment can be found in any standard Riemannian geometry text, see, e.g., [2].

Let M be a complete Riemannian manifold and let y be a complete unit speed geodesic
of M. A Jacobi field J along y is by definition a vector field along y arising via a variation
of geodesics as follows: let § > 0 and let ¢: R x (—8,8) — M be a smooth map such that
s+ ¢(s,t) is a geodesic for each ¢ € (=4, §), and ¢ (s,0) = y(s) for all s. Then

d
J(s) = 7 0qf)(s,t).

When M = M,, it is well known that Jacobi fields along a unit speed geodesic y and
orthogonal to y’ are exactly those vector fields J along y with (J,y’) = 0 satisfying the
equation

D*J

12 +xJ =0.

3.1)

If the initial conditions of J are J(0) = ay’(0) + u and %(0) = w, witha e R
and u, w orthogonal to y’(0), then

(3.2) J(t) =ay'(t) + cc@) U(t) + s () W),
where U, W are parallel vector fields along y with U(0) = u and W(0) = w,

sin(v/kt)//x ifk >0,
(3.3) sc(t)y =13t itk =0, and ¢ (1) = s5;.(1).

sinh(y/—Kt)//—K ifk <0,

Also, we set cot, = ¢, /s,. Expression (3.2) will allow us to perform most computations
without having to resort to coordinates of M, or a particular model of it.

Lemma 3.1. Let A € R. If A2 + k& > 0, then the equation c,(t) — |A|sc(t) = 0 has a
solution in the interval (0, Ty).
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Proof. The assertion follows from the fact that for k = 0, ¥ > 0 and ¥ < 0, the equation

reads |A|t = 1, cot(y/xt) = |A|/+/k and coth(y/—kt) = |A|/+/—K, respectively. ]

Lemma 3.2. Let M be a Riemannian manifold and let ¢: (—¢e, &) X (0,T) —> M be a
geodesic variation, that is, ys: (0, T) — M is a unit speed geodesic in M for all s €
(—e&, €), where ys(t) = ¢(s,t). Suppose that V is a unit vector field on M such that
V(ys(t)) = yi(t) for all s, t. Then the Jacobi field along yo associated with ¢ vanishes at
some t, € (0, T) only if it is identically zero.

Proof. We set B(s) = ¢(s,1,). We have that 0 = J(¢,) = '(0). We compute

D
— = _| — t
(0) at toas‘ s, 8s‘08t toyS()
D , D
= — to))=—1| V = VgV =0.
2|, 74 = 52| VB6) = Vaio)
Since J is the solution of a second order differential equation, J = 0, as desired. [

4. Bifoliations and the proof of Theorem 2.3

We now return to the situation in which N is a complete umbilic hypersurface of M,
which is not totally geodesic. Recall that a complete list of such pairs (M,, N) was given
at the beginning of Section 2. We denote by V and V the Levi-Civita connections of M,
and N, respectively. The Gauss formula in this case is given by

@.1) VxY =VxY + (X, Y)H, XY c¥%(N),

where H is the mean curvature vector field on N. Unless otherwise stated, geodesics are
always in M.
Now let v be a unit vector field on N. For ¢t € (0, T}), we define

Jfit N =M., fi(p)= Vv(p)(t)~

We first concentrate on the image of f;.

Let G, = Iso,(M,) be the identity component of the isometry group of M, and let
L ={g € G, | g(N) = N}, which is isomorphic to Iso,(N). When N is a sphere, there
are one or two trivial orbits of L (depending on the ambient space); otherwise, the orbits
of L are the parallel hypersurfaces to N, which are well known to be umbilic.

Lemmad.1. Foreacht € (0,Ty), the image of fy is contained in exactly one hypersurface
parallel to N.

Proof. Let p,q € N.Since N is extrinsically two-point homogeneous, there exists 4 € L
such that h(p) = g and dh, v(p) = v(q). So,

1@ = Vo)) = Van,v(p) (1) = h(yup) (1)) = h(f1(p)),

as desired. [
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Now for ¢ € (0, T), we define N, as the hypersurface parallel to N which contains
the image of f;. Since N; is embedded, the map f;: N — N; is smooth. We next compute
its differential.

Lemma 4.2. Let v be a unit vector field on N. Let p € N and x = av(p) +u € T, N,
witha € R andu 1 v(p). Then

4.2) (dft)p(x) = g5(av(p) + (cu(O)u + 5c()Vav) + sc(t)aH (p)),
where t§ denotes the parallel transport along yy(p)y between 0 and t.

Proof. Let a be a smooth curve in N with ’(0) = x. Let J be the Jacobi field along yy(p)
associated with the geodesic variation (s, ) = Yy (s)) (t). We have J(0) = x and, with
an argument similar to that in the proof of Lemma 3.2,

DJ —
W(O) = va.
So J depends only on x and we call it J,. By (3.2) and (4.1),

(4.3) Tx(t) = ay, () + ce(t) 7o (u) + 5¢(1) 1o (Vxv + aH (p)).
Then 4
(dft)p(x) = 7 Oft(Ot(S)) = Jx (1),
and the lemma follows. n

Proposition 4.3. If for each p € N, any real eigenvalue A of the restriction of the operator
(Vv), to v(p)t c T, N satisfies A2 + k < 0, then f;: N — Ny is a diffeomorphism.

Proof. We prove first that f; is a local diffeomorphism. To argue the contrapositive, sup-
pose that (df;),(x) = 0 for some x # 0. Since the three terms on the right-hand side
of (4.2) are pairwise orthogonal, we conclude that a = 0 (in particular, x = u) and
¢ (t)x + s (t)Vyv = 0. Hence,

Vv = —cot,(?) x,

that is, x € v(p)? is an eigenvector of (Vv), with eigenvalue — cot, 7. Together with the
observation that cot2(¢) + k > 0 holds for all «, this completes the argument.

Next we prove that f;: N — N; is a diffeomorphism. For N = S, the assertion is
clear. If N is a sphere different from the circle, then, by compactness, f; is a covering
map, which must be a bijection since N is simply connected.

If N is not a sphere, then ¥ < 0 and both N and N; are diffeomorphic to R”. To
see that f; is a diffeomorphism, we apply a “global inverse” result of Hadamard (see
Theorem 6.2.8 in [18] or [12]), which asserts that a proper local diffeomorphism from R”
to R” is a diffeomorphism; here proper means that the preimage of every compact set is
compact. Properness of f; follows from the facts that f; displaces each point by distance ¢
(in M,) and that N is properly embedded in M,.. Hence, f; is a diffeomorphism. ]

‘We are now prepared to prove Theorem 2.3.
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Proof of Theorem 2.3. “(a) = (b)” Let A € R and suppose there exists a nonzero tangent
vector u € v(p)t C T, N such that V,,v = Au. We consider the Jacobi vector field

d
J(@) = 7 OVu(a(s))(t),

where « is a smooth curve in N with «/(0) = u. By (4.1), we have that V,,v = ?uv, and
so J(0) = u and %(0) = Au. Using (3.2), we obtain

J(@) = (ce(t) + Asic 1)) U(1),

where U is the parallel vector field along y,(,) such that U(0) = u.

Now J is associated with the variation given by the geodesic rays of the forward folia-
tion of U, and Lemma 3.2 implies that J does not vanish for any ¢ € (0, 7). Now if A <0,
Lemma 3.1 applies and yields A2 + k <0, as desired. In case A > 0, we instead consider
the Jacobi field associated with the variation given by the geodesic rays y_, («(s))(¢) of the
backward foliation of U and proceed similarly.

“(b) = (a)” To verify that the vector field v bifoliates U, we show that Fy and F_ are
diffeomorphisms, where Fy and F_ are the restrictions to N x (0, T,) and N x (=T, 0),
respectively, of the smooth function

F:Nx(T¢,Te) > Mc, F(p,s) = Yup)(s).

We deal only with F, since the case of F_ is analogous.

The map Fy is a bijection by Proposition 4.3, since f;(N) = N; for all ¢t € (0, Ty),
and the umbilic hypersurfaces N, foliate U.

Now we check that (d F4)(p,+) is an isomorphism. By Proposition 4.3, it sends T, N x
{0} isomorphically to Tr,,)N: = (df:)p (T, N). Hence, it suffices to show that

d
dFy) 0 (0, g‘) = yzl)(p)(t) & T, (p)Ni.-

Assume otherwise, so that yl’)(p)(t) = (df;)p(x) for some x € T,N. Applying (t{)™!
to (4.2), we have

v(p) = av(p) + (ce(Ou + s (t)Vxv) + s (1)aH (p).

Now, the scalar product with v(p) yields a = 1, but the scalar product with H(p) yields
a = 0 (indeed, s, (¢)H(p) # 0, since N is not totally geodesic and s, does not vanish
on (0, T)). This is a contradiction. Consequently, (d F4 )(p,r) is an isomorphism.

Finally, the smooth vector field that gives the foliation {yy()(0,T¢) | p € N} of U is
givenby V =dF o (0,£)0 F7'.

“(b) & (c)” The equivalence of (b) and (c) follows from the following linear algebra
lemma, with 7 = (Vv), and W = v(p)*t. |

Lemma 4.4. Let T:V — V be a linear transformation whose image is contained in
the codimension one subspace W (in particular, 0 is an eigenvalue of T) and let S =
Tlw:W — W. Then S has no real eigenvalues if and only if the only real eigenvalue
of T is zero with algebraic multiplicity one.



Tangent ray foliations and their associated outer billiards 2359

Proof. The lemma is a consequence of the following two assertions:
(a) A real number A # 0 is an eigenvalue of S if and only if A is an eigenvalue of 7.

(b) The map S has eigenvalue 0 if and only if 7" has eigenvalue 0 with algebraic multi-
plicity greater than one.

Both arguments are straightforward; we only write the details of (b).

Suppose that 0 is an eigenvalue of S with eigenvector x € W. We may assume that
the image of T is equal to W, since otherwise dimker(7") > 2, and the proof is complete.
Thus, x = Ty for some y € V, hence y is a generalized eigenvector of 7' (which must
be linearly independent from x) and so the eigenvalue O of 7" has algebraic multiplicity at
least 2.

Conversely, suppose that 0 is an eigenvalue of T" with algebraic multiplicity at least 2.
Then the subspace {y € V' | T2y = 0} intersects W nontrivially. If a nonzero vector y € W
satisfies 72y = 0, then either y or T'y is a nonzero vector in ker(7"), and hence in ker(S).

|

5. Bifoliations and geodesic vector fields

Here we prove Theorem 2.4, that geodesic vector fields are bifoliating, but not all bifoli-
ating vector fields are geodesic.

Proof of Theorem 2.4. Let v be a smooth unit vector field on N C M,. To show part (a),
we assume that v is geodesic and we verify that v satisfies the criterion of Theorem 2.3 (b).

Suppose that N has constant sectional curvature k, in particular k > k. Let p € N,
let x be a unit vector in 7, N orthogonal to v(p), and suppose that Vv = Ax, with A € R.
As in the proof of “(a) = (b)” of Theorem 2.3, but considering Jacobi fields on N defined
on (0, Ty ) along geodesics in N (instead of M,.), we obtain that A2 + k < 0. Consequently,
A% 4 k <0, and so v is bifoliating by Theorem 2.3. This completes the proof of part (a).

We now prove part (b). We begin by constructing a unit vector field on the unit sphere
§2k=1 which is bifoliating in any ambient space but is not geodesic, obtained by perturb-
ing the standard Hopf fibration.

Let J:R% — R2* denote the standard almost complex structure, which we write

explicitly as J(p1..... pok) = (=p2. p1. . ... —Ppak. pak—1). We define P: R?* — R
by P(p1,..., pax) = (—pa, p3,—p2, P1,0,...,0) and the unit vector field
(J +¢P)(p)

. g2k=1 _ g2k—1 _ .
ST ST D =GR )
It is straightforward to check that for 0 < ¢ < 1, v, defines a smooth unit tangent vec-
tor field on S2~1. Moreover, vo(p) = J(p) is tangent to the standard Hopf fibration
on S2¥=1 and so by the computation in part (a), the restriction of (Vo) to vo(p)*+
has no real eigenvalues. (In fact, since the restriction is equal to the restriction of the lin-
ear map J itself, it is easy to check that the eigenvalues are £i.) Now by continuity of
the roots of the characteristic polynomials and the compactness of S, the restriction
of (Vvg), to ve(p)L has no real eigenvalues for sufficiently small & > 0, and therefore
such v, are bifoliating by Theorem 2.3.
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Observe that if a unit tangent vector field v: S?*~! — §2*¥~1 determines a great circle
fibration, then v(v(p)) = —p for all p. We show next that v, does not satisfy this condition
at p = ey if ¢ > 0. Since v, is the normalization of a linear map, it suffices to check that
(J + &P)?(ey) does not normalize to —e;. This follows from the following computation:

(J +eP)%(e1) = (J + eP)(es + ces) = —(1 + £2) e — 2¢es.

Hence, v, does not define a great circle fibration for ¢ > 0.

Note that the proof can be repeated, with an appropriate scaling, to construct an exam-
ple on a sphere of any radius. Thus, any sphere N in any ambient space admits a bifoliating
nongeodesic vector field.

It remains to consider the cases when k¥ < 0 and N is diffeomorphic to R”, n > 2.
If N has constant negative sectional curvature, by rescaling, we may suppose that N is
hyperbolic space with curvature —1 (and so k < —1). For ¢ € R, we define on N the unit
vector field

Yo

We (Yo, -+ s Yn-1) = ———ee
V' 1+ g2sin” y;

Then wy is geodesic (orthogonal to a foliation by parallel horospheres) and by the proof
of part (a), any real eigenvalue A of (Vwy)), satisfies A> < 1 < —« (actually, A> = 1). For
& > 0 sufficiently small, the eigenvalue condition is maintained but the vector field is no
longer geodesic. For a horosphere N, which is isometric to R”, a similar argument can be
made for a perturbation

(1,esin y1,0,...,0).

1 .
Ue(V15 s Vn) = —F———— > (1,esiny1,0...,0)
V' 1+ &2sin” y;
of the constant vector field u¢, since the eigenvalues of (Vuy), are zero for all p. ]

6. Contact forms and bifoliating vector fields on S

Here we show that the 1-form dual to a bifoliating vector field on a 3-sphere N C S*is a
contact form. The proof is a simple computation.

Proof of Theorem 2.5. We study the contact condition for a unit 1-form « on an ori-
ented Riemannian 3-manifold (&, g), with dual vector v. Consider & := ker(«) cooriented
with «, and consider X,Y € £. Then

anda(,X,Y)=da(X,Y)=g(Vxv,Y)—g(X, Vyv)
= g(X.(V0)TY) = g(X.(V0)Y) = g(X.(Vv)" = Vv)Y).
If « is not contact at some point p, then forall x, y € §,, g, (x, ((va)T —Vu,)y)=0.
Thus, (va)T — Vu,, restricts to the zero linear map on &,, so Vv, = (VUP)T on &,.

Therefore, Vv ¢, is symmetric and hence has real eigenvalues. This implies, by Theo-
rem 2.3 (b), that v is not bifoliating. [
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As mentioned, following the statement of Theorem 2.5, the same proof works in
ambient space R* with the additional hypothesis that (Vv), has rank 2 for all p. The
next example shows that bifoliating vector fields on S> C R* do not necessarily satisfy
this nondegeneracy condition; that is, there exists a bifoliating vector field on a 3-sphere
N C R* which does not bifoliate the exterior of N C S* and whose dual is not contact. In
particular, this vector field satisfies condition (i) of Theorem 2.3 (c), but not condition (ii).

Proposition 6.1. There exists a bifoliating unit vector field v on S* C R* such that
(Vv),ie =O0forallt € R.

Proof. We identify S3 with unit elements in the space H of quaternions, and we represent
the standard basis elements as {1, 1, j, k}. The idea is to smoothly interpolate between
a third-order bifoliating vector field near e and the standard Hopf vector field away
from e'’.

We consider Fermi coordinates centered around the unit speed geodesic y(¢) = el =
(cost,sint,0,0), defined on the whole S 3 except the great circles Cy; and Cjk determined
by span{1, i} and span{j, k}.

Let E = {(¢,r,5) € R3 | 0 < r < 7/2} and define ¢: E — S3 by

@(t,r,s) =cosre' +sinre’j = (cosrcost,cosrsint,sinr cos s, sinr sin s).

Let h: (—m/2,7/2) — R be a C* odd strictly increasing function such that z(0) =
W (0)=0and h(r) =sinr for 1 <r < /2, and let g = /1 — h2. Define the unit vector
field v on S3 by

v(p(t,r,5)) = g(r)iel” + h(r)e™ k = (—g(r)sint, g(r)cost,—h(r)sins, h(r) coss),

and v(p) =ip for p € Cy; U Cjx. Notice that v coincides with the Hopf vector field g — ig
on an open neighborhood of Cj, and so it is smooth there. Smoothness at Cy; is not
difficult to verify explicitly. Moreover, the vector field is invariant by rotations R,g(gq) =
e'?ge™1 around y and transvections T»;(g) = ei’gel® along y. Therefore, it suffices to
check the bifoliating property only when ¢t = s = 0. We compute the partial derivatives
of ¢ at points p := (0, r,0):

@t(p) =cosri, ¢r(p)=—sinrl+4cosrj and ¢@s(p) =sinrk;

these form a basis B of T,S>, where p = ¢(p). We will compute (Vv), in the basis B.
Let P:H — T,8% = p be the orthogonal projection. A straightforward computation

gives P(1) = (1, ¢, (p))¢r(p) = —sinr ¢, (p) and, similarly, P(j) = cosr ¢, (p).
We compute

%’0 v(e(t,r,0) = P(%‘OU(COSre" + sinrj))
= P(L] sie" + hrIK) = P(-g()1) = £ sinr gr(p).

We compute (V, (5)V)p and (Vo (p)v), in the same way, obtaining

(Vo, (0 V)p =

0 g'(r)ysecr 0
[(Vv)pls = | g(r)sinr 0 —h(r)cosr |,
0 W(rycscr 0
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for which the eigenvalues are 0 and +/g(r) g’(r) tanr — h(r) h'(r) cot r. Using the fact
that gg’ = —h/M’, the radicand is equal to

() R(r)

sinrcosr’

which is negative for 0 < r < 7/2.
On the other hand, a similar computation yields (Vv)o,0,0) is identically zero. There-
fore, v is bifoliating and (Vv),i = 0. |

7. Outer billiards and preservation of volume

Let U be the exterior of a complete umbilic not totally geodesic hypersurface N in M,.
Recall that if a smooth unit vector field v bifoliates U, then a smooth invertible outer
billiard map B: U — U is well defined by (2.1). Using the notation of the proof of The-
orem 2.3, we write B = F1 o g o (F_)"!, where g: N x (=T,,0) — N x (0, T;) is the
smooth function given by g(p,t) = (p, —t). The fact that B is a diffeomorphism follows
from the proof of Theorem 2.3. To prove Theorem 2.6, we compute the differential of B.

Proof of Theorem 2.6. For p € N,let h # 0 and let {u; |i = 1,...,n} be an orthonor-
mal basis of 7, N such that u; = v(p) and B = {uy,...,u,, H(p)/h} is a positively
oriented orthonormal basis of 7, M. Now, for s € (=T, T), let B be the basis of
Ty, (s) M, given by the parallel transport of B along yy () between 0 and s. Since the
parallel transport is an isometry between the corresponding tangent spaces and preserves
the orientation, the bases B; are positively oriented and orthonormal as well.

Besides, we consider the basis of T, (N x R) defined by

€, = {(ul,O),...,(un,O), (0, %‘)}

Computing, we obtain

bl
dF(p,s)(ui,0) = Jy;(s) and dFpy) (0’ 5‘) = )’1/,(,,)(5),

where Jy,; are as in (4.3). Hence, the matrix of d F(, s) with respect to the pairs of bases €
and By is

1 or_, 1
(7.1) [dF(p,s)]‘Cx,ﬂs =|sc()D c(s) Inm1 +5c($)A O0p—1 |,
Sc(s)h or_, 0

where A is the matrix of (Vv)|, (). with respect to the basis {u; |i = 2,...,n}, b is the
column vector whose entries are the coordinates of V,(,)v with respect to the same basis,
0y, is the null column vector, and I, denotes the identity m x m matrix.

Now, we fix ¢ € U and let p € N and ¢ € (0, T}) such that F_(p, —t) = q. We want
to compute the determinant of [dB,]s_,,8,. We observe that

dBy = (dF+)(ps) © (dg)(p—s) © (AF")q.
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An easy computation shows that det[(dg)(p,—s)]e_,;e, = —1. Using (7.1), for 0 # s €
(=T, Ty), we obtain

det[d F(p s)le,,8, = si(s) hdet(ce(s) In—1 + sc(s)A)
= h(sc(s))" det(cot, (s) I,—1 + A).

Calling P the characteristic polynomial of (Vv)|,(p)L, since cot,(—s) = — cot,(s), the
above equality can be written as

det[d F(p,5)le,,8, = h(sic(5))" P(cotc(—s)).

Using that (dF=')y = ((dF-)(p,—r))"" and s, is an odd function, we obtain

[dBgls_,,8, = (1) P(cote(~1))/ P(cote (1)),

where the expression is well defined since v is a bifoliating vector field of N (see part (c) of
Theorem 2.3). Besides, the image of (Vv),, is contained in v( p)L. Thus, the characteristic
polynomial Q, of (Vv), satisfies Q,(s) = sP(s) for all s. In consequence, since the
image of cot, is open in the set of real numbers, B preserves the volume form if and only

it Qp(s) = (=1)"Qp(—s) for all s. |

Proof of Corollary 2.7. For all parts of Corollary 2.7, it is useful to write
(712)  Qp(s) = 5" —trace(Vv), "' + cpa(p)s" > + -+ c2(p)s® + c1(p)ss,

where the term co(p) = (—1)" det(Vv), vanishes since v is unit.

To verify part (a), we apply Theorem 2.6 to equation (7.2). In particular, if B preserves
volume, the parity of each 0, (s) matches that of n. Thus, the coefficient of s” !, namely
trace(Vv), vanishes for all p, and so div(v) vanishes identically.

If additionally # is even, then so is each O, hence the linear coefficient c; (p) is iden-
tically 0. Therefore, 0 is eigenvalue of (Vv), with algebraic multiplicity 2, so by item (b)
in the proof of Lemma 4.4, the restriction of (Vv), to v( p)* has a zero eigenvalue.

For part (b), let n = 2, so that v(p)* C T, N has dimension one forall p € N.

“(i) = (ii)” Let u be a unit vector field on N such that u(p) L v(p) forall p € N.
Since u is unit, (V,,u,u) = 0. Since B is volume-preserving, V,v = 0 by part (a). There-
fore, we have

(Vyu,u) =0 and (Vyu,v) = u{u,v)— (u, Vyv) =0.

Since {u, v} is an orthonormal frame, u is a geodesic field, and so v is orthogonal to a line
foliation of N.
“(ii) = (1)” If v is orthogonal to a geodesic foliation of N given by a unit vector u,
we have that
(Vyv,u) = uu,v) — (Vyu,v) = 0.

Since v is unit, (Vyv, v) = 0 for all w. Then the matrix of Vv with respect to the basis
{u, v} is strictly upper triangular. Thus, Q,(s) = s for all p, and so B preserves volume
by part (a).
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“(i) < (iii)” Since n = 2, equation (7.2) can be written as
0p(s) = s2 — trace(Vv), s.

The volume-preservation condition and the divergence-free condition both correspond to
the vanishing of the coefficient of s.

Nowif N C H3isa horosphere, the claim is immediate since N, with the intrinsic
metric, is isometric to R2.

To verify item (c), observe that for n = 3, equation (7.2) can be written as

0p(s) = §3— trace(Vv), 52+ ¢y,

and the volume-preservation condition and the divergence-free condition both correspond
to the vanishing of the coefficient of s2. The final assertion follows from the main result
in [5] (see also [13] and Proposition 1 in [23]), which states that the only great circle
fibrations of S with volume-preserving flows are the Hopf fibrations. |

8. A Hopf-like bifoliating vector field on R> c H*

Here we give an example of a unit vector field on a horosphere in the hyperbolic 4-
space bifoliating the exterior, and we find explicit periodic orbits, unbounded orbits, and
bounded nonperiodic orbits of the associated billiard map.

We consider the upper half-space model H = {(po, p1...., pn) € R*T1 | po > 0}
of the (n + 1)-dimensional hyperbolic space of constant curvature —1. For 0 < h < 1,
define the horospheres Hy, = {p € H | po = h}. Let v be a bifoliating vector field on
N := Hj, so the associated billiard map B is well definedon U = {p € H |0 < pg < 1}
and preserves each horosphere Hj for 0 < i < 1. Keeping in mind that Hy ~ R", we
consider the following flow.

Definition 8.1. Let v be a unit vector field on R” and § > 0. The associated (v, §)-flow is
the discrete flow on R” generated by the map

f@.8) :R" > R", f(v.8)(p) = p+Sv(p).

Observe that for § > 0 and m € N, both small, f(v,8)™(p) approximates the integral
curve of v which emanates from p.

It is convenient to write the billiard map B in terms of f. Fix 0 < 7 < 1 and let
r = +/1 — h2. We identify Hj, with R” in the obvious way.

Proposition 8.2. The restriction By, of B to Hj, equals
f(vo(id—rv)™t,2r).

Proof. We first observe that (id — rv)~! exists due to Theorem 2.3; in particular, the

inverse function theorem applies to (id — rv) because —1/r is not an eigenvalue of Vv.
Let ¢ = (h,q’) € U. By Theorem 2.3, there exists p = (1, p’) € N such that g =

Yu(p)(s) for some s < 0. Now, the image of yy(p) is the vertical semicircle centered
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Figure 4. Stereographic projection of the Hopf fibration; the straight line is the x-axis.

at (0, p’) tangent to N at p and containing ¢ (this was depicted in Figure 3 in Section 2).
Identifying v(p) with v(p’), we have ¢’ = p’ — rv(p’). So B(q) = (h, p’ + rv(p’)), and
hence Bj(q") = p’ + rv(p’), which equals

q' +2rv(p') = f(vo(id—rv)~.2r)(q).
since (id — rv)~1(¢') = p'. [
Now let V' be the Hopf vector field on S3 given by

Vit,x,y,z) = (—x,t,—z,y),
and consider the stereographic projection

1
F:8%—{(1,0,0,0)} > R3, F(t,x,y,z) = l—t(x,y,z)-
Let v be the induced unit vector field on R3, which can be written explicitly as

1
x2+y2+22+1

v(x,y,z) = (x2 —y2 =22 4+ 1,2xy 4 22,2xz — 2y).
It is invariant by rotations around the x-axis, that is, v o R = dR o v for any rotation R
fixing the x-axis. The circle x = 0, y2 + z2 = 1 and the x-axis are images of integral
curves of v. See Figure 4.

We use the notation for the upper half space model established above; in particular,

Hy,={peH|po=h}, N=H; and U={peH|0<py<]l1}

Proposition 8.3. The unit vector field v defined above, considered on the horosphere
N ~ R3 C H*, bifoliates U. Moreover, for the associated billiard map B: U — U and
fixed h € (0, 1), we have the following:
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(@) Form € Z, B"™(h,x,0,0) = (h,x +2m~'1 —h2,0,0); in particular, the orbit of
(h, x,0,0) is unbounded.

(b) The map B preserves the circle Cy, = {(h,x,y,z) | y> +z2 =2 —h%, x = 0}.

(¢c) The restriction of B to Cy, is a rotation by angle 6y, = 2 arctan(~/1 — h?), and hence
the orbits on Cy, are periodic if and only if 6y, is a rational multiple of 7.

Proof. To show that v bifoliates U, it suffices by Theorem 2.3 to show that for all p € N,
the only real eigenvalue of (Vv), is 0. Since v is invariant by rotations about the x-axis,
we only need to consider p in the plane z = 0. Now, the matrix of (Vv)(x,y,0) With respect

to the canonical basis is m A, where
2xy? —2y(1 + x?) 0
A=yA=x>+y?) x(A+x>—=y*) 1+x>+y°
2xy —(1+x2=y%) x(0+x2+y?

Since v is a unit vector field, v is in the kernel of A7, and so v is an eigenvector of AT
with associated eigenvalue 0. The other two eigenvalues of AT are (1 4+ x2 4+ y?)(x % i),
with eigenvectors (Fiy, 1 = ix, x F i). Consequently, O is the only real eigenvalue of
(Vv)(x,y,0) and so v bifoliates U by Theorem 2.3.

Now using Proposition 8.2 and the definition of f', we write

Bu(x,y,z) = f(vo(id— rv)_1,2r)(x, v,z) = (x,y,z) + 2rv((id — rv)_l(x, v,2)),
where r = +/1 — h2.

To verify part (a), we use the fact that (id — rv)(x + r,0,0) = (x,0,0), and we com-
pute

By(x,0,0) = (x,0,0) + 2rv(x +r,0,0) = (x +2r,0,0) = (x + 2+ 1 —h2,0,0).

The formula for B;"(x, 0, 0) follows inductively.
To verify part (b), we use the fact that (id — rv)(0, 1,0) = (0, 1, r), and we compute

Br(0,1,r) = (0,1,r) +2rv(0,1,0) = (0,1, —r).

Therefore, By (0, 1, r) has the same norm as (0, 1, 7), and by the rotational symmetry, this
is true for all (x, y, z) € Cj. Therefore, By, is invariant on Cy,.

Part (c) follows from the observation that the angle 6, subtending the arc between
(0,1,7) and (0, 1, —r) is equal to 2 arctan(~/1 — h?). |

9. Further comments and questions

We have classified bifoliating vector fields by an infinitesimal condition, and we have seen
that prototypical examples of bifoliating vector fields are given by geodesic vector fields.
We conclude with several compelling questions regarding the topology and geometry of
bifoliating vector fields and the dynamics of their associated outer billiards.
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Question 9.1. Does the space of bifoliating vector fields on N deformation retract to the
space of geodesic vector fields on N ?

In [6], Gluck and Warner showed that the space of great circle fibrations of S defor-
mation retracts to its subspace of Hopf fibrations, so a positive answer to this question for
N = §3 c 5* would provide a full topological classification of bifoliating vector fields.
Moreover, by Gray stability (see Theorem 2.2.2 in [3]), it would give a tightness result for
the contact structures induced by bifoliating vector fields.

On the other hand, the contact structure associated to a bifoliating vector field on S 3
naturally induces a symplectic structure w on S3 x (0,00) >~ U.

Question 9.2. Under what conditions on v is the associated outer billiard map B sym-
plectic with respect to the induced symplectic structure w on U ?

Of course, the symplectic structure induced by the Hopf vector field is the standard
one, and the corresponding outer billiard map is symplectic.

We have seen that the volume-preservation of B is related to the volume-preservation
of v itself, and we have seen that these conditions are equivalent forn = 2 and n = 3.

Question 9.3. What is the relationship between volume-preservation of B and the volume-
preservation of v in higher dimensions?

More specifically, in light of Theorem 2.6, the volume-preservation condition of B,
which is given by the vanishing of several coefficients of Q,(s), is a priori much stronger
than the volume-preservation condition of v, which is given by the vanishing of a single
coefficient of O, (s). However, we do not have an example of a divergence-free bifoliating
vector field for which B does not preserve volume.

On the other hand, we have seen from [5] that a geodesic vector field on S3 preserves
volume if and only if it is Hopf.

Question 9.4. Is there a nongeodesic bifoliating vector field v on S3 such that v (and
hence B) preserves volume?

We are especially interested in understanding the dynamics of bifoliating outer billiard
systems, for example in low dimensions.

Question 9.5. Does there exist a bifoliating vector field on a horosphere in H? such that
the associated outer billiard map has a periodic orbit?

By Proposition 8.2, each orbit of By describes a polygonal line in H, ~ R2, with
edges of length 2r. As h tends to 1, these lines approach in a certain sense the integral
curves of v, which cannot be closed. We believe that the condition on the eigenvalues
of Vv prevents these polygonal lines from being closed.
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