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Abstract—The future electric grid is supported by a vast
number of smart inverters interfacing with distributed energy
resources at the edge. These inverters’ dynamics are typically
characterized as impedances, which are crucial for ensuring grid
stability and resiliency. However, the physical implementation
of these inverters may change significantly from inverters to
inverters and may be kept confidential. Existing analytical
impedance models require a complete and precise understanding
of system parameters. They can hardly capture the complete
electrical behaviors when the inverters are performing complex
functions. Online impedance measurements for many inverters
across multiple operating points are not scalable. To address
these issues, we present InvNet, a machine learning framework to
systematically evaluate the effectiveness of data-driven methods
for modeling inverter impedance patterns across a wide operation
range, even with limited impedance data. Leveraging transfer
learning, the InvNet can extrapolate from physics-based models
to real-world ones and from one inverter to another with very
limited data. This framework demonstrates machine learning as
a powerful tool for modeling and analyzing black-box charac-
teristics of grid-tied inverter systems that cannot be accurately
described by traditional analytical methods, such as inverters
under model predictive control. Comprehensive evaluations were
conducted to verify the effectiveness of the InvNet in various
scenarios. All data and models were open-sourced1.

Index Terms—Grid edge, impedance, model-free inverter, ma-
chine learning, transfer learning.

I. INTRODUCTION

THE global energy system is witnessing a paradigm shift,
where fossil fuels are being replaced by renewable energy

resources in electricity production. Power electronics convert-
ers at the grid edge are playing more important roles than ever
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before [1], [2]. These inverters at the grid edge are ubiquitously
needed to integrate renewable energy resources, battery storage
systems, loads, and more, to the future power grid. The
grid-tied inverters’ dynamics are digitally programmed with
sophisticated control algorithms, and they tend to interact with
one another or with other power system components, bringing
unprecedented challenges to grid stability and security [3].

The dynamics of grid-tied inverters are commonly charac-
terized as impedances under small-signal perturbations, which
are essentially dynamic representations of inverters in the
frequency domain [4], [5]. Such impedance representation
is essential for system stability analysis, such as using the
generalized Nyquist criterion [6]. The operating conditions
of these inverters may change across a wide range, leading
to various impedance patterns requiring precise modeling
for system-level analyses. Physics-based small-signal mod-
els derived from circuit analyses can only capture inverter
impedances when all physical parameters for simplified oper-
ating conditions are known and when inverters are controlled
by classic control strategies [7], [8]. These traditional analyti-
cal models usually require a comprehensive understanding of
both control and system parameters, such as parameters of
circuit components, bandwidths and intrinsic structures of the
PLL, and architectures of the control system, etc., such that
the impedance model can be analytically derived [8].

However, the physical parameters of grid-tied inverters
usually change with particular hardware and/or software im-
plementations and operating conditions. Different power-stage
designs and control structures may lead to physical parameter
deviations and nonidealities, limiting the efficacy of physics-
based analytical models when significant nonidealities and/or
non-modellable nonlinearities exist. Examples of nonideali-
ties and nonlinearities that cannot be captured by analytical
models include variable frequency switching, control dead-
time, quantization error, sampling error, digital delay, nonlin-
ear control framework, and system parameter discrepancies,
etc. In addition, grid-tied inverters are often equipped with
nonlinear controllers when performing smart and sophisticated
functions (e.g., low-voltage ride-through, active power sharing,
etc.). Therefore, impedance modeling of grid-tied inverters via
analytical models are prone to be unreliable and inaccurate [7],
especially when system parameters are unknown, or some-
times kept confidential by power converter manufacturers due
to security and intellectual property considerations. In a future
power grid with a large number of inverters at the edge, it is
impractical to assume that the physical parameters of inverters
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Fig. 1. Key Principles of the InvNet framework. Left: modeling inverter impedances as neural networks for stability analyses of distribution networks comprising
a variety of inverters. Right: the system diagram of typical grid-tied inverters with PLL-based current control, where nonidealities and nonlinearities in the
physical and control systems (such as sampling errors, parameter discrepancies, and dead-time, etc.) make precise impedance modeling highly challenging.

are known to system operators, let alone analytical models
or control strategies. Even though the analytical impedance
model exists and the complete system information is known,
to date, precise impedance modeling is still being throttled
by difficulties in modeling nonideal-switching impacts on
inverter impedances, such as the dead-time impacts [9]. For
many existing and emerging inverter implementations adopting
nonlinear controllers, such as the model predictive control
(MPC) [10], there are no analytical models to describe the
impedance behaviors thus far, due to their intrinsically so-
phisticated functions and nonlinear behaviors.

In addition, the inverter impedance can change significantly
depending on the operating conditions of power grid. Measur-
ing or simulating the impedances of clusters of inverters in the
real world is possible [8], but expensive and impractical. The
acquisition process of real-world impedance data of thousands
of inverters across a wide range of operating points (OPs,
including voltage–V , frequency–f , real power–P , reactive
power–Q) via deterministic signal processing methods, such as
experiments or electromagnetic transient (EMT) simulations,
requires massive human efforts and computational resources.
Multi-time-scale EMT simulation cannot fully capture the
system dynamics ranging from 60 Hz to a few hundred
kilohertz. Frequently measuring inverter impedances online
may create stability and security concerns to the grid. Real-
world impedance measurement needs to sweep all investigated
frequency points (FP) and injects perturbations twice for each
FP, then sweep all investigated OPs. Moreover, the collected
voltage and current data need to undergo the fast Fourier
transform (FFT) to obtain the impedance data. Even though the
pseudo-random binary sequence (PRBS) signal method [11],
containing multiple frequency components can be used to ex-
pedite the frequency sweep process to some extent, the process
of experimental measurements can still be very tedious when
considering multiple OPs. Future power electronics converters
may operate at higher frequencies with sophisticated switching
actions (hard or soft switching) based on Silicon Carbide (SiC)
[12] or Gallium Nitride (GaN) power devices [13], making
impedance data collections even more challenging.

Data-driven methods, which are model-agnostic from circuit

parameters and control structures, become an effective alter-
native in addressing the above challenges. Prior work includes
feed-forward neural network (FNN) for modeling the inverter
impedances [14] and physics-informed FNN for reducing the
data demand [15]. However, these studies oversimplify the
inverter system by characterizing the inverter impedances only
along single OP variables. Our prior work [16] considers a
wide range of OP variables, but no experimental verification
was provided. All aforementioned studies did not consider the
scenario when inverters are controlled by nonlinear controllers
where no analytical impedance models are available (such as
modeling inverters under model predictive control).

Leveraging the recent advances in artificial intelligence and
machine learning [17], [18], we present InvNet, a simple
but effective model-free machine learning framework that is
capable of characterizing inverter impedance patterns across
a wide operation range 1) without a thorough or precise
understanding of the physical system, or 2) if only a small
amount of measurement data is available. The key principle
of this approach is shown in Fig. 1. The main contributions
of this paper include:

• We demonstrated an end-to-end machine learning frame-
work for modeling the impedance of grid-tied inverters
with data acquisition, model training, and performance
evaluation, for a variety of inverters with wide operation
range. The data acquisition system includes analytical
calculations, EMT simulations, and experimental mea-
surements. The neural network (NN) training framework
includes NN architecture design, parameter tuning, and
transfer learning.

• We showcased that it was effective to model the
impedance of grid-tied inverters with NN models when
1) the analytical model exists, but the model parameters
are unknown, 2) the analytical model does not exist or
is not mature, and 3) there is no sufficient data available
for modeling a particular inverter.

The remainder of this article is organized as follows: Section
II elaborates on the proposed approach in detail; Section III
gives comprehensive performance evaluations of the proposed
InvNet framework; Section IV concludes this article.
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Fig. 2. Overview of the InvNet framework and methodologies. (a) Data Acquisition. Top: the implementation process of the admittance collection, which
models the admittance as a function of the perturbation frequency f, inverter output voltage V, active power P, and reactive power Q and sweeps the FPs
and OPs across a wide range. Bottom: an example of an experimental platform for impedance data acquisition. (b) Model Training. Training an FNN in the
TensorFlow platform with data collected through either analytical models, EMT simulation models in MALTAB+PLECS framework, or real-world experiments,
where the OPs serve as inputs and admittances as outputs. (c) Hyperparameter Tuning. Hyperparameter tuning process for the InvNet using the Optuna
framework. (d) Transfer Learning Framework. The InvNet used models pre-trained by large-scale databases to extrapolate to real-world models based on
small-scale databases (left) and pre-trained inverter models to extrapolate to other inverter models through transfer learning (right).

II. MACHINE LEARNING FRAMEWORK FOR INVERTER
IMPEDANCE CHARACTERIZATION

The grid-tied inverters can be implemented as different
topologies ranging from two-level inverters to multilevel in-
verters [19] (shown in Fig. 1), adopting very different control
strategies (e.g. grid-forming or grid-following [20], current
source or voltage source behaviors [21], etc.), and performing

different functions (e.g., black start, low-voltage ride-through,
reactive support, etc.). Various types of inverters with differ-
ent implementations at different OPs usually reveal different
output impedance patterns. We use a classic two-level grid-
following inverter as a baseline example. The methodologies
and modeling results presented in this work are applicable
to other inverter topologies and control implementations as
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well. There are six major factors that may influence inverter
impedance patterns, i.e., controller parameters, circuit param-
eters, sampling process, grid conditions, and phase-lock-loop
(PLL) implementation (Components #1 through #6 in Fig. 1),
where PLL is used for grid-inverter phase synchronizations.
The inverter admittance, typically embodied by a four-element
(Ydd, Ydq , Yqd, and Yqq) matrix at various frequency points
(FPs) across multiple OPs, are represented by complex values
with the real and imaginary parts (Yout = G+jB in Fig. 2a,
where G and B represent the conductance and susceptance,
respectively).

As demonstrated in Fig. 2, the InvNet is an end-to-end
framework comprising automatic data acquisition, scalable
model training, and comprehensive model validation (Fig. 2,).
It is modular, scalable, and flexible for modeling a large
number of smart inverters at the grid edge with sophisticated
control structures. In this work, the data used for NN training
was obtained from 1) analytical models, 2) EMT simula-
tions, and 3) experimental measurements. FFT was utilized
to transform the voltage and current to frequency-dependent
impedances (complex values in Fig. 2a). The surrogate model
was obtained through training a small-scale FNN with OP
information (V , f , P , Q) as its inputs and admittances as
outputs (Fig. 2b). State-of-the-art NN hyperparameter tuning
tools and optimizers, such as Optuna [22] and Adam [23], were
used to optimize the NN structure and parameters (Fig. 2c).
As demonstrated in [24], the design of NN structure and
parameters can also be conducted based on latent features
of the inverter impedances. We also explored the strength
of transfer learning [25]–[27] with the InvNet. Leveraging
transfer learning, the size of the data needed to obtain a high-
performance NN model could be greatly reduced by leveraging
data created from existing simplified/incomplete analytical
models, or data obtained from measuring similar inverters but
with different parameters (Fig. 2d). With the InvNet, one can
take a few quick snapshots of the impedances of a new inverter
at a few OPs and rapidly predict the behaviors of this new
inverter across a wide operation range.

A. Analytical impedance models

There are many different ways of implementing grid-tied
inverters. Different hardware and software implementations
lead to different complexities that are hard to be captured by
analytical models. Grid-tied inverters are typically controlled
as current sources by controllers with a phase-locked loop
(PLL) [5], also known as grid-following inverters [1] (Fig. 1).

Small-signal linearized models for grid-tied inverters oper-
ating at specific equilibrium points are well-studied [8]. The
time delay matrix Gd of the digital control system, as shown
in Fig. 3, is given by

Gd =

[
e−1.5Tss 0

0 e−1.5Tss

]
, (1)

where Ts is the sampling period. The transfer function matrix
Gid between the duty-ratio and inductor current vector is

Gid =
−Udc

(Ls+R)
2
+ (ωL)

2

[
Ls+R ωL
−ωL Ls+R

]
, (2)

Fig. 3. Small-signal impedance model of grid-tied inverters with current
control loop and PLL. The control parameters are assumed to be unknown
and may vary from inverter to inverter and from manufacturer to manufacturer.

where ω is the fundamental angular frequency of the system,
L and R are the inductance and resistance in Fig. 2a. The
decoupled current controller matrix Ic can be expressed as

Ic =

[
kp +

ki

s −ωL

ωL kp +
ki

s

]
, (3)

where kp and ki are the proportional-integral (PI) parameters,
respectively, of the current controller. Defining {Id, Iq} as
the inductor currents and {Vd, Vq} as system voltages in the
system d– and q– axes, respectively, defining {Dd, Dq} as the
duty cycles in the system d– and q– axes at the steady-state
OP yield {

Dd = 1
Udc

(Vd − IdR+ ωLIq)

Dq = 1
Udc

(Vq − IqR− ωLId),
(4)

and
Gpll =

kp plls+ ki pll

s2 + kp pllVds+ ki pllVd
, (5)

where kp pll and ki pll are the PI parameters of the PLL.
To model the dynamic impact of the PLL, the small-signal
perturbation path matrix Gpll i from the system voltage to
the current in the controller d-q frame and the small-signal
perturbation path matrix Gpll d from the system voltage to
the duty cycle in the controller d-q frame are, respectively,
given by

Gpll i =

[
0 IqGpll

0 −IdGpll

]
,Gpll d =

[
0 −DqGpll

0 DdGpll

]
.

(6)

The open-loop output admittance without the PLL is derived
by forcing the perturbations of the duty ratio and dc voltage
to zero [8], thus

Yo =

[
Ls+R

(Ls+R)2+(ωL)2
ωL

−ωL Ls+R
(Ls+R)2+(ωL)2

]
. (7)
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The output admittance of the grid-tied inverter system is

Yout = [I −GdGidIc]
−1

× {GdGid [Gpll d + IcGpll i] + Yo} .
(8)

Yout can be typically represented by a 2×2 matrix with four
complex elements:

Yout =

[
Ydd Ydq

Yqd Yqq

]
. (9)

Ydd represents the current response in the d channel when
d channel voltage is perturbed; Yqq represents the q channel
current response when q channel voltage is perturbed. Ydq and
Yqd represent the d–q coupling admittance.

Therefore, the output admittance of a grid-tied inverter at
a particular OP in the d–q frame can be expressed as a
function of the perturbation frequency f, inverter output voltage
V, active power P, and reactive power Q [9], [24]. This
analytical model requires precise knowledge of circuits and
control parameters of inverters, which may not be accurate, or
may even be kept confidential in practical scenarios.

B. Database construction

Fig. 2a illustrates the admittance acquisition process. In
this work, the admittances were collected through iteratively
sweeping the selected OPs and selected perturbation FPs. The
inverter admittance at arbitrary OP is modeled as a four-
element conductance matrix G and a four-element susceptance
matrix B:

G =

[
Gdd Gdq

Gqd Gqq

]
,B =

[
Bdd Bdq

Bqd Bqq

]
. (10)

We used three types of data for performance evaluations,
i.e., the AnaData generated by analytical models, the SimData
generated by EMT simulations, and the ExData collected
through real-world experiments. To facilitate the data acqui-
sition process, we established an automatic EMT simulation
model via the platform of PLECS Blockset integrated with
MATLAB Simulink, to rapidly generate admittance data. We
called the “AC sweep” block in PLECS from a MATLAB
script to inject perturbations and collect the frequency re-
sponses throughout the range of selected OPs. Then, the ad-
mittance data, modeled as conductances and susceptances for
each OP, are saved as a .csv file after each iteration. Through
repeatedly sweeping the OPs and perturbation frequencies
throughout the selected range, output admittances of inverters
can be either calculated by analytical equations or by EMT
simulations.

To exemplify the databases that were used in this work,
the EMT simulation-generated SimData was visualized in
Fig. 4 as an example of the database, where there are 40
OPs and 20 FPs in each OP, which therefore, constitutes a
database with 800 (20 × 40) data points in total. It took
approximately 40 hours to complete all iterations on a personal
computer (PC) with Intel 11th Gen i7-11700 processor. The
same PC was used throughout this work. The ExData, by using
the method of admittance measurements presented in [11],
was collected through experiments conducted in the testing

platform demonstrated in Fig. 2a, the entire process of which
took us more than one week to construct a database comprising
817 data points for the ExData.

C. Hyperparameter optimization

In this work, the optimization of NN hyperparameters was
conducted via the Optuna framework (https://optuna.org/) em-
bedded in the TensorFlow platform (https://www.tensorflow.
org/). The optimization process was conducted in a two-
step manner (as depicted in Fig. 2c). First, the NN struc-
ture, namely, the layer and neuron numbers and the Adam
optimizer [23] parameters, i.e., decay epoch (specifying the
epoch number that each decay of the learning rate takes),
batch size, decay rate, and initial learning rate were all put
into trials. We implemented 100 trials in total which took
approximately 16 hours to complete. Then, we fixed the NN
structure by using the optimized layer and neuron numbers
and only conducted the optimization of the Adam optimizer
parameters for another 100 trials which also took roughly
16 hours. Finally, we used the NN structure from the first
step and Adam parameters from the second step as the final
hyperparameters. The evaluations presented in Section III
implied that the obtained hyperparameters did not lead to
overfitting and achieve optimal performances.

D. Neural network training

We developed FNNs to model the admittances of a grid-tied
inverter in this work. Fig. 2b illustrates a typical FNN structure
with one input layer, N hidden layers, and one output layer.
The FNN has four input neurons, i.e., I1–I4, representing f, V,
P, and Q, and eight output neurons, i.e., O1–O8, representing
the conductance (G) and the susceptance (B) of the output
admittance, i.e., Gdd, Bdd, Gdq , Bdq , Gqd, Bqd, Gqq , and Bqq .
As shown in Fig. 2b, the ith hidden layer has ki neurons, and
the neuron values are subject to the following equation

H(i) = σ(w(i)H(i−1) + b(i)), (11)

where σ is the activation function, e.g., the sigmoid activation
function that frames the neuron values into probability values
between 0 and 1, and H(i), w(i), and b(i) are the matrices
of neuron values, weights, and biases in the ith hidden layer,
which are given by

H(i) =
[
H

(i)
1 H

(i)
2 · · · H

(i)
ki

]T
, (12)

b(i) =
[
b
(i)
1 b

(i)
2 · · · b

(i)
ki

]T
, (13)

w(i) =


w

(i)
1,1 w

(i)
2,1 · · · w

(i)
ki−1,1

w
(i)
1,2 w

(i)
2,2 · · · w

(i)
ki−1,2

...
...

. . .
...

w
(i)
1,ki

w
(i)
2,ki

· · · w
(i)
ki−1,ki

 . (14)

The neuron values of the first hidden layer are

H(1) = σ(w(i)I + b(1)), (15)
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Fig. 4. SimData (used for performance evaluations in Section III) visualized in 3-D view. The conductance and susceptance are illustrated against both the
active-power–P and frequency when the reactive-power is zero and both the reactive-power and frequency when the active-power is zero, respectively. As
shown, The output voltages 0.9, 1.0 and 1.1 (nominal value) have trivial impacts on the admittance, the admittance in Yqq changes significantly along the
active-power axis while the admittance in Ydq varies significantly with the reactive-power, which imply that the admittance of grid-tied inverters is more
susceptible to active and reactive power than to the output voltage.

where I = [I1, I2, I3, I4]
T . The output layer is

O = w(N+1)H(N) + b(N+1), (16)

where O = [O1, O2, · · · , O8]
T and

b(N+1) =
[
b
(N+1)
1 b

(N+1)
2 · · · b

(N+1)
8

]T
, (17)

w(N+1) =


w

(N+1)
1,1 w

(N+1)
2,1 · · · w

(N+1)
kN ,1

w
(N+1)
1,2 w

(N+1)
2,2 · · · w

(N+1)
kN ,2

...
...

. . .
...

w
(N+1)
1,8 w

(N+1)
2,8 · · · w

(N+1)
kN ,8 .

 . (18)

The next step is to train the NN. As shown in Fig. 2b,
we split the acquired database into training (70%), validation
(15%), and test sets (15%), respectively. The test set was
reserved for final evaluations, while the training and validation
sets were randomly shuffled before each training process, such
that every item had the same chance to be used for training.
Then, a back-propagation algorithm with the mean squared
error (MSE) loss function between the FNN prediction and
the admittance data was used to train the FNN. Finally, the
test sets were used to verify the performance of the FNN with
multiple different types of figure-of-merits (e.g., MSE, mean
average error (MAE), 95th percentile error, etc.).

E. Transfer learning

Transfer learning is a machine learning technique that in-
volves leveraging knowledge gained from one task to improve
the performance of another related task. In traditional machine
learning, models are usually trained from scratch for each new
task or problem. Transfer learning, however, takes a different

approach. Instead of starting from scratch, a pre-trained model
that has been trained on a large and diverse dataset for
a related task is used as a starting point. This pre-trained
model has already learned useful features, representations, and
patterns from the original task, which can be beneficial for the
new task. It has been widely successful in various domains,
including natural language processing, computer vision, audio
analysis, and more [17], [18], [25]–[28].

It usually involves two main steps: 1) Pre-training: In this
step, a model is trained on a large dataset and a specific
task, often referred to as the source task. This training helps
the model learn general features and patterns that are useful
for various related tasks. Common pre-trained models include
language models trained on a large corpus of text, image
models trained on a large dataset of images, and more [27]; 2)
Fine-tuning: After pre-training, the model is fine-tuned on the
target task, which is the specific problem we want to solve.
During fine-tuning, the model’s parameters are adjusted using
a smaller dataset specific to the target task. The knowledge
gained during pre-training helps the model adapt and learn
task-specific nuances more quickly and with less data.

Transfer learning offers several advantages: 1) Faster train-
ing: Since the model starts with knowledge from a related
task, it often requires fewer iterations or epochs to achieve
good performance on the target task; 2) Less data dependency:
Transfer learning can mitigate the need for an extremely large
dataset for the target task, as the model can generalize from
the knowledge it gained during pre-training; 3) Better gen-
eralization: The learned features from the pre-trained model
are often more robust and generalizable, leading to improved
performance on the target task; 4) Reduced computational re-
sources: Training a model from scratch can be computationally
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TABLE I
PARAMETERS OF FOUR INVERTER IMPLEMENTATIONS

Inverter 1 Inverter 2 Inverter 3 Inverter 4

PLL Bandwidth (Bpll) 7 Hz 20 Hz 7 Hz 20 Hz
PI Controller Coefficient (kp, ki) Kp, Ki Kp, Ki

Kp

2
, Ki

2

Kp

2
, Ki

2
DC Voltage (Udc) 600 V

Fundamental Frequency (f ) 50 Hz
Line-to-Line Voltage (Vll) 110

√
3 V

Rated Active Power (P ) 2.3 kW
Rated Reactive Power (Q) 2.3 kvar
Interfacing Inductance (L) 2 mH
Interfacing Resistance (R) 62.8 mΩ

Sampling Rate (fs) 10 kHz

Note: Kp = 10.5 and Ki = 2741.6. The rated power is calculated based on the
rated current amplitude of 10 A. The bandwidth of the PLL is usually relatively low such
that the inverter system can be easily stabilized during both steady- and transient-state.

intensive, while transfer learning can significantly reduce the
required resources [26], [27].

As demonstrated in Fig. 2d, we showcased the strength of
transfer learning in two commonly useful scenarios: 1) Model
extrapolation from analytical data-based model to real-world
data-based model: Supposing that we have a pre-trained model
that is trained on a large amount of AnaData from a particular
type of Inverter A whose parameters and control structures are
all available (note the AnaData cannot capture dead-time effect
and other nonlinear or nonideal information), then, we can re-
train the model based on a small amount of real-world data
from this same Inverter A or another Inverter B (with different
parameters but the same control framework) that is controlled
as a black-box, i.e., its parameters are all unavailable. In this
way, we can get a model with high accuracy for both Inverter A
and B, since the pre-trained model are fine-tuned by real-world
data. 2) Model extrapolation from one inverter to another:
Supposing that we have a pre-trained model that is trained on
a large-scale database from Inverter A (i.e., a large number of
confidential impedance data available from the manufacturer),
then, we can use a small-scale database from Inverter B to
re-train the pre-trained model to get Inverter B’s impedance
model with high accuracy.

III. MODEL PERFORMANCE EVALUATION

We evaluate the performance of the InvNet framework in
the following three scenarios:

• When an analytical model exists, but the parameters are
unknown or kept confidential.

• When an analytical model does not exist or is not mature.
• Lack of sufficient data for particular inverters.
We collected data from analytical calculations, EMT sim-

ulations, and experimental measurements. Each type of data
was randomly partitioned into a training set (70% of the total
dataset), a validation set (15% of the total dataset), and a
test set (15% of the total dataset). In each training process,
we monitored the model’s performance on the validation set
during training while the test set was preserved and referred
to once the training was complete to evaluate the model
performance. The final models were thoroughly evaluated on
the test set that was never used during the training process.

We exemplified four different grid-tied inverters, each with
parameters listed in Table I. Two datasets collected through
analytical calculations and automatic EMT simulations (using
the simulation platform of PLECS integrated with MATLAB
Simulink), i.e., the AnaData and the SimData, respectively,
were applied to train the FNN, resulting in two NNs, i.e.,
the AnaNN and the SimNN, respectively. The two datasets
were constructed in the same way. The operation ranges of the
inverters were normalized to the following ranges in per unit:
V ∈ [0.9, 1.1], P ∈ [−1, 1], and Q ∈ [−1, 1]. We selected 20
frequency steps evenly distributed in the logarithmic scale in
the range of f ∈ [1, 200] and the steps of V , P , and Q were
selected as {0.1, 0.5, 0.5}. OPs leading to over-modulation
(modulation index greater than 1) and over-current (inductor
current greater than 110% of the rated current) conditions were
excluded from all datasets. Therefore, the final dataset had 800
(20 × 40) {f, V, P,Q} data points in total. Each data point
comprised an admittance matrix [Ydd, Ydq; Yqd, Yqq]. The
EMT simulation-generated SimData was visualized in Fig. 4
as an example of the database. Both the AnaData and SimData
were split into three portions, i.e., 70% for training, 15% for
validation, and 15% for testing. The same 15% test set of
the SimData was used for evaluations of both the AnaNN and
SimNN.

To mimic a real-world scenario when dealing with a
wide range of different inverters with unknown information,
we applied dead-time to the switching events in the EMT
simulation. The dead-time effect is usually not captured by
commonly used analytical methods. We also assigned the
same synchronous reference frame PLL (SRF-PLL) archi-
tecture to both analytical models and EMT simulations, but
with different PLL bandwidths or proportional-integral (PI)
controller coefficients, based on the assumption that analytical
models may use incorrect system parameters (The SimData
was directly captured from EMT simulations without the
necessity of recognizing system parameters). Similar methods
can be used to study the impact of other system parameters.

An experimental rig (Fig. 2b) was constructed to collect
real-world impedance data. A power amplifier to the right with
an attached inductive impedance Zg worked as a grid simulator
and a power source Vg1 to the left mimicked the renewable en-
ergy sources. The inverter under test had the same parameters
as Inverter 1 in Table I. There were two devices (“Microgrid
Tech Bench” from Imperix) with a back-to-back converter
structure in each one of them, where one of the converters
worked as a rectifier absorbing power from energy sources and
the other as an inverter injecting power to the grid. To emulate
the grid, all converters were connected through an inductive
impedance Zg to a power amplifier (“DM 45000/APS” from
Spitzenberger & Spies) which worked as a grid simulator to
mimic the power grid. The power source Vg1 to the left of
Fig. 2b emulated the renewable energy sources and was also
connected through interfacing inductors to the devices, where
Device 2 was connected through a transformer to achieve
galvanic isolation between Device 1 and 2. The inverter in
Device 1 was the one under test (had the same parameters as
Inverter 1 in Table I) for admittance measurements while the
inverter in Device 2 served as a perturbation source injecting
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Fig. 5. Performance evaluation under unknown parameter circumstances. (a) Prediction results of the AnaNN and the SimNN compared to the test set at the
same example OP (the No. 23 OP in both the AnaData and the SimData, where V , P , and Q were {1.1, −1, 0.5}). The SimNN managed to capture the
dead-time effect while the AnaNN did not. Thus, the SimNN achieved better accuracy than the AnaNN. (b) The probability density histograms together with
a normal distribution fit for each one of them. Left two: probability densities of the normalized absolute errors. Right two: probability densities of the actual
absolute errors. (c) Prediction results of the AnaNN and the SimNN compared to the test set at the same example OP (the No. 23 OP in both the AnaData
and the SimData, where V , P , and Q were {1.1, −1, 0.5}). The SimNN successfully captured the comprehensive information of the real system, while
The AnaNN, which lacked awareness of system parameters, failed to establish an accurate admittance model. Therefore, the SimNN achieved better accuracy
than the AnaNN. (d) The probability density histograms together with a normal distribution fit for each one of them. Left two: probability densities of the
normalized absolute errors. Right two:probability densities of the actual absolute errors.

perturbations for admittance measurements. To comparatively
expedite the admittance data collection process, the PRBS
method was applied here [11]. In addition, to facilitate the FFT
analysis for the experimentally measured voltage and current
data, 19 FPs were also selected as ones, tens, and hundreds in
the range of f ∈ [1, 200], i.e., {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20,
30, 40, 60, 70, 80, 90, 100, 200}. To diversify the database,
the step of V was selected as 0.1, while the steps of P and

Q were selected by choosing the steps of active and reactive
currents Id and Iq as {0.4, 0.4}, where OPs resulting in over-
modulation and over-current conditions were also excluded.
In this way, the final experimental database was composed
of 43 OPs, which constructed a database with 817 (19 × 43)
{f, V, P,Q} data points in total and was referred to as the
ExData. This ExData was also randomly partitioned into a
70% training set, a 15% validation set, and a 15% test set.
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Fig. 6. Control diagrams of multi-vector model predictive control (MV-MPC) [10]. (a) The principle of MPC. The selection process for optimal switching
actions is highly nonlinear that can hardly be modeled through traditional small-signal approaches. (b) The control diagram of the multi-vector MPC. The
current tracking is realized through the use of MPC while also retaining the fixed switching frequency characteristics in traditional PI-controller-based space-
vector pulse-width-modulation (PWM) strategies . Due to inherent nonlinearities of the MPC, the impedance models are unavailable to date. The Data-driven
methods can be used to establish multi-OP impedance models for grid-tied inverters controlled by such kind of controllers.

A. Analytical model exists but model parameters are unknown

We first showcased the effectiveness of the InvNet in cap-
turing the admittance features brought about by the dead-
time effect, through the exemplification of Inverter 2. As
aforementioned, existing analytical models cannot achieve
sufficient accuracy for not capturing the dead-time effect, thus,
the AnaData did not contain dead-time information. However,
since the EMT simulation was able to implement the dead-
time in each power switch of the inverter, the dead-time
information was included in the SimData but could not be
captured by the analytical model. As depicted in Fig. 5a, the
SimNN curve differed slightly from the AnaNN curve in Ydd

and Yqq , while revealing obvious deviations from the AnaNN
curve in Ydq and Yqd, for both conductance and susceptance
curves, which implied the inaccuracy of the analytical model.
The test set, stochastically extracted from the SimData, was
in line with the SimNN curve, while inconsistent with the
AnaNN curve, especially in Ydq and Yqq, for both conduc-
tance and susceptance. The absolute errors were calculated
by subtracting the predictions of NNs from the test set and
classified into conductance and susceptance absolute errors,
respectively. By normalizing the absolute errors into the range
of [−1, 1] through the use of “MinMaxScaler”, we constructed
the probability density histograms together with a normal
distribution fit for each one of them. As shown in the left two
graphs of Fig. 5b, the probability densities of the normalized
absolute errors of the SimNN were more concentrated around
zero than those of the AnaNN for both the conductance and
susceptance, which indicated that admittances predicted by the
SimNN were more accurate than the ones predicted by the
AnaNN. Further, we also visualized the probability density
histograms of the absolute errors with their normal distribution

fit in the right two graphs of Fig. 5b. The probability densities
of the real absolute errors of the SimNN were in sharp contrast
to the ones of the AnaNN, the former ones were concentrated
around zero while the latter ones were more widespread, which
confirmed the superiority of the SimNN over the AnaNN.

To further demonstrate the advantages of the InvNet in
dealing with classified or uncertain information, we conducted
experiments using Inverter 1 as the source of the AnaData and
Inverter 2 as the source of the SimData, assuming that the
analytical model had no prior knowledge of the actual inverter
parameters. Likewise, as depicted in Fig. 5c, it exposed
noticeable discrepancies with the AnaNN in Ydq , Yqd, and Yqq ,
whereas it only differed slightly from the AnaNN in Ydd. The
normalized probability densities of the absolute errors were
depicted in the left two graphs of Fig. 5d, where the histograms
of the SimNN were more like the normal distributions. The
actual probability densities of the absolute errors were given in
the right two graphs of Fig. 5d, where the probability densities
of the absolute errors of the SimNN were also in stark contrast
to the ones of the AnaNN, the former ones were mostly located
near zero while the later ones span across a wide range which
were almost close to zero.

For the studies in Fig. 5, the FNN consisted of three hidden
layers that had 683 parameters in total: layer #1, 4 neurons;
layer #2, #3, and #4, 15 neurons; layer #5, 8 neurons. Using
smaller-scale NNs can enhance the computational efficiency,
techniques such as network pruning [31] can be adopted
to further reduce the model size. We trained the model in
Matlab using the optimizer of Bayesian regularization back-
propagation, which updates the weight and bias values ac-
cording to Levenberg-Marquardt optimization. It minimizes
a combination of squared errors and weights, and then de-
termines the correct combination so as to produce a network
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Fig. 7. Performance evaluation under no analytical model circumstances. (a) The SimNN was trained on the SimData collected from the multi-vector MPC-
controlled inverter with the same PLL bandwidth as Inverter 2. Prediction results of the SimNN were compared with the test set at the same example OP (the
No. 23 OP in the SimData, where V , P , and Q were {1.1, −1, 0.5}). (b) The probability density histograms together with a normal distribution fit for each
one of them. Left two: probability densities of the absolute errors. Right two: probability densities of the relative errors.

that generalizes well. We trained each model for 3,000 epochs,
which took approximately 8 minutes for each training process
on the same PC (Intel 11th Gen i7-11700 processor).

B. Analytical model does not exist or is not mature

Traditionally, grid-tied inverters were mostly controlled by
linear-controllers which can be analytically modeled straight-
forwardly. In recent years, applications of more advanced
nonlinear controllers have become a future trend, among them,
MPC is a promising alternative to control power electronic
converters, which has been heavily explored over the past few
years [29], [30]. Due to its distinctive advantages, such as fast
dynamic response, straightforward implementation, compati-
bility with nonlinear constraints of converters, and the capabil-
ity to simultaneously tackle multiple control objectives, MPC
is much more powerful to address emerging challenges that
modern power converters are facing than traditional control
methods are. However, to date, there are no mature solutions
for the modeling of MPC-controlled grid-tied inverters, due to
the inherent nonliearities of MPC. The MPC uses the discrete
model of the system to minimize the cost function such that
the optimal switching action is selected for the next control
iteration (on the left of Fig. 6a). The optimization process is
a highly nonlinear one that can hardly be modeled through
traditional small-signal modeling approaches (on the right
of Fig. 6a). Most existing MPC frameworks do not have a
constant switching frequency behavior. Their stability cannot
be solely described by frequency-domain impedance analysis.
In this work, we adopted the multi-vector model-predictive-
control (MV-MPC) [10], a subset of MPC control strategy
which has a constant switching frequency behavior that can
be described by frequency-domain impedance analysis.

Fig. 6 illustrates the implementation process of the MV-
MPC. The physical model of the inverter system in the αβ-
frame is

u = L
di

dt
+ iR (19)

where u = [uα uβ ]
T and i = [iα iβ ]

T , which are converter
voltage and current vectors in the αβ-frame respectively.

The discrete-time model can be obtained by applying Euler
Forward Approximation:

i (k + 1) =
Ts

L
u (k) +

(
1− RTs

L

)
i (k) . (20)

To determine the optimal voltage vector in terms of the cur-
rent tracking performance at the time instant k, the following
prediction model can be established:

u∗ (k) =
L

Ts
i∗ (k + 1) +

(
R− L

Ts

)
i (k) . (21)

Here u∗ (k) represents the reference voltage vector that
forces the actual current to ideally track the reference current
i∗ (k + 1). The calculated reference vector is rapidly located
in the 120◦ oblique frame (transformed from the αβ-frame)
and three adjacent voltage vectors are selected over one con-
trol (sampling) iteration, which replaces the computationally
inefficient calculation or lookup table approaches to simple
integer arithmetic. Current tracking is prioritized through duty
cycle optimization of the selected adjacent vectors. Finally, the
optimal switching sequence is generated through an external
modulator that follows the symmetric pulse pattern of seven
segments (Fig. 6b). Replacing the proportional-integral (PI)
current controller (Fig. 2a) with a nonlinear MV-MPC made
the entire grid-tied inverter system “model-free”.
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Fig. 8. Transfer learning performance evaluations for the extrapolations from analytical data-based model to experimental data-based model. The MSE curves
of the transfer learned models were lower than the models learned from scratch even when training on only a few data points (the MSE curves were visualized
by adding standard deviations as margins of the mean MSE value for the ten training cycles) and the probability densities of the absolute errors of the transfer
learning were more concentrated than those of the models learned from scratch (when using 30 data points), indicating the superior performance of transfer
learning.

We developed an automatic EMT simulation platform in
PLECS to collect the admittance data (SimData) for an inverter
with the same PLL bandwidth as Inverter 2, but controlled
by MV-MPC. Here, we selected 19 FPs as ones, tens, and
hundreds in the range of f ∈ [1, 200], which were {1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 20, 30, 40, 60, 70, 80, 90, 100, 200}. A randomly
selected test set was reserved from the SimData using a 15%
split and used for model evaluations. As shown in Fig. 7a, at an
arbitrary OP, the test set data points all aligned with the SimNN
curve, which proved the InvNet’s power of re-constructing
admittance models at the whole OP range. We also constructed
the probability density histograms together with a normal
distribution fit for each one of them. The probability densities
of the absolute errors followed a normal distribution and
were primarily concentrated around an extremely narrow band
around zero (left two graphs of Fig. 7b), which confirmed the
accuracy of the SimNN’s predictions. Moreover,the probability
density histograms of the relative errors were also largely
concentrated around a narrow band around zero (right two
graphs of Fig. 7b).

For studies in Fig. 7, the FNN structure also had three
hidden layers with 15 neurons in each layer. We also trained
the model in Matlab using Bayesian regularization optimizer
for 1,000 epochs, which took roughly less than 3 minutes.

C. Insufficient data for modeling a particular inverter

To gain a comprehensive understanding of inverter
impedances across a wide range of OPs, it is usually necessary
to train the NN using a relatively large amount of data. We
leveraged transfer learning (Fig. 2d) to reduce the database
volume and empower the InvNet framework with the ability
of cross-inverter extrapolation (Fig. 8a) when there is no
sufficient data for a particular inverter.

The first demonstration includes extrapolating from an FNN
trained on data from analytical models, which may not ac-
curately capture impedance information due to insufficient
parameter knowledge from the inverter system, to an FNN
capable of understanding impedance knowledge from real-
world experiments. The FNN was first pre-trained on a large
amount of data generated from analytical models and then

fine-tuned by a small amount of data collected from real-world
experiments.

We pre-trained the model on the AnaData generated from
analytical models for Inverter 2, 3, and 4 (Table I) for 500
epochs. With data readily generated from analytical models,
we were able to construct a large database as the AnaData.
Similarly to Fig. 5, 20 FPs were also evenly selected in the
logarithmic scale in the range of f ∈ [1, 200] but with the steps
of V , P , and Q selected as {0.1, 0.1, 0.1}. Excluding over-
modulation and over-current conditions, it resulted in 1084
OPs and 21680 (20×1084, 1,084 OPs, 20 FPs) data points in
total. We then re-trained (fine-tuned) the model on the ExData
(from Inverter 1) using 5, 10, 30, 50, 100, 150, 200, 300, 400,
and 550 data points for also 500 epochs. To achieve a fair
comparison, we also trained the model from scratch on ExData
using the same number of data points as well. We repeatedly
trained each model ten times with a different random seed
each time and recorded the absolute errors and MSEs for
both conductance and susceptance simultaneously at the end
of each training cycle for further analyses. In this regard, the
total training count was: 3 (source inverter count)×1 (target
Inverter count)×10 (repeating times)×10 (number of used data
points)=300, which took approximately 30 hours to complete
on the same PC (Intel 11th Gen i7-11700 processor).

As seen from the left two figures in Fig. 8b, the transfer
learned models’ MSE dropped significantly even when trained
with only 30 data points (note each data point is a set of
time sequences at an operating point), for both conductances
and susceptances. The MSE of the transfer learned models
approached zero after only 100 data points. The transfer-
learned models considerably outperformed the models trained
from scratch. From the MSE perspective, the models trained
from scratch could only reach a performance comparable to
the transfer-learned models at approximately 200 data points
for the conductance and 550 data points for the susceptance.
Training from scratch led to significantly higher MSE when
using fewer than 50 data points. We also evaluated the proba-
bility densities of the absolute errors (the right two figures in
Fig. 8b). Similar to the studies in Fig. 5, the probability density
histograms together with a normal distribution fit for each
histogram (when using 30 data points) were also shown. The
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Fig. 9. Performance evaluations for cross-inverter extrapolations using transfer learning. (a) Conductance evaluations: The MSE curves were visualized by
adding standard deviations as margins of the mean MSE value for the ten-time training. The transfer-learned models outperformed the models learned from
scratch even when only a few data points were used. The probability densities of the absolute errors also confirmed the superiority of the transfer learning
(when using 30 data points). (b) Susceptance evaluations: The MSE curves were visualized in similar ways to the conductance evaluations. The transfer-learned
models also outperformed the models learned from scratch. The probability densities of the absolute errors also consolidated the superiority of the transfer
learning (when using 30 data points).

probability densities of absolute errors of the transfer learned
models were more concentrated around zero than those of the
model trained from scratch, which indicated that admittances
predicted by transfer learned models were more accurate than
the ones predicted by the models trained from scratch.

In addition to the aforementioned model extrapolation from
the analytical data-based model to the experimental data-
based model, we also performed cross-extrapolations, i.e.,
from all other three inverters to one inverter in Table I using

transfer learning (for instance, from Inverter 2, 3, and 4 to
Inverter 1). This time, to conduct a proof-of-concept for cross-
extrapolations and facilitate the data acquisition process, we
used analytical models to generate databases assuming that all
analytical models were well-aware of all system parameters.
The performance evaluations were conducted in the same way
as studies demonstrated in Fig. 8 (with each training process
repeated ten times). We first pre-trained the model on the
AnaData generated from analytical models of source inverters



IEEE TRANSACTIONS ON POWER ELECTRONICS 13

(from Inverters 1, 2, 3, and 4) with 21,680 (20× 1084, 1,084
OPs, 20 FPs) data points in total for 500 epochs. We then fine-
tuned the model on the other AnaData from target inverters
(also from Inverters 1, 2, 3, and 4) using 5, 10, 30, 50, 100,
150, 200, 300, 400, and 550 data points for 500 epochs.
Also, we trained the model from scratch on the AnaData from
target inverters using the same numbers of data points for 500
epochs as well. We also repeated each training for ten times.
Therefore, the total training count was: 4 (source inverter
count)×4 (target Inverter count)×10 (repeating times)×10
(number of data points)=1,600, which took approximately 160
hours to complete all the training.

All transfer-learned models outperformed the models trained
from scratch, and the transfer learning depended on consid-
erably less data than the training from scratch did to achieve
the same level of performance in terms of MSE (Fig. 9). The
transfer-learned models even revealed promising extrapolation
results when only 10 data points were used for fine-tuning.
The transfer learning from Inverter 1, 2, and 3 to Inverter
4 performed exceptionally well, with close to zero MSE at
only 5 data points. Subsequent to 30 data points, the MSEs
of all transfer learned models began to approach zero, which
were remarkably lower than those of the models trained from
scratch. Furthermore, the probability densities constructed in
the same way as Fig. 8 (when using 30 data points) all reflect
the transfer learning’s superior performance over training from
scratch and its extremely mild reliance on database size. In
Figs. 8 and 9, we trained the models in the TensorFlow plat-
form using the Adam optimizer, the adopted FNN comprised
5,482 parameters in total (three hidden layers): layer #1, 4
neurons; layer #2, 43 neurons, layer #3, 56 neurons, layer #4,
43 neurons, and layer #5, 8 neurons.

Transfer learning mitigates the NN’s dependency on large
databases and empowers the NN with cross-extrapolation
capability through the use of very small-scale databases from
real-world simulations or measurements. This is extremely
valuable for rapidly evaluating the stability of a future power
grid with a large number of inverters with opaque black-box
behaviors at the grid edge. It was shown that with the pre-
trained models re-trained on only a few admittance data points,
transfer-learned models captured the necessary information for
re-constructing accurate admittance models of the grid-tied
inverters, outperforming the models trained from scratch. We
expect that this approach could greatly reduce the database
required to achieve excellent modeling accuracy, especially
when considering the unrealistic and expensive data acqui-
sition process for simulations and real-world experiments,
and could also save computational resources for cross-inverter
model extrapolations using very small-scale databases.

IV. CONCLUSION

This paper presents an end-to-end machine-learning frame-
work for data-driven modeling of model-free inverters. The
machine learning framework spans from data acquisition
(including analytical calculation, EMT simulation, and ex-
perimental measurement), model design, model training, to
model evaluation. The modeling framework is evaluated and

validated through various test scenarios across a wide range of
operating conditions. Transfer learning is found to be effective
to reduce the data needed for training and for modeling
particular inverters. These modeling tasks cannot be performed
by traditional analytical modeling methods.

The future grid is a large-scale, sophisticated network com-
prising hundreds of millions of distributed passive and active
electronics components functioning across a wide frequency
spectrum. Their behaviors highly depend on the operating
conditions (e.g., temperature, aging, power flow). The machine
learning framework presented in this work can be extended
to rapidly construct models for a large-scale power grid
with many different components operating under sophisticated
conditions and power flow. The transfer learning framework
can reduce the need for large-scale databases and improves
both the accuracy and efficiency of rapid modelings of black-
box grid-tied energy systems.
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