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Abstract—Impedance-based stability analysis has been 
widely adopted for voltage source converters (VSCs). 
Considering unknown controller parameters, impedance 
measurement based on frequency scan is always required for 
stability evaluation, which endures complicated 
implementation and can only be conducted under small 
amount of stable operating conditions. To solve this problem, a 
novel impedance profile prediction method for grid-connected 
VSCs has been proposed. A combined structure of stacked 
autoencoder (AE) and principal component analysis (PCA) is 
firstly proposed to extract VSC admittance feature under 
stable operating points, and a comprehensive VSC admittance 
set can be further predicted through searching on an enlarged 
feature space with unstable scenarios included. The stability 
can then be evaluated on the predicted VSC admittances with a 
stability boundary derived. Simulations and experiments prove 
the effectiveness of the proposed method. 

Keywords—Voltage source converter, impedance-based 
stability analysis, machine learning. 

I. INTRODUCTION 
Large-scale integration of renewable energy will appear 

in future power grids with power electronic converters as 
interfaces. However, the interaction of power converters and 
grid may lead to resonance in a wide frequency range, 
influencing system stability [1], [2]. Therefore, the stability 
of grid-connected VSCs is essential for safe system 
operation.  

Stability issue of grid-connected VSCs has been studied 
for decades, and most existing methods can be classified into 
state-space-based approach in time domain or impedance-
based approach in frequency domain [3]. The state-space-
based approach establishes the complete state-space equation 
for the controller and power stage of the converter, and 
system stability can then be evaluated by calculating the 
eigenvalues of the state matrix [4]. The sensitivity of 
different controller parameters can also be obtained by 
inspecting the damping ratio. However, such methods 
require detailed information of the controller structure and 
parameters, which is hard to be obtained in industry practices 
due to intellectual property (IP) protection from different 
vendors [5], [6].  

Frequency-domain analysis provides a feasible way to 
solve this issue, which can be realized based on generalized 
Nyquist criterion (GNC) and VSC impedance measurement 
by frequency scan [7]-[10]. However, the impedance 

measurement can only by conducted under limited amount of 
stable operating points, which fails to predict other possible 
impedance profiles. Furthermore, online impedance 
measurement can be time-consuming and hard to implement 
[11]. Some recent researches have proposed estimating the 
relationship between the VSC terminal admittance and 
operating points by curve fitting algorithms [12]. However, 
prior knowledge of the controller structure is still needed and 
the estimation accuracy on a wide frequency range is limited. 

To solve this problem, this paper proposes a novel 
impedance profile prediction method for grid-connected 
VSCs with unknown controller configurations, which is able 
to predict unstable cases and draw stability boundary solely 
using small amount of stable operating data. Based on the 
proposed method, stability evaluation for grid-connected 
VSCs can be simplified by measuring the admittance at 
single or certain frequencies, and is more convenient to apply 
in the industry.  

II. IMPEDANCE PROFILE OF GRID-CONNECTED VSCS 

A. System Configuration 
In this paper, a typical three-phase grid-connected VSC is 

taken as an example. The system configuration and control 
diagram are shown in Fig. 1. A synchronous reference frame 
phase-locked loop (SRF-PLL) is used to synchronize the 
VSC with the grid, and the converter is regulated as a 
constant power source by cascaded power controller and 
current controller. Voltage feedforward control is also used 
for transient performance enhancement by adding the PCC 
voltage on the output of the current controller. Lf represents 
the filter inductor, while Lg represents the grid inductance. 

 
Fig. 1.  System configuration and control diagram of the studied grid-
connected VSC system. 

B. Impedance Profile Generation for Grid-Connected VSCs 

For the convenience of stability analysis, the VSC 
admittance YVSC in dq-frame is used to evaluate the stability 
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of the entire system, which can be derived based on the 
small-signal modeling theory [7]. The block diagram of the 
small-signal model is shown in Fig. 2, where GPQ-i and GPQ-v 
represent the linearization matrix in power calculation. GPQ 
and GCI represents the PI controller for the power control and 
current control, respectively. GFF is an identity matrix 
representing the feedforward control. GDEL denotes the 
digital delay of the controller. Gid represents the transfer 
function matrix between the output of the converter and the 
output current, and Zf represents the impedance matrix of the 
filter inductance. Gi-PLL, Gv-PLL and Gd-PLL denote the 
influence of PLL on the current, voltage and duty ratio when 
transformed between system dq-frame and controller dq-
frame. According to Fig. 2, the VSC terminal admittance 
YVSC can be derived as (1), where I represents identity matrix. 

Especially, the linearization matrix for power calculation 
and the transformation matrices related to PLL can be 
expressed as (2)-(6), where Vpcc represents the steady-state 
voltage aligned to d-axis. Id0 and Iq0 represent the steady-state 
current of dq-axis, respectively. GPLL represents the transfer 
function of the SRF-PLL, which can be expressed as (7). Kp-

PLL and Ki-PLL represent the proportional and integral gain of 
the PLL. The rest of the transfer function matrices in the 
block diagram have been included in the Appendix A. 
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It can be observed that the above matrices are all related 
to the operating point, making the terminal impedance profile 
YVSC also closely related to the operating point. However, 
measuring the impedance at a large amount of operating 
points is time-consuming and hard to achieve in practices. 
Furthermore, traversing the entire set of possible operating 
points cannot be achieved. Therefore, prediction of VSC 
admittance set based on limited amount of terminal 
admittance measurement data becomes highly desirable in 
the industry. 

III. VSC ADMITTANCE PREDICTION BASED ON STACKED-
AUTOENCODER AND PCA 

To predict comprehensive VSC admittance set based on 
measurements at small amount of stable operating points, a 
novel prediction method based on stacked autoencoder (AE) 
has been proposed in this paper, whose structure is shown in 
Fig. 3. As the VSC admittance profiles differ due to the 
variation of Vpcc, Id0 and Iq0, it will be possible to represent 
every admittance profile by no more than 3 variables. 
Considering unknown controller parameters, features 
extracted by stacked AE are used to represent the admittance 
profiles, instead of normal operating points. The stacked AE 
can be regarded as a special feedforward neural network 
(NN) with multiple hidden layers [13]. Unlike traditional 
NNs, the inputs and outputs of the stacked AE are kept the 
same in the training process, which are the VSC admittances. 
Therefore, by keeping the neuron numbers in the middle-
hidden layer (feature layer) as small as possible while 
ensuring an acceptable error for the outputs, the neurons in 
the feature layer will be able to represent different 
admittance profiles, forming a latent mapping to the 
operating points.  

 
Fig. 3.  Structure of the stacked AE. 

 
Fig. 2.  Block diagram of the small-signal model of the studied VSC. 
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The loss function for the training of the stacked AE is 
defined as (8), where Ns is the sample number of the dataset 
and Nf is the number of the studied frequencies. Ydd (OPi, fj) 
represents Ydd at the ith operating point and jth frequency, 
whose corresponding reconstructed value by the stacked AE 
is represented by Ydd-i (fj). Similar expressions are also 
adopted for Ydq, Yqd and Yqq. 

( )( ) ( )( )( )

( )( ) ( )( )( )

( )( ) ( )( )( )

2

1 1

2

2

,

                          ,

                           + ,

−

= =

−

−

= −

+ −

+ −


fS NN

dd i j dd i j
i j

dd i j dd i j

qq i j qq i j

Loss real Y OP f real Y f

imag Y OP f imag Y f

imag Y OP f imag Y fK

 
(8) 

To validate the effectiveness of the proposed method, a 
dataset composed of 720 VSC admittances under stable 
operating points is generated based on the analytical small-
signal VSC model derived in Section II. The used parameters 
of the VSC are listed in the Appendix B. The grid inductance 
Lg is set as 6 mH, ensuring that all the studied cases are in 
stable operation. The selected operating points are as 
follows: Vpcc ranges in [99 V, 121 V], Id0 ranges in [-6 A, 6 
A], and Iq0 ranges in [-2 A, 2 A]. The entire dataset is then 
divided into training set, validation set and test set in a 
70%:15%:15% portion. The training for feature extraction of 
the stacked AE is conducted with hyper-parameters selected 
as Table I. It is found that a neuron number of 2 in the 
feature layer is enough for the admittance reconstruction, 
which also stands for the feature number used in the 
following analysis. The performance of the AE can then be 
validated on the test set. A randomly selected sample from 
the test set is shown in Fig. 4, proving the effectiveness of 
using features to reconstruct the VSC admittance. 

 
Fig. 4.  Illustration of the performance of stacked AE on the test set. 

The mean absolute error (MAE) is used for the 
evaluation of the stacked AE. The MAE on the training set 
and the test set are calculated to be 3.06×10-4 S and 3.16×10-4 
S, proving the accuracy of the reconstructed admittance by 
the trained stacked AE.  

TABLE I  -  HYPER-PARAMETERS OF THE STACKED AE 

Optimizer Adam (TensorFlow) 

Neuron numbers in each layer 712, 32, 2 (feature number), 
32, 712 

Hidden-layer activation function linear 

Output-layer activation function linear 

Learning rate  0.012 

Decay steps 50 

Decay rate 0.98 

Epoch number 1000 

Furthermore, a generalization test set has been 
considered, which includes VSC admittances with Id0 
ranging in [-18 A, 18 A] and Iq0 ranging in [-5 A, 5 A]. It 
should be noted that many unstable operating scenarios have 
been included now. The MAE on this new test set is 
calculated to be 4.97×10-4 S, proving that the extracted 
features can also represent VSC admittance profiles for 
unstable operating scenarios which have not been trained. 
Therefore, thorough searching on the feature space for 
additional VSC admittance generation becomes feasible.  

The feature distribution on the training set is then studied, 
as shown in Fig.5(a). It is shown that the feature values 
present an uneven distribution, indicating that they are not 
totally decoupled. For more effective generation of possible 
VSC admittances, principal component analysis (PCA) is 
adopted to orthogonalize the feature space [14]. The feature 
distribution after PCA is shown in Fig. 5(b), which now 
distribute evenly for convenient VSC admittance generation. 

 
Fig. 5.  (a) The distribution of extracted features by the stacked AE and (b) 
The orthogonalized features after PCA. 



VSC admittance is then generated based on thorough 
searching on the feature space of the training set. To take 
more possible impedance profiles into consideration, the 
upper and lower limit of each feature value are extended by 
1.5 times and 20 values are evenly assigned for each feature, 
leading to 400 combinations. The inverse-PCA and decoding 
network in Fig. 3 are then applied to generate the 
admittances based on each feature combination. Stability of 
the VSC can then be evaluated based on the generated 
admittances and any given Lg. 

IV. STABILITY BOUNDARY DEVIATION AND VALIDATIONS 

A. Stability Boundary Deviation 
The stability boundary can then be derived. For each 

predicted admittance, GNC is conducted for stability 
analysis. Each predicted admittance is then plotted in a same 
figure, with unstable cases in red and stable cases in grey as 
Fig. 6. 

 
Fig. 6.  Derived stability boundary. 

It is shown that although the training of stacked AE and 
PCA only uses data from stable operating points, impedance 
profiles for unstable cases of the studied VSC are also 
successfully predicted by the proposed method. The real and 
imaginary part of Ydd and Yqq proves to be useful stability 
indicators, and a stability boundary can be observed. This 
will lead to convenient stability judgement in future 
applications, as the measurements of Ydd and Yqq at certain 
frequency will be sufficient for preliminary evaluation of 
system stability based on the derived boundary, substituting 

traditional frequency scanning. Furthermore, under different 
grid conditions, the generated admittance profiles will not 
change. Therefore, a new stability boundary is easy to 
generate for the stability evaluation. 

B. Simulation and Experiment Validations 
Simulations in PLECS have been conducted to validate 

the proposed methodology. The parameters of the VSC are 
set the same as in the Appendix B. Two typical cases of 
operating point variation have been selected as follows. Case 
A: Vpcc = 110 V, P = 1000 W, Q = 0; Case B: Vpcc = 110 V, P 
= 3000 W, Q = -1500 var. The simulation results when the 
operating point of the VSC changes from Case A to Case B 
at 0.25 s are presented in Fig. 7. It is shown that instability 
appears in Case B, which is consistent with the derived 
stability boundary in Fig. 6. 

 
Fig. 7.  Simulation results. 

Experiments are also conducted to validate the proposed 
method. The experimental setup is shown in Fig. 8. 
dSPACE-1007 is used to control the VSC. The current and 
voltage at the PCC point is collected by current and voltage 
sensors and transmitted to the controller through DS2004 
A/D board. The DS2102 D/A board is used to transmit the 
calculated power and measurements to the oscilloscope. Grid 
simulator Chroma 61845 is used to simulate the power grid.  

 
Fig. 8.  Experiment setup. 



The same predicted cases are selected and validated by 
experiments. The experiment results are shown in Fig. 6, 
which are consistent with the stability evaluations and 
simulation results. 

 
Fig. 9.  Experiment result of Case A. 

 
Fig. 10.  Experiment result of Case B. 

V. CONCLUSION 
This paper has proposed a novel VSC impedance profile 

prediction method with unknown controller structure and 
parameters, solely based on collected admittance data under 
limited amount of stable operating points. Stacked 
autoencoder and PCA have been used to extract admittance 
feature of VSCs, and through searching on an enlarged 
feature space can predict impedance profiles effectively even 
for unstable cases. Simulation and experiment results have 
validated the proposed method. The proposed method will 
serve as an effective tool to derive the stable operation 
boundary for grid-connected VSCs without prior knowledge 
of the controller structure and parameters. 

APPENDIX 

APPENDIX. A  
The expression of remaining transfer function matrices in 

the block diagram are presented as below. 
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APPENDIX. B  
TABLE II -  PARAMETERS OF THE GRID-CONNECTED VSC 

Parameter Value Parameter Value 
Lf 2 mH Lg 6 mH 

Kp-PLL 8 Kpi 3 

Ki-PLL 100 Kii 10 

Kps 0.002 Vdc 600 V 

Kis 0.4 Td 1.5×10-4 s 
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