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Abstract—Impedance-based stability analysis has been
widely adopted for voltage source converters (VSCs).
Considering unknown controller parameters, impedance
measurement based on frequency scan is always required for
stability evaluation, which endures complicated
implementation and can only be conducted under small
amount of stable operating conditions. To solve this problem, a
novel impedance profile prediction method for grid-connected
VSCs has been proposed. A combined structure of stacked
autoencoder (AE) and principal component analysis (PCA) is
firstly proposed to extract VSC admittance feature under
stable operating points, and a comprehensive VSC admittance
set can be further predicted through searching on an enlarged
feature space with unstable scenarios included. The stability
can then be evaluated on the predicted VSC admittances with a
stability boundary derived. Simulations and experiments prove
the effectiveness of the proposed method.
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I. INTRODUCTION

Large-scale integration of renewable energy will appear
in future power grids with power electronic converters as
interfaces. However, the interaction of power converters and
grid may lead to resonance in a wide frequency range,
influencing system stability [1], [2]. Therefore, the stability
of grid-connected VSCs is essential for safe system
operation.

Stability issue of grid-connected VSCs has been studied
for decades, and most existing methods can be classified into
state-space-based approach in time domain or impedance-
based approach in frequency domain [3]. The state-space-
based approach establishes the complete state-space equation
for the controller and power stage of the converter, and
system stability can then be evaluated by calculating the
eigenvalues of the state matrix [4]. The sensitivity of
different controller parameters can also be obtained by
inspecting the damping ratio. However, such methods
require detailed information of the controller structure and
parameters, which is hard to be obtained in industry practices
due to intellectual property (IP) protection from different
vendors [5], [6].

Frequency-domain analysis provides a feasible way to
solve this issue, which can be realized based on generalized
Nyquist criterion (GNC) and VSC impedance measurement
by frequency scan [7]-[10]. However, the impedance
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measurement can only by conducted under limited amount of
stable operating points, which fails to predict other possible
impedance profiles. Furthermore, online impedance
measurement can be time-consuming and hard to implement
[11]. Some recent researches have proposed estimating the
relationship between the VSC terminal admittance and
operating points by curve fitting algorithms [12]. However,
prior knowledge of the controller structure is still needed and
the estimation accuracy on a wide frequency range is limited.

To solve this problem, this paper proposes a novel
impedance profile prediction method for grid-connected
VSCs with unknown controller configurations, which is able
to predict unstable cases and draw stability boundary solely
using small amount of stable operating data. Based on the
proposed method, stability evaluation for grid-connected
VSCs can be simplified by measuring the admittance at
single or certain frequencies, and is more convenient to apply
in the industry.

II. IMPEDANCE PROFILE OF GRID-CONNECTED VSCS

A. System Configuration

In this paper, a typical three-phase grid-connected VSC is
taken as an example. The system configuration and control
diagram are shown in Fig. 1. A synchronous reference frame
phase-locked loop (SRF-PLL) is used to synchronize the
VSC with the grid, and the converter is regulated as a
constant power source by cascaded power controller and
current controller. Voltage feedforward control is also used
for transient performance enhancement by adding the PCC
voltage on the output of the current controller. L, represents
the filter inductor, while L, represents the grid inductance.
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Fig. 1. System configuration and control diagram of the studied grid-
connected VSC system.

B. Impedance Profile Generation for Grid-Connected VSCs

For the convenience of stability analysis, the VSC
admittance Yysc in dg-frame is used to evaluate the stability
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Fig. 2. Block diagram of the small-signal model of the studied VSC.
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of the entire system, which can be derived based on the
small-signal modeling theory [7]. The block diagram of the
small-signal model is shown in Fig. 2, where Gpo.; and Gpg.,
represent the linearization matrix in power calculation. Gpg
and Gg; represents the PI controller for the power control and
current control, respectively. Gpr is an identity matrix
representing the feedforward control. Gpg. denotes the
digital delay of the controller. Gi; represents the transfer
function matrix between the output of the converter and the
output current, and Zy represents the impedance matrix of the
filter inductance. Gipi, Gip. and Ggpy, denote the
influence of PLL on the current, voltage and duty ratio when
transformed between system dg-frame and controller dg-
frame. According to Fig. 2, the VSC terminal admittance

Y ysc can be derived as (1), where I represents identity matrix.

Especially, the linearization matrix for power calculation
and the transformation matrices related to PLL can be
expressed as (2)-(6), where V. represents the steady-state
voltage aligned to d-axis. I, and o represent the steady-state
current of dg-axis, respectively. Gpr. represents the transfer
function of the SRF-PLL, which can be expressed as (7). K-
prr and K;prp represent the proportional and integral gain of
the PLL. The rest of the transfer function matrices in the
block diagram have been included in the Appendix A.
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It can be observed that the above matrices are all related
to the operating point, making the terminal impedance profile
Yysc also closely related to the operating point. However,
measuring the impedance at a large amount of operating
points is time-consuming and hard to achieve in practices.
Furthermore, traversing the entire set of possible operating
points cannot be achieved. Therefore, prediction of VSC
admittance set based on limited amount of terminal
admittance measurement data becomes highly desirable in
the industry.

III. VSC ADMITTANCE PREDICTION BASED ON STACKED-
AUTOENCODER AND PCA

To predict comprehensive VSC admittance set based on
measurements at small amount of stable operating points, a
novel prediction method based on stacked autoencoder (AE)
has been proposed in this paper, whose structure is shown in
Fig. 3. As the VSC admittance profiles differ due to the
variation of Ve, lao and Iy, it will be possible to represent
every admittance profile by no more than 3 wvariables.
Considering unknown controller parameters, features
extracted by stacked AE are used to represent the admittance
profiles, instead of normal operating points. The stacked AE
can be regarded as a special feedforward neural network
(NN) with multiple hidden layers [13]. Unlike traditional
NNs, the inputs and outputs of the stacked AE are kept the
same in the training process, which are the VSC admittances.
Therefore, by keeping the neuron numbers in the middle-
hidden layer (feature layer) as small as possible while
ensuring an acceptable error for the outputs, the neurons in
the feature layer will be able to represent different
admittance profiles, forming a latent mapping to the
operating points.
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Fig. 3. Structure of the stacked AE.



The loss function for the training of the stacked AE is
defined as (8), where N; is the sample number of the dataset
and Nyis the number of the studied frequencies. Yus (OP;, f7)
represents Yqy at the ith operating point and jth frequency,
whose corresponding reconstructed value by the stacked AE
is represented by Y. (fj). Similar expressions are also
adopted for Yy, Yga and Yy,

Loss = gé(real()’d{, (01?,]'/))7real(}’dd,i (//)))2
+(imag (1, (0. 1,))~imag (1., (1,))) ®)
+K +<imag(Yw (OR,f] ))—imag(Yw,, (f,,)))2

To validate the effectiveness of the proposed method, a
dataset composed of 720 VSC admittances under stable
operating points is generated based on the analytical small-
signal VSC model derived in Section II. The used parameters
of the VSC are listed in the Appendix B. The grid inductance
L, is set as 6 mH, ensuring that all the studied cases are in
stable operation. The selected operating points are as
follows: V. ranges in [99 V, 121 V], Iy ranges in [-6 A, 6
Al], and I, ranges in [-2 A, 2 A]. The entire dataset is then
divided into training set, validation set and test set in a
70%:15%:15% portion. The training for feature extraction of
the stacked AE is conducted with hyper-parameters selected
as Table I. It is found that a neuron number of 2 in the
feature layer is enough for the admittance reconstruction,
which also stands for the feature number used in the
following analysis. The performance of the AE can then be
validated on the test set. A randomly selected sample from
the test set is shown in Fig. 4, proving the effectiveness of
using features to reconstruct the VSC admittance.
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Fig. 4. Illustration of the performance of stacked AE on the test set.

The mean absolute error (MAE) is used for the
evaluation of the stacked AE. The MAE on the training set
and the test set are calculated to be 3.06x10* S and 3.16x10*
S, proving the accuracy of the reconstructed admittance by
the trained stacked AE.

TABLE I - HYPER-PARAMETERS OF THE STACKED AE

Optimizer Adam (TensorFlow)
Neuron numbers in each layer 712,32,2 ?ge’a;lirze number),
Hidden-layer activation function linear
Output-layer activation function linear
Learning rate 0.012
Decay steps 50
Decay rate 0.98
Epoch number 1000

Furthermore, a generalization test set has been
considered, which includes VSC admittances with I
ranging in [-18 A, 18 A] and [, ranging in [-5 A, 5 A]. It
should be noted that many unstable operating scenarios have
been included now. The MAE on this new test set is
calculated to be 4.97x10* S, proving that the extracted
features can also represent VSC admittance profiles for
unstable operating scenarios which have not been trained.
Therefore, thorough searching on the feature space for
additional VSC admittance generation becomes feasible.

The feature distribution on the training set is then studied,
as shown in Fig.5(a). It is shown that the feature values
present an uneven distribution, indicating that they are not
totally decoupled. For more effective generation of possible
VSC admittances, principal component analysis (PCA) is
adopted to orthogonalize the feature space [14]. The feature
distribution after PCA is shown in Fig. 5(b), which now
distribute evenly for convenient VSC admittance generation.
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Fig. 5. (a) The distribution of extracted features by the stacked AE and (b)
The orthogonalized features after PCA.




VSC admittance is then generated based on thorough
searching on the feature space of the training set. To take
more possible impedance profiles into consideration, the
upper and lower limit of each feature value are extended by
1.5 times and 20 values are evenly assigned for each feature,
leading to 400 combinations. The inverse-PCA and decoding
network in Fig. 3 are then applied to generate the
admittances based on each feature combination. Stability of
the VSC can then be evaluated based on the generated
admittances and any given L.

IV. STABILITY BOUNDARY DEVIATION AND VALIDATIONS

A. Stability Boundary Deviation

The stability boundary can then be derived. For each
predicted admittance, GNC is conducted for stability
analysis. Each predicted admittance is then plotted in a same
figure, with unstable cases in red and stable cases in grey as
Fig. 6.
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Fig. 6. Derived stability boundary.

It is shown that although the training of stacked AE and
PCA only uses data from stable operating points, impedance
profiles for unstable cases of the studied VSC are also
successfully predicted by the proposed method. The real and
imaginary part of Y4 and Y, proves to be useful stability
indicators, and a stability boundary can be observed. This
will lead to convenient stability judgement in future
applications, as the measurements of Y4 and Yy, at certain
frequency will be sufficient for preliminary evaluation of
system stability based on the derived boundary, substituting

traditional frequency scanning. Furthermore, under different
grid conditions, the generated admittance profiles will not
change. Therefore, a new stability boundary is easy to
generate for the stability evaluation.

B. Simulation and Experiment Validations

Simulations in PLECS have been conducted to validate
the proposed methodology. The parameters of the VSC are
set the same as in the Appendix B. Two typical cases of
operating point variation have been selected as follows. Case
A: Vpee =110V, P=1000 W, O =0; Case B: V.. =110V, P
= 3000 W, Q = -1500 var. The simulation results when the
operating point of the VSC changes from Case A to Case B
at 0.25 s are presented in Fig. 7. It is shown that instability
appears in Case B, which is consistent with the derived
stability boundary in Fig. 6.
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Fig. 7. Simulation results.

Experiments are also conducted to validate the proposed
method. The experimental setup is shown in Fig. 8.
dSPACE-1007 is used to control the VSC. The current and
voltage at the PCC point is collected by current and voltage
sensors and transmitted to the controller through DS2004
A/D board. The DS2102 D/A board is used to transmit the

calculated power and measurements to the oscilloscope. Grid
simulator Chroma 61845 is used to simulate the power grid.
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Fig. 8. Experiment setup.



The same predicted cases are selected and validated by
experiments. The experiment results are shown in Fig. 6,
which are consistent with the stability evaluations and
simulation results.
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V. CONCLUSION

This paper has proposed a novel VSC impedance profile
prediction method with unknown controller structure and
parameters, solely based on collected admittance data under
limited amount of stable operating points. Stacked
autoencoder and PCA have been used to extract admittance
feature of VSCs, and through searching on an enlarged
feature space can predict impedance profiles effectively even
for unstable cases. Simulation and experiment results have
validated the proposed method. The proposed method will
serve as an effective tool to derive the stable operation
boundary for grid-connected VSCs without prior knowledge
of the controller structure and parameters.

APPENDIX

APPENDIX. A

The expression of remaining transfer function matrices in
the block diagram are presented as below.
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APPENDIX. B
TABLE II - PARAMETERS OF THE GRID-CONNECTED VSC
Parameter | Value | Parameter Value
Ly 2 mH L, 6 mH
Kypr 8 K, 3
Kiprr 100 K 10
K 0.002 Vae 600 V
K 0.4 Ty 1.5%10*s
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