

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

To address this challenge, recent work has introduced a va-
riety of approaches [31] to parallelizing LLM inference by
partitioning an LLM into multiple sub-models, each of which
is deployed on a dedicated device. For example, GPT-3 in-
cludes 175 billion parameters and requires more than 16
NVIDIA A100-40GB GPUs to store the model parameters in
single-precision floating points, which costs more than $66
per hour to serve a single inference pipeline on AWS [13].
As the size of LLMs progressively increases, serving them on
regular cloud instances becomes prohibitively expensive for
most organizations, especially those with limited budgets.
Modern clouds offer a variety of preemptible GPU in-

stances (e.g., AWS spot instances and Azure spot VMs [1, 3]),
which provides a more affordable approach to serving LLMs.
These instances run on spare capacity on modern clouds at
a price up to 90% lower than on-demand instances [3]. How-
ever, different from on-demand instances, spot instances may
be preempted at any time when the capacity is needed by
other instances. When a spot instance is preempted, modern
cloud platforms generally provide a grace period (e.g., 30 sec-
onds for AWS spot instances), which allows the instance to
complete running tasks and gracefully stop.
Prior work has introduced several DNN serving systems

that leverage spot instances to reduce the monetary cost of
DNN inference. Most of these systems (e.g., MArk [57], Cock-
tail [19]) target small DNN models that can fit on a single
spot instance with one or multiple GPUs [23, 56], and han-
dle preemptions using request rerouting [57] or redundant
computation [23, 48]. While these approaches can effectively
serve small models using data parallelism, they cannot scale
to LLMs, serving which requires combining data, tensor
model, and pipeline model parallelism [34, 47, 50, 61]. Model
parallelism enlarges the minimal inference granularity from
a single GPU instance to a group of instances (i.e., an in-
ference pipeline), which requires more efficient methods to
handle preemptions than rerouting and redundant computa-
tion, since preemptions are no longer independent and each
preemption affects all other instances in the same pipeline.

This paper presents SpotServe, the first distributed gener-
ative LLM serving system on spot instances. SpotServe par-
allelizes LLM inference across multiple spot GPU instances
by combining data, tensor model, and pipeline model par-
allelism, and produces identical results as serving the LLM
using on-demand instances. Serving LLMs on spot GPU in-
stances requires addressing three main challenges: (1) dy-
namically reparallelizing LLM inference, (2) cheaply migrat-
ing instances, and (3) effectively leveraging grace period. We
elaborate on these challenges and the key ideas SpotServe
uses to overcome them.

Challenge #1: dynamic reparallelization. Serving LLMs
requires parallelizing the model parameters and computa-
tions across multiple GPUs using a combination of intra-
operator (e.g., data and tensormodel [8, 22]) and inter-operator

(e.g., pipeline model [35, 61]) parallelization strategies. The
first challenge SpotServe must address is the frequently
changing number of available spot instances due to instance
preemptions and acquisitions, which requires dynamically
adapting the parallelization configuration to achieve opti-
mized LLM serving performance, a problem we called dy-

namic reparallelization.
To address this challenge, SpotServe’s parallelization con-

troller dynamically adapts the parallelization strategy for
serving LLMs in response to changes in spot-instance avail-
ability. SpotServe considers both the inference latency of a
parallelization strategy and its serving throughput, and uses
a hybrid optimization algorithm to balance the trade-off be-
tween throughput and latency. Dynamically reparallelizing
LLM inference allows SpotServe to quickly adapt to changes
to spot instances’ availability and requests’ arrival rates.

Challenge #2: instance migration. A second challenge
SpotServe must tackle is minimizing the cost of migrating
GPU instances for reparallelization. In particular, when tran-
sitioning to a different parallelization strategy, SpotServe
must reinitialize all spot instances to incorporate new model
parameters and establish new communication groups. Prior
work on serving small DNN models on spot instances pre-
sumed negligible overheads to reinitialize a spot instance [19,
57]. However, we have observed that this assumption is not
valid for LLMs, since restarting LLM serving from scratch
results in substantial overheads. For example, loading a GPT
model with 120 billion parameters from persistent storage
takes more than 2 minutes on AWS.

To minimize the migration cost for reparallelization, Spot-
Serve opportunistically reuses the model parameters and
intermediate results such as key/value cache of an inference
request (see Section 2) to minimize inter-instance commu-
nication. The task of mapping available spot instances to
the device mesh of a parallelization strategy is formalized
as a bipartite graph matching problem in SpotServe, which
leverages the Kuhn-Munkres (KM) algorithm to identify an
optimal device mapping that minimizes the cost of migrat-
ing spot instances for reparallelization. In addition, to decide
in which order to migrate instances, SpotServe’s migration

planner leverages the sequential execution order of pipeline
stages to overlap instance migration with inference compu-
tation.

Challenge #3: grace period. Leveraging the grace pe-
riod provided by modern clouds presents another challenge
as the inference time for LLMs may surpass the grace pe-
riod, therefore leading to unfinished requests. In existing
spot-instance serving systems, these unfinished requests are
generally rerouted to other inference pipelines, where the
inference computation of these requests is restarted from
the beginning. This approach does not efficiently use grace
period and results in redundant computations.

1113

SpotServe: Serving Generative Large Language Models on Preemptible Instances ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

To take advantage of grace period, SpotServe leverages the
autoregressive nature of LLMs and introduces stateful infer-
ence recovery, which allows inference engines in SpotServe
to commit their progresses at the token level, rather than the
request level as used in prior work. SpotServe’s inference
engine uses a just-in-time (JIT) arrangement to determine
when to migrate the key/value cache of committed tokens to
other available instances, which will use the cached results
to resume inference.
The above techniques allow SpotServe to significantly

outperform existing approaches for serving LLMs on spot
instances. We have evaluated SpotServe on real traces and
a variety of LLMs and shown that SpotServe reduces the
P99 tail latency by 2.4 - 9.1× compared with existing LLM
serving systems. In addition, SpotServe can utilize spot in-
stance to reduce the monetary cost for serving LLMs by up to
54% compared with on-demand LLM serving systems while
maintaining the same serving latency.

2 Background

2.1 Generative LLM Inference

LLMs generally stack several identical Transformer [51] lay-
ers, each of which contains multi-head attentionmechanisms
and feed-forward networks (FFNs), as shown in Figure 1a.
Most LLMs adopt the auto-regressive decoding mechanism,
leading to an incremental inference process consisting of
several iterations. We dive deeper into the iterative process
to provide a better understanding of LLM inference. Given a
batch of input requests, the corresponding execution latency
𝑙𝑒𝑥𝑒 is divided into two components in E.q.(1):

𝑙𝑒𝑥𝑒 (𝑆𝑜𝑢𝑡 |𝑆𝑖𝑛) = 𝑡𝑒𝑥𝑒 (𝑆𝑖𝑛) +

𝑆𝑜𝑢𝑡∑︁

𝑖=1

𝑡𝑒𝑥𝑒 (𝑆𝑖𝑛 + 𝑖) (1)

≈ 𝑡𝑒𝑥𝑒 (𝑆𝑖𝑛) + 𝑆𝑜𝑢𝑡 × 𝑡𝑒𝑥𝑒 (1) (2)

where 𝑡𝑒𝑥𝑒 indicates the LLM’s execution time as a function
of decoding sequence length, 𝑆𝑖𝑛 is the length of the prompt
tokens provided the user, and 𝑆𝑜𝑢𝑡 is the length of the output
tokens generated by the LLM. The first decoding iteration
of a request is called its initial phase, where the LLM takes
all prompt tokens as input, processes them in parallel, and
produces the first output token. After that, each incremental

decoding iteration considers all prompt tokens together with
currently generated output tokens as input and generates
one additional output token. Figure 1a illustrates an example
where an LLM takes łABCDž as the input sequence (i.e.,
𝑆𝑖𝑛 = 4) and generates one output token in each iteration.

Existing generative inference systems (e.g., FasterTrans-
former [5], Orca [56], SpecInfer [32], vLLM [25]) use a key-
value (KV) caching optimization that caches the keys and
values of all Transformer layers in GPU device memory.
The KV cache avoids recomputing preceding tokens dur-
ing attention calculation, resulting in an almost constant
per-iteration decoding time (i.e., 𝑡𝑒𝑥𝑒 (1) in Equation (2) and

Figure 1a). However, as the output sequence grows, the mem-
ory requirement of KV cache keeps expanding and can be
significant in real workloads (e.g., 1.7 GB per-sequence for
LLaMA-13B [25], or several TBs for OPT-175B [44]).

2.2 Distributed Inference of DNNs

Existing distributed DNN serving systems such as NVIDIA
Triton [2] generally maintain multiple concurrent inference
pipelines, each of which independently serves an inference
engine such as FasterTransformer [5] on several GPU devices.
An inference server receives input requests, partitions them
into small batches, and dispatches them to these inference
pipelines. All GPUs of each inference pipeline work collabo-
ratively to perform DNN inference and send the output back
to the inference server. For each inference request, its end-
to-end inference latency 𝑙𝑟𝑒𝑞 is divided into two parts: the
scheduling overhead 𝑙𝑠𝑐ℎ and the execution latency 𝑙𝑒𝑥𝑒 . The
former is determined by the arrival rate of input requests and
the peak serving rate of the inference system. If the arrival
rate exceeds the peak serving rate, input requests cannot
be processed in time, resulting in an increase of scheduling
overhead. In this case, the inference system must improve
the serving capability by improving the overall throughput.
When the arrival rate is lower than the peak serving rate, 𝑙𝑠𝑐ℎ
still exists because the requests’ arrival intervals can be non-
uniform, in which case burst requests introduce scheduling
overheads. All GPUs within an inference pipeline parallelize
inference computation by combining two categories of par-
allel paradigms, as illustrated in Figure 2.

Inter-operator parallelism. Pipelinemodel parallelism [21]
is a commonly used inter-operator parallelism strategy, which
partitions the operators of a DNN into multiple stages with
data dependencies. Figure 2a shows an example of partition-
ing a multi-layer Transformer model into two stages, each of
which has half of the layers. These stages can form a pipeline
based on certain pipeline scheduling mechanisms [35, 36].

Intra-operator Parallelism. Tensormodel parallelism [45]
splits each DNN operator into several shards across the de-
vices. As shown in Figure 2b, the corresponding tensors are
also sharded based on certain distributed data layout. The
participating devices perform computation in parallel and
communicate with others to exchange intermediate results.
Note that both the data dependencies in pipeline model

parallelism and the collective communications in tensor
model parallelism do not naturally provide fault tolerance.
The preemption of a single instance can potentially hang all
the other instances in the same inference pipeline. A pre-
emption may also break multiple inference pipelines if these
pipelines are supported by different GPUs located on the
same preempted instance. This chain crashing problem en-
larges the affects of a single instance’s preemption from itself
to several pipelines. The affected instances are not physically

1114

SpotServe: Serving Generative Large Language Models on Preemptible Instances ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

instead of destroying and rebuilding these contexts, Spot-
Serve adopts a more lightweight context migration mecha-
nism that can resume the inference process of interrupted
requests without recomputation. As migrating these con-
text information among GPU instances may also increase
latency, a key challenge SpotServe must address is mapping
the available GPU instances to the logical device mesh iden-
tified by the new parallel configuration to maximally reuse
previous contexts. We ignore batch size and use (𝐷, 𝑃,𝑀) to
denote a parallel configuration, where 𝐷 , 𝑃 , and𝑀 indicate
the data, pipeline model, and tensor model parallel degrees.
SpotServe binds each GPU instance with a pipeline-stage-
shard topology position (𝑑, 𝑝,𝑚), which represents the𝑚-th
shard (1 ≤ 𝑚 ≤ 𝑀) of the 𝑝-th stage (1 ≤ 𝑝 ≤ 𝑃) in the 𝑑-th
pipeline (1 ≤ 𝑑 ≤ 𝐷).

To switch between different parallel configurations, Spot-
Serve formalizes device mapping as a bipartite graph match-

ing problem, and uses the Kuhn-Munkres (KM) algorithm [24]
to find an optimal device mapping that minimizes total data
transmission during context migration. We next describe
SpotServe’s bipartite graph matching algorithm.

Bipartite graph matching. SpotServe uses a bipartite
graph G = (V𝑎,V𝑡 , E) to describe device mapping, where
each node 𝑢 ∈ V𝑎 is a GPU device, each node 𝑣 ∈ V𝑡 rep-
resents a pipeline-stage-shard position of the parallel con-
figuration, and a weighted edge 𝑒𝑢𝑣 (𝑢 ∈ V𝑎, 𝑣 ∈ V𝑡) indi-
cates the amount of reusable model parameters and key/-
value cache when mapping GPU 𝑢 to position 𝑣 of the par-
allel configuration. As shown in Figure 4b, given the cur-
rent state of each GPU’s context daemon (i.e., organized as
(𝐷 = 2, 𝑃 = 2, 𝑀 = 2)) and a target parallel configuration
(𝐷 = 2, 𝑃 = 3, 𝑀 = 1), SpotServe builds a complete bipartite
graph and computes the edge weight between every (𝑢, 𝑣)
pair using the size of their intersection contexts. For example,
𝑢1 holds half of the sharded context of the first stage in the
first pipeline, and overlaps the most model context with 𝑣0
and 𝑣3 since they are in charge of the first stage of the new
pipeline. Suppose the new pipeline 0

′
inherits the interrupted

inference requests from pipeline 0, we may prefer to match
𝑢1 with 𝑣0 as it has more cache context to reuse. SpotServe
transforms the optimal device mapping problem to a bipar-
tite graph matching task and uses the KM algorithm to find a
maximum-weight match, which maximally reuses the model
parameters and KV cache on all available GPU instances and
minimizes the total data transmission.
SpotServe also considers the cases when each instance

has multiple GPUs with higher inter-GPU bandwidth (e.g.,
NVLink). We facilitate a hierarchical architecture by con-
ducting a two-step matching (i.e., intra-instance and inter-
instance) to discover an optimal solution. More details can
be found in the appendix [7].
When the new parallel configuration 𝐶𝑡+1 handles less

concurrent inference requests than the original configuration

Algorithm 2 Workflow of the SpotServe migration planner.

⊲ Progressive Migration

1: function MigrationPlanner(context ctx, plan = [])

2: plan.append(<migrate, ctx.cache>)

3: O← Layer migration order from MemOptMigPlanner

4: for layer index 𝑖 in range(0, #layers) do

5: plan.append(<migrate, ctx.weight[O𝑖]>)

6: 𝑝 ← Get pipeline stage index of layer O𝑖

7: if stage 𝑝 completes all context migration then

8: plan.append(<start, instances of stage 𝑝>)

⊲ Memory Optimized Migration

9: function MemOptMigPlanner(maximum buffer size 𝑈𝑚𝑎𝑥)

10: O← [], X← { }

11: Instance buffer memory usage U ∈ {0}𝑁

12: for layer index 𝑖 in range(0, #layers) do

13: if (migrate, ctx.weight[𝑖]) doesn’t exceed𝑈𝑚𝑎𝑥 then

14: Update buffer memory usage U

15: O.append(𝑖)

16: else

17: X.add(𝑖)

18: while 𝑋 is not empty do

19: 𝑥𝑜𝑝𝑡 ←

argmin
𝑥∈X

max
0≤𝑖≤𝑁−1

{U𝑖 | (migrate, ctx.weight[𝑥])}

20: O.append(𝑟𝑜𝑝𝑡)

21: X.remove(𝑥𝑜𝑝𝑡)

𝐶𝑡 (i.e.,𝐷𝑡 ×𝐵𝑡 ≥ 𝐷𝑡+1×𝐵𝑡+1)
2, SpotServe discards part of the

cached results to avoid exceeding the memory capacity of the
new parallel configuration. To minimize recomputation cost,
SpotServe keeps the batches of requests with more decoding
progresses (i.e., iterations).

3.4 Migration Planner

After mapping all available devices into the logical paral-
lel positions, the next challenge is to determine the exact
migration plan to finish the configuration adjustment. A
naive approach is to make all instances follow a default ten-
sor transmission order and wait until the contexts of all
instances are successfully transferred. This solution has two
drawbacks. First, sending all contexts is time-consuming
especially for LLMs. To alleviate the context migration over-
heads, we propose a progressive migration schedule that uti-
lizes the pipeline structure and prioritizes the migration for
the first stages of the LLM. This design allows the instances
assigned to the first pipeline stages to start serving immedi-
ately, which can be potentially overlapped with the following
stages’ migration. Ideally, the context migration overheads
could be reduced to the cost of transferring a single stage’s
context. Note that we also prioritize the transfer of all layers’
cache context considering the interruption fault-tolerance.

2Recall that in a parallel configuration 𝐶 = (𝐷, 𝑃,𝑀, 𝐵) , 𝐷 and 𝐵 indi-

cate the number of inference pipelines and the batch size of each pipeline,

respectively. Therefore, 𝐷 × 𝐵 is the total number of concurrent requests.

1118

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

Although this design does not maximize overlapping, it min-
imizes the possibility of losing LLM decoding progresses.
A second challenge we must address is the memory con-

sumption of the buffer space for context communication. The
migration of every context tensor changes the runtime mem-
ory usage. Specifically, the sender’s memory can be released
while the receivers’ memory consumption will increase. An
improper migration plan may significantly increase the peak
memory usage and leads to sub-optimal inference config-
urations (e.g., splitting the model into more stages) with
higher latency. To provide a memory efficient migration
plan, we propose to consider the memory usage during the
progressive migration process. As shown in Algorithm 2, we
start from a naive plan in sequential order of the layer index
(line 12), migrates the context of each layer (line 13), and
tracks the buffer memory usage of each instance (line 14).
The algorithm requires a hyper-parameter𝑈𝑚𝑎𝑥 to represent
the maximum threshold of buffer memory consumption for
every instance. We first skip those layers whose context mi-
gration exceeds this upper bound (line 17). After that, the
algorithm decides an order for the remaining layers by solv-
ing a min-max problem (line 19). In particular, it selects the
layer whose context migration minimizes the maximum in-
stance buffer memory usage. In this way, the combined layer
context migration order has lower memory consumption
and is used by the final migration plan (line 3).

4 Stateful Inference Recovery

This section introduces SpotServe’s stateful inference recov-
ery, a new inference mechanism that recovers interrupted
inference requests without recomputation. In addition, we
discuss SpotServe’s mechanism to handle frequent interrup-
tions.

4.1 Just-in-time Arrangement

When instance preemption or acquisition notifications trig-
ger reparallelization, SpotServe must decide when to termi-
nate the inference engine and start the context migration for
each GPU instance. A conservative approach is to immedi-
ately suspend the inference engine to preserve enough time
for context migration. However, this approach would inter-
rupt all active requests on the instance. These unfinished
requests must be rerouted and restarted on other inference
pipelines, resulting in high end-to-end inference latency. An
aggressive alternative is to finish all active requests first,
which might prevent the instance from finishing migration
before preemption.

To address these issues, SpotServe leverages the grace pe-
riod offered by existing cloud platforms to opportunistically
commit inference progress at the token level, which allows
an inference request to be interrupted at any incremental
decoding iteration. Since SpotServe’s context daemon main-
tains the state (i.e., cache context) of an inference request, the

request can be rerouted to another inference pipeline, which
can directly continue its inference using the cached state
without recomputing previously generated output tokens.

To determine how many iterations to run during a grace
period, SpotServe adopts an just-in-time (JIT) arrangement

and let the inference engine decide when to stop decoding.
Specifically, each spot GPU instance includes an interruption

arranger that receives a notification when a grace period
starts. Based on this notification, the interruption arranger
checks the remaining time before feeding a new batch of
requests into the inference engine. Suppose a batch of input
requests are ready to serve at time 𝑡 , SpotServe determines
the number of the decoding iterations 𝑆𝑡 differently based
on the interruption type. For instance preemption, we have
𝑆𝑡 = argmax0≤𝑆≤𝑆𝑜𝑢𝑡 {𝑙𝑒𝑥𝑒 (𝑆 | 𝐶𝑡) < 𝑇 − − 𝑇𝑚𝑖𝑔}, where
𝑙𝑒𝑥𝑒 (𝑆 | 𝐶𝑡) is the execution time to generate 𝑆 tokens with
𝐶𝑡 ,𝑇

− is the remaining grace period before preemption, and
𝑇𝑚𝑖𝑔 is the cost of migrating instances for reparallelization.

For instance acquisition, let 𝑆𝑡 = argmin0≤𝑆≤𝑆𝑜𝑢𝑡 {𝑙𝑒𝑥𝑒 (𝑆 |
𝐶𝑡) ≥ 𝑇

+}, where𝑇 + is the remaining grace period for this ac-
quisition (i.e., initialization). A key difference between these
two arrangements is that we maximize the arranged itera-
tions before preemption andminimize that before acquisition.
This is because, unlike in-advance preemption handling, a
context migration occurs after instance acquisition. Besides,
both cases should also guarantee that the arrangement will
not increase a request’s latency (i.e., 𝑇𝑚𝑖𝑔 < 𝑙𝑒𝑥𝑒 (𝑆𝑡 | 𝐶𝑡)).
For example, if the remaining time is only sufficient to gener-
ate a few tokens, rerouting may work better than migration
since it doesn’t add context migration overheads, especially
when the arrival requests are spare.

4.2 Interruption Fault-tolerance

A remaining issue with SpotServe’s stateful inference recov-
ery is that previous arrangements only consider individual
interruptions. For multiple consecutive and compact inter-
ruptions, their grace periods might overlap with each other
and be insufficient to finish the arranged iterations and/or
migrate the context. In addition, if we underestimate the
migration costs due to unforeseen reasons (e.g., network vi-
bration), the remaining time might also not be enough for
the instance to follow the arrangements.
To build a reliable serving system, SpotServe has several

fault-tolerance mechanisms to handle these unexpected fail-
ures. First, SpotServe manages to delay the acquired instance
joining and make the arrangements for prior interruptions
feasible. Second, if one instance indeed gets preempted be-
fore expected, SpotServe has to give up the cache context
and only migrates the model context with the remaining
instances. Specially, when all replicas of the same piece of
model context are lost due to unexpected failures, the migra-
tion can not work and SpotServe has to restart by loading
weights locally (e.g., from disk) or from remote cloud storage
(e.g., S3) to fetch the required model parameters.

1119

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

(𝐷 = 3, 𝑃 = 3, 𝑀 = 4). The instance acquisition completes at
𝑡 = 450s, so they change to (𝐷 = 3, 𝑃 = 2, 𝑀 = 8) for lower
latency. But Reparallelization is suffering from expensive
restarting overheads, resulting in the highest peak latency.
Rerouting only changes the number of pipelines and incurs
some request waiting overheads. After 𝑡 = 600s, the arrival
rate decreasing is detected and on-demand instances start
to be released, then both SpotServe and Rerouting turn back
to (𝐷 = 2, 𝑃 = 2, 𝑀 = 8). As a result, SpotServe significantly
outperforms the two baselines for the fluctuating workloads.

7 Related Work

DNN inference system. The widespread DL applications
bring great market values and lead to significant DL serving
traffics. Some prior approaches (e.g., Clipper [15], Clock-
work [18], Nexus [43], and so on) consider temporal multi-
plexing and increase the GPU utilization through batching
and better scheduling. INFaaS [41] studies the model selec-
tion problem when considering multiple models with differ-
ent inference efficiency or accuracy. Shepherd [59] considers
both the resource utilization and the serving system effec-
tive throughput and improves the request scheduling. There
are also some inference systems take customized GPU ker-
nel optimization for Transformer models, like TurboTrans-
former [17] and LightSeq [52]. Some recent inference sys-
tems (e.g., FasterTransformer [5], Orca [56], DeepSpeed [11],
SpecInfer [32], AlpaServe [28]) support LLM inference by
leveraging the parallelization techniques from distributed
training approaches. Among them, AlpaServe is designed for
resource multiplex scenarios and does not show performance
superiority in our empirical study on single LLM inference
scenarios (i.e., around 3× lower than FasterTransformer C++
version). Almost all of these prior work are designed for ded-
icated instances and can not tolerate instance preemptions.

ML Serving over Spot Instance. Previous approaches
have also involved spot instances into ML inference systems.
Cocktail [19] leverages cheap spot instances to increase the
number of ensembling models and instance preemptions can
lead to certain intermittent loss in accuracy. MArk [57] stud-
ies the over-provisioning problem in previous auto-scaling
systems (e.g., SageMaker) for ML serving and improves the
cost-effectiveness by using a SLO-aware resource provision
algorithm. It also considers involving spot instances for more
cost savings but requires burstable CPU instances to han-
dle the outstanding requests during instance interruptions.
More importantly, these systems are mainly designed for
traditional ML/DL workloads (e.g., stateless, image/text clas-
sification), which are fundamentally different from recent
LLM workloads (e.g., stateful, text generation), no matter
on per-request inference latency, model parallelization tech-
nique or preemption handling complexity. These approaches
take a first step to use preemptible instances to serve ML

models and motivate our approach on distributed inference
of LLMs.

Serverless Computing and ML Serving. There are some
recent approaches [9, 27, 46] applying serverless computing
to supportML inferenceworkloads for better cost-effectiveness.
However, severless functions are designed to be lightweight
with limited computational power, memory and storage, and
hard be provisioned with GPUs [14]. And serverless func-
tions cannot directly communicate with each other, which
is also necessary to support distributed inference of LLMs.
As a result, it works well for small models but can not easily
serve LLMs due to the hardware constraints.

8 Limitations and Future Work

We introduce the limitations of our approach and outline
avenues of future research in SpotServe. First, the key idea
of SpotServe is to proactively handle instance availability
changes, which strongly relies on the grace period. Although
all cloud providers offer this functionality at present, it is
still worth exploring more visionary solutions to improve
the system performance, such as the combination with in-
ference workload prediction [59] or instance availability
prediction [54]. Second, our approach mainly focuses on
single-type GPU instances. It is also possible to integrate
heterogeneous instances [14, 30, 33] or even instances from
different clouds (e.g., SkyPilot [55]) for monetary advan-
tages. These scenarios also bring new challenges to context
migration in SpotServe. Last, our approach currently takes
inference latency minimization as the optimization target. As
we mentioned in ğ3.2, it is still meaningful to explore other
targets (e.g., strict SLO [20], high throughput [44]) to meet
the needs of different inference scenarios. Besides, the explo-
ration space of parallelization configurations can be enlarged
to support emerging variants of large models (e.g., mixutre-
of-experts [26, 38]) in the future. While SpotServe focuses on
spot instances, our techniques can easily generalize to other
preemptible resources, e.g., resource scheduler may preempt
resources for urgent jobs with switching overheads [53]. We
believe that our approach inspires a new paradigm for dis-
tributed inference on preemptible instances, and the insights
gleaned from SpotServe’s design can motivate a variety of
following-up research along this direction.

9 Conclusion

This paper presents SpotServe, the first distributed LLM serv-
ing system on preemptible instances. Several key techniques
in SpotServe enable fast and reliable serving of generative
LLMs on preemptible instances. First, SpotServe dynami-
cally adapts the parallelization configuration to make the
system serving capability compatible with the workload. The
configuration optimization considers the trade-offs among
throughput, latency and monetary cost. Second, to minimize

1123

SpotServe: Serving Generative Large Language Models on Preemptible Instances ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the reparallelization overheads, we design the device map-
ping algorithm and the migration planning mechanism to
achieve efficient context migration. Finally, to take advantage
of the grace period offered by the cloud provider, we intro-
duce stateful inference recovery, which allows SpotServe to
commit inference progress at a much finer granularity. We
evaluate SpotServe on real traces and various scales of pop-
ular LLMs and show that SpotServe can save 54% monetary
cost compared with on-demand instance and reduce the P99
tail latency by 2.4 - 9.1× compared with existing approaches.

Acknowledgement

We thank the anonymous ASPLOS reviewers and our shep-
herd, Todd Mytkowicz, for their comments and helpful feed-
back. This material is based upon work supported by NSF
awards CNS-2147909, CNS-2211882, and CNS-2239351, and
research awards from Amazon, Cisco, Google, Meta, Oracle,
Qualcomm, and Samsung.

A Artifact

A.1 Abstract

This artifact includes codes and scripts for reproducing all ex-
periments in the paper.We also release the collected available
trace using the g4dn spot instances in our artifact. To repro-
duce our experiments, we require twelve network-accessible
AWS g4dn.12xlarge instances, each with 4 NVIDIA Tesla
T4 GPUs, all of which require CUDA, NCCL, MPI, Python de-
pendencies to be installed. This artifact consists of three com-
ponents: Global Server (i.e. Inference Server), Params Client
(i.e. Context Daemon), and modified FasterTransformer (i.e.
Inference Engine). The first component is written in Python,
while the other two are in C++. Our provided scripts will
automatically launch all of them to perform experiment.

A.2 Artifact check-list (meta-information)

• Program: GlobalServer, ParamsClient, FasterTrans-

former(modified).

• Compilation: CMake.

• Run-time environment: CUDA, NCCL, MPI, Python3.

• Hardware: 12 AWS g4dn.12xlarge instances

• Execution: Inference are performing in GPUs, and the

Global Server are managing requests and instances on CPUs.

• Metrics: End-to-end average/tail latency.

• Output: End-to-end latency for each requests, and figures.

• Experiments: End-to-End, Price Comparison, Fluctuating

Workload, Ablation Study.

• How much disk space required (approximately)?:

600GB per instance.

• How much time is needed to prepare workflow (ap-

proximately)?: 2 hours to install dependencies, build com-

ponents and complete configuration.

• How much time is needed to complete experiments

(approximately)?: 16 hours.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: The SpotServe

artifact is released under the Apache-2.0 License.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

10558752

A.3 Description

A.3.1 How to access. The artifact is available on
Github: https://github.com/Hsword/SpotServe/blob/artifact/

README.md, including installation guide and benchmark
scripts to reproduce results.

A.3.2 Hardware dependencies. We conduct the experi-
ments with twelve AWS g4dn.12xlarge instances, and each
is equipped with four NVIDIA Tesla T4 GPUs and x86_64

CPU. The network bandwidth across instances is 50Gbps.

A.3.3 Software dependencies. Following toolkits are re-
quired: CUDA (≥ 10.2), NCCL (≥ 2.10), MPI, and CMake
(≥ 3.8) is highly recommended for building the components.

A.4 Installation

To install the artifact, users need to build ParamsClient and
our modified FasterTransformer individually. It is recom-
mended that compile the components on single instance
and send them to other nodes by rsync command later (See
Experiment workflow).

Install FasterTransformer. If dependencies are not sat-
isfied, CMake will report the missing dependencies:

cd ./ FasterTransformer

mkdir build && cd build

cmake -DSM=75 -DCMAKE_BUILD_TYPE=Release

-DBUILD_MULTI_GPU=ON ..

make multi_gpu_gpt_example_iter -j 8

Install ParamsClient. Installation command is similar:

cd ./ ParamsClient

mkdir build && cd build

cmake ..

make -j 8

Preparing Checkpoints. Since we focus on the end-to-
end latency, using randomized checkpoints is acceptable,
we provide a python script to randomly generate model
checkpoints. To save disk space, the first layer weights are
the only generated files, all weights in succeeding layers are
linked to the corresponding files of the first layer. Following
command will generate checkpoint files for specified model
that can be directly used by out system. Available candidates
of model_name are 6.7B, 20B, 30B.

cd ./ckpt

python generate_random_gpt_ckpt.py \

-o <model_name >

1124

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

Configure Environment. Configuration is reqiured:

• ./elastic_switch/trace/hostfile_aws_T4: The
IP address of your instances, one entry each line, and
at least 12 entries.
• ./elastic_switch/scripts_ae/env.sh: Set NIC,
path to MPI, and your base directory. See its contents
for details.

Sync Codes and Data. Make sure that all nodes are acces-
sible to each other, and the Hostfile has been configured. We
provide a Python script to automatically send built compo-
nents and checkpoints (optional) to all the instances. Please
set base directory and the IP address where components are
built in sync_code.py, and run following command:

python sync_code.py --n 12 --sync -dataset \

--hostfile elastic -switch/trace/hostnameT4

A.5 Experiment workflow

Performing Experiments. We provide shell scripts to
generate per-request end-to-end latency, which will be
used for plotting figures later. All scripts are located in
./elastic_switch/scripts_ae/, please set working direc-
tory to ./elastic_switch/ before running the following
scripts. It is not necessary to run all of them before go to
next step.

• aws_e2e.sh will start the end-to-end latency evalua-
tion in ğ6.2. In the following command, the approach
can be one of reparallelization, rerouting,

spotserve, and the model_name should be one of
6.7B, 20B, 30B, while the trace_name should be
one of As, Bs, As+o, Bs+o. Each execution will be
corresponding to a single curve in Figure 6:

./ scripts_ae/aws_e2e.sh <approach > \

<model_name > <trace_name >

• aws_ondemand.sh will start the monetary cost eval-
uation in ğ6.2, generating the dashed blue line in Fig-
ure 7. The num_node can be one of 3, 4, 6, 8, but
the dashed line will be plotted only when all of the
four experiments have been conducted:

./ scripts_ae/aws_ondemand.sh <num_node >

• aws_workload.sh will start the fluctuating work-
load evaluation in ğ6.3 on specified trace (can be ei-
ther A or B), where the approach can also be one of
reparallelization, rerouting, spotserve:

./ scripts_ae/aws_workload.sh \

<approach > <trace_name >

• aws_ablation.sh will start the ablation study evalu-
ation in ğ6.2 on specified trace (can be either A or B),
where the ablation_level is from 0 to 4, correspond-
ing to the five bars in Figure 9:

./ scripts_ae/aws_ablation.sh \

<ablation_level > <trace_name >

Plotting Figures. All the scripts above only generate the
end-to-end latency for each request. To analysis these data
and plot figures presented in the paper, we also provide a
plot.py together with the scripts:

pip install matplotlib seaborn

python ./ scripts_ae/plot.py <mode > \

[-m MODEL] [-t TRACE]

This script works even when only part of the experiment
has been completed (just ignoring missing results), allowing
users to check partial experimental data. Here is the available
options for mode:

• e2e Plot the corresponding figure as in Figure 6, both
-m, -t flags are required to be specified.
• price Plot the monetary cost comparison figure as
Figure 7, in which the scatters come from aws_e2e.sh.
• workload-e2e Plot the end-to-end latency figure as
Figure 8(e)(f) on the trace specified by -t flag.
• workload-case Plot the per-request latency figure as
Figure 8(g)(h) on the trace specified by -t flag.
• ablation Plot the ablation study figure as Figure 9.

A.6 Evaluation and expected results

The specific results differ on the hardware, bandwidth, and
sometimes sensitive to unpredictable GPU/network/batch-
ing fluctuations. However, we expect the results users repro-
duced roughly match the trends as the figures presented in
the paper within the same environment. (i.e. Figures 6,7,8,9)

A.7 Experiment customization

Artifact users can customize the evaluation scripts to test the
system performance on other workloads. For example, users
can use their own model checkpoints in different volumes,
or spot instances traces with different availability changes.
Please refer to README.md for detailed instructions.

A.8 Notes

Occasionally, some processes on certain nodes may not
exit even though the evaluation is finished. We provide
kill_all.sh. Running following command to kill all con-
cerning processes after each experiment is highly recom-
mended:

./ scripts_ae/kill_all.sh 12 \

./trace/hostfile_aws_T4

References
[1] Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot/.

[2] NVIDIA Triton Inference Server. https://developer.nvidia.com/nvidia-

triton-inference-server.

1125

SpotServe: Serving Generative Large Language Models on Preemptible Instances ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[3] Use Azure Spot Virtual Machines. https://learn.microsoft.com/en-

us/azure/virtual-machines/spot-vms.

[4] CUDA IPC. https://docs.nvidia.com/cuda/cuda-runtime-api/group_

_CUDART__DEVICE.html, 2021.

[5] NVIDIA FasterTransformer. https://github.com/NVIDIA/

FasterTransformer, 2021.

[6] NVIDIA NCCL. https://developer.nvidia.com/nccl, 2021.

[7] SpotServe Appendix. https://github.com/Hsword/SpotServe/blob/

main/docs/Appendix.pdf, 2024.

[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-

flow: A system for large-scale machine learning. In Proceedings of the

12th USENIX Conference on Operating Systems Design and Implementa-

tion, OSDI, 2016.

[9] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. Batch:

Machine learning inference serving on serverless platforms with adap-

tive batching. In SC20: International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 1ś15, 2020.

[10] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. Optimiz-

ing inference serving on serverless platforms. Proceedings of the VLDB

Endowment, 15(10), 2022.

[11] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan,

Cheng Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia

Zhang, Jeff Rasley, and Yuxiong He. Deepspeed- inference: Enabling

efficient inference of transformer models at unprecedented scale. In

SC22: International Conference for High Performance Computing, Net-

working, Storage and Analysis, pages 1ś15, 2022.

[12] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ram-

jee, and Nipun Kwatra. Varuna: scalable, low-cost training of massive

deep learning models. In Proceedings of the Seventeenth European

Conference on Computer Systems, pages 472ś487, 2022.

[13] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. Language models are few-shot learners,

2020.

[14] Junguk Cho, Diman Zad Tootaghaj, Lianjie Cao, and Puneet Sharma.

Sla-driven ml inference framework for clouds with heterogeneous

accelerators. In D. Marculescu, Y. Chi, and C. Wu, editors, Proceedings

of Machine Learning and Systems, volume 4, pages 20ś32, 2022.

[15] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,

Joseph E. Gonzalez, and Ion Stoica. Clipper: A Low-Latency online

prediction serving system. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17), pages 613ś627, Boston,

MA, March 2017. USENIX Association.

[16] Dense Linear Algebra on GPUs. https://developer.nvidia.com/cublas,

2016.

[17] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. Turbotransform-

ers: an efficient GPU serving system for transformer models. In Jaejin

Lee and Erez Petrank, editors, PPoPP ’21: 26th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming, Virtual Event,

Republic of Korea, February 27- March 3, 2021, pages 389ś402. ACM,

2021.

[18] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-

mann, Ymir Vigfusson, and Jonathan Mace. Serving DNNs like clock-

work: Performance predictability from the bottom up. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI
20), pages 443ś462. USENIX Association, November 2020.

[19] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-

nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R. Das.

Cocktail: A multidimensional optimization for model serving in cloud.

In 19th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI 22), pages 1041ś1057, Renton, WA, April 2022.

USENIX Association.

[20] Yitian Hao, Wenqing Wu, Ziyi Zhang, Yuyang Huang, Chen Wang,

Jun Duan, and Junchen Jiang. Deft: Slo-driven preemptive scheduling

for containerized dnn serving. In Symposium on Networked Systems

Design and Implementation, 2023.

[21] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao

Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,

Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant

neural networks using pipeline parallelism. In Advances in Neural

Information Processing Systems 32: Annual Conference on Neural In-

formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,

Vancouver, BC, Canada, pages 103ś112, 2019.

[22] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model par-

allelism for deep neural networks. In Proceedings of the 2nd Conference

on Systems and Machine Learning, SysML’19, 2019.

[23] Jack Kosaian, KV Rashmi, and Shivaram Venkataraman. Parity models:

erasure-coded resilience for prediction serving systems. In Proceedings

of the 27th ACM Symposium on Operating Systems Principles, pages

30ś46, 2019.

[24] Harold W Kuhn. The hungarian method for the assignment problem.

Naval research logistics quarterly, 2(1-2):83ś97, 1955.

[25] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin

Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.

Efficient memory management for large language model serving with

pagedattention. In Proceedings of the 29th Symposium on Operating

Systems Principles, pages 611ś626, 2023.

[26] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,

Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and

Zhifeng Chen. Gshard: Scaling giant models with conditional compu-

tation and automatic sharding. CoRR, abs/2006.16668, 2020.

[27] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. Tetris:

Memory-efficient serverless inference through tensor sharing. In Jiri

Schindler and Noa Zilberman, editors, 2022 USENIX Annual Technical

Conference, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022.

USENIX Association, 2022.

[28] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,

Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gon-

zalez, and Ion Stoica. Alpaserve: Statistical multiplexing with model

parallelism for deep learning serving. CoRR, abs/2302.11665, 2023.

[29] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin,

and Weizhu Chen. What makes good in-context examples for gpt-3?

arXiv preprint arXiv:2101.06804, 2021.

[30] Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang,

Lingxiao Ma, and Bin Cui. Heterogeneity-aware distributed machine

learning training via partial reduce. In Proceedings of the 2021 Interna-

tional Conference on Management of Data, pages 2262ś2270, 2021.

[31] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi

Jin, Tianqi Chen, and Zhihao Jia. Towards efficient generative large

language model serving: A survey from algorithms to systems. arXiv

preprint arXiv:2312.15234, 2023.

[32] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu

Wang, Rae Ying Yee Wong, Zhuoming Chen, Daiyaan Arfeen, Reyna

Abhyankar, and Zhihao Jia. Specinfer: Accelerating generative llm

serving with speculative inference and token tree verification. arXiv

preprint arXiv:2305.09781, 2023.

[33] Xupeng Miao, Yining Shi, Zhi Yang, Bin Cui, and Zhihao Jia. Sdpipe:

A semi-decentralized framework for heterogeneity-aware pipeline-

parallel training. Proceedings of the VLDB Endowment, 16(9):2354ś2363,

2023.

1126

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

[34] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie,

Hailin Zhang, and Bin Cui. Galvatron: Efficient transformer training

over multiple gpus using automatic parallelism. Proc. VLDB Endow.,

16(3):470ś479, 2023.

[35] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,

Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei

Zaharia. Pipedream: Generalized pipeline parallelism for dnn training.

In Proceedings of the 27th ACM Symposium on Operating Systems Prin-

ciples, SOSP ’19, page 1ś15, New York, NY, USA, 2019. Association for

Computing Machinery.

[36] DeepakNarayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, andMatei

Zaharia. Memory-efficient pipeline-parallel DNN training. In Marina

Meila and Tong Zhang, editors, Proceedings of the 38th International

Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual

Event, volume 139 of Proceedings of Machine Learning Research, pages

7937ś7947. PMLR, 2021.

[37] Deepak Narayanan, Keshav Santhanam, Peter Henderson, Rishi Bom-

masani, Tony Lee, and Percy Liang. Cheaply estimating inference

efficiency metrics for autoregressive transformer models. In Thirty-

seventh Conference on Neural Information Processing Systems, 2023.

[38] Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang, Jilong Xue,

Lingxiao Ma, Gang Cao, and Bin Cui. Flexmoe: Scaling large-scale

sparse pre-trained model training via dynamic device placement. Pro-

ceedings of the ACM on Management of Data, 1(1):1ś19, 2023.

[39] OpenAI. Gpt-4 technical report, 2023.

[40] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,

Ilya Sutskever, et al. Language models are unsupervised multitask

learners. OpenAI blog, 1(8):9, 2019.

[41] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos

Kozyrakis. INFaaS: Automated model-less inference serving. In 2021

USENIX Annual Technical Conference (USENIX ATC 21), pages 397ś411.

USENIX Association, July 2021.

[42] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-

izing and optimizing the serverless workload at a large cloud provider.

In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages

205ś218. USENIX Association, July 2020.

[43] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,

Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus:

A gpu cluster engine for accelerating dnn-based video analysis. In

SOSP ’19: Proceedings of the 27th ACM Symposium on Operating Systems

Principles, pages 322ś337, 2019.

[44] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,

Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark W. Barrett, Joseph E.

Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang.

High-throughput generative inference of large language models with

a single GPU. CoRR, abs/2303.06865, 2023.

[45] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,

Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-

billion parameter language models using model parallelism. CoRR,

abs/1909.08053, 2019.

[46] Vikram Sreekanti, Harikaran Subbaraj, ChenggangWu, Joseph E. Gon-

zalez, and Joseph M. Hellerstein. Optimizing prediction serving on

low-latency serverless dataflow. CoRR, abs/2007.05832, 2020.

[47] JakubM Tarnawski, Deepak Narayanan, and Amar Phanishayee. Piper:

Multidimensional planner for dnn parallelization. In Advances in

Neural Information Processing Systems, volume 34, pages 24829ś24840,

2021.

[48] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao

Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. Bamboo:

Making preemptible instances resilient for affordable training of large

dnns. CoRR, abs/2204.12013, 2022.
[49] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-

Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric

Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation

language models. arXiv preprint arXiv:2302.13971, 2023.

[50] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos

Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati,

Patrick S. McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa

Mudigere, Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. Unity:

Accelerating DNN training through joint optimization of algebraic

transformations and parallelization. In 16th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2022, Carlsbad,

CA, USA, July 11-13, 2022, pages 267ś284. USENIX Association, 2022.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. CoRR, abs/1706.03762, 2017.

[52] Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang, and Lei Li.

Lightseq: A high performance inference library for transformers. In

Young-bum Kim, Yunyao Li, and Owen Rambow, editors, Proceedings

of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies: Indus-

try Papers, NAACL-HLT 2021, Online, June 6-11, 2021, pages 113ś120.

Association for Computational Linguistics, 2021.

[53] Xiaofeng Wu, Jia Rao, Wei Chen, Hang Huang, Chris Ding, and Heng

Huang. Switchflow: preemptive multitasking for deep learning. In

Proceedings of the 22nd International Middleware Conference, pages

146ś158, 2021.

[54] Fangkai Yang, Lu Wang, Zhenyu Xu, Jue Zhang, Liqun Li, Bo Qiao,

Camille Couturier, Chetan Bansal, Soumya Ram, Si Qin, et al. Snape:

Reliable and low-cost computing with mixture of spot and on-demand

vms. In Proceedings of the 28th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,

Volume 3, pages 631ś643, 2023.

[55] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil

Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam

Mittal, Scott Shenker, and Ion Stoica. SkyPilot: An intercloud broker

for sky computing. In 20th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 23), pages 437ś455, Boston, MA,

April 2023. USENIX Association.

[56] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and

Byung-Gon Chun. Orca: A distributed serving system for Transformer-

Based generative models. In 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22), pages 521ś538, Carlsbad,

CA, July 2022. USENIX Association.

[57] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. Mark:

Exploiting cloud services for cost-effective, slo-aware machine learn-

ing inference serving. In USENIX Annual Technical Conference, pages

1049ś1062, 2019.

[58] Haoyu Zhang, Jianjun Xu, and Ji Wang. Pretraining-based nat-

ural language generation for text summarization. arXiv preprint

arXiv:1902.09243, 2019.

[59] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. SHEP-

HERD: Serving DNNs in the wild. In 20th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 23), pages 787ś808,

Boston, MA, April 2023. USENIX Association.

[60] Susan Zhang, Stephen Roller, NamanGoyal, Mikel Artetxe, Moya Chen,

Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria

Lin, et al. Opt: Open pre-trained transformer language models. arXiv

preprint arXiv:2205.01068, 2022.

[61] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng

Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,

Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating

inter- and intra-operator parallelism for distributed deep learning. In

Marcos K. Aguilera and Hakim Weatherspoon, editors, 16th USENIX

Symposium on Operating Systems Design and Implementation, OSDI

2022, Carlsbad, CA, USA, July 11-13, 2022, pages 559ś578. USENIX

Association, 2022.

1127

