Check for

Updates

SpotServe: Serving Generative Large Language Models
on Preemptible Instances

Xupeng Miao*
Carnegie Mellon University
Pittsburgh, PA, USA
xupeng@cmu.edu

Xiaoli Xi
Carnegie Mellon University
Pittsburgh, PA, USA
xiaolix@andrew.cmu.edu

Chunan Shi*
Peking University
Beijing, China
spirited_away@pku.edu.cn

Dahua Lin
The Chinese University of Hong Kong
Hong Kong, China
dhlin@ie.cuhk.edu.hk

Jiangfei Duan
The Chinese University of Hong Kong
Hong Kong, China
djo21@ie.cuhk.edu.hk

Bin Cui
Peking University
Beijing, China
bin.cui@pku.edu.cn

Zhihao Jia
Carnegie Mellon University
Pittsburgh, PA, USA
zhihao@cmu.edu

Abstract

The high computational and memory requirements of gener-
ative large language models (LLMs) make it challenging to
serve them cheaply. This paper aims to reduce the monetary
cost for serving LLMs by leveraging preemptible GPU in-
stances on modern clouds, which offer accesses to spare GPU
resources at a much cheaper price than regular instances
but may be preempted by the cloud provider at any time.
Serving LLMs on preemptible instances requires addressing
challenges induced by frequent instance preemptions and the
necessity of migrating instances to handle the preemptions.

This paper presents SpotServe, the first distributed LLM
serving system on preemptible instances. Several key tech-
niques of SpotServe realize fast and reliable serving of gener-
ative LLMs on cheap preemptible instances. First, SpotServe
dynamically adapts the LLM parallelization configuration
for dynamic instance availability and fluctuating workload,
while balancing the trade-off among the overall throughput,
inference latency and monetary costs. Second, to minimize
the cost of migrating instances for dynamic reparallelization,
the task of migrating instances is formulated as a bipartite
graph matching problem in SpotServe, which uses the Kuhn-
Munkres algorithm to identify an optimal migration plan that
minimizes communication cost. Finally, to take advantage of

“Equal contribution.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASPLOS 24, April 27-May 1, 2024, La jolla, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0385-0/24/04.

https://doi.org/]O.] 145/3620665.3640411

1112

the grace period offered by modern cloud platforms, we intro-
duce stateful inference recovery, a new inference mechanism
that commits inference progress at a much finer granular-
ity and allows SpotServe to cheaply resume inference upon
preemption. We evaluate SpotServe on real spot instance
preemption traces and various popular LLMs and show that
SpotServe can reduce the P99 tail latency by 2.4 - 9.1X com-
pared with the best existing LLM serving systems. We also
show that SpotServe can leverage the price advantage of
preemptive instances, saving 54% monetary cost compared
with only using on-demand instances. The code is publicly
available at: https://github.com/Hsword/SpotServe.

CCS Concepts: -« Computer systems organization —
Cloud computing; « Computing methodologies — Arti-
ficial intelligence; Parallel computing methodologies.

Keywords: large language model serving, preemptible in-
stances, cloud computing

ACM Reference Format:

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin
Cui, and Zhihao Jia. 2024. SpotServe: Serving Generative Large
Language Models on Preemptible Instances. In 29th ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (ASPLOS °24), April 27-May
1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3620665.3640411

1 Introduction

Large language models (LLMs), such as ChatGPT [13] and
GPT-4 [39], have demonstrated remarkable capabilities of
creating natural language texts across various application
domains, including summarization, instruction following,
and question answering [29, 58]. However, the high compu-
tational and memory requirements of LLMs make it challeng-
ing to efficiently serve them on modern hardware platforms.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

To address this challenge, recent work has introduced a va-
riety of approaches [31] to parallelizing LLM inference by
partitioning an LLM into multiple sub-models, each of which
is deployed on a dedicated device. For example, GPT-3 in-
cludes 175 billion parameters and requires more than 16
NVIDIA A100-40GB GPUs to store the model parameters in
single-precision floating points, which costs more than $66
per hour to serve a single inference pipeline on AWS [13].
As the size of LLMs progressively increases, serving them on
regular cloud instances becomes prohibitively expensive for
most organizations, especially those with limited budgets.

Modern clouds offer a variety of preemptible GPU in-
stances (e.g., AWS spot instances and Azure spot VMs [1, 3]),
which provides a more affordable approach to serving LLMs.
These instances run on spare capacity on modern clouds at
a price up to 90% lower than on-demand instances [3]. How-
ever, different from on-demand instances, spot instances may
be preempted at any time when the capacity is needed by
other instances. When a spot instance is preempted, modern
cloud platforms generally provide a grace period (e.g., 30 sec-
onds for AWS spot instances), which allows the instance to
complete running tasks and gracefully stop.

Prior work has introduced several DNN serving systems
that leverage spot instances to reduce the monetary cost of
DNN inference. Most of these systems (e.g., MArk [57], Cock-
tail [19]) target small DNN models that can fit on a single
spot instance with one or multiple GPUs [23, 56], and han-
dle preemptions using request rerouting [57] or redundant
computation [23, 48]. While these approaches can effectively
serve small models using data parallelism, they cannot scale
to LLMs, serving which requires combining data, tensor
model, and pipeline model parallelism [34, 47, 50, 61]. Model
parallelism enlarges the minimal inference granularity from
a single GPU instance to a group of instances (i.e., an in-
ference pipeline), which requires more efficient methods to
handle preemptions than rerouting and redundant computa-
tion, since preemptions are no longer independent and each
preemption affects all other instances in the same pipeline.

This paper presents SpotServe, the first distributed gener-
ative LLM serving system on spot instances. SpotServe par-
allelizes LLM inference across multiple spot GPU instances
by combining data, tensor model, and pipeline model par-
allelism, and produces identical results as serving the LLM
using on-demand instances. Serving LLMs on spot GPU in-
stances requires addressing three main challenges: (1) dy-
namically reparallelizing LLM inference, (2) cheaply migrat-
ing instances, and (3) effectively leveraging grace period. We
elaborate on these challenges and the key ideas SpotServe
uses to overcome them.

Challenge #1: dynamic reparallelization. Serving LLMs
requires parallelizing the model parameters and computa-
tions across multiple GPUs using a combination of intra-
operator (e.g., data and tensor model [8, 22]) and inter-operator

1113

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

(e.g., pipeline model [35, 61]) parallelization strategies. The
first challenge SpotServe must address is the frequently
changing number of available spot instances due to instance
preemptions and acquisitions, which requires dynamically
adapting the parallelization configuration to achieve opti-
mized LLM serving performance, a problem we called dy-
namic reparallelization.

To address this challenge, SpotServe’s parallelization con-
troller dynamically adapts the parallelization strategy for
serving LLMs in response to changes in spot-instance avail-
ability. SpotServe considers both the inference latency of a
parallelization strategy and its serving throughput, and uses
a hybrid optimization algorithm to balance the trade-off be-
tween throughput and latency. Dynamically reparallelizing
LLM inference allows SpotServe to quickly adapt to changes
to spot instances’ availability and requests’ arrival rates.

Challenge #2: instance migration. A second challenge
SpotServe must tackle is minimizing the cost of migrating
GPU instances for reparallelization. In particular, when tran-
sitioning to a different parallelization strategy, SpotServe
must reinitialize all spot instances to incorporate new model
parameters and establish new communication groups. Prior
work on serving small DNN models on spot instances pre-
sumed negligible overheads to reinitialize a spot instance [19,
57]. However, we have observed that this assumption is not
valid for LLMs, since restarting LLM serving from scratch
results in substantial overheads. For example, loading a GPT
model with 120 billion parameters from persistent storage
takes more than 2 minutes on AWS.

To minimize the migration cost for reparallelization, Spot-
Serve opportunistically reuses the model parameters and
intermediate results such as key/value cache of an inference
request (see Section 2) to minimize inter-instance commu-
nication. The task of mapping available spot instances to
the device mesh of a parallelization strategy is formalized
as a bipartite graph matching problem in SpotServe, which
leverages the Kuhn-Munkres (KM) algorithm to identify an
optimal device mapping that minimizes the cost of migrat-
ing spot instances for reparallelization. In addition, to decide
in which order to migrate instances, SpotServe’s migration
planner leverages the sequential execution order of pipeline
stages to overlap instance migration with inference compu-
tation.

Challenge #3: grace period. Leveraging the grace pe-
riod provided by modern clouds presents another challenge
as the inference time for LLMs may surpass the grace pe-
riod, therefore leading to unfinished requests. In existing
spot-instance serving systems, these unfinished requests are
generally rerouted to other inference pipelines, where the
inference computation of these requests is restarted from
the beginning. This approach does not efficiently use grace
period and results in redundant computations.

SpotServe: Serving Generative Large Language Models on Preemptible Instances

To take advantage of grace period, SpotServe leverages the
autoregressive nature of LLMs and introduces stateful infer-
ence recovery, which allows inference engines in SpotServe
to commit their progresses at the token level, rather than the
request level as used in prior work. SpotServe’s inference
engine uses a just-in-time (JIT) arrangement to determine
when to migrate the key/value cache of committed tokens to
other available instances, which will use the cached results
to resume inference.

The above techniques allow SpotServe to significantly
outperform existing approaches for serving LLMs on spot
instances. We have evaluated SpotServe on real traces and
a variety of LLMs and shown that SpotServe reduces the
P99 tail latency by 2.4 - 9.1x compared with existing LLM
serving systems. In addition, SpotServe can utilize spot in-
stance to reduce the monetary cost for serving LLMs by up to
54% compared with on-demand LLM serving systems while
maintaining the same serving latency.

2 Background
2.1 Generative LLM Inference

LLMs generally stack several identical Transformer [51] lay-
ers, each of which contains multi-head attention mechanisms
and feed-forward networks (FFNs), as shown in Figure 1a.
Most LLMs adopt the auto-regressive decoding mechanism,
leading to an incremental inference process consisting of
several iterations. We dive deeper into the iterative process
to provide a better understanding of LLM inference. Given a
batch of input requests, the corresponding execution latency
lexe is divided into two components in E.q.(1):

Sout

lexe(Sout|Sin) = lexe (Sin) + Z texe (Sin + i) (1)
i=1

~ texe(Sin) + Sout X texe(1) (2)

where t.,. indicates the LLM’s execution time as a function
of decoding sequence length, S;, is the length of the prompt
tokens provided the user, and S, is the length of the output
tokens generated by the LLM. The first decoding iteration
of a request is called its initial phase, where the LLM takes
all prompt tokens as input, processes them in parallel, and
produces the first output token. After that, each incremental
decoding iteration considers all prompt tokens together with
currently generated output tokens as input and generates
one additional output token. Figure 1a illustrates an example
where an LLM takes “ABCD” as the input sequence (i.e.,
Sin = 4) and generates one output token in each iteration.
Existing generative inference systems (e.g., FasterTrans-
former [5], Orca [56], Speclnfer [32], vLLM [25]) use a key-
value (KV) caching optimization that caches the keys and
values of all Transformer layers in GPU device memory.
The KV cache avoids recomputing preceding tokens dur-
ing attention calculation, resulting in an almost constant
per-iteration decoding time (i.e., fex. (1) in Equation (2) and

1114

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 1a). However, as the output sequence grows, the mem-
ory requirement of KV cache keeps expanding and can be
significant in real workloads (e.g., 1.7 GB per-sequence for
LLaMA-13B [25], or several TBs for OPT-175B [44]).

2.2 Distributed Inference of DNNs

Existing distributed DNN serving systems such as NVIDIA
Triton [2] generally maintain multiple concurrent inference
pipelines, each of which independently serves an inference
engine such as FasterTransformer [5] on several GPU devices.
An inference server receives input requests, partitions them
into small batches, and dispatches them to these inference
pipelines. All GPUs of each inference pipeline work collabo-
ratively to perform DNN inference and send the output back
to the inference server. For each inference request, its end-
to-end inference latency I,.q is divided into two parts: the
scheduling overhead ., and the execution latency l.x.. The
former is determined by the arrival rate of input requests and
the peak serving rate of the inference system. If the arrival
rate exceeds the peak serving rate, input requests cannot
be processed in time, resulting in an increase of scheduling
overhead. In this case, the inference system must improve
the serving capability by improving the overall throughput.
When the arrival rate is lower than the peak serving rate, [;.p
still exists because the requests’ arrival intervals can be non-
uniform, in which case burst requests introduce scheduling
overheads. All GPUs within an inference pipeline parallelize
inference computation by combining two categories of par-
allel paradigms, as illustrated in Figure 2.

Inter-operator parallelism. Pipeline model parallelism [21]
is a commonly used inter-operator parallelism strategy, which
partitions the operators of a DNN into multiple stages with
data dependencies. Figure 2a shows an example of partition-
ing a multi-layer Transformer model into two stages, each of
which has half of the layers. These stages can form a pipeline
based on certain pipeline scheduling mechanisms [35, 36].

Intra-operator Parallelism. Tensor model parallelism [45]
splits each DNN operator into several shards across the de-
vices. As shown in Figure 2b, the corresponding tensors are
also sharded based on certain distributed data layout. The
participating devices perform computation in parallel and
communicate with others to exchange intermediate results.

Note that both the data dependencies in pipeline model
parallelism and the collective communications in tensor
model parallelism do not naturally provide fault tolerance.
The preemption of a single instance can potentially hang all
the other instances in the same inference pipeline. A pre-
emption may also break multiple inference pipelines if these
pipelines are supported by different GPUs located on the
same preempted instance. This chain crashing problem en-
larges the affects of a single instance’s preemption from itself
to several pipelines. The affected instances are not physically

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Execution Latency:
EXE(3|4) - texe (4) + texe (1)+texe(1)+texe (1)

Transformer Layer VIR

=M<
<—m<

G)
3

ive

(a) Incremental decoding in generative LLM

Request gy
Timeline

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

4 New Instance
— ===

-h 41

Request 1y

+ y 0000OotTtret

Shardlm zlm

Stage: ===

? Request Latency:

G2) @ Halted —— DDV,
a2) © Halted ——— DDV,

— lreq (rO) .‘4)'

lreq(n) ————

(b) Distributed LLM inference (P=2, M=2, batch size=1) on preemptible instances

Figure 1. Illustration of incremental decoding in generative LLM and distributed LLM inference on preemptible instances

Stage 1

Shard 0 Shard 1

(a) Pipeline model parallelism (b) Tensor model parallelism

Figure 2. Illustration of different model parallelisms

terminated but stay idle until new instances are allocated to
establish new inference pipelines.

2.3 Preemptible LLM Inference

Recent work has introduced a variety of techniques to han-
dle instance preemptions when using cheap spot instances
for DNN computation. For example, Varuna [12] maximizes
training throughput by dynamically changing the hybrid
data and pipeline parallel configuration after each instance
preemption. Bamboo [48] uses a redundancy-based preemp-
tion recovery mechanism in pipeline parallel training by
replicating each instance’s computation on another spot in-
stance. These techniques are designed for distributed DNN
training and do not apply to generative LLM serving. Since
distributed LLM serving is an important and timely research
topic, accompanied by huge emerging demands in practice,
it is obvious that serving LLM over spot instances could be a
worthwhile attempt. Existing LLM serving systems such as
FasterTransformer [5] do not provide preemption handling
capability for distributed LLM inference.

Figure 1b illustrates the obstacle of existing systems when
serving LLMs on preemptible instances. We show an exam-
ple of one distributed LLM inference pipeline deployed over
4 instances (one GPU per instance) through the combina-
tion of 2-way pipeline model parallelism and 2-way tensor
model parallelism. The inference process starts after system

initialization and functions normally for request ry. During
the incremental decoding process of request r1, GPU 1 gets
preempted at the timestamp highlighted in red and the other
three GPUs have to be halted since the inference pipeline is
broken. Due to the preemption, the state of r; (i.e., KV cache)
is lost. When a new GPU instance is launched, it can join the
inference pipeline and these 4 GPUs reinitialize and restart
the inference process of r;. As a result, the request latency
is significantly increased due to preemption.

3 SpotServe Design

The increased request inference latency caused by instance
preemption is mainly manifested in three aspects. Firstly,
once a preemption happens, the entire inference pipeline
comes to a halt, which may result in request waiting over-
head and/or additional request pending overhead (i.e., rerout-
ing to another inference pipeline). Secondly, after a new in-
stance joins, there are necessary system initialization costs,
such as launching the distributed inference engine and load-
ing model parameters. Finally, throughout this process, the
overall reduction in system throughput can potentially lead
to an accumulation of subsequent incoming requests, thereby
amplifying their inference latency.

We develop SpotServe to mitigate the impacts of these
issues on the end-to-end inference latency. First, to alleviate
the waiting time caused by the integration of new instances,
SpotServe facilitates the integration of on-demand instances
to ensure swift instance acquisition. Second, to reduce the
runtime overhead of system re-initialization, SpotServe in-
troduces an efficient context management mechanism that
leverages inter-instance network links to preserve inference
progress (in the form of KV cache) and obviate the need
for expensive model parameter reloading. Third, to strike a
better balance among serving throughput, latency, and mon-
etary cost during node availability fluctuations, SpotServe
incorporates a workload-aware adaptive configuration opti-
mization algorithm, which dynamically selects an optimal
parallel configuration, enabling real-time dynamic context
migration and seamless configuration transitions.

SpotServe: Serving Generative Large Language Models on Preemptible Instances

° Toeoe save Cloud * e
D
Storage
@ r- T 8€ 53 Blob GCS
load ¥
Application 00000 deploy | cloud A 2
Model VM AWS Azure GCP

, A
input output
request | i response

instance +/-l

i
1 Device

1! | Migration ':
! arallel device ! g

: : Controller lpconfig : Mapper W Planner |:

P By I(83.2) | (833 !

==op===|

1

Figure 3. An overview of SpotServe.

3.1 System Overview

Figure 3 illustrates an overview of SpotServe. The inference
server is deployed on a dedicated on-demand CPU instance
and hosts a request manager, a meta-context manager, and
an instance manager. The request manager is responsible
for receiving input requests, dynamically partitioning them
into batches, assigning these batches to inference instances
running on spot GPU instances, collecting generated outputs
from the inference instances, and finally sending the results
back to users. The instance manager interacts with the cloud
and receives instance preemption/acquisition notifications.

An inference engineis deployed on each spot or on-demand
GPU instance to serve LLM inference. Each inference engine
includes a context daemon that manages the model param-
eters (i.e., model context) and intermediate activations (i.e.,
cache context) for different requests inside a certain GPU.
The inference engine can access these context information
through the proxy provided by the context daemon. If the
inference engine has to be interrupted due to the preemption
of dependent instances, the context daemon process is still
alive, which avoids reloading the context into the GPU when
restarting the inference.

When the system’s serving capability becomes incom-
patible with the workload or is about to, the meta-context
manager manages the adjustment of the parallel configura-
tion by sending instructions for context migration to all GPU

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 1 Adaptive configuration optimizer.

1: function CONFIGOPTIMIZER(Ny, Cy, ;)
2: if 3C.¢(C) > a; and cloud has enough instances for C
then

3: Ct+1 ¢ arg minclqs(c)Zat lreq(C)

4: else

5: Ci41 « arg maxc|n, $(0)

6: A « #Instances(Cs+1) — Nt

7: if A > 0 then

8: InstanceManager.alloc(A, ondemand_and_spot)
9: else

10: InstanceManager. free(—A, ondemand_first)

11: ConfigUpdate(Cy, Cr41)

instances. The new configurations are proposed by the par-
allelization controller and materialized by the device mapper
and migration planner. Each inference engine also launches
an interruption arranger to support stateful inference recov-
ery to further reduce inference latency.

For the rest of this paper, we first introduce SpotServe’s
design, including the parallelization controller in §3.2, device
mapper in §3.3, migration planner in §3.4, and interruption
arranger in §4. Finally, we introduce SpotServe’s implemen-
tation in §5 and evaluate its performance in §6.

3.2 Parallelization Controller

SpotServe uses parallel configurations to identify a strategy
to parallelize LLM serving across multiple GPU instances. A
parallel configurationis represented as a tuple C = (D, P, M, B),
where D, P, and M indicate the data, pipeline-model and
tensor-model parallelism degrees, and B is the maximum
mini-batch size. A key difference between SpotServe and
existing spot-instance serving systems is that SpotServe can
proactively adjust its parallel configuration by leveraging
the ahead-of-time notifications provided by the cloud to
handle instance preemptions and acquisitions. For each pre-
emption and acquisition notification, SpotServe’s paralleliza-
tion controller opportunistically adjusts the parallelization
configuration to improve LLM serving performance. Such
reparallelization mechanism is also adaptive for fluctuating
inference workload, which has been extensively studied in
prior work [57].

Grace period of spot instance. Modern clouds generally
offer a grace period (e.g., 30 seconds on Azure [3]) to allow a
spot instance to complete running tasks before preempting
the instance. Allocating new instance doesn’t have a grace
period, but initializing inference engine also takes a short
period of time (e.g., 2 minutes for launching and initializing
in our evaluations), which can be measured in advance and
treated as the acquisition grace period in SpotServe.

Adaptive configuration optimizer. SpotServe uses an
adaptive optimization algorithm to balance the trade-off

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

: Config (D=1, P=2, M=8)
i Shard Shard Shard Shard Shard Shard Shard Shard : |
'
| 1
!

Fmmmmmmm———————
| Config (D=1, P=3, M=4)

1

Shard Shard Shard Shard

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

Config (D=2, P=2, M=2)

Pipeline 0 Pipeline 1

1
i
1
Config ! o] - === -

fg“ StagEr—p»— ‘_____ 31 Stage 0 Stage 1 Stage 0 Stage 1

[P 9::@__1.___,,::@_3:' -----------------------------
s ST .-Upd tey i

i i g€ -— -~ = -G = =i === .

____________ 13 s) Y E S 6 7
1

= lreq (TU) —
lreq (1)

Request
Latency:

1

1

__________ PR R R !

iR

Pipeline 0’ Pipeline 1] %vlyzvgmvg
1

i
P tion Notificati Preemptlons-sra Bresmoreearas s '
reemp IOHA otifications ' Y | g 8! 60 o 1 :@_1_11
1 Grace Period 1V Vv vEvEENE :
Request 1¢ Request 1 Request - Request
Timeline__ | 0; ¥ ! + : + :
Stage Context Stage[SSDNF DY) PV e V2 & 4 L Distribution
..... v f
o i S (7 S 7730 MJgratlonStge P O r-[-:’--. r-D--. o, .0 _0_:
St D DRI lgDZD EZ2DDDY, R ol ol ol o i of eu,v,;
TAiE 7z 7 7 oA D B e e -
1 . ! > > StZ?ED DY) EZDDDDY, E Stage 0’ Stage 1’ Stage 2’ Stageo Stage 1” Stagez
:
i
i
|

lreq) ———

(a) Ilustration of configuration update and context migration in SpotServe.

Config (D=2, P=3, M=1)

(b) Nllustration of device mapping in SpotServe.

Figure 4. Figure 4a shows an example of SpotServe changes the parallel configuration from (1,2,8) to (1,3,4) through context
migration within the grace period and continues previous decoding progress of request 3. Figure 4b shows an example bipartite
graph between six available instances (i.e., g ~ us) and topology positions in the new configuration (2,3,1). Here we only draw

the weighted edges starting from u;.

among throughput, latency, and cost. We use two time-varying
variables C; and N; to denote the parallel configuration and
the number of available instances at time step t. Note that
N; considers instances in the grace period, which includes
newly allocated instances and excludes instances to be pre-
empted. Let $(C) denote the serving throughput of Spot-
Serve with a parallel configuration C and a; be the request
arrival rate at time step ¢!. Algorithm 1 shows the workflow
of the optimizer, which mainly works when the current serv-
ing capability is not compatible with a; due to changes in
instances’ availiability or serving workload.

Overall, the optimizer minimizes the end-to-end inference
latency [..q(C) while maintaining a throughput higher than
a; (line 3). Specially, if there are multiple configurations that
can achieve similar minimum inference latency, SpotServe
selects the configuration with the lowest monetary cost (i.e.,
using fewest instances). In addition to minimizing l;.4(C),
other targets are also feasible in practice. For example, some
SLO-sensitive scenarios (e.g., interactive applications) re-
quire a strict latency guarantee, rather than throughput. In
that case, we can prioritize meeting the SLO requirement (i.e.,
lreq(C) < Isto) and then minimize monetary cost if possible.
When SpotServe’s peak serving throughput can not exceed
the request arrival rate a; (ie., AC.¢(C) > a;), SpotServe
updates its parallel configuration to maximize the overall
serving throughput (line 5). The suggested configuration
C;4+1 may require more or less instances than before (line
6). Since the allocation of spot instance might not always
success, SpotServe also supports optionally allocating on-
demand instances to further improve serving throughput.

ISince the request arrival rate might change randomly, we estimate a; by
observing the request arrivals within a short past duration (e.g., 30s).

Specifically, the instance manager allocates on-demand and
spot instances at the same time (line 8) to avoid the waiting
overhead when spot-instance allocation fails. The instance
manager is also in charge of releasing the allocated instances
(line 10) to alleviate over-provision, where on-demand in-
stances have higher priority due to their costs. To alleviate
the impacts of frequent disturbance of instance availability,
SpotServe often maintains a few addition instances (e.g., two
in our evaluation) as a candidate pool for smoother instance
substitution. Finally, SpotServe updates the parallel configu-
ration (line 11), and the interruption arranger (§4) decides
when to complete reparallelization, especially for the cases
triggered by instance availability changes. This step is still
necessary even when C;;q = C;, since instance preemptions
and acquisitions update instances’ memberships.

The optimizer runs online and has negligible overhead (i.e.,
less than 1s) since the latency estimation of different configu-
rations is done offline in advance. SpotServe’s configuration
exploration space is much larger than that considered by
prior work such as Varuna [12], which only considers data
and pipeline parallelism. It is also possible to extend Spot-
Serve to more complicated model-parallel strategies [50, 61],
which we leave as future work.

3.3 Device Mapper

Given a target configuration Cy.4, a straightforward approach
to migrating instances is to restart the inference engines on
all current instances and reinitialize all GPU instances from
scratch. However, this approach does not leverage the op-
portunity to reuse the model parameters and KV cache avail-
able on existing GPU instances, resulting in unnecessary
migration cost and inference delay. As shown in Figure 4a,

SpotServe: Serving Generative Large Language Models on Preemptible Instances

instead of destroying and rebuilding these contexts, Spot-
Serve adopts a more lightweight context migration mecha-
nism that can resume the inference process of interrupted
requests without recomputation. As migrating these con-
text information among GPU instances may also increase
latency, a key challenge SpotServe must address is mapping
the available GPU instances to the logical device mesh iden-
tified by the new parallel configuration to maximally reuse
previous contexts. We ignore batch size and use (D, P, M) to
denote a parallel configuration, where D, P, and M indicate
the data, pipeline model, and tensor model parallel degrees.
SpotServe binds each GPU instance with a pipeline-stage-
shard topology position (d, p, m), which represents the m-th
shard (1 < m < M) of the p-th stage (1 < p < P) in the d-th
pipeline (1 < d < D).

To switch between different parallel configurations, Spot-
Serve formalizes device mapping as a bipartite graph match-
ing problem, and uses the Kuhn-Munkres (KM) algorithm [24]
to find an optimal device mapping that minimizes total data
transmission during context migration. We next describe
SpotServe’s bipartite graph matching algorithm.

Bipartite graph matching. SpotServe uses a bipartite
graph G = (V,, V1, €) to describe device mapping, where
each node u € V, is a GPU device, each node v € V; rep-
resents a pipeline-stage-shard position of the parallel con-
figuration, and a weighted edge e,, (u € V,,0 € V;) indi-
cates the amount of reusable model parameters and key/-
value cache when mapping GPU u to position v of the par-
allel configuration. As shown in Figure 4b, given the cur-
rent state of each GPU’s context daemon (i.e., organized as
(D =2,P=2M = 2))and a target parallel configuration
(D =2,P=3,M=1), SpotServe builds a complete bipartite
graph and computes the edge weight between every (u,0)
pair using the size of their intersection contexts. For example,
u; holds half of the sharded context of the first stage in the
first pipeline, and overlaps the most model context with v,
and v since they are in charge of the first stage of the new
pipeline. Suppose the new pipeline 0" inherits the interrupted
inference requests from pipeline 0, we may prefer to match
u; with vy as it has more cache context to reuse. SpotServe
transforms the optimal device mapping problem to a bipar-
tite graph matching task and uses the KM algorithm to find a
maximum-weight match, which maximally reuses the model
parameters and KV cache on all available GPU instances and
minimizes the total data transmission.

SpotServe also considers the cases when each instance
has multiple GPUs with higher inter-GPU bandwidth (e.g.,
NVLink). We facilitate a hierarchical architecture by con-
ducting a two-step matching (i.e., intra-instance and inter-
instance) to discover an optimal solution. More details can
be found in the appendix [7].

When the new parallel configuration Cyy; handles less
concurrent inference requests than the original configuration

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 2 Workflow of the SpotServe migration planner.

> Progressive Migration
1: function MIGRATIONPLANNER(context ctx, plan = [])
2 plan.append(<migrate, ctx.cache>)
3 O « Layer migration order from MemOptMigPlanner
4: for layer index i in range(0, #layers) do
5 plan.append(<migrate, ctx.weight[O;]>)
6 p < Get pipeline stage index of layer O;
7 if stage p completes all context migration then
8 plan.append(<start, instances of stage p>)
> Memory Optimized Migration
9: function MEMOPTMIGPLANNER(maximum buffer size Upax)
10: O—[],X«<{}

11: Instance buffer memory usage U € {0}

12: for layer index i in range(0, #layers) do

13: if (migrate, ctx.weight[i]) doesn’t exceed Up,qx then
14: Update buffer memory usage U

15: O.append(i)

16: else

17: X.add(i)

18: while X is not empty do

19: Xopt <

argmin max {U; | (migrate, ctx.weight[x])}
xeX <i<N-1

20: O.append(ropt)

21: X.remove(xopt)

C; (i.e., DyXB; > Dysy1XBry1)?, SpotServe discards part of the
cached results to avoid exceeding the memory capacity of the
new parallel configuration. To minimize recomputation cost,
SpotServe keeps the batches of requests with more decoding
progresses (i.e., iterations).

3.4 Migration Planner

After mapping all available devices into the logical paral-
lel positions, the next challenge is to determine the exact
migration plan to finish the configuration adjustment. A
naive approach is to make all instances follow a default ten-
sor transmission order and wait until the contexts of all
instances are successfully transferred. This solution has two
drawbacks. First, sending all contexts is time-consuming
especially for LLMs. To alleviate the context migration over-
heads, we propose a progressive migration schedule that uti-
lizes the pipeline structure and prioritizes the migration for
the first stages of the LLM. This design allows the instances
assigned to the first pipeline stages to start serving immedi-
ately, which can be potentially overlapped with the following
stages’ migration. Ideally, the context migration overheads
could be reduced to the cost of transferring a single stage’s
context. Note that we also prioritize the transfer of all layers’
cache context considering the interruption fault-tolerance.

?Recall that in a parallel configuration C = (D, P, M, B), D and B indi-
cate the number of inference pipelines and the batch size of each pipeline,
respectively. Therefore, D X B is the total number of concurrent requests.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Although this design does not maximize overlapping, it min-
imizes the possibility of losing LLM decoding progresses.

A second challenge we must address is the memory con-
sumption of the buffer space for context communication. The
migration of every context tensor changes the runtime mem-
ory usage. Specifically, the sender’s memory can be released
while the receivers’ memory consumption will increase. An
improper migration plan may significantly increase the peak
memory usage and leads to sub-optimal inference config-
urations (e.g., splitting the model into more stages) with
higher latency. To provide a memory efficient migration
plan, we propose to consider the memory usage during the
progressive migration process. As shown in Algorithm 2, we
start from a naive plan in sequential order of the layer index
(line 12), migrates the context of each layer (line 13), and
tracks the buffer memory usage of each instance (line 14).
The algorithm requires a hyper-parameter Uy, to represent
the maximum threshold of buffer memory consumption for
every instance. We first skip those layers whose context mi-
gration exceeds this upper bound (line 17). After that, the
algorithm decides an order for the remaining layers by solv-
ing a min-max problem (line 19). In particular, it selects the
layer whose context migration minimizes the maximum in-
stance buffer memory usage. In this way, the combined layer
context migration order has lower memory consumption
and is used by the final migration plan (line 3).

4 Stateful Inference Recovery

This section introduces SpotServe’s stateful inference recov-
ery, a new inference mechanism that recovers interrupted
inference requests without recomputation. In addition, we
discuss SpotServe’s mechanism to handle frequent interrup-
tions.

4.1 Just-in-time Arrangement

When instance preemption or acquisition notifications trig-
ger reparallelization, SpotServe must decide when to termi-
nate the inference engine and start the context migration for
each GPU instance. A conservative approach is to immedi-
ately suspend the inference engine to preserve enough time
for context migration. However, this approach would inter-
rupt all active requests on the instance. These unfinished
requests must be rerouted and restarted on other inference
pipelines, resulting in high end-to-end inference latency. An
aggressive alternative is to finish all active requests first,
which might prevent the instance from finishing migration
before preemption.

To address these issues, SpotServe leverages the grace pe-
riod offered by existing cloud platforms to opportunistically
commit inference progress at the token level, which allows
an inference request to be interrupted at any incremental
decoding iteration. Since SpotServe’s context daemon main-
tains the state (i.e., cache context) of an inference request, the

1119

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

request can be rerouted to another inference pipeline, which
can directly continue its inference using the cached state
without recomputing previously generated output tokens.

To determine how many iterations to run during a grace
period, SpotServe adopts an just-in-time (JIT) arrangement
and let the inference engine decide when to stop decoding.
Specifically, each spot GPU instance includes an interruption
arranger that receives a notification when a grace period
starts. Based on this notification, the interruption arranger
checks the remaining time before feeding a new batch of
requests into the inference engine. Suppose a batch of input
requests are ready to serve at time ¢, SpotServe determines
the number of the decoding iterations S; differently based
on the interruption type. For instance preemption, we have
S; = argmaxosSSsom{lexe(S | Ct) < T™ = Tnig}, where
lexe (S | Cy) is the execution time to generate S tokens with
Cy, T~ is the remaining grace period before preemption, and
Tinig is the cost of migrating instances for reparallelization.

For instance acquisition, let S; = argmin;_gg, {lexe(S |
C;) > T*}, where T* is the remaining grace period for this ac-
quisition (i.e., initialization). A key difference between these
two arrangements is that we maximize the arranged itera-
tions before preemption and minimize that before acquisition.
This is because, unlike in-advance preemption handling, a
context migration occurs after instance acquisition. Besides,
both cases should also guarantee that the arrangement will
not increase a request’s latency (i.e., Tnig < lexe(S: | Ct)).
For example, if the remaining time is only sufficient to gener-
ate a few tokens, rerouting may work better than migration
since it doesn’t add context migration overheads, especially
when the arrival requests are spare.

4.2 Interruption Fault-tolerance

A remaining issue with SpotServe’s stateful inference recov-
ery is that previous arrangements only consider individual
interruptions. For multiple consecutive and compact inter-
ruptions, their grace periods might overlap with each other
and be insufficient to finish the arranged iterations and/or
migrate the context. In addition, if we underestimate the
migration costs due to unforeseen reasons (e.g., network vi-
bration), the remaining time might also not be enough for
the instance to follow the arrangements.

To build a reliable serving system, SpotServe has several
fault-tolerance mechanisms to handle these unexpected fail-
ures. First, SpotServe manages to delay the acquired instance
joining and make the arrangements for prior interruptions
feasible. Second, if one instance indeed gets preempted be-
fore expected, SpotServe has to give up the cache context
and only migrates the model context with the remaining
instances. Specially, when all replicas of the same piece of
model context are lost due to unexpected failures, the migra-
tion can not work and SpotServe has to restart by loading
weights locally (e.g., from disk) or from remote cloud storage
(e.g., S3) to fetch the required model parameters.

SpotServe: Serving Generative Large Language Models on Preemptible Instances

Table 1. Overview of LLMs evaluated.

Model | Size min #GPUs (P, M) lexe(B=1)
OPT-6.7B 25.0 GB 4 (1,4 5.447s
GPT-20B 74.5 GB 12 (3.4) 14.373s
LLaMA-30B | 111.8 GB 16 (28) 17.540s

5 Implementation

We implemented the inference server of SpotServe in 5.6K
LoC in C++ and 2.2K LoC in Python, including three resident
processes responsible for the request manger, instance man-
ager, and meta-context manager respectively. The generated
migration plan is organized in a JSON format and sent to run-
ning instances with a TCP connection. We built SpotServe’s
inference engine over FasterTransformer [5], a highly op-
timized Transformer inference framework built on top of
CUDA, cuBLAS [16], and C++. We implemented the context
daemon and interruption arranger inside the inference en-
gine. Specifically, the memory allocation of model context
and cache context in FasterTransformer was replaced by
acquiring the corresponding GPU tensors from the context
daemon. The context migration operations are implemented
by the batched asynchronous NCCL send/recv primitives [6].
The context migration requires additional communication
buffer space in GPU memory, which is dynamically allocated
and released based on the migration plan. Since the con-
text daemon and FasterTransformer belong to two different
processes, SpotServe uses CUDA Inter-Process Communi-
cations (IPC)[4] to share the context pointers. To support
overlapping in progressive migration, SpotServe uses a mu-
tex lock to each context tensor to block the inference before
its migration is finished.

SpotServe includes a cost model and an offline profiler to
estimate the required inference latency, system throughput
and the context migration overheads in advance. As shown in
E.q.(2), SpotServe decomposes the latency and models each
component individually. Specifically, SpotServe estimates
the cost using piece-wise linear functions of the number of
tokens parameterized by other model and hardware configu-
rations, which is similar to concurrent approaches [37]. To
make the estimation more accurate, we carefully consider
the resource under-utilization affects (i.e., GPU SMs, net-
work and PCle bandwidth) due to several practical factors
(e.g., rarely small batch size, single input token, over-sharded
intra-op parallelism, GPU memory accessing, and too small
communication data volume) during cost profiling and mod-
eling.

6 Evaluation
6.1 Experiment Setup

Baseline. To our knowledge, SpotServe is the first dis-
tributed LLM serving system for spot instances. Therefore,

1120

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

12 Spot (Total)
wv
@10 A]
§ 8 1 Trace As b Trace Bs
k7] 6 T T T T
< 12 - Total Spot Ondemand
K — T -1 pr—
3 54_| L e
T 4 Trace As +0 _ Trace Bs 10
2]]
T T T T T T T T T T T T
0 240 480 720 960 1200 0 180 360 540 720 90

Time (s) Time (s)

Figure 5. Trace As and B are extracted from real trace, while
As+o and Bg,o are traces created by Algorithm 1 mixing on-
demand instances based on As and Bs. Each instance has
four GPUs.

we build two baseline systems on top of FasterTransformer
by generalizing two representative ideas of prior work. The
first baseline is request rerouting, which dynamically reroutes
interrupted requests to other available pipelines when pre-
emption happens. It takes a fixed pre-defined model parallel
configuration and adaptively drops/adds inference pipelines.
The second baseline performs model reparallelization, which
changes the parallel configuration like SpotServe but has to
restart and reinitialize all instances without context migra-
tion. Both of them handle preemption in a reactive manner
that interrupts all current requests and recompute them later.
They are implemented using the same inference engine as
SpotServe to conduct fair comparisons. Redundancy-based
approaches, which serve several model replicas at the same
time, are not included due to the huge cost of serving LLMs.

Models. We evaluate SpotServe on three LLMs at different
scales, including OPT-6.7B [60], GPT-20B [40], and LLaMA-
30B [49]. Table 1 summarizes the minimum number of GPUs
to serve these models and the corresponding model parallel
configurations and their single-request execution latencies.

Setting. We collect a real 12-hour availability trace using
the AWS g4dn spot instances and extract two representative
20-minute segments (i.e., As and Bs in Figure 5) with differ-
ent dynamic behaviors. For reproducible comparisons, we
replay these traces on the AWS g4dn.12x1large instances (4
NVIDIA Tesla T4 GPUs per instance) in our evaluations. We
include both stable and fluctuating inference request arrival
workloads. For static workloads, considering that different
models have different computational requirements, we set
different request arrival rates for them (i.e., 1.5, 0.35 and 0.2
requests/s for OPT-6.7B, GPT-20B and LLaMA-30B by default
respectively). To simulate the bursty in real workloads [28],
we use the Gamma request arrival process with a coefficient
of variance (CV) of 6. Moreover, we separately evaluate the
system performance under the condition of whether to allow

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

—— Reparallelization
GPT-20B on As

—— Rerouting

OPT-6.7B on As LLaMA-30B on As

-

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

Rerouting (overload)
OPT-6.7B on Bs

—— SpotServe

GPT-20B on Bg LLaMA-30B on Bs

IS
o

—_ —— PP ———— 75] W e e Tl et

2 -~ 2001/~ 5001

z |/ s K 50 N

i1 i w001 2]

i =
30 LLaMA-30B on As + 0 OPT-6.7Bon Bs + o 75 GPT-20B on Bs + o LLaMA-30B on Bs + o

— — 100 1

= . — 401 ///‘_—”;;

> 110 7 .34x

2 201 50 w0 [/ 1 B so{ F3% 393

] / 201 I| 501

8 10 251 50 25 /__.—.—.—r“

@0@0@%&%‘&\ &S §(°Q“°Q“<°Q“Q’Q‘5\Q‘3%Q“q ‘?\o&o&%&bqé\ &S @0@0&%&%‘2@&%@% @%‘”QQ‘”%Q“Q’Q“/\ &S §(°Q‘°°Q‘§°<z‘”‘°<z‘g\q“%‘z“q

Figure 6. End-to-end serving performance comparison among SpotServe, Reparallelization, and Rerouting. The x-axis shows the
average and various tail latencies achieved by different approaches, while the numbers report SpotServe’s latency improvement

compared to the baselines.

X Reparallelization + Rerouting @ SpotServe Ondemand

Trace As Trace Bs M Trace As + o Il Trace Bs 4o
P99 tail Latency Average Latency

=200

< 100

Q

5

&g 1007 « % 501

i $d
2 3 4 2 3 4

Cost(X 1e~> USD/token) Cost(X1e~3 USD/token)

Figure 7. Monetary cost comparison on GPT-20B.

mixing with on-demand instances. To achieve that, we gener-
ate two additional traces (i.e., As+o and Bs.o in Figure 5) fol-
lowing Algorithm 1 to opportunistically allocate on-demand
instances and mix them up with spot instances. For dynamic
workloads, we include a production trace MAF [42] publicly
released by Microsoft and discussed in §6.3. In our exper-
iments, we set S, and S,,; to be 512 and 128 respecitlvey,
and select the maximum batch size B from {1,2,4,8}.

6.2 Comparison on Stable Workload

End-to-end inference latency. Figure 6 shows the la-
tency performance of all three models on stable workloads.
SpotServe outperforms both Rerouting and Reparalleliza-
tion in terms of all latency metrics on four different traces.
Taking the P99 latency as an example, SpotServe outper-
forms Reparallelization and Rerouting by 1.34-2.43x and
2.14-9.13% respectively on the largest LLaMA-30B model.
The improvement mainly comes from three aspects: dynamic
reparalleization, efficient proactive migration, and stateful
inference recovery.

Compared with Reparallelization, a key advantage of Spot-
Serve is its lightweight context migration mechanism. Prior
approaches such as Varuna [12] require restarting the sys-
tem for each reparallelization and their contexts are lost. In
addition, reloading all model parameters and recomputing
all interrupted requests also incur long tail latency.

1121

Compared with Rerouting which directly drops an entire
inference pipeline to handle preemption, SpotServe achieves
better resource utilization thanks thanks to the reparalleiza-
tion and migration optimizations. It also explains why many
cases of Rerouting in Figure 6 are overload (i.e., marked
with dashed line, representing the system serving capability
becomes lower than the request arrival rate and request ac-
cumulation happens). Taking GPT-20B as an example, when
the instance availability is high (> 8 instances), Rerouting
supports a configuration of (D = 2,P = 2,M = 8) with
minimum inference latency and sufficient system through-
put (i.e., larger than 0.35 requests/s). Once an instance is
preempted, Rerouting has to drop one inference pipeline
and degenerates to (D = 1,P = 2,M = 8), which makes
upcoming requests stacked and unable to be served in time.
However, SpotServe will serve requests using the parallel
configuration (D = 2, P = 3, M = 4) to avoid overload. Spot-
Serve may occasionally propose the same configuration as
Rerouting but still achieves superior performance because
of the KV-cache recovery mechanism. Another observation
is that mixing on-demand instances helps alleviate overload
due to the faithful instances acquisitions.

Monetary cost. Besides inference latency, we also study
their monetary cost to understand whether it is cost-effective
to serving LLM using preemptive instances. Figure 7 presents
the per-token costs of all baseline systems and their latency
on GPT-20B. We also show the results (with the dashed line)
of only using on-demand instances, which are more expen-
sive than spot instances (e.g., 3.9 USD/h v.s. 1.9 USD/h for
each g4dn.12x1large instance). As the cost decreases, the la-
tency of on-demand instances exhibits a significant increase
since it is unable to meet the required serving capability with
fewer on-demand instances. In contrast, serving LLMs on
spot instances strikes a better balance between inference
latency and monetary cost. SpotServe reduces monetary cost
by up to 54% while tolerating a relatively modest increase
(i-e., less than 18%) in average latency and 90% reduction in

SpotServe: Serving Generative Large Language Models on Preemptible Instances

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

0
3 Total Spot ---- Ondemand —
2 0.751{@ y ® Ei; —] ’_“—(d)
g 2 ’_‘ """""" rl_ﬂ_‘
5 0.651 . @ 8. — [
£ - TraceA5+o {TraceBS,o | !
< 0.55 1 1 T o TR Lo e e S
T T T ———— 2 0i/=—== : . . R e -
0 60 120 180 240 36 9 121.’min§ 0 180 360 540 720 900 1080 O 180 360 540 720 900 1080
120 ——— I Reparallelization I Rerouting I SpotServe —— Request Latency -~ Average Latency — |
© ® ®
Z 907 2.94x 901
S 1.33x
g o0 175 601
= [(L
L 30+ 8)__ 2 S
oL GPT-2080n A5+O GPT-208 on Bs+o o L234) (3.2,8] z,z,lg) (2 8) (3,3,413.2 sxz,z,'s) . .
0 0 ‘9 Q) ‘b °) (:) 0 ‘o ‘o ‘b °.v 0 180 360 540 720 900 1080 0 180 360 540 720 900 1080
FLEEFS LS F S TS Time (s) Time (s)

Figure 8. (a) Rescaled MAF trace. (b) The selected trace segment. (c)(d) Two traces based on the fluctuating workload trace.
(e)(f) End-to-end serving performance. (g)(h) Per-request latency throughout the traces, and parallel configurations (D,P,M)
after each re-parallelization. Note that the configuration of Rparallelization is always consistent with SpotServe.

P99 tail latency. Such cost advantage would be more signif-
icant on other instance types with higher ratios between
on-demand and spot prices.

Ablation study. Figure 9 shows the P99 tail latency and
average latency of GPT-20B on two traces with different Spot-
Serve components. We start from SpotServe and gradually
disables each system optimization one by one. By remov-
ing the parallelization controller, the tail latency increases
by 179% on trace Bs. This is because the parallelization con-
troller suggests switching to a new configuration with higher
throughput to handle the stacked requests. If we further dis-
ables the migration planner, the tail latency further increases
by 1.4X and 3.1X on traces As and Bs respectively. Note that
the migration planner also reduces the minimum number of
GPUs to serve GPT-20B from 16 to 12, which enlarges the
parallelization controller’s exploration space. The interrup-
tion arranger also contributes to 29% tail latency reduction
on trace Bg as it transfers the cache context during migration
and avoids redundant computation for interrupted requests.
Finally, after removing the device mapper, the system de-
grades to a plain approach that only enables model context
maintenance without any other optimizations. On the whole,
combining these optimizations reduces the tail latency by
1.61X on trace As and 3.41X on trace Bs respectively.

6.3 Comparison on Fluctuating Workload

To study SpotServe’s auto-scaling performance, we replay a
piece of the MAF trace [42] and rescale its arrival intensity
like prior work [10, 18, 59] to make it compatible with our
experimental setup. Figures 8a and 8b show that the selected
trace includes fluctuating and bursty workload, which is rep-
resentative in real-world environments. We enable mixing
with on-demand instances in this experiment, and the gen-

erated instance availability traces (i.e., A 5.0 and Bs Lo) are

1122

I SpotServe — Migration Planner

— Controller — Interruption Arranger
P99 Tail Latency

I — Device Mapper

Average Latency

=
(%)
o

=
o
o

X
[22]
©
=l

Latency (s)
1.00%
1.13%
1.40%
1.48%

wv
o

Figure 9. Ablation study of GPT-20B on traces As and Bs.

listed in Figures 8c and 8d. The end-to-end inference latency
statistics are shown in Figures 8e and 8f. Compared with
Reparallelization and Rerouting, SpotServe reduces the P99
tail latency by up to 2.94x and 1.73X, respectively.

Per-request latency study. Figures 8g and 8h show the
inference latency of individual arrival requests over time for
both traces. SpotServe almost always achieves the lowest
latency during the whole trace due to its flexible parallel
configuration optimization and the lightweight context mi-
gration. We take Figure 8h as an example to conduct an
in-depth analysis. First, all approaches start with a feasible
parallel configuration of (D = 2,P = = 8) as there
are ten spot instances available at t = 0s. Preemption first
occurs at t = 120s and t = 240s but the total available in-
stances are still enough to support (D = 2,P = 2,M = 8).
Two short concave segments (i.e., 120s-310s, 240s-330s) in
the number of available instances are following because
the new instance launching and initialization overhead is
longer than the 30s grace period. From t = 270s, the increas-
ing arrival rate overwhelms the system processing capac-
ity. After 30s, such overload is detected and both SpotServe
and Reparallelization change the parallel configuration to

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(D =3,P =3, M = 4). The instance acquisition completes at
t = 450s, so they change to (D = 3,P = 2, M = 8) for lower
latency. But Reparallelization is suffering from expensive
restarting overheads, resulting in the highest peak latency.
Rerouting only changes the number of pipelines and incurs
some request waiting overheads. After t = 600s, the arrival
rate decreasing is detected and on-demand instances start
to be released, then both SpotServe and Rerouting turn back
to (D =2,P =2,M = 8). As a result, SpotServe significantly
outperforms the two baselines for the fluctuating workloads.

7 Related Work

DNN inference system. The widespread DL applications
bring great market values and lead to significant DL serving
traffics. Some prior approaches (e.g., Clipper [15], Clock-
work [18], Nexus [43], and so on) consider temporal multi-
plexing and increase the GPU utilization through batching
and better scheduling. INFaaS [41] studies the model selec-
tion problem when considering multiple models with differ-
ent inference efficiency or accuracy. Shepherd [59] considers
both the resource utilization and the serving system effec-
tive throughput and improves the request scheduling. There
are also some inference systems take customized GPU ker-
nel optimization for Transformer models, like TurboTrans-
former [17] and LightSeq [52]. Some recent inference sys-
tems (e.g., FasterTransformer [5], Orca [56], DeepSpeed [11],
Speclnfer [32], AlpaServe [28]) support LLM inference by
leveraging the parallelization techniques from distributed
training approaches. Among them, AlpaServe is designed for
resource multiplex scenarios and does not show performance
superiority in our empirical study on single LLM inference
scenarios (i.e., around 3X lower than FasterTransformer C++
version). Almost all of these prior work are designed for ded-
icated instances and can not tolerate instance preemptions.

ML Serving over Spot Instance. Previous approaches
have also involved spot instances into ML inference systems.
Cocktail [19] leverages cheap spot instances to increase the
number of ensembling models and instance preemptions can
lead to certain intermittent loss in accuracy. MArk [57] stud-
ies the over-provisioning problem in previous auto-scaling
systems (e.g., SageMaker) for ML serving and improves the
cost-effectiveness by using a SLO-aware resource provision
algorithm. It also considers involving spot instances for more
cost savings but requires burstable CPU instances to han-
dle the outstanding requests during instance interruptions.
More importantly, these systems are mainly designed for
traditional ML/DL workloads (e.g., stateless, image/text clas-
sification), which are fundamentally different from recent
LLM workloads (e.g., stateful, text generation), no matter
on per-request inference latency, model parallelization tech-
nique or preemption handling complexity. These approaches
take a first step to use preemptible instances to serve ML

1123

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

models and motivate our approach on distributed inference
of LLMs.

Serverless Computing and ML Serving. There are some
recent approaches [9, 27, 46] applying serverless computing
to support ML inference workloads for better cost-effectiveness.
However, severless functions are designed to be lightweight
with limited computational power, memory and storage, and
hard be provisioned with GPUs [14]. And serverless func-
tions cannot directly communicate with each other, which
is also necessary to support distributed inference of LLMs.
As aresult, it works well for small models but can not easily
serve LLMs due to the hardware constraints.

8 Limitations and Future Work

We introduce the limitations of our approach and outline
avenues of future research in SpotServe. First, the key idea
of SpotServe is to proactively handle instance availability
changes, which strongly relies on the grace period. Although
all cloud providers offer this functionality at present, it is
still worth exploring more visionary solutions to improve
the system performance, such as the combination with in-
ference workload prediction [59] or instance availability
prediction [54]. Second, our approach mainly focuses on
single-type GPU instances. It is also possible to integrate
heterogeneous instances [14, 30, 33] or even instances from
different clouds (e.g., SkyPilot [55]) for monetary advan-
tages. These scenarios also bring new challenges to context
migration in SpotServe. Last, our approach currently takes
inference latency minimization as the optimization target. As
we mentioned in §3.2, it is still meaningful to explore other
targets (e.g., strict SLO [20], high throughput [44]) to meet
the needs of different inference scenarios. Besides, the explo-
ration space of parallelization configurations can be enlarged
to support emerging variants of large models (e.g., mixutre-
of-experts [26, 38]) in the future. While SpotServe focuses on
spot instances, our techniques can easily generalize to other
preemptible resources, e.g., resource scheduler may preempt
resources for urgent jobs with switching overheads [53]. We
believe that our approach inspires a new paradigm for dis-
tributed inference on preemptible instances, and the insights
gleaned from SpotServe’s design can motivate a variety of
following-up research along this direction.

9 Conclusion

This paper presents SpotServe, the first distributed LLM serv-
ing system on preemptible instances. Several key techniques
in SpotServe enable fast and reliable serving of generative
LLMs on preemptible instances. First, SpotServe dynami-
cally adapts the parallelization configuration to make the
system serving capability compatible with the workload. The
configuration optimization considers the trade-offs among
throughput, latency and monetary cost. Second, to minimize

SpotServe: Serving Generative Large Language Models on Preemptible Instances

the reparallelization overheads, we design the device map-
ping algorithm and the migration planning mechanism to
achieve efficient context migration. Finally, to take advantage
of the grace period offered by the cloud provider, we intro-
duce stateful inference recovery, which allows SpotServe to
commit inference progress at a much finer granularity. We
evaluate SpotServe on real traces and various scales of pop-
ular LLMs and show that SpotServe can save 54% monetary
cost compared with on-demand instance and reduce the P99
tail latency by 2.4 - 9.1x compared with existing approaches.

Acknowledgement

We thank the anonymous ASPLOS reviewers and our shep-
herd, Todd Mytkowicz, for their comments and helpful feed-
back. This material is based upon work supported by NSF
awards CNS-2147909, CNS-2211882, and CNS-2239351, and
research awards from Amazon, Cisco, Google, Meta, Oracle,
Qualcomm, and Samsung.

A Artifact
A.1 Abstract

This artifact includes codes and scripts for reproducing all ex-
periments in the paper. We also release the collected available
trace using the g4dn spot instances in our artifact. To repro-
duce our experiments, we require twelve network-accessible
AWS g4dn.12x1large instances, each with 4 NVIDIA Tesla
T4 GPUs, all of which require CUDA, NCCL, MPI, Python de-
pendencies to be installed. This artifact consists of three com-
ponents: Global Server (i.e. Inference Server), Params Client
(i.e. Context Daemon), and modified FasterTransformer (i.e.
Inference Engine). The first component is written in Python,
while the other two are in C++. Our provided scripts will
automatically launch all of them to perform experiment.

A.2 Artifact check-list (meta-information)

e Program: GlobalServer, ParamsClient, FasterTrans-

former(modified).

Compilation: CMake.

Run-time environment: CUDA, NCCL, MPI, Python3.

Hardware: 12 AWS g4dn.12xlarge instances

Execution: Inference are performing in GPUs, and the

Global Server are managing requests and instances on CPUs.

Metrics: End-to-end average/tail latency.

e Output: End-to-end latency for each requests, and figures.

Experiments: End-to-End, Price Comparison, Fluctuating

Workload, Ablation Study.

e How much disk space required (approximately)?:
600GB per instance.

e How much time is needed to prepare workflow (ap-
proximately)?: 2 hours to install dependencies, build com-
ponents and complete configuration.

e How much time is needed to complete experiments

(approximately)?: 16 hours.

Publicly available?: Yes.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

e Code licenses (if publicly available)?: The SpotServe
artifact is released under the Apache-2.0 License.

e Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
10558752

A.3 Description

A.3.1 How to access. The artifact is available on
Github: https://github.com/Hsword/SpotServe/blob/artifact/
README.md, including installation guide and benchmark
scripts to reproduce results.

A.3.2 Hardware dependencies. We conduct the experi-
ments with twelve AWS g4dn.12x1large instances, and each
is equipped with four NVIDIA Tesla T4 GPUs and x86_64
CPU. The network bandwidth across instances is 50Gbps.

A.3.3 Software dependencies. Following toolkits are re-
quired: CUDA (> 10.2), NCCL (> 2.10), MPI, and CMake
(> 3.8) is highly recommended for building the components.

A.4 Installation

To install the artifact, users need to build ParamsClient and
our modified FasterTransformer individually. It is recom-
mended that compile the components on single instance
and send them to other nodes by rsync command later (See
Experiment workflow).

Install FasterTransformer. If dependencies are not sat-
isfied, CMake will report the missing dependencies:

cd ./FasterTransformer

mkdir build && cd build

cmake -DSM=75 -DCMAKE_BUILD_TYPE=Release
-DBUILD_MULTI_GPU=0ON

make multi_gpu_gpt_example_iter -j 8

Install ParamsClient. Installation command is similar:

cd ./ParamsClient

mkdir build && cd build
cmake

make -j 8

Preparing Checkpoints. Since we focus on the end-to-
end latency, using randomized checkpoints is acceptable,
we provide a python script to randomly generate model
checkpoints. To save disk space, the first layer weights are
the only generated files, all weights in succeeding layers are
linked to the corresponding files of the first layer. Following
command will generate checkpoint files for specified model
that can be directly used by out system. Available candidates
of model_name are 6.7B, 20B, 30B.

cd ./ckpt
python generate_random_gpt_ckpt.py \
-0 <model_name>

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Configure Environment. Configuration is reqiured:

e ./elastic_switch/trace/hostfile_aws_T4: The
IP address of your instances, one entry each line, and
at least 12 entries.

e ./elastic_switch/scripts_ae/env.sh: Set NIC,
path to MPI, and your base directory. See its contents
for details.

Sync Codes and Data. Make sure that all nodes are acces-
sible to each other, and the Hostfile has been configured. We
provide a Python script to automatically send built compo-
nents and checkpoints (optional) to all the instances. Please
set base directory and the IP address where components are
built in sync_code. py, and run following command:

python sync_code.py --n 12 --sync-dataset \
--hostfile elastic-switch/trace/hostnameT4

A.5 Experiment workflow

Performing Experiments. We provide shell scripts to
generate per-request end-to-end latency, which will be
used for plotting figures later. All scripts are located in
./elastic_switch/scripts_ae/, please set working direc-
tory to ./elastic_switch/ before running the following
scripts. It is not necessary to run all of them before go to
next step.

e aws_e2e.sh will start the end-to-end latency evalua-
tion in §6.2. In the following command, the approach
can be one of reparallelization, rerouting,
spotserve, and the model_name should be one of
6.7B, 20B, 30B, while the trace_name should be
one of As, Bs, As+o, Bs+o. Each execution will be
corresponding to a single curve in Figure 6:

./scripts_ae/aws_e2e.sh <approach> \
<model_name> <trace_name>

aws_ondemand.sh will start the monetary cost eval-
uation in §6.2, generating the dashed blue line in Fig-
ure 7. The num_node can be one of 3, 4, 6, 8, but
the dashed line will be plotted only when all of the
four experiments have been conducted:

./scripts_ae/aws_ondemand.sh <num_node>

aws_workload.sh will start the fluctuating work-
load evaluation in §6.3 on specified trace (can be ei-
ther A or B), where the approach can also be one of
reparallelization, rerouting, spotserve:

./scripts_ae/aws_workload.sh \
<approach> <trace_name>

aws_ablation.sh will start the ablation study evalu-
ation in §6.2 on specified trace (can be either A or B),
where the ablation_level is from 0 to 4, correspond-
ing to the five bars in Figure 9:

1125

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

./scripts_ae/aws_ablation.sh \
<ablation_level> <trace_name>

Plotting Figures. All the scripts above only generate the
end-to-end latency for each request. To analysis these data
and plot figures presented in the paper, we also provide a
plot.py together with the scripts:

pip install matplotlib seaborn
python ./scripts_ae/plot.py <mode> \
[-m MODEL] [-t TRACE]

This script works even when only part of the experiment
has been completed (just ignoring missing results), allowing
users to check partial experimental data. Here is the available
options for mode:

e e2e Plot the corresponding figure as in Figure 6, both
-m, -t flags are required to be specified.

e price Plot the monetary cost comparison figure as
Figure 7, in which the scatters come from aws_e2e. sh.

e workload-e2e Plot the end-to-end latency figure as
Figure 8(e)(f) on the trace specified by -t flag.

¢ workload-case Plot the per-request latency figure as
Figure 8(g)(h) on the trace specified by -t flag.

e ablation Plot the ablation study figure as Figure 9.

A.6 Evaluation and expected results

The specific results differ on the hardware, bandwidth, and
sometimes sensitive to unpredictable GPU/network/batch-
ing fluctuations. However, we expect the results users repro-
duced roughly match the trends as the figures presented in
the paper within the same environment. (i.e. Figures 6,7,8,9)

A.7 Experiment customization

Artifact users can customize the evaluation scripts to test the
system performance on other workloads. For example, users
can use their own model checkpoints in different volumes,
or spot instances traces with different availability changes.
Please refer to README . md for detailed instructions.

A.8 Notes

Occasionally, some processes on certain nodes may not
exit even though the evaluation is finished. We provide
kill_all.sh. Running following command to kill all con-
cerning processes after each experiment is highly recom-
mended:

./scripts_ae/kill_all.sh 12 \
./trace/hostfile_aws_T4

References

[1] Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot/.
[2] NVIDIA Triton Inference Server. https://developer.nvidia.com/nvidia-
triton-inference-server.

=

—_
—

—
—

—

—

—

—

—

=

—

—

—

SpotServe: Serving Generative Large Language Models on Preemptible Instances

[3] Use Azure Spot Virtual Machines. https://learn.microsoft.com/en-

us/azure/virtual-machines/spot-vms.

CUDA IPC. https://docs.nvidia.com/cuda/cuda-runtime-api/group_
_CUDART__DEVICE.html, 2021.
NVIDIA FasterTransformer.
FasterTransformer, 2021.
NVIDIA NCCL. https://developer.nvidia.com/nccl, 2021.

SpotServe Appendix. https://github.com/Hsword/SpotServe/blob/
main/docs/Appendix.pdf, 2024.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
flow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI, 2016.

Ahsan Alj, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. Batch:
Machine learning inference serving on serverless platforms with adap-
tive batching. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1-15, 2020.
Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. Optimiz-
ing inference serving on serverless platforms. Proceedings of the VLDB
Endowment, 15(10), 2022.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan,
Cheng Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia
Zhang, Jeff Rasley, and Yuxiong He. Deepspeed- inference: Enabling
efficient inference of transformer models at unprecedented scale. In
SC22: International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1-15, 2022.

Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ram-
jee, and Nipun Kwatra. Varuna: scalable, low-cost training of massive
deep learning models. In Proceedings of the Seventeenth European
Conference on Computer Systems, pages 472-487, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners,
2020.

Junguk Cho, Diman Zad Tootaghaj, Lianjie Cao, and Puneet Sharma.
Sla-driven ml inference framework for clouds with heterogeneous
accelerators. In D. Marculescu, Y. Chi, and C. Wu, editors, Proceedings
of Machine Learning and Systems, volume 4, pages 20-32, 2022.
Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. Clipper: A Low-Latency online
prediction serving system. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 613-627, Boston,
MA, March 2017. USENIX Association.

Dense Linear Algebra on GPUs. https://developer.nvidia.com/cublas,
2016.

Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. Turbotransform-
ers: an efficient GPU serving system for transformer models. In Jaejin
Lee and Erez Petrank, editors, PPoPP "21: 26th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, Virtual Event,
Republic of Korea, February 27- March 3, 2021, pages 389-402. ACM,
2021.

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. Serving DNNs like clock-
work: Performance predictability from the bottom up. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI
20), pages 443-462. USENIX Association, November 2020.

https://github.com/NVIDIA/

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

[19] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-

nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R. Das.
Cocktail: A multidimensional optimization for model serving in cloud.
In 19th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 22), pages 1041-1057, Renton, WA, April 2022.
USENIX Association.

Yitian Hao, Wenging Wu, Ziyi Zhang, Yuyang Huang, Chen Wang,
Jun Duan, and Junchen Jiang. Deft: Slo-driven preemptive scheduling
for containerized dnn serving. In Symposium on Networked Systems
Design and Implementation, 2023.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 103-112, 2019.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model par-
allelism for deep neural networks. In Proceedings of the 2nd Conference
on Systems and Machine Learning, SysML’19, 2019.

Jack Kosaian, KV Rashmi, and Shivaram Venkataraman. Parity models:
erasure-coded resilience for prediction serving systems. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles, pages
30-46, 2019.

Harold W Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83-97, 1955.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 611-626, 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. Gshard: Scaling giant models with conditional compu-
tation and automatic sharding. CoRR, abs/2006.16668, 2020.

Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. Tetris:
Memory-efficient serverless inference through tensor sharing. In Jiri
Schindler and Noa Zilberman, editors, 2022 USENIX Annual Technical
Conference, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022.
USENIX Association, 2022.

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gon-
zalez, and Ion Stoica. Alpaserve: Statistical multiplexing with model
parallelism for deep learning serving. CoRR, abs/2302.11665, 2023.
Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin,
and Weizhu Chen. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang,
Lingxiao Ma, and Bin Cui. Heterogeneity-aware distributed machine
learning training via partial reduce. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, pages 2262-2270, 2021.
Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi
Jin, Tianqi Chen, and Zhihao Jia. Towards efficient generative large
language model serving: A survey from algorithms to systems. arXiv
preprint arXiv:2312.15234, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu
Wang, Rae Ying Yee Wong, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. Specinfer: Accelerating generative llm
serving with speculative inference and token tree verification. arXiv
preprint arXiv:2305.09781, 2023.

Xupeng Miao, Yining Shi, Zhi Yang, Bin Cui, and Zhihao Jia. Sdpipe:
A semi-decentralized framework for heterogeneity-aware pipeline-
parallel training. Proceedings of the VLDB Endowment, 16(9):2354-2363,
2023.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(34]

(35

[

(36

—

(37]

(38

[t

[40

[t

[41]

[42]

[43

[t

(44

=

[45]

(46

—

(47

—

(48

[t

(49]

Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie,
Hailin Zhang, and Bin Cui. Galvatron: Efficient transformer training
over multiple gpus using automatic parallelism. Proc. VLDB Endow.,
16(3):470-479, 2023.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. Pipedream: Generalized pipeline parallelism for dnn training.
In Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP 19, page 1-15, New York, NY, USA, 2019. Association for
Computing Machinery.

Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei
Zaharia. Memory-efficient pipeline-paralle]l DNN training. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages
7937-7947. PMLR, 2021.

Deepak Narayanan, Keshav Santhanam, Peter Henderson, Rishi Bom-
masani, Tony Lee, and Percy Liang. Cheaply estimating inference
efficiency metrics for autoregressive transformer models. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.
Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang, Jilong Xue,
Lingxiao Ma, Gang Cao, and Bin Cui. Flexmoe: Scaling large-scale
sparse pre-trained model training via dynamic device placement. Pro-
ceedings of the ACM on Management of Data, 1(1):1-19, 2023.
OpenAl Gpt-4 technical report, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAlI blog, 1(8):9, 2019.

Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos
Kozyrakis. INFaaS: Automated model-less inference serving. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 397-411.
USENIX Association, July 2021.

Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages
205-218. USENIX Association, July 2020.

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus:
A gpu cluster engine for accelerating dnn-based video analysis. In
SOSP ’19: Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 322-337, 2019.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Daniel Y. Fu, Zhigiang Xie, Beidi Chen, Clark W. Barrett, Joseph E.
Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
High-throughput generative inference of large language models with
a single GPU. CoRR, abs/2303.06865, 2023.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-
billion parameter language models using model parallelism. CoRR,
abs/1909.08053, 2019.

Vikram Sreekanti, Harikaran Subbaraj, Chenggang Wu, Joseph E. Gon-
zalez, and Joseph M. Hellerstein. Optimizing prediction serving on
low-latency serverless dataflow. CoRR, abs/2007.05832, 2020.

Jakub M Tarnawski, Deepak Narayanan, and Amar Phanishayee. Piper:
Multidimensional planner for dnn parallelization. In Advances in
Neural Information Processing Systems, volume 34, pages 24829-24840,
2021.

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao
Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. Bamboo:
Making preemptible instances resilient for affordable training of large
dnns. CoRR, abs/2204.12013, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric

1127

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia

Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos
Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati,
Patrick S. McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa
Mudigere, Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. Unity:
Accelerating DNN training through joint optimization of algebraic
transformations and parallelization. In 16th USENLX Symposium on
Operating Systems Design and Implementation, OSDI 2022, Carlsbad,
CA, USA, July 11-13, 2022, pages 267-284. USENIX Association, 2022.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. CoRR, abs/1706.03762, 2017.

Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang, and Lei Li.
Lightseq: A high performance inference library for transformers. In
Young-bum Kim, Yunyao Li, and Owen Rambow;, editors, Proceedings
of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies: Indus-
try Papers, NAACL-HLT 2021, Online, June 6-11, 2021, pages 113-120.
Association for Computational Linguistics, 2021.

Xiaofeng Wu, Jia Rao, Wei Chen, Hang Huang, Chris Ding, and Heng
Huang. Switchflow: preemptive multitasking for deep learning. In
Proceedings of the 22nd International Middleware Conference, pages
146-158, 2021.

Fangkai Yang, Lu Wang, Zhenyu Xu, Jue Zhang, Liqun Li, Bo Qiao,
Camille Couturier, Chetan Bansal, Soumya Ram, Si Qin, et al. Snape:
Reliable and low-cost computing with mixture of spot and on-demand
vms. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 3, pages 631-643, 2023.

Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil
Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam
Mittal, Scott Shenker, and Ion Stoica. SkyPilot: An intercloud broker
for sky computing. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 437-455, Boston, MA,
April 2023. USENIX Association.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. Orca: A distributed serving system for Transformer-
Based generative models. In 16th USENLX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 521-538, Carlsbad,
CA, July 2022. USENIX Association.

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. Mark:
Exploiting cloud services for cost-effective, slo-aware machine learn-
ing inference serving. In USENIX Annual Technical Conference, pages
1049-1062, 2019.

Haoyu Zhang, Jianjun Xu, and Ji Wang. Pretraining-based nat-
ural language generation for text summarization. arXiv preprint
arXiv:1902.09243, 2019.

Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. SHEP-
HERD: Serving DNNs in the wild. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23), pages 787-808,
Boston, MA, April 2023. USENIX Association.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria
Lin, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating
inter- and intra-operator parallelism for distributed deep learning. In
Marcos K. Aguilera and Hakim Weatherspoon, editors, 16th USENLX
Symposium on Operating Systems Design and Implementation, OSDI
2022, Carlsbad, CA, USA, July 11-13, 2022, pages 559-578. USENIX
Association, 2022.

