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Abstract

Sonification, or the practice of generating sound from data, is a promising alternative

or complement to data visualization for exploring research questions in the life

sciences. Expressing or communicating data in the form of sound rather than graphs,

tables, or renderings can provide a secondary information source for multitasking or

remote monitoring purposes or make data accessible when visualizations cannot be

used. While popular in astronomy, neuroscience, and geophysics as a technique for

data exploration and communication, its potential in the biological and bio-

technological sciences has not been fully explored. In this review, we introduce

sonification as a concept, some examples of how sonification has been used to

address areas of interest in biology, and the history of the technique. We then

highlight a selection of biology‐related publications that involve sonifications of

DNA datasets and protein datasets, sonifications for data collection and interpreta-

tion, and sonifications aimed to improve science communication and accessibility.

Through this review, we aim to show how sonification has been used both as a

discovery tool and a communication tool and to inspire more life‐science researchers

to incorporate sonification into their own studies.
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1 | INTRODUCTION

Sound is a natural information medium, and the use of nonspeech

sound to communicate information is commonplace in our day‐to‐

day experiences through car horns, text notifications, and fire alarms.

When nonspeech sound is generated from datasets, this process is

termed sonification (Hermann et al., 2011a). A straightforward

example of this process is assigning each nucleotide base pair in a

genome data set to a piano key and playing the DNA sequence note‐

by‐note to listen for repetitions or other patterns indicative of

structural elements such as beta‐sheets (Hayashi & Munakata, 1984;

Ohno & Ohno, 1986). While astronomers and particle physicists have

been using sonification for decades in complex ways ranging from

pattern discovery (Diaz‐Merced et al., 2012; Hughes, 2003) to

science communication (Mohon, 2020; Zanella et al., 2022), its

potential to broadly impact biological research is yet to be fully

realized.

In 2010 one of five grand challenges proposed by the National

Academies for research at the intersection of physical and life

sciences was to predict an individual organism's characteristics from

their genetic data (National Research Council US Committee on

Research at the Intersection of the Physical and Life, 2010). With the
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advent of rapid sequencing tools, novel ways to derive valuable

information, patterns, and phenotypic associations from genomic

data were desired. Sonification has enhanced progress toward this

grand challenge through creative approaches to interpret and analyze

large datasets generated from nucleotide sequencing and ‐omics

data. One such example is the Gene Expression Music Algorithm

(GEMusicA), which sonified gene expression data as an alternative to

conventional visual approaches to characterize and discriminate

between cancer cell lines (Staege, 2015). By comparing EFT (Ewing

sarcoma) gene expression sonification sound prints to those of

different standard cell lineages, researchers were able to accurately

identify the genetic lineage of the cancer (Staege, 2016). Meanwhile,

deep learning algorithms, visualizations, and novel spectroscopy/

microscopy techniques have elucidated new discoveries about how

proteins fold, work, and interact, allowing for identification of novel

drug targets as well as novel protein synthesis (Ferreira, 2023;

Goloubinoff, 2014). Sonification has the potential to act as a tool

for both improved visualization (Rau et al., 2015) and feature

generation—Yu et al. have added to the field's arsenal of de novo

protein design techniques by sonifying proteins to create musical

scores which are then fed into music creation machine learning tools

to design new proteins, thus using sonification to inform the design

of completely new materials (Yu et al., 2019).

Sonification has also been leveraged for the tools and methodologies

researchers use to generate and interpret data. Sonification can be used

to add an extra source of information for users during process monitoring

tasks (Hildebrandt et al., 2016). For example, at Brookhaven National

Laboratory, researchers sonified X‐ray diffraction beams using Fast

Fourier Transforms (FFT) allowing them to multitask sample preparation

and listen for beam misalignments in real‐time, increasing their work

efficiency (Horowitz, 2014; Schedel & Yager, 2012). It can also provide a

complementary source of features for existing research tools, especially

those using machine learning models. For example, a skin cancer

diagnostic tool created by Dascalu and David incorporated sonification

as a feature fed into a deep learning model which allowed the tool to

achieve the same accuracy as more sophisticated scopes despite using

lower‐resolution input (Dascalu & David, 2019). Beyond the researchers'

sphere, sonification has garnered attention for science accessibility.

Science accessibility includes making accurate scientific information more

accessible and interesting to the public (Hopf et al., 2019; Larson, 2018)

as well as ensuring that data availability is inclusive and accessible to

anyone (Tuosto et al., 2020). Sonification has helped address these

challenges by offering new and potentially more appealing media through

which to engage the public with science (Plaisier et al., 2021; Zanella

et al., 2022), as well as being more accessible than visual data for those

who are blind or visually impaired (BVI) (The Space for Persons with

Disabilities Project, & United Nations, 2023).

This review aims to introduce the science and art of sonification to

the greater biology and biotechnology community to expand its use and

inspire researchers to adopt it as a tool for scientific discovery and

communication. We first introduce the history of how sonification

developed as a tool, exploring how the field has evolved over time and

how researchers in other fields have used it. We then discuss several

classic and recent developments in the application of sonification for

studying and communicating biological datasets in the context of

genome‐level data, protein sequence data, data collection and analysis,

and science accessibility. Applications of sonification specific to the field

of clinical medicine (such as biofeedback, EEG sonification, and surgical

process monitoring), which are vast in number, will be briefly highlighted.

Selected sound files from various research works are available in the

supplementary information and serve as instructive examples. Through

this review, we hope to introduce sonification to biology researchers

more broadly to inspire new and creative sonifications to improve our

fundamental understanding of the biological world.

1.1 | A brief history of sonification

Detecting useful information from sound patterns is a research tool that

has been exploited for centuries (Worrall, 2019). In ancient Egypt, the

pharaoh's aides analyzed the verbal commodity trading accounts of

granary masters by listening for differences in voice speed and intonation

to identify fraud (Boyd, 1905). Developed in the 1920s, the Geiger

counter registers the flux of radioactive particles across a detector

through a series of clicking sounds to let scientists and safety personnel

readily detect unsafe levels (Knoll, 2000). With the advent of computers

and related audio technology, humans gained a new form of agency over

the creation of sound. As designers began to create the first personal

computers and interactive operating systems in the 1980s, auditory

display, or the use of sound to communicate information (e.g., car alarms,

notification bleeps, or video game sounds) quickly became essential to our

interactions with computers and other devices. Researchers then began

to use these technologies to transform their data into sound, creating

sonification (Hermann et al., 2011b).

Over the past few decades, sonification has established a particularly

rich history of use in geology and astrophysics (e.g., Harrison et al., 2021;

Misdariis et al., 2022; Zanella et al., 2022). Sonification came naturally to

these fields in part due to their collected data often being in the form of

difficult‐to‐visualize signals or waves that had similar features to sound

waves. Waves from one modality (such as seismic waves or electro-

magnetic waves) can be interpreted directly as sound waves and then

manipulated to put them in the audible range, in a sonification process

known as audification (Kramer, 1994). Astrophysicists at the laser

interferometer gravitational‐wave observatory (LIGO) regularly take

advantage of audification to detect events within noisy data, because

changes in the waveform (such as a “chirp” from the collision of

gravitational waves) can be distinctly heard but can be hard to recognize

on visual waveform graphs (George et al., 2018; Hughes, 2003).

Astronomers use audification to identify planet transits in front of stars

(Brown et al., 2022) and analyze galaxy spectra (Trayford et al., 2023).

Seismologists similarly “pitch up” signals from seismological data to

analyze different types of earthquakes quickly and accurately by

identifying magnitude and depth (Fowler, 2014; Holtzman et al., 2014;

Kilb et al., 2012; Simpson et al., 2009). By transforming data from one

waveform‐type into sound, researchers in these fields can use the human

ear's sensitivity to changes in sound to probe for patterns and features
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they might have otherwise missed in visually represented data. They also

use the resulting sounds in educational materials to communicate

research findings to the public in novel and interesting ways.

Demonstrations of such outreach projects include media publications of

the LIGO gravitational wave collision (Garisto et al., 2023) and NASA's

interactive web demos of Milky Way sonifications from the Chandra X‐

ray observatory (Mohon, 2020), among many others (e.g., Harrison

et al., 2021).

As sonification gained popularity, its works began to emerge in the

field of biology as well. Figure 1 shows the usage of “sonification” as a

keyword in publications archived by Web of Science by year, with the

subset of biology‐related applications denoted. Beginning in the 2000s,

the increase in biology‐related publications contributed to the overall

growth of the sonification field. As part of this trend, we highlighted

notable publications dedicated to summarizing the state of the field,

specifically a key conference paper that summarized the early field

entitled “The Sonification Report,” the seminal introductory and instruc-

tive text the “Sonification Handbook,” and the first International

Conference on Auditory Display; their subsequent impact on expansion

of the field can be seen in the graph (Hermann et al., 2011a; Kramer

et al., 1999), and they all offer useful insight and instruction for the field.

As the number of publications of biology‐related sonification works has

increased, so has the diversity of applications, which are showcased in our

review of the literature that follows.

2 | SONIFICATION IN BIOLOGY‐RELATED
LITERATURE

As in the earlier examples of gravitational waves and seismological

waves, audification, or the transformation of wavelike data into

sound waves, can and has been used to sonify wavelike biological

data such as IR spectra (Delatour, 2000) and brain waves (Hermann &

Baier, 2013). However, in sequence‐type data, such as genomes and

proteins, the information of interest is quantized. For these

datatypes, a different sonification approach called parameter map-

ping is used (Grond & Berger, 2011). In parameter mapping, acoustic

event features such as notes are mapped to individual data points by

relating aspects of the acoustic event such as pitch or loudness to

variables associated with the data point (e.g., by mapping the pitch of

a note to a certain DNA base pair). This is the most readily used

method to sonify DNA and protein sequences, and many projects

highlighted in this review have explored how to best extract new

variables or features from the existing data. These works also

highlight how both audification and parameter mapping have been

skillfully leveraged to appropriately sonify various forms of biological

data, and how the techniques have been applied to improve research

tools and increase science accessibility as well.

2.1 | Sonification for studying the organization and
regulation of genetic data

Throughout the past few decades, genomic sequencing techniques

have evolved and flourished, generating plentiful datasets to explore

how genetic information is organized and regulated. Many genomic

sonifications aimed to discover or interpret patterns, identify single

genes, and compare different genes from these datasets. Early

implementations of DNA sonification occurred in the 1980s, where a

motivating factor was the creation of new music that could allow for

increased appreciation of the recently published troves of DNA

sequences and an enhanced understanding and memory of the

patterns in them. In arguably the most seminal example, Hayashi and

Munakata (1984) ascribed musical notes to DNA base pairs and upon

playing a genetic sequence back as music, discovered that certain

musical patterns were related to thermal stability (GC richness) and

F IGURE 1 References to “sonification” as a keyword in a Web of Science search of published works, with the proportion of biology‐related
works highlighted in the dark blue. Notable sonification publication events are indicated with vertical navy lines. “Sonication” results were
omitted, and the data was hand‐pruned to remove any results that mislabeled sonication as sonification.
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were able to identify transcription codons that indicated the start of

genes. Ohno and Ohno (1986) used similar codon‐to‐note sonifica-

tions, but also inverted the process to translate classic pieces of

music back into DNA sequences. They found that classical music

sometimes generated patterns that were similar to existing protein

genes, which they suggested implied a natural tendency for repetition

in DNA. To create an effective sonification platform for DNA

analysis, Temple (2017) developed a tool that provided different

DNA sonification methods, exploring sonifying single nucleotides,

nucleotide pairs, codons, and the option of using multiple reading

frames. He found that concurrently listening to all three codon

reading frames at once while using auditory cues to signal stop and

start codons facilitated easy identification of open reading frames

and repetitive DNA sequences, making an argument for the inclusion

of sonification analysis in the DNA sequence browser toolkit.

Building on productive applications to DNA sequences, sonifica-

tions relating to gene expression and regulation within cell

phenotypes emerged as well. Staege (2015, 2016) created the Gene

Expression Music Algorithm (GEMusicA), which sonified gene

expression data from sources such as microarrays and used it to

create a new method for discrimination between different gene

expression data sets, specifically applying it to successfully charac-

terize cancer cell lines and probe for similarities as an alternative

approach to conventional gene expression data analysis methods.

Cittaro et al. (2016) created a method to sonify ChIP‐seq data (which

identify the binding sites at which transcription‐factor proteins bind

to DNA in the genome and influence phenotypes) and used the

sonification to successfully identify the extent of gene expression in a

sample. Brocks (2015) created a method to sonify the methylation

states of CpG dinucleotides (a specific DNA pattern that can undergo

methylation to regulate transcription) in the genome, known as the

methylome, to shed light on epigenetics patterns in genomes and

generate more public interest. As RNA folding drew attention, Grond

et al. (2010) presented a tool allowing for the audio‐visual display of

RNA, sonifying the overall secondary structures using the sound

synthesis platform SuperCollider as an integrative display option to

identify RNA folds, loops, and stems that may correspond to a

biological function (Wilson et al., 2011). Paul et al. (2021) used Harr

wavelet transforms to sonify the spike protein gene of the 2019

coronavirus and other viruses such as Influenza and Ebola to identify

structural differences, as well as classifying different virus genes into

their respective viral families. As genomic data becomes more

available and new parameters and features are generated, we

anticipate that sonification will continue to offer an alternative to

traditional visualizations and analyses for researchers to explore their

own data or communicate to others.

2.2 | Sonification for the study of the structure and
function of proteins

As availability of proteomic data and crystal structures increased,

researchers sought to relate amino acid sequence‐level information

to protein folding, function, and interactions (Dill et al., 2007;

Kuhlman & Bradley, 2019). Some early protein sonifications aimed to

identify protein secondary structures through repeating amino‐acid

motifs within the sequences. For example, Riego et al. (1995)

assigned each known amino acid codon a musical note, which they

then used to translate human and mouse interferon genes from

which they identified long, repeating patterns of notes distinct from

randomness. These would likely now be recognized as amino‐acid

repeats—strings of repeating amino acid patterns that play critical

roles in biological function (Luo & Nijveen, 2014). Bywater and

Middleton (2016) introduced amino acid hydrophobicity and surface

proximity within protein sequences as features to create and

compare different sonification approaches that then allowed them

to recognize structural patterns such as alpha helices and beta sheets

and validated their findings using a perceptual survey with 38

participants. To address issues with early visual expression of protein

sequences that used colored bands at the time, King and Angus

(1996) invented PM—Protein Music, an algorithm that incorporated

amino acid properties such as hydrophobicity into the overall musical

composition. They posited that sonification added an advantage over

visualization of proteins and genes due to each amino acid being

represented distinctively by a unique note, which could avoid

possible issues with visual “color blending” between bands in the

color displays. More recently, Martin et al. (2022) used sonification to

explore proteins more effectively and designed a tool like that of King

and Angus to identify amino‐acid repeats within protein sequences

and conserved domains between different proteins. They explored

five different sonification algorithms and found that it was important

to design the sonification in task‐specific ways for the tool to be

beneficial to users. Sound samples for these five sonification

algorithms applied to various proteins including human insulin and

transmembrane protein 14C can be found in Supporting Information

S2: File S1.

To better understand how proteins related to each other, a

combined audio‐visual approach to protein structural analysis was

taken by Hansen et al. (1999), who created PROMUSE, a tool that

incorporated amino acid and protein features such as polarity and

secondary structure to sonify the structural alignments (a measure of

similarity) between two proteins in conjunction with visual represen-

tations. They found that for certain tasks, when compared to visual

information alone, the addition of sonification led to a large increase

in accuracy and efficiency of protein data interpretation by a test

group. Other sonifications aimed to deduce structural or functional

information through sonification. Picinali et al. (2012) transformed

influenza proteins into a signal‐based sonification by taking the

electron‐ion interaction potential of their amino acids and applying a

Fast Fourier transform to shift the signals into the audible range,

allowing the amino acid qualities to be present in the resulting sounds

without encoding individual features such as hydrophobicity. These

amino acid sonifications were then used to translate the proteins into

more information‐dense music that could communicate properties of

the protein beyond its sequence. Also, in the work of Monajjemi

(2019a, 2019b), amino acid NMR data underwent direct audification
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to inform parameter mapping of amino acids as well as the overall

rhythm of the final sonification piece, which was used to study the

ribosome and human insulin proteins with the goal of creating a more

melodious sonification that was easier to listen to.

More recently, understanding and communicating protein folding

and interactions led to new sonifications that aimed to enhance visual

models. Rau et al. (2015) added sonification of molecular dynamics

simulations of water interacting with a protein to a CAVE virtual

environment molecular visualization of the protein shape, allowing

the visualization to communicate the formation and disruption of

hydrogen bonds without visibly overwhelming the user. Scaletti et al.

(2022) created protein folding animations that used sonification to

highlight the free‐energy state of the protein as it folded to more

effectively communicate protein folding concepts to undergraduate

students. Moving away from visualization entirely, Bouchara and

Montes created a sonification of a 3D protein in a virtual

environment to create a sound‐based platform for the communica-

tion of 3D shapes for protein studies (Bouchara & Montes, 2020).

Beyond understanding protein function, newer techniques in

synthetic biology aim to design novel proteins or improve existing

proteins. Sonification was leveraged as a feature generation method

by Franjou et al. (2019, 2021), Yu and Buehler (2020), and Yu et al.

(2019), who audified the vibrational spectra of individual amino acids

to inform how they would be represented as notes in the sonification,

using protein secondary structure to communicate rhythm. The

resulting musical scores were then used to train a neural network

designed for score generation, and the neural network created new

scores that were then translated back into de novo proteins. These

novel approaches that take advantage of sonification as a feature

generation tool in deep learning show that sonification still has many

unexplored applications and potential benefits.

2.3 | Integration of sonification for data collection
and interpretation

While the previous works have exemplified how sonification has

been used to explore and analyze existing datasets, the following

works show how sonification can be used in creative ways as a tool

for data collection and interpretation. For example, researchers have

developed sonifications to assist microscope users with identifying

relevant data features. Peruzzi et al. (2015) and Braun et al.

(2020, 2023) directly translated video feed from microscopes into

sound by interpreting the image as a “sonogram” to capture bacterial

movement and probe for changes in swimming patterns in response

to chemical stimuli, with the goal of creating a real‐time chemotaxis

assay using sound. Lee et al. (2022) sonified the spectral patterns of

fluorescent images of tumors to help users detect and discriminate

small tumorous conditions in living animals. Ngo et al. (2022) sonified

the x‐y movement of cells under a microscope to identify and relate

phenomena such as mitosis and cell migration to study cancer by

mapping different locations on each axis to pitch or left‐right

panning.

Sonification has also been used to create or identify helpful

features in existing data that were not previously apparent. When

Boevé and Giot (2023) sonified chemical characteristics of

various volatile compounds, they found that the resulting peak

sound pressure was correlated to the substance's human

olfactory threshold, providing an easier‐to‐calculate alternative

to replace human tests. Stables et al. (2017) sonified the Raman

Spectra of brain tissue for cancer diagnosis, increasing the

diagnostic accuracy by 25% after extracting features using

machine learning methods compared to purely visual methods,

allowing doctors to spend more time with patients rather than

wait for visual test feedback. These works showcase the potential

for sonification to become part of the scientist's standard toolbox

for discovery. They also showcase how very unique problems can

be addressed through creative sonification.

2.4 | Sonification as a tool in clinical practices

The sonifications implemented in the medical field provide excellent

examples of the technique's potential to be used as a daily tool.

While this review has focused on research applications, we will

provide several sample references for those interested in research-

ing these clinical applications further. Sonification is frequently used

as a process monitoring tool for surgeons to monitor their actions

during operations (Black et al., 2017, 2018; Maintz et al., 2019;

Vajsbaher et al., 2020, and patient conditions such as heart rate

(Aldana Blanco et al., 2020; Bahameish, 2019; Ballora et al., 2004;

Janata & Edwards, 2013; Riveros Perez et al., 2019; Stahl &

Thoshkahna, 2016) and oxygen monitoring (Collett et al., 2020;

Deschamps et al., 2016; Hinckfuss et al., 2016; Paterson

et al., 2016, 2017) along with several other medical applications

(e.g., Burdick et al., 2020). Audification has frequently been used to

translate various signals in the body, such as electroencephalogra-

phy (EEG) brainwave signals (Baier et al., 2007; Elgendi et al., 2013;

Hermann et al., 2006; Väljamäe et al., 2013). EEG audifications have

been used to study various phenomena, including sleep and sleep

disorders (Fernandes et al., 2021; Moradi et al., 2020), depth of

anesthesia (Glen, 2010), epilepsy and seizures (Lu et al., 2018;

McCredie, 2020), and even using sonified EEG as biofeedback to

alter mood and brain response (Sanyal et al., 2019). Biofeedback

itself is a popular category of sonification in medicine in which

patient data is sonified in real time and played back to the patient

(Kosunen et al., 2018). For example, to help with injury rehabilita-

tion and sports training, sonified movement signals of a person are

played back to them in real‐time to help them monitor their own

behavior (Guerra et al., 2020; Kantan et al., 2022; Kantan, Dahl,

et al., 2023; Kantan, Dahl, Serafin, et al., 2023; Schaffert et al., 2019).

Similarly, neurofeedback, or the sonification of brain waves played

back to the patient, is a well‐explored clinical practice for the

therapy of neurological disorders (Marzbani et al., 2016). These

sonifications have been very well established, have led to many

clinical improvements, and are active areas of research.
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2.5 | Making scientific data more accessible

To make science more accessible to the public and to systemically

excluded groups such as BVI individuals, many researchers sought to

combine sonification with visual representation to communicate

more information synchronously or communicate the same informa-

tion more efficiently. In recent years, several such sonifications were

developed in response to the COVID‐19 pandemic, during which

communicating scientific information to the public about the virus

was important. With this aim, Buehler used a machine learning

method for translating amino acid sequences to create a popular

sonification of the 2019 coronavirus genome (Venugopal, 2020)

(Supporting Information S1: File S1). Similarly, Temple (2020) sonified

the 2019 coronavirus RNA genome and its metadata to showcase the

virus' life cycle and inspire interest in the general public to learn

more about genetics and the virus's physiology. Several sonifications

were also developed to help communicate case rates and the spread

of the virus in an accessible way. For example, Holloway et al.

(2020, 2022) created a method to sonify data about the spread of

COVID‐19 in Australia to ensure that people who are blind or have

low vision would be able to access the same information as those

who use visual graphs. Similarly, Biggs et al. (2022) developed a web‐

based audio map to show the spread of COVID‐19 data by State in

the United States and evaluated it with a BVI test group, finding a

strong general desire for sonification‐enabled accessible maps.

While science and data analysis have historically leaned heavily

on visual representations to communicate findings, researchers have

shown that the addition of sound can make such representations

much more effective and engaging, which can be leveraged for both

discovery and outreach. Garcia‐Ruiz et al. (2004), Garcia‐Ruiz

(2001, 2002) found that the addition of sonification to visualized

proteins and DNA sequences enhanced middle school students'

understanding of molecular properties and helped them identify

structures, and this was further enhanced when students were

involved in the sonification design. Shi et al. (2007) used Morse code

to assign amino acids to short melodic sequences and rhythms and

explored a range of scales to affect genre and mood of the resulting

music to motivate students to learn biology. Takahashi and Miller

(2007) used the chemical similarity of amino acids to assign them to

various chords to make the resulting sonification more melodic and

assigned rhythm based on the frequency of the residue in a protein,

aiming to increase accessibility to nonsighted scientists and young

people. Plaisier et al. (2021) used DNA sonifications to communicate

bioinformatics basics to the general public and found that

sonification‐related activities worked well to engage their audience

in thinking about biological concepts.

Sonification tools for education are of course not just limited to

biology datasets. While the list is numerous and is beyond the scope

of this review, a couple examples of these are a “talking multimeter”

by Lunney and Morrison (1981), which was created to allow

nonsighted students to take measurements in lab, and Yeung

(1980) developed a sonification method to display multivariate data

and allow for pattern recognition and even accurate value estimation.

In chemistry, Mahjour et al. (2023) sonified chemical footprints,

incorporating information such as molecular weight and hydrogen

bond centers, to provide a more information‐dense representation of

a molecule than a diagram or webpage. Several researchers have also

been working to create auditory graphs to improve math education

(Ahmetovic et al., 2019; Barbieri et al., 2008; Tomlinson et al., 2016).

On a larger scale, Larsen and Gilbert (2013) and Larsen (2016)

created a tool, “Microbial Bebop” that assigns multidimensional data

to a variety of auditory dimensions such as notes, chords, and rhythm

to create a jazz‐inspired sonification. The tool is used to analyze

variables of interest from microbial datasets, with the input

parameters ranging from gene expression levels to location tempera-

ture to produced metabolites and is intended as a science

communication tool for the general audience (Supporting Information

S1: File S3). Wheless et al. (1996) used sonification to improve their

understanding of and the communication of results from their

Chesapeake Bay Virtual Environment simulation, a modeling frame-

work that integrated hydrodynamic circulation models and various

biological multidimensional data with computer visualization variables

to investigate the interplay between physics and biology in the

Chesapeake Bay ecosystem. Gibson (2006) sonified plant data for a

botanical garden and paired it with time‐lapse videos to give visitors

an appreciation for the growth of plant life, which occurs too slowly

for the eye to appreciate. Kim et al. (2021) sonified microbiome data

as an educational science project and art piece called “Biota Beats” to

establish a connection between individuals and their bodies and make

the science of the human microbiome more connected to the human

experience. Similarly, Rudin and Demirjian (2022) sonified infant

microbiomes to showcase how the populations varied over time and

between individual infants, mapping traits such as Gram stain and

bacterial family to different musical notes, with the aim of teaching

users about microbiome variability. These works show how datasets

from diverse fields can undergo sonification to create unique

approaches for communication and learning.

2.6 | Sonification design considerations and
limitations

Taking an informed and design‐forward approach to developing a

sonification is essential for its success, and the omission of this may

lead to ineffective sonifications. For example, simply mapping each

unique amino acid to a note on the piano and then playing them back

along the sequence might sonify a protein, but without an under-

standing of what each amino acid might contribute to the structure or

function of the protein, the sonification may just sound like a random

tune. For this reason, feature generation is an important aspect of

sonification design. The features that are important will depend on

the problem that needs to be solved or the question of interest, and

for a sonification to be effective, these features need to be

recognized distinctly (Neuhoff, 2019). Good design is difficult, and

incorporating too many features of a data point (e.g., attempting to

capture several features of an amino acid in the same note) may make
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a complex sonification that is difficult to interpret or lead to “ear

fatigue” (Lawrence & Yantis, 1957; Worrall, 2019). However, if the

features are too trivial, the sonification may not be useful. Ultimately,

if a data set is unable to provide sufficiently distinct features or the

features are difficult to translate into sound parameters, the problem

may not be ideal for sonification, just as not all data can be

represented visually.

Similarly, the intention of the sonification can come with

limitations. Studies have shown that certain auditory parameters

can have subjective relations from person to person (Neuhoff, 2019),

or interfere with one another such as in the case of equal‐loudness

curves (Fletcher & Munson, 1933), making consistent or quantitative

interpretations of sonifications difficult. Often, in such cases, users

will also need extensive training to learn how to use a sonification, so

it may not be a beneficial approach in all scenarios. The way users

interact with data is also uniquely different from visuals. Listeners

may need to listen to a sonification over a length time to properly

interpret it, and if the sonification is long, it would not be ideal for

scenarios where immediate interpretation is required. On a more

practical end, sonification research can be difficult to publish in

traditional media, because unlike graphs and figures for visualization,

sound cannot be printed. Just as visualizations and graphs have best

practices (such as using intelligible colors and scales) and limitations,

sonifications have best practices and limitations as well, and will be

most effective when designed intentionally.

3 | CONCLUSION

Sonification methods reported in biological literature have increased

substantially over the past two decades. Its core uses have been in

recontextualizing biological data as an expression for common

sequences such as DNA and amino acids as well as acting as a tool

to extend research in new directions such as de novo protein

synthesis. It has also been extended to data collection platforms to

add more information to existing microscopy and spectroscopy tools

and data collection processes. Others have leveraged the technique

to improve scientific outreach, finding that it can help overcome

barriers associated with data literacy. Sonification approaches also

served the BVI community by making data more accessible (Sawe

et al., 2020).

While the number of works that have led to discoveries integral

to biology is modest, sonification is gaining momentum, especially in

the medical field where the impacts of its use are evident. If

leveraged correctly and creatively, sonification has the potential to

similarly impact fundamental biology research. The current body of

biological sonifications illustrates the diversity of problems to which

the technique can be applied, ranging from nucleotide sequences to

EEG signals to microscope feeds. Sequences and spectra are notably

nontrivial to visualize (van der Linden et al., 2023; Sawe et al., 2020),

which may have motivated researchers to explore sonification as an

alternative. As difficult‐to‐visualize multivariate omics‐style data is

increasingly produced (Cambiaghi et al., 2017; Gehlenborg

et al., 2010), sonification provides a complementary approach.

Similarly, the more novel works that have been recently developed

using sonification (e.g., Braun et al., 2023; Franjou et al., 2019) are

evidence that sonification as a research tool still has plenty of

unexplored potential. Despite the limitations of the technique,

sonification finds itself within a thriving community of scientific

researchers who often reach across disciplines and collaborate with

talented artists and educators to develop new approaches to

understanding complex phenomena. With its capacity to provide

unique auditory insights, the adoption of sonification remains a

compelling consideration when confronted with complex datasets in

biology and beyond.
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