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Abstract: The scientific community has been looking for novel approaches to develop nanostructures
inspired by nature. However, due to the complicated processes involved, controlling the height of
these nanostructures is challenging. Nanoscale capillary force lithography (CFL) is one way to use
a photopolymer and alter its properties by exposing it to ultraviolet radiation. Nonetheless, the
working mechanism of CFL is not fully understood due to a lack of enough information and first
principles. One of these obscure behaviors is the sudden jump phenomenon—the sudden change in
the height of the photopolymer depending on the UV exposure time and height of nano-grating (based
on experimental data). This paper uses known physical principles alongside artificial intelligence
to uncover the unknown physical principles responsible for the sudden jump phenomenon. The
results showed promising results in identifying air diffusivity, dynamic viscosity, surface tension, and
electric potential as the previously unknown physical principles that collectively explain the sudden

jump phenomenon.

Keywords: nano capillary lithography; nano-grating; transparent machine learning; Bayesian
evolutionary algorithm; hybrid intelligence

1. Introduction

Nanoscale structures are found commonly in nature and serve various essential
functions. For instance, a chameleon’s skin contains nanoscale crystals, which allows
them to modify their appearance by adjusting their spacing. Learning from nature, modern
progress in nanotechnology is geared towards harnessing the potential of nanotextures
to perform a wide array of functions by manipulating the height of nano pixels [1-5].
Nanoscale capillary force lithography (CFL) is a nanofabrication technique that cures a
photopolymer using UV radiation [6] to create patterns and structures on the nanoscale.
CFL is gaining attention due to its high precision, potential for mass production, and
relatively low cost. However, the physical principles at play are still obscure. One observed
phenomenon in experiments is the sudden jump, where the height of the photopolymer
experiences a rapid change at a specific UV dose (Figure 1c) [6].

Several research studies have been carried out in this sphere to explain the capillary
behavior in nanochannels [7-10]. One intriguing phenomenon investigated is the Klingen-
berg effect [11] and its incorporation in gas flow through porous media [12-14]. One of the
most recent advances involved discovering the hidden rules that explain the sudden jump
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phenomenon, with gas diffusivity, dynamic viscosity, and surface tension identified as the
previously obscure physical principles governing this phenomenon [15]. However, it could
not find the relationship between the height of the PDMS mold and its effect on the sudden
jump. This paper has attempted to overcome this drawback and explain the sudden rise
phenomenon for all heights of PDMS mold by combining physical principles alongside
artificial intelligence, known as “hybrid intelligence”. The hybrid intelligence approach is
explained in Figure 1.
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intelligence approach is explained in Figure 1.
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just one nano-pillar experiment. Thirdly, this paper has made further advances to [15] by
incorporating electric potential difference as an additional physical process involved in the
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capillary rise in the nano-grating, thus requiring expansion of the previous three physics
processes, i.e., dynamic viscosity, surface tension, and diffusivity [15].

This paper focuses on a few experiments (thus, small data) that commonly exhibit the
complex sudden jump phenomena. The fundamental difficulty stems from the small length
scale, time-varying salient properties (e.g., air pressure, air mass, diffusivity into porous
medium, dynamic viscosity, surface tension, and electric potential-dependent forces), and
the multi-physical phenomenon interactions during the nano capillary rising. Obtaining
large data sets is often difficult and expensive. Sometimes, internal data are intrinsically
inaccessible due to technological limitations such as the inability to monitor the liquid’s
behavior inside the nano-ridge during the capillary rise and to precisely measure the electric
charge inside the nano-ridge.

In our study, we observed four key phenomena that collectively contribute to the
explanation of the sudden jump phenomenon:

Air diffusivity decreases as the rate of trapped air-mass transfer increases;
The dynamic viscosity of the liquid increases upon exposure to UV radiation;
Our results demonstrate that UV exposure leads to a reduction in the surface tension
of the liquid;

e  The electric potential between the liquid and the PDMS mold decreases as the distance
between the liquid’s top surface and the bottom surface of the PDMS mold increases.

These observed phenomena collectively contribute to our understanding of the sudden
jump phenomenon, shedding light on the underlying physical principles at play in this
intriguing phenomenon.

2. Materials and Methods
2.1. Data Preparation

We assessed the topography of the printed nano-ridge array using atomic force mi-
croscopy (AFM) in tapping mode, employing highly doped silicon tips (NCHR, NanoWorld,
Neuchatel, Switzerland). Comprehensive details regarding nanofabrication procedures
and AFM data acquisition are outside the scope of this paper and will be the subject of a
dedicated future publication. It should be noted that the total data points are artificially
increased for smooth training using interpolation when the trend drastically changes, such
as near the sudden jump region. Such regions show infinite slopes, which may cause
mathematical issues and difficulty fitting with smooth LFs (Figure 1c). For instance, in the
1.5 um case, two points (x, y) = (15,600, 1.35) and (15,600, 0.679) showing the infinite slope
may be refined to five points (non-infinite slope) with additional points at (x, y) = (15,500,
1.35), (15,550, 1.18), (15,600, 1.0155), (15,650, 0.847), and (15,700, 0.679) using interpolation.
Since a simple interpolation generates the increased data points, the overall shape of the
experimental values does not change. All experimental data will be made available upon
request to the author.

2.2. Two Pillars of the Hybrid Intelligence—Human and Artificial Intelligences
2.2.1. Human Intelligence for Providing Basic Formulations with Basic Physics Quantities

The mathematical formulation used in this study is derived mainly from [15]. The
formulation that relates the PDMS mold’s height with sudden jump—the potential (voltage)
difference—is shown in the succeeding section. This section provides a comprehensive
formulation and terminology governing the principles of force equilibrium and mass
balance in the context of nano capillary rise.

1. Force equilibrium formulation

The ascent of a fluid within a vertical nano-ridge is determined using an interplay of
multiple force components, which can be expressed as follows: Fs — F, — Fp — Fg + F, = 0.
Here, F; denotes the capillary force driven by the liquid’s surface tension, F; is the viscous
force that counteracts the liquid’s rise, Fp is the force due to air pressure confined within the
nano-ridge [15], and F; is the gravitational force. A new force term is introduced into the
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The ascent of a fluid within a vertical nano-ridge is determined using an interplay of
multiple force components, which can be expressed as follows: F; — F, — Fp — F; + F, = 0.
Here, F; denotes the capillary force driven by the liquid’s surface tension, F, is the
viscous force that counteracts the liquid’s rise, Fp is the force due to air pressure confined
w1th1n the nano- rldge [15] and F, is the gravrtatronal force A new force termf is
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21oycos(6) — 121x(t)%% — d1-(P(t) — P(0)) +
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Applying the ideal gas law to the air confined within the pressure term can be ex-

@

pressed in the following manner: P(f) = WRT and P(0) = 1\]1/1151% RT, where m(t)

[kg] is the mass of confined air at time £, R is the universal gas constant (8.3144 J /mol/K),
T [K] is the absolute temperature (78 K), and M [kg/mol] is the molar mass of the confined
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air (0.02897 kg/mol). Substituting the pressure expressions into the equilibrium equation,
we can derive the equation governing the velocity of the liquid’s ascent as follows:

h— x(t) h

o0x  o(Uy)dcos(6) RTd < m(t) m(O)) n d?U(h) 2

= 120Uy x(£) (1 — x(1))?

ot eu(Uy)x(t)  12u(Uy)IMx(t)
where m(t) is the mass of trapped gas at time ¢, & is the total height of the capillary
(1090 nm, 1500 nm, 2000 nm, and 2500 nm), m(0) is the initial mass of the trapped gas,
and U (h) is a link function to account for the voltage (potential) difference and dielectric
constants, which will be learned by the proposed machine-learning method.
The time required for the liquid to rise to height (h) when the nano-ridge is open-ended

y [15].

(TdCOS

(i-e., no cap) can derived by t,ise:foh (‘jﬂ ) ds =

2. Mass balance formulation

As air is trapped within the nano-ridge, it will gradually decrease due to diffusion into
nanopores within the PDMS mold. To establish the rate of change of mass of the trapped
gas, we can derive it from the mass balance equation as follows [15]:

sm DdKHA()RT( m(t) m(O))
h

ot Iy d-l B

() h @)

where D; is the coefficient of diffusion, Ky is Henry’s constant, A(t) = d-1 + 2I(h — x(t))
is the area through which diffusion takes place, and the distance at which the air pressure
diffuses is taken as .. Here , I, is the nanopore pressure critical length [m] measured from
the nano-ridge’s wall. At ., the internal pore pressure becomes py = P(0) (Figure 2). In

this work [, is assumed to be constant at 104. DK( = D;Kp is a function of the air

dt
mass flux rate whose initial value is 1 x 10712 mol-s/ kg. D, is the diffusion coefficient
of the air into PDMS pores. This study posits that a sudden surge in airflow into PDMS
nanopores can impede air diffusion within these nanopores, much like a traffic jam can be
caused by a sudden increase in traffic volume at a fixed intersection. Figure 1h illustrates
this physical rationale schematically. Obtaining accurate time-varying models for D; and
Kp separately can be challenging. Therefore, this study employs a glass-box approach to
identify the combined effect of D; and Kp, represented as Dg. The rise in height, mass,
and time are normalized as

x(f) = 2w = 15 )

1-%(0)°

T e N

To simplify and condense the equations above, we introduce additional coefficients
_ 3uDgKyRTh U
IB docos(0)ley 7 7 T 4ohZcos(6)

and

«, B, and . Here, & =

om
of
ot
To this point, human intelligence mathematically formulates the liquid rise velocity
and the mass rate in the presence of physics quantities. But they are not complete. Those
physics-driven formulations inevitably contain several unknown terms, of which rules need

to be tackled by artificial intelligence, as described in the following section. The physical

ZO'COS , and D;Kpy is a function
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phenomena under consideration and the corresponding link functions are summarized
in Table 1.

Table 1. Summary of physical phenomena and the LF used to identify them.

Unknown

Function

Physics Term Argument Physical Meaning Best Identified LF
o 2-parameter exponential function
dm e e - p eter expone ctio

D;Ky 7 Diffusivity of trapped air into PDMS pores (exp (1))
. L . Lo 2-parameter exponential function

U Uy Dynamic viscosity of the liquid (exp (c1%2))
o Uy Surface tension of the liquid Z-parameter eXpOI‘lZIltlal function

(exp (e1x2))

Potential (voltage) difference between the
u 7 lower surface of PDMS and the upper 3-parameter 2nd-order polynomial
surface of the liquid and dielectric constants function (cl x4 oox+ C3)

of the materials

2.2.2. Artificial Intelligence for Exploring and Searching Hidden Rules

1.  Flexible link functions

The search for transparent link functions (LFs) is conducted using the Bayesian evolu-
tionary algorithm. For the effective utilization of LF (£), the input arguments have been
normalized to the range [0, 1]. As in [15], the relationship between the UV dose and the
terms o and y is related as 0(Uy) = 0pLo (Uy; 00) and pu(Uy) = poLy (Uy; 04), where oy
and jig are the surface tension and the dynamic viscosity of the liquid in the absence of UV
exposure, respectively. The UV dose is normalized as U, = U, /36,000 [J/m?]| € R[0,1).
0 is the free parameter vector, which is learned using the Bayesian algorithm. The initial
values of 0y = 0.04 N/m and yp = 0.4 N's/ m? is assumed for the study. The function

Dk ("%) = DgoL Dk (n}ﬁx {‘%} ;0 DK) is used to describe the maximum flux rate over time,

where Dyg is the initial value of D;Kp, and this study assumed D;Ky = 1 X 10~ 12,
A relationship between the normalized height of grating (#) and the physics term U

will be related by function as U (E) = UpLy (E; 6u> , where  is normalized as 10%6. In this

study, the initial value of Uy is assumed 2 x 10~8. £ is a link function used to account for
the potential (voltage) difference and dielectric constants.

A general two-parameter exponential LF [24-28], i.e., two-parameter exponential LF
with the form £(x) = exp(c1x®?), was chosen (Figure 3) for surface tension, dynamic
viscosity, and diffusivity of air. To include the effect of electric force based on [23], a second-
order polynomial LF of the form £(x) = c1x? + c2x + c3 was chosen among a few choices.
The rationale for this selection of the LF is presented in the discussion section later.

2. Bayesian evolutionary algorithm

This paper has employed a fusion of the genetic algorithm’s fitness-proportionate
probability (FPP) rule and the Bayesian update scheme to ensure seamless rule learning.
Following the FPP rule, the likelihood of an organism (denoted as “0”) from the present
generation being chosen for the subsequent generation is directly related to its fitness score

",

(F) where organism “0” is a distinct manifestation of free parameters (® = {61,...,0,,, })
within all concealed rules. The fitness score (F) is given by F(s) = (1 + Err(s)) " where
() e 2
ETT’(S) _ 7’1712? (xreulixpr;d>
(v7er)
score of the previous best generation and the collection of all the free parameter sets ©
from the same generation are represented as *(0) and O*(©), respectively. Since each
O can be uniquely represented by an organism, the interchangeability of organism and
O is established: p(0) « F(0), equivalently p(®) o F(0). Subsequently, the Bayesian

. A reduced error corresponds to increased fitness. The fitness
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fitness score of a novel individual organism (denoted as Fg(0)) is formulated as Fg(0) =

%% where x =)y, % is a normalization term. The probability of

parent selection for the upcoming generation is denoted as p(parent; | 0) & Fg(0), (i = 1,2).
Consequently, all the identified LFs can seamlessly evolve with new experimental data.
Within the Bayesian evolutionary framework, a cumulative count of 100,000 organisms
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normalization term. The probability of parent selection for the upcoming generation is
denoted as p(parent; | o) x Fz(o), (i = 1,2). Consequently, all the identified LFs can
seamlessly evolve with new experimental data. Within the Bayesian evolutionary
framework, a cumulative count of 100,000 organisms and 10 generations are employed,
encompassmg four alleles for every gene. The mutation mechanism operates per-variable,
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(Figure 8a) as a nonlinear function of air mass flux rate into the nanopores in the mold
made of PDMS; and a rule about the electric potential difference (Figure 8d).
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The transparent ML sought to learn four hidden rules (Figure 8) —i.e., two rules abou
the dynamic viscosity (Figure 8b) and surface tension (Figure 8c) of the photopolyme:
(NOA73) as nonlmear functlons of the total UV doses a rule about thg gir gliffusivity
in-the molc

made of PDMS and a rule about the electrlc potentlal difference (Flgure 8d).
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increases. The second term of Equation (5) also shows that ‘5—’; o m( ) Consequently,

surface tension exerts both positive and negative influence on the rate of liquid rise. Specif-
ically, as surface tension increases, the time required for the liquid to attain its maximum
height increases.

Figure 12 gives another complex relationship between the rate of liquid rise and
potential (voltage) difference (U). A potential difference existing between the lower surface
of the PDMS and the upper surface of the liquid generates an attractive force between them.
Consequently, U actively contributes to the rate of liquid rise. Following Equation (5), it
of liquid rise experlences a corresponding increase, leading to a faster attainment of the
liquid’s maximum height.

The link functions for diffusivity, surface tension, dynamic viscosity, and their im-
pact on the rate of liquid rise and trapped-air mass reduction rate are derived from prior
work [15]. These relationships, including the impact of potential (voltage) difference,
are expressed through Equations (5) and (6), where &, 8, and v play key roles. The

L 7\ i ¥ i (t)—1+%(F
rate of liquid rise, (%‘), is given by %‘ = 2}1(?) — g( x((t))(lx(t();> + =0 f( ))2, and

becomes evident that o« 7, where ¥ = . As the value of U(h) increases, the rate

(s
the trapped-air mass reduction rate, 2 = —8 (1 + 2 (1-x%(F) )) < W) where,
P(0)d _ 3uoLu(DgKp), LpkRTh _ Uy Lyd .
209 Lscos(0)’ ‘B - dt;oﬁa(x)co(;(e) ler dy= 4(70&7((9]()#2(:05(9) : NOtably’ these link func-
tions are interrelated, as evidenced by Equations (5) and (6). They collectively influence the
height of liquid rise, demonstrating the intricate connection between diffusivity, surface
tension, dynamic viscosity, and their effects on liquid behavior.

N =

3.2. Comparisons among Different LFs for Electric Potential-Dependent LF

For diffusivity, surface tension, and dynamic viscosity, [15] explored various link
functions, including constant, linear, simple nonlinear, complex nonlinear, and exponential
forms. Upon examining the final height vs. UV dose graph, it was evident that the best fit
was achieved with the expression £(x) = exp(c1x?) [15].

To explain the impact of the different types of LFs, two types of LFs were considered
to account for the effects of potential (voltage) difference and dielectric constants. The
first was an exponential function of the form L£;(x) = exp(c1x?) and the second was a
second-order polynomial function of the form L;(x) = c1x? + cox + c3.

Two different approaches were taken for the polynomial LF; in the first, the free
parameters for all four link functions were found using the Bayesian evolution, and in
the second, the free parameters for £;; were kept constant, and parameters for the other
three link functions were found. Using this method, we obtained four predictions for each
experimental case after training the model for five epochs. The Mean Absolute Percentage
Error (MAE) for each case was obtained (Figure 13), which showed that the polynomial
LF where all the free parameters were found using the Bayesian evolution was the most
accurate in predicting the sudden jump phenomenon.

The two best prediction results were from two cases of the polynomial LF with 26.39%
and 13.10% MAE after training the model for five epochs. Therefore, the prediction result
of the two was compared (Figure 14a,b). Figure 14b depicts the prediction results with
the second-order polynomial LF with an increasing trend, which shows the sudden jump
occurred at the same UV dose, which contradicts the experimental data. Conversely,
Figure 14a (the decreasing trend of L) clearly captures the trend followed by the sudden
jump. Based on the result of Figure 14, the best prediction was obtained using a second-
order polynomial LF with decreasing trend of £y;.
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function Ly.

3.3. Remarks on the Difference from Statistical Learning

The proposed hybrid intelligence approach is more general than tt
approach. As shown in Figure 15, the hybrid intelligence systematically e
diverse candidates of input-parameter pairs x -y where x € {UV dose, m:
maximum height of nano-gratings} and y € {diffusivity, viscosity, surf
electric potent1al} in pursuit of the most plau51b1e rule shapes Due to obsers
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