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Abstract

This paper introduces Speclnfer, a system that accelerates
generative large language model (LLM) serving with tree-
based speculative inference and verification. The key idea
behind Speclnfer is leveraging small speculative models to
predict the LLM’s outputs; the predictions are organized as
a token tree, whose nodes each represent a candidate token
sequence. The correctness of all candidate token sequences
represented by a token tree is verified against the LLM in par-
allel using a novel tree-based parallel decoding mechanism.
Speclnfer uses an LLM as a token tree verifier instead of an
incremental decoder, which significantly reduces the end-to-
end latency and computational requirement for serving gen-
erative LLMs while provably preserving model quality. Our
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evaluation shows that SpecInfer outperforms existing LLM
serving systems by 1.5-2.8% for distributed LLM inference
and by 2.6-3.5% for offloading-based LLM inference, while
preserving the same generative performance. SpecInfer is
publicly available at https://github.com/flexflow/FlexFlow/
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1 Introduction

Generative large language models (LLMs), such as Chat-
GPT [3] and GPT-4 [33], have proven to be powerful in
various application domains, including question answering,
program synthesis, and task automation [26, 56]. However,
it is challenging to quickly and cheaply serve these LLMs
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due to their large volume of parameters, complex architec-
tures, and high computational requirements. For example,
the largest GPT-3 architecture has 175 billion parameters,
which requires more than eight NVIDIA 40GB A100 GPUs
to store in half-precision floating points, and takes several
seconds to serve a single inference request [3].

An LLM generally takes as input a sequence of tokens,
called prompt, and generates subsequent tokens one at a time,
as shown in Figure 1a. The generation of each token in the
sequence is conditioned on the input prompt and previously
generated tokens and does not consider future tokens. This
approach is also called autoregressive decoding because each
generated token is also used as input for generating future
tokens. This dependency between tokens is crucial for many
NLP tasks that require preserving the order and context of
the generated tokens, such as text completion [55].

Existing LLM systems generally use an incremental decod-
ing approach to serving a request where the system computes
the activations for all prompt tokens in a single step and then
iteratively decodes one new token using the input prompt
and all previously generated tokens [27]. This approach re-
spects data dependencies between tokens, but achieves sub-
optimal runtime performance and limited GPU utilization,
since the degree of parallelism within each request is greatly
limited in the incremental phase. In addition, the attention
mechanism of Transformer [48] requires accessing the keys
and values of all previous tokens to compute the attention
output of a new token. To avoid recomputing the keys and
values for all preceding tokens, today’s LLM systems use a
caching mechanism to store their keys and values for reuse
in future iterations. For long-sequence generative tasks (e.g.,
GPT-4 supports up to 32K tokens in a request), caching keys
and values introduces significant memory overhead, which
prevents existing systems from serving a large number of re-
quests in parallel due to the memory requirement of caching
their keys and values.

Motivated by the idea of speculative execution in proces-
sor optimizations [13, 42], recent work introduces sequence-
based speculative inference, which leverages a small specula-
tive model (SSM) to generate a sequence of tokens and uses an
LLM to examine their correctness in parallel [5, 22, 25, 44, 51].
These attempts only consider a token sequence generated by
a single SSM for speculation, which cannot align well with
an LLM due to the model capacity gap between them, since
SSMs are generally orders of magnitude smaller than the
LLM to maintain low memory and runtime overheads.

This paper introduces SpecInfer, a system that improves
the end-to-end latency and computational efficiency of LLM
serving with tree-based speculative inference and verifica-
tion. Figure 1b illustrates a comparison between existing
incremental decoding, sequence-based speculative inference,
and our tree-based speculative inference. A key insight be-
hind Speclnfer is to simultaneously consider a diversity of
speculation candidates (instead of just one as in existing
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approaches) to maximize speculative performance. These
candidates are organized as a token tree, whose nodes each
represents a sequence of speculated tokens. The correctness
of all candidate token sequences is verified against the LLM
in parallel, which allows SpecInfer to significantly increase
the number of generated tokens in an LLM decoding step.
Compared with sequence-based speculative inference, lever-
aging tree structures can significantly improve the success
rate of verifying a token (e.g., from 52-57% to 96-97% for
stochastic decoding as shown in Table 1). However, realizing
this improvement requires addressing two unique challenges.
Next, we elaborate on these challenges and the main ideas
Speclnfer uses to address them.

First, SpecInfer must explore an extremely large search
space of candidate token sequences to maximize speculative
performance. While the idea of speculative execution has
been widely deployed in a variety of optimization tasks in
computer architecture and systems, including branch pre-
diction in modern pipelined processors and value prediction
for pre-fetching memory and files [13, 42], the search space
considered by SpecInfer is significantly larger due to two
reasons: (1) modern LLMs generally involve very large vocab-
ularies, and (2) maximizing speculative performance requires
predicting multiple future tokens (instead of just the next
token). For example, all LLMs in the OPT model family con-
sider 50,272 different possible tokens in their vocabulary,
while Speclnfer can correctly predict the next 4 tokens on
average. Achieving this goal requires considering a search
space of 50272* ~ 6 x 10'® different combinations of tokens.

SpecInfer leverages existing distilled, quantized, and/or
pruned variants of an LLM, which we call small specula-
tive models (SSMs), to guide speculation. A key challenging
of using SSMs for speculative inference is that the align-
ment between an SSM and an LLM is inherently bounded
by the model capacity gap, since an SSM is generally 100-
1000x smaller than an LLM. Instead of using a single SSM
for sequence-based speculation, SpecInfer maximizes spec-
ulative performance by simultaneously considering a vari-
ety of token sequences organized in a tree structure for a
given input prompt. SpecInfer introduces an expansion- and
a merge-based mechanism for constructing token trees by
exploiting diversity within a single SSM and across multiple
SSMs, respectively.

A second challenge SpecInfer must address is verifying the
speculated tokens. Many LLM applications perform stochas-
tic decoding, which samples the next token from a probability
distribution instead of deterministically generating a token.
To preserve an LLM’s generative performance, Speclnfer
must guarantee that its tree-based speculative inference and
verification mechanism generates the next token by follow-
ing the exact same probability distribution as incremental
decoding. To achieve this goal, we propose multi-step spec-
ulative sampling, a new sampling approach for SSMs that
guarantees equivalence while maximizing the number of
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Figure 1. Comparing the incremental decoding approach used by existing LLM serving systems, the sequence-based speculative
inference approach, and the tree-based speculative inference approach used by Speclnfer.

speculated tokens that can be verified. To minimize the to-
ken tree verification cost, SpecInfer introduces a tree-based
parallel decoding mechanism, simultaneously verifying all
tokens of a token tree against the LLM’s output in a single
LLM decoding step.

By leveraging tree-based speculative inference and verifi-
cation, Speclnfer accelerates both distributed LLM inference
across multiple GPUs and offloading-based LLM inference on
one GPU. Our evaluation shows that SpecInfer outperforms
existing LLM serving systems by 1.5-2.8% for distributed
LLM inference and by 2.6-3.5% for offloading-based LLM
inference, while preserving the same generative accuracy.

To summarize, we make the following contributions:

e We present Speclnfer, a tree-based speculative infer-

ence and verification system for LLM serving.

To maximize speculative performance, we propose a

merge- and an expansion-based method to construct

token trees by exploiting diversity within and across

SSMs, respectively.

To minimize verification cost, we introduce a tree-

based parallel decoding mechanism to simultaneously

verify all tokens of a token tree.

o We evaluate SpecInfer and show that it outperforms
existing systems by up to 2.8x for distributed inference
and by up to 3.5% for offloading-based inference.

2 Speclnfer’s Overview

Figure 2 shows an overview of SpecInfer, which includes a
learning-based speculator that takes as input a sequence of
tokens, and produces a speculated token tree. The goal of the
speculator is to predict the LLM’s output by maximizing the
overlap between the speculated token tree and the tokens
generated by the LLM using incremental decoding (Alg. 1).

Algorithm 1 The incremental decoding algorithm used in
existing LLM serving systems.

Input: A sequence of input tokens 7
Output: A sequence of generated tokens
S=7
while true do

t = DEcope(LLM, S)

S.append(t)

if t = (EOS) then

Return §

B AN A R S

There are several ways to prepare SSMs for speculative
inference. First, modern LLMs generally have many smaller
architectures pre-trained together with the LLM using the
same datasets. For example, in addition to the OPT-175B
model with 175 billion parameters, the OPT model family
also includes OPT-125M and OPT-350M, two variants with
125 million and 350 million parameters, which were pre-
trained using the same datasets as OPT-175B [57]. These pre-
trained small models can be directly used as SSMs. Second,
to improve the coverage of speculated tokens from SSMs,
SpecInfer takes an expansion-based and a merge-based spec-
ulation method as shown at the top of Figure 2. The specu-
lated tokens are organized in a token tree structure.

Speclnfer’s usage of an LLM is also different from that of
existing LLM serving systems. Instead of using the LLM as
an incremental decoder that predicts the next single token,
SpecInfer uses the LLM as a token tree verifier that verifies
a speculated token tree against the LLM’s output. For each
token, SpecInfer computes its activations by considering all
of its ancestors in the token tree as its preceding tokens. For
example, in Figure 2, the attention output of the token t3
is calculated based on sequence (t, 1,0, t2.1, £30), Where to,
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Figure 2. An overview of SpecInfer’s tree-based speculative inference and verification mechanism.

t10, and tp; are t3’s ancestors in the token tree. SpecInfer
includes a novel tree-based parallel decoding mechanism to
simultaneously verify all tokens of a token tree in a single
LLM decoding step.

Speclnfer’s speculative inference and token tree verifi-
cation provide two key advantages over the incremental
decoding approach of existing LLM inference systems.

Reduced memory accesses to LLM parameters. The per-
formance of LLM inference is largely limited by accesses to
GPU memory. In the existing incremental decoding approach,
generating a single token requires accessing all parameters
of an LLM. The problem is exacerbated for offloading-based
LLM inference systems, which use limited computational
resources such as a single commodity GPU to serve LLMs by
utilizing CPU DRAM and persistent storage to save model
parameters and loading these parameters to GPU’s high
bandwidth memory (HBM) for computation. Compared to
the incremental decoding approach, SpecInfer significantly
reduces accesses to LLM parameters whenever the overlap
between a speculated token tree and the LLM’s actual out-
put is not empty. Reduced accesses to GPU device memory
and reduced data transfers between GPU and CPU memory
can also directly translate to decreased energy consumption,
since accessing GPU HBM consumes two or three orders
of magnitude more energy than floating point arithmetic
operations.

Reduced end-to-end inference latency. Serving LLMs
suffers from long end-to-end inference latency. For exam-
ple, the GPT-3 architecture includes 175 billion parameters
and requires many seconds to serve a request. In the ex-
isting incremental decoding approach, the computation for
generating each token depends on the keys and values of
all previously generated tokens, which introduces sequen-
tial dependencies between tokens and requires modern LLM
serving systems to serialize the generation of different tokens
for each request. In SpecInfer, LLMs are used as a verifier
that takes a speculated token tree as an input and can simul-
taneously examine all tokens in the token tree by making a
single verification pass over the LLM. This approach enables
parallelization across different tokens in a single request and
reduces the LLM’s end-to-end inference latency.

3 Learning-based Speculator

Existing speculative decoding methods perform sequence-
based speculation, where an SSM predicts a single sequence
of tokens to be verified by an LLM. However, a key limitation
of a single speculated sequence is that the probability of a suc-
cessful alignment between the LLM and the speculated token
sequence decays exponentially with the expected alignment
length. This can be further exacerbated by the fact that the
speculation only includes a single candidate token to verify
per step, resulting in suboptimal speculative performance.
On the other hand, by encouraging more diverse speculated
candidates per step, the probability of a successful match per
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Algorithm 2 The speculation and verification algorithm
used by SpecInfer. SPECULATE takes the current token se-
quence S as an input and generates a speculated token tree
N . TREEPARALLELDECODE generates a token O(u) for each
node u € . VERIFYGREEDY and VERIFYSTOCHASTIC exam-
ine A/ against O and produce a sequence of verified tokens
V using greedy or stochastic sampling, respectively.

1: Input: A sequence of input tokens 7

2: Output: A sequence of generated tokens

3:2:8=7

4: while true do

5: N = SpECULATE(S)

6: O = TREEPARALLELDECODE(LLM, \)

7: if use greedy decoding then

8 V = VERIFYGREEDY(O, N)

9: else

10: V = VERIFYSTOCHASTIC(O, N)

11 fort €V do

12: S.append(?)

13: if t = (EOS) then

14: return S

15:

16: function VERIFYGREEDY(O, V)

17: V = 0, u < the root of token tree N

18: while 30 € N.p, =u and t, = O(u) do

19: V.append(t,)
20: u=vo
21 V.append(O(u))
22: return V
23:

24: function VERIFYSTOCHASTIC(O, N)

25: V =0, u « the root of token tree N

26: while u is a non-leaf node do

27: ‘H = child(u) > The set of child nodes for u
28: while H is not empty do

29: s ~rand(H),r ~ U(0,1), x5 = H|[s]

30: if r < P(xs|u,®rram)/P(xs | u,Ossp,)

then

31: > Token x; passes verification.

32: V.append(xs)

33: u=s

34: break

35: else

36: > Normalize the residual P(x | u, ©p1p)
37: P(x | u,011m) = norm(max(0,P(x |

u,OrLm) — P(x | u, Ossm,)))

38: ‘H.pop(s)

39: if H is empty then

40: break

41: > All SSMs fail verification; sample the next token
42: Xnext ~ P(x | u,®r1pm)

43: V.append(Xpext)

44: return V
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Table 1. The success rate of verifying a token for LLaMA-7B
using the top-k tokens derived from LLaMA-68M. The five
prompt datasets are described in Section 6.1.

‘Dataset‘k:l k=2 k=3 k=4 k=5

Alpaca | 68% 77% 81% 84%  85%

z & |cp 69% 79% 83% 86%  87%
8% | WebQA | 62% 72% 77% 80%  82%
3 8 |cp 70%  81%  85%  88%  89%
© IPIQA | 63% 75% 79% 83%  85%
9w Alpaca | 54% 81% 91% 95% 97%
Zg|cp 56%  82%  92%  95%  97%
=72 | WebQA | 52% 80% 90%  94%  96%
g3 cr 57%  84%  92%  95%  97%
» PIQA 55%  82% 91%  95%  97%

step (i.e., the token decoded by the LLM is in this candidate
pool) can be greatly improved. To this end, SpecInfer aims
to construct a tree of speculated candidates by exploiting
diversity within a single SSM and across multiple SSMs. In
particular, SpecInfer’s learning-based speculator aggregates
the predictions of one or multiple SSMs to maximize specula-
tive performance while maintaining low memory overhead
and inference latency. SpecInfer uses a token tree to orga-
nize the tokens produced by the speculator and introduces
two methods for constructing token trees: expansion- and
merge-based tree constructions.

Definition 3.1 (Token Tree). A token tree N is a tree struc-
ture, where each node u € N is labeled with a token t,, and
pu represents u’s parent node in the token tree. For each
node u, S, represents a sequence of tokens identified by
concatenating S, and {t,}".

Expansion-based token tree construction. One approach
to creating a token tree involves deriving multiple tokens
from an SSM within a single decoding step. This approach is
motivated by an important observation that when an SSM
misaligns with an LLM (i.e., the two models select different
top-1 tokens), the token selected by the LLM is generally
among the top-k tokens from the SSM for very small values
of k. Table 1 shows the success rate of verifying a token using
the top-k tokens derived from an SSM, where a verification
is successful if the token selected by the LLM is among the
top-k tokens from the SSM. Compared to only using the top-
1 token from an SSM, using the top-5 tokens can increase
the success rate from 70% to 89% for greedy decoding and
from 57% to 97% for stochastic decoding.

Directly selecting the top-k tokens at each step leads to
an exponential increase in the number of potential token se-
quences, which substantially elevates inference latency and

IFor the root node r, S, represents the token sequence {z,}.
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memory overhead. Consequently, we adopt a static strategy
that expands the token tree following a preset expansion con-
figuration represented as a vector of integers (ky, kz, ..., km),
where m denotes the maximum number of speculative decod-
ing steps, and k; indicates the number of tokens to expand for
each token in the i-th step. For example, Figure 3 illustrates
the expansion configuration (2, 2, 1), leading to four token
sequences. Our evaluation (see Section 6.4) shows that even
a simple strategy can generate highly accurate speculative
results. We acknowledge that dynamically expanding a token
tree from an SSM is an opening research problem beyond
the scope of this paper, which we leave as future work.

Merge-based token tree construction. In addition to us-
ing a single SSM, Speclnfer can also combine multiple SSMs
to jointly predict an LLM’s output. Speclnfer uses an unsu-
pervised method to collectively boost-tune a pool of SSMs
to align their outputs with that of the LLM by leveraging
adaptive boosting [12]. SpecInfer uses SSMs to predict the
next few tokens that an LLM will generate, and uses gen-
eral text datasets (e.g., the OpenWebText corpus [15] in our
evaluation) to adaptively align the aggregated output of mul-
tiple SSMs with the LLM in a fully unsupervised fashion. In
particular, Speclnfer converts a text corpus into a collection
of prompt samples and use the LLM to generate a token se-
quence for each prompt. SpecInfer first fine-tunes one SSM at
a time to the fullest and marks all prompt samples where the
SSM and LLM generate identical subsequent tokens. Next,
SpecInfer filters all marked prompt samples and uses all re-
maining samples in the corpus to fine-tune the next SSM to
the fullest.

By repeating this process for every SSM in the pool, SpecIn-
fer obtains a diverse set of SSMs whose aggregated output
largely overlaps with the LLM’s output on the training cor-
pus. All SSMs have identical inference latency, and therefore
running all SSMs on different GPUs in parallel does not in-
crease the latency of speculative inference compared to using
a single SSM. In addition, SpecInfer uses data parallelism to
serve SSMs across multiple GPUs, and therefore using multi-
ple SSMs does not increase the memory overhead on each
GPU. In the case where multiple SSMs are employed, the out-
put of each SSM is considered as a token tree, and SpecInfer
performs token tree merge to aggregate all speculated tokens
in a single tree structure.

Definition 3.2 (Token Tree Merge). M is the tree merge
of m token trees {\;} (1 < i < m)ifand only if V1 < i <
m,Yu € N;, 3o € M such that S, = S, and vice versa.

Intuitively, each token tree represents a set of token se-
quences. Merging multiple token trees produces a new tree
that includes all token sequences of the original trees. For
example, Figure 3 shows the token tree derived by merging
four sequences of tokens. Each token sequence is identified
by a node in the merged token tree.
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Figure 3. Illustration of token tree expansion.

Note that, in addition to boosting, there are several other
ensemble learning methods (e.g., voting, bagging, and stack-
ing) [14] that can be used to combine the outputs from mul-
tiple SSMs, and we leave the exploration as future work.

4 Token Tree Verifier

This section introduces Speclnfer’s token tree verifier, which
takes as input a token tree generated by the speculator and
verifies the correctness of its tokens against an LLM’s output.
A key idea behind the design of SpecInfer is simultaneously
verifying all sequences of a token tree against the original
LLM’s output by making a single pass over the LLM’s parame-
ters. This functionality allows SpecInfer to opportunistically
decode multiple tokens (instead of a single token in incre-
mental decoding), resulting in reduced memory accesses to
the LLM’s parameters. A challenge SpecInfer must address
in token tree verification is efficiently computing the atten-
tion scores for all sequences of a token tree. To this end,
we introduce tree attention, which generalizes the attention
mechanism [48] from sequence to tree structure. In addition,
we develop a tree-based parallel decoding mechanism that
can decode all tokens in a token tree in parallel.

§4.1 and §4.2 describe tree attention and tree-based parallel
decoding. §4.3 introduces the mechanism to verify a token
tree against the LLM’s output.

4.1 Tree Attention

Transformer-based language models use the attention mech-
anism to reason about sequential information [48]. LLMs
generally use decoder-only, multi-head self-attention, which
takes a single input tensor X and computes an output tensor
O via scaled multiplicative formulations as follows.

_ Q _
Qi=XxXWs-,  Ki=XxWk, (1)
. T
Vi=xxw)/,  a=920 @
H; = softmax(mask(4;))V;, O = (Hy,...,Hy))W?  (3)

where Q;, K;, and V; denote the query, key, and value tensors
of the i-th attention head (1 < i < h), WiQ, WiK , and WiV are
the corresponding weight matrices. A; is an [ X [ matrix that
represents the attention scores between different tokens in
the input sequence, where [ is the sequence length. To pre-
serve causality when generating tokens (i.e., a token in the
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sequence should not affect the hidden states of any preceding
tokens), the following causal mask function is applied:

mask(A) ¢ = {AJ’“ jzk (@)
—o0 j<k

Intuitively, when computing the attention output of the j-th
token in the sequence, all subsequent tokens should have
an attention score of —co to indicate that the subsequent
tokens will not affect the attention output of the j-th token?.
In Equation 3, H; represents the output of the i-th attention
head, and W, is a weight matrix used for computing the final
output of the attention layer.

Note that the attention mechanism described above ap-
plies only to a sequence of tokens. We generalize the atten-
tion mechanism to arbitrary tree structures.

Definition 4.1 (Tree Attention). For a token tree A/ and an
arbitrary node u € NV, its tree attention is defined as the out-
put of computing the original Transformer-based sequence
attention on S, (i.e., the token sequence represented by u):

®)

For a given set of token sequences, since each sequence S
is covered by a node of the merged token tree, performing
tree attention on the token tree allows Speclnfer to obtain
the attention output for all token sequences.

TREEATTENTION (1) = ATTENTION(S,)Vu € N’

4.2 Tree-based Parallel Decoding

This section describes SpecInfer’s tree-based parallel decoding
mechanism for computing tree attention for all tokens in a to-
ken tree in parallel. A key challenge SpecInfer must address
in computing tree attention is managing key-value cache.
In particular, the attention mechanism of Transformer [48]
requires accessing the keys and values of all preceding to-
kens to compute the attention output of each new token,
as shown in Equation 3. To avoid recomputing these keys
and values, today’s LLM inference systems generally cache
the keys and values of all tokens for reuse in future iter-
ations, since the causal relation guarantees that a token’s
key and value remain unchanged in subsequent iterations
(i.e., mask(A)jx = —oo for any j < k). However, when com-
puting tree attention, different sequences in a token tree
may include conflicting key-value caches. For example, for
the speculated token tree in Figure 4, two token sequences
(22, t3, ty, t5) and (1, t3, t3, o) have different keys and values
for the third and fourth positions.

A straightforward approach to supporting key-value cache
is employing the sequence-based decoding of existing LLM
inference systems and using a different key-value cache for
each sequence of a token tree, as shown on the left of Figure 4.
However, this approach is computationally very expensive

ZNote that we use —oo (instead of 0) to guarantee that the softmax’s output
is 0 for these positions.
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and involves redundant computation, since two token se-
quences sharing a common prefix have the same attention
outputs for the common prefix due to the causal mask in
Equation 3. In addition, launching one kernel for each token
sequence introduces additional kernel launch overhead.

Speclnfer introduces two key techniques to realize tree-
based parallel decoding.

Depth-first search to update key-value cache. Instead
of caching the keys and values for individual token sequences
of a token tree, Speclnfer reuses the same key-value cache
across all token sequences by leveraging a depth-first search
mechanism to traverse the token tree, as shown in Figure 4,
where SpecInfer visits #;, t3, ..., ty by following a depth-first
order to traverse the token tree and update the shared key-
value cache. This approach allows Speclnfer to maintain
the correct keys and values for all preceding tokens when
computing the attention output of a new token.

Topology-aware causal mask. A straightforward ap-
proach to computing tree attention is calculating the tree
attention output for individual tokens by following the depth-
first order described earlier. However, this approach would
result in high GPU kernel launch overhead since each kernel
only computes tree attention for one token sequence. In ad-
dition, executing these kernels in parallel requires additional
GPU memory to store their key-value caches separately due
to cache conflict. A key challenge that prevents SpecInfer
from batching multiple tokens is that the attention computa-
tion for different tokens requires different key-value caches
and therefore cannot be processed in parallel.

We introduce topology-aware casual mask to fuse tree at-
tention computation of all tokens in a single kernel. To batch
attention computation, Speclnfer uses a tree topology in-
stead of the original sequence topology to store the keys and
values of all tokens in a token tree in the key-value cache. For
example, to compute tree attention for the speculated token
tree shown in Figure 4, SpecInfer takes both verified tokens
(i.e., t2) and all speculated tokens (i.e., s, t4, ..., t9) as inputs.
This approach allows Speclnfer to fuse the attention compu-
tation into a single kernel but also results in attention scores
that violate the causal dependency (e.g., t;’s attention com-
putation uses all previous tokens, including t; which is not
in t;’s token sequence). To fix the attention scores for these
pairs, Speclnfer updates the causal mask based on the token
tree’s topology. This approach computes the exact same at-
tention output as incremental decoding, while resulting in
much fewer kernel launches compared to sequence-based
decoding.

4.3 Token Verification

For a given speculated token tree N, SpecInfer uses tree-
based parallel decoding (see Section 4.2) to compute its tree
attention and generate an output tensor O that includes a
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Figure 4. Comparing Speclnfer’s tree-based parallel decoding with existing sequence-based decoding.
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Figure 5. Illustrating the multi-step speculative sampling
mechanism for verifying LLMs with stochastic sampling.

token for each node u € N. Next, SpecInfer’s token tree veri-
fler examines the correctness of speculated tokens against
the LLM. Speclnfer supports both greedy and stochastic sam-
pling as shown in Algorithm 2.

Greedy decoding. Many LLM applications generate to-
kens using greedy decoding, which greedily selects the to-
ken with the highest likelihood in each decoding step. The

VERIFYGREEDY function in Algorithm 2 shows how SpecIn-
fer verifies a speculated token tree N with greedy decoding.
SpecInfer starts from the root of N and iteratively exam-
ines a node’s speculated results against the LLM’s original
output. For a node u € N/, SpecInfer successfully specu-
lates its next token if u includes a child node v (i.e., p, = u)
whose token matches the LLM’s output (i.e., t, = O(u)). In
this case, Speclnfer finishes its verification for node u and
moves on to examine its child v. When the node u does not
include a child that contains the LLM’s output, SpecInfer
adds O(u) as a verified node in A/ and terminates the verifi-
cation process. Finally, all verified nodes are appended to the
current generated token sequence V. Token tree verification
allows Speclnfer to opportunistically decode multiple tokens
(instead of a single token in the incremental decoding ap-
proach), while preserving the same generative performance
as incremental decoding.

Stochastic decoding. To improve the diversity of gener-
ated tokens, many LLM applications perform stochastic de-
coding, which samples a token from a probability distribution
P(u;l|ug, ..., ui—1;©rLMm), where U = uy, ..., u;_; are previously
generated tokens, u; is the next token to generate, and O
represents a parameterized LLM.

To verify a speculated token tree with stochastic decod-
ing, we introduce a multi-step speculative sampling (MSS)
algorithm to conduct verification, whose pseudocode code
is shown in the VERIFYSTOCHASTIC function in Algorithm 2
and illustrated in Figure 5. Our method provably preserves
an LLM’s generative performance as incremental decoding
while optimizing the number of speculated tokens that can
be verified. Theorem 4.2 proves its correctness.

Theorem 4.2. Fora given LLM andm SSMs (i.e., SSM;,....SSMy,,
let P(u;|U; ©rram) be the probability distribution of sampling
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a token using stochastic decoding, where U = uy, ..., u;_1 are
previously generated tokens, u; is the next token to generate,
Opp represents the parameterized LLM.

Let Pspectnfer (4i|U; ©L1m, {@ssm; }) be the probability dis-
tribution of sampling token u; using Speclnfer’s multi-step
speculative sampling (see the VERIFYSTOCHASTIC function in
Algorithm 2), where ®ssy;, is the j-th parameterized SSM.
Then VU, u;, ©11m, Ossm; we have

P(u;i | U;s©LLm) = Pspecinfer (4i | Us OrLrm, {Ossm; })

A proof of this theorem is presented in [28].

We acknowledge that a more straightforward approach to
preserving the probability distribution of stochastic decoding
is directly sampling the next token x ~ P(u; | U;Orpp) and
examining whether x is a child node of u;_; in the speculated
token tree. We call this approach naive sampling (NS) and
show that SpecInfer’s multi-step speculative sampling has a
uniformly lower rejection probability than naive sampling.

(6)

Theorem 4.3. Let P (reject | MSS, U, O, {@)SSMj}) denote
the probability of rejecting speculation following multi-step
speculative sampling with abbreviation P(reject | MSS), and
P (reject | NS, U,Orrum, {@)SSMj}) the probability of rejecting

speculation following Naive Sampling (NS) with abbreviation
P(reject | NS). Then YU, ©11m, {Ossy; }, we have

P(reject | MSS) < P(reject | NS)

We present a proof of Theorem 4.3 in [28].

Note that prior work has introduced single-step specula-
tive sampling for sequence-based speculative inference [5,
25]. Different from these approaches, SpecInfer leverages
token trees for improving speculative performance, which
requires a different verification algorithm. As a result, SpecIn-
fer performs multi-step verification (see VERIFYSTOCHASTIC
in Algorithm 2) across all branches of a token to maximize
the success rate while preserving equivalence as incremental
decoding. The proposed MSS algorithm not only works for
merge-based method with multiple SSMs, but also supports
expansion-based method with one SSM and top-k sampling.

5 System Design and Implementation

This section describes the design and implementation of
SpecInfer’s distributed runtime system (§5.1 and §5.2), ana-
lyzes the computation and memory overheads of speculation
and verification (§5.3), and introduces potential LLM appli-
cations that can benefit from SpecInfer’s techniques (§5.4).

5.1 SpecInfer’s Runtime Design

Figure 6 shows the workflow for one iteration of speculative
inference and verification. SpecInfer’s request manager re-
ceives LLM serving requests and schedules these requests for
serving by adapting the iteration-level scheduling policy from
Oreca [55]. Specifically, Speclnfer iteratively selects requests
from a pool of pending requests and performs one iteration
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Figure 6. Speclnfer’s workflow for one iteration of specu-
lative inference and verification. SpecInfer uses data paral-
lelism to serve SSMs, and combine tensor model parallelism
and pipeline model parallelism for serving an LLM.

of speculative inference and token tree verification for the se-
lected requests. Since SSMs are small and can fit in one GPU,
Speclnfer equally distributes GPUs across SSMs and serves
these SSMs using data parallelism. For example, Figure 6
shows how Speclnfer serves two SSMs and four requests
(i.e., rq, 1o, 13, and r4) on four GPUs. The SSM-generated to-
kens are sent back to the request manager, which produces a
speculated token tree for each request using the tree merge
algorithm introduced in §4.

SpecInfer serves an LLM using the hybrid parallelization
strategy introduced in Megatron-LM [41], which uses tensor
model parallelism for parallelizing each Transformer layer
across GPUs within a node, and uses pipeline model paral-
lelism for partitioning Transformer layers across nodes. All
GPUs perform the tree-based parallel decoding (see §4.2) to
compute tree attention scores and send the LLM-generated
tokens back to the request manager, which finally verifies
the speculated tokens against the LLM’s output (see §4.3).

Note that the overhead introduced by the request manager
(i.e., request scheduling, token tree merge, and verification) is
negligible compared to the execution time of LLM inference.
In addition, Speclnfer’s request manager and GPU workers
only communicate tokens and do not transfer the vector
representations of these tokens, which again introduces neg-
ligible communication overheads.

Continuous batching. Speclnfer uses continuous batch-
ing introduced in Orca [55] to serve multiple LLM inference
requests in parallel. Specifically, SpecInfer schedules LLM
execution at the granularity of iterations instead of requests.
After each LLM decoding iteration, SpecInfer checks each re-
quest’s status and sends the generated results of all finished
requests to the client. This design also allows SpecInfer to
start processing newly arrived requests without waiting for
all current requests to complete.
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5.2 Speclnfer’s Implementation

SpecInfer was implemented on top of FlexFlow [21, 47], a dis-
tributed multi-GPU runtime for DNN computation. FlexFlow
exposes an API that allows users to define a DNN model in
terms of its layers. It is compatible with PyTorch’s model
definition due to the alignment of underlying operators. For
example, the open-source LLMs from HuggingFace [19] can
be directly imported into SpecInfer for serving without mod-
ification. Users can also provide a parallelization strategy,
specifying the degree of data, model, and pipeline parallelism
for each layer. A DNN is represented as a computational
graph where each node is a region of memory, and each
edge is an operation on one or more regions. Operations
can be represented using three levels of abstraction: lay-
ers, operators, and tasks. The FlexFlow compiler transforms
the computational graph from the highest abstractions (i.e.,
layers) to the lowest (i.e., tasks). Tasks are also the unit of
parallelization; they are non-preemptible, and are executed
asynchronously.

CUDA kernel optimizations. Directly launching cuBLAS
and cuDNN kernels for calculating attention results in high
kernel launch overhead and does not leverage the shared
memory available on modern GPUs. To address this ineffi-
ciency, SpecInfer uses a customized kernel built on top of
FasterTransformer [32] for computing attention. Within this
kernel, each thread block computes a single head for a single
request. The process begins with loading the query tensor
into GPU shared memory accessible by all threads within a
thread block. Each thread then performs a segment of the
query/key product and broadcasts the result to other threads
for computing the max query/key product and exponential
sum. To support tree-based parallel decoding, SpecInfer com-
putes all tokens within a tree in parallel and leverages the
topology-aware causal mask to preserve casuality.

5.3 Overhead of Speculation and Verification

Speclnfer accelerates generative LLM inference at the cost of
additional memory and computation overheads. This section
analyzes these overheads and shows that they are generally
one or two orders of magnitude smaller than the memory
and computation cost of executing LLM inference.

Memory overhead. The memory overhead of Speclnfer’s
speculation-verification approach comes from two aspects.
First, in addition to serving an LLM, Speclnfer also needs to
allocate memory for saving the parameters of one or mul-
tiple SSMs, which collectively speculate the LLM’s output.
Our evaluation shows that SpeclInfer can achieve signifi-
cant performance improvement by using SSMs 100-1000x
smaller than the LLM. As a result, hosting each SSM increases
the overall memory requirement by less than 1%. A second
source of memory overhead comes from the token tree veri-
fication engine, which verifies an entire token tree instead
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of decoding a single token. Therefore, additional memory
is needed for caching the keys and values, and storing the
attention scores for all tokens. Due to the necessity for sup-
porting very long sequence length in today’s LLM serving,
we observe that the memory overhead associated with token
tree is negligible compared to key-value cache.

Computation overhead. Similarly, the computation over-
head introduced by speculation and verification also comes
from two aspects. First, SpecInfer needs to run SSMs in the
incremental-decoding mode to generate candidate tokens.
When multiple SSMs are employed, SpecInfer processes these
SSMs in parallel across GPUs to minimize speculation la-
tency. Second, SpecInfer verifies a token tree by comput-
ing the attention outputs for an entire token tree, most of
which do not match the LLM’s output and therefore are un-
necessary in the incremental-decoding inference. However,
the key-value cache mechanism of existing LLM inference
systems prevents them from serving a large number of re-
quests in parallel, resulting in under-utilized computation
resources on GPUs when serving LLMs in incremental de-
coding. SpecInfer’s token tree verification leverages these
under-utilized resources and therefore introduces negligible
runtime overhead compared to incremental decoding.

5.4 Applications

Our speculative inference and token tree verification tech-
niques can be directly applied to a variety of LLM applica-
tions. We identify two practical scenarios where LLM infer-
ence can significantly benefit from our techniques.

Distributed LLM inference. The memory requirements
of modern LLMs exceed the capacity of a single compute
node with one or multiple GPUs, and the current approach
to addressing the high memory requirement is distributing
the LLM’s parameters across multiple GPUs [29]. For ex-
ample, serving a single inference pipeline for GPT-3 with
175 billion parameters requires more than 16 NVIDIA A100-
40GB GPUs to store the model parameters in single-precision
floating points. Distributed LLM inference is largely limited
by the latency to transfer intermediate activations between
GPUs for each LLM decoding step. While Speclnfer’s ap-
proach does not directly reduce the amount of inter-GPU
communications, its verification mechanism can increase
the communication granularity and reduce the number of
decoding steps.

Offloading-based LLM inference. Another practical sce-
nario that can benefit from SpecInfer’s techniques is offloading-
based LLM inference, which leverages CPU DRAM to store
an LLM’s parameters and loads a subset of these parame-
ters to GPUs for computation in a pipeline fashion [40]. By
opportunistically verifying multiple tokens, Speclnfer can
reduce the number of LLM decoding steps and the overall
communication between CPU DRAM and GPU HBM.
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6 Evaluation
6.1 Experimental Setup

LLMs. To compare the runtime performance of SpecInfer
with existing LLM serving systems, we evaluate these sys-
tems using two publicly available LLM families: OPT [57] and
LLaMA [46]. More specifically, we select LLaMA-7B, OPT-
13B, OPT-30B, and LLaMA-65B as the LLMs, and LLaMA-
68M and OPT-125M as the SSMs. The pre-trained model
parameters for the LLMs and SSMs were obtained from their
HuggingFace repositories [19], and we describe how SpecIn-
fer collectively boost-tunes multiple SSMs in [28].

Datasets. We evaluate SpecInfer on five datasets: Chatbot
Instruction Prompts (CIP) [34], ChatGPT Prompts (CP) [30],
WebQA [1], Alpaca [36, 45], and PIQA [2]. We only use the
prompts/questions from these datasets to form our input
prompts to simulate real-world conversation traces.

Platform. The experiments were conducted on two AWS
g5.12x1arge instances, each of which is equipped with four
NVIDIA A10 24GB GPUs, 48 CPU cores, and 192 GB DRAM.
Nodes are connected by 100 Gbps Ethernet.

Our experiments use the expansion-based method (see
Section 3) for constructing token trees and use the expan-
sion configuration (1,1,3,1, 1, 1, 1, 1), which provides good
results for our benchmarks. We analyze the impact of ex-
pansion configurations in §6.4, evaluate tree-based parallel
decoding and multi-step speculative sampling in §6.5 and
§6.6, and finally compares the expansion- and merge-based
tree construction methods in [28].

6.2 Distributed LLM Inference

We compare the end-to-end distributed LLM inference perfor-
mance among Speclnfer, vLLM [24], HuggingFace Text Gen-
eration Inference (TGI) [18], and FasterTransformer [32] on
LLaMA-7B, OPT-30B, and LLaMA-65B. For LLaMA-7B and
OPT-30B, all systems serve the two LLMs in half-precision
floating points across one and four A10 GPUs using tensor
model parallelism. LLaMA-65B do not fit on four GPUs on a
single node, therefore both FasterTransformer and SpecInfer
serve it on eight A10 GPUs on two nodes by combining ten-
sor model parallelism within each node and pipeline model
parallelism across nodes. vVLLM and HuggingFace TGI do
not support pipeline model parallelism and cannot serve an
LLM on multiple nodes.

To rule out potential effects of our system implementation,
we also evaluate SpecInfer with two additional configura-
tions. First, SpecInfer with incremental decoding evaluates the
runtime performance of our implementation when the spec-
ulator generates empty token trees, and the verifier verifies
exactly one token in each decoding step. Second, SpecInfer
with sequence-based speculative inference serves as a refer-
ence for existing speculative inference system and is enabled
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by using a single pre-trained SSM and sequence-based de-
coding.

We use prompts from the five datasets described in §6.1.
For each prompt, we let all systems generate up to 128 new
tokens and report the average per-token latency in Figure 7.
Note that SpecInfer may generate more than 128 new tokens
since the verifier can verify multiple tokens in each iteration.
In this case, we truncate Speclnfer’s output to 128 tokens.
Speclnfer with incremental decoding achieves on-par perfor-
mance as existing systems. This is because all systems use
the same strategies to parallelize LLM inference across GPUs
and use the same kernel libraries (i.e., cuDNN, cuBLAS, and
cuTLASS) to execute inference computation on GPUs. With
tree-based speculative inference and verification, SpecInfer
outperforms incremental decoding systems by 1.5-2.5x for
single-node, multi-GPU inference and by 2.4-2.8% for multi-
node, multi-GPU inference, while generating the exact same
sequence of tokens as incremental decoding for all prompts.
The speedup comes from leveraging spare GPU resources to
perform tree-based parallel decoding while maintaining the
same per-iteration latency as incremental decoding.

Compared to sequence-based speculative inference, Specln-
fer’s tree-based approach further reduces LLM serving la-
tency by 1.2-1.5X. The improvement is achieved by (1) lever-
aging token trees to optimize speculative performance, (2)
using tree-based parallel decoding to verify an entire token
tree in parallel, and (3) performing multi-step speculative
sampling to improve verification performance. We further
evaluates these aspects in §6.4, §6.5, and §6.6.

Note that SpecInfer’s performance improvement over ex-
isting systems reduces as the batch size (i.e., number of
concurrent requests) increases. This is because SpecInfer
leverages spare GPU resources to perform tree-based par-
allel decoding while maintaining the same per-iteration la-
tency as incremental decoding. A larger batch size introduces
more parallelizable computation for incremental decoding,
and thus less spare GPU resources that can be leveraged by
SpecInfer. On the flip side, larger batch sizes also increase
the end-to-end latency of each request, as shown in Figure 7.
Overall, SpecInfer is most beneficial for low-latency LLM
inference.

6.3 Offloading-based LLM Inference

Another important application of Speclnfer is offloading-
based LLM inference, where the system offloads an LLM’s
parameters to CPU DRAM and loads a subset of these param-
eters to GPUs for inference computation in a pipeline fashion.
We compare the end-to-end offloading-based LLM inference
performance between SpecInfer and FlexGen [39] using a
single 24GB A10 GPU and two LLMs (i.e., OPT-13B and OPT-
30B), both of which exceed the memory capacity of an A10
GPU and requires offloading for serving. Both SpecInfer and
FlexGen retain all model parameters on CPU DRAM. During
computation, the demand weights are loaded from the CPU
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Speclnfer perform model offloading to serve OPT-13B and
OPT-30B models on a single 24GB A10 GPU.

to the GPU. Figure 8 shows the results. Compared to FlexGen,
Speclnfer reduces the per-token latency by 2.6-3.5X. Since
offloading-based LLM inference is mostly bottlenecked by
the communication between CPU DRAM and GPU HBM for
loading an LLM’s parameters, SpecInfer’s improvement over
existing systems is achieved by opportunistically verifying
multiple tokens, which in turn reduces the number of LLM
decoding steps and data transfers between CPU and GPU.

6.4 Token Tree Construction

This section evaluates the expansion-based token tree con-
struction mechanism. We first study how token tree width
affects SpecInfer’s speculative performance. In this experi-
ment, we use LLaMA-7B and LLaMA-68M as the LLM and
SSM, and use the expansion configuration (1,1,k,1,1,1,1,1)
(i.e., expanding at the third token), where k is the token tree
width. Figure 9 shows the cumulative distribution function
(CDF) of the average number of verified tokens per decoding
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different tree widths. We use LLaMA-7B and LLaMA-68M
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step for all prompts in the Alpaca dataset [45]. Compared to
sequence-based speculation (i.e., tree width = 1), leveraging
token trees can reduce LLM decoding steps by 1.2-1.5x for
greedy decoding and by 1.3-1.4X for stochastic decoding.
A larger token tree width reduces the LLM decoding steps
to process a request at the cost of increased verification
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Table 2. Average number of tokens verified by SpecInfer in
a decoding step. We use LLaMA-7B and LLaMA-68M as the
LLM and SSM, and use different tree widths for constructing
a token tree. The speculation length is 8.

Token tree width
Dataset 1 2 3 4 5
- Alpaca | 2.95 3.07 3.21 3.33 3.43
%‘5 CP 2.58 3.24 346 3.59 3.69
8'8 WebQA | 2.27 2.69 2.86 298 3.07
(Sé CIp 2.73 340 3.62 3.79 3.91
PIQA 2.18 2.80 297 310 3.21
9 o Alpaca | 1.79 211 226 232 2.38
"55 CP 1.69 199 215 223 2.28
%'g WebQA | 1.64 1.93 208 215 2.21
gé CIp 1.72 2.05 219 228 2.29
@ PIQA | 1.67 1.93 208 215 221
301 Sequence-based Decoding
- Tree-based Decoding
0 25
£
3 201
c
2
B 15
c
g
310-
5
[
0 BS=1 BS=2 BS=4 BS=8  BS=16

LLM: LLaMA-7B, SSM: LLaMA-68M

Figure 11. Comparing Speclnfer’s tree-based parallel decod-
ing with the sequence-based decoding mechanism employed
by existing LLM inference systems.

overhead, since SpecInfer must verify more tokens. Figure 10
compares the end-to-end inference latency of SpecInfer using
different tree widths. For small batch sizes (i.e., BS = 1 and 2),
using a large tree width can consistently reduce per-token
latency, since Speclnfer can leverage sparse GPU resources
to verify more tokens in parallel while maintaining the same
per-iteration latency. For large batch sizes (i.e., BS > 4),
using a large tree width increases the latency to verify a
token tree due to less sparse GPU resources that can be
leveraged by Speclnfer, and a tree width of 2 or 3 achieves
the best performance by striking a perfect balance between
speculative performance and verification latency.

6.5 Tree-based Parallel Decoding

We now evaluate the effectiveness of SpecInfer’s tree-based
parallel decoding mechanism, which decodes all tokens of a
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Table 3. Average number of tokens verified by Speclnfer in a
stochastic decoding step with different sampling algorithms.
We use LLaMA-7B and LLaMA-68M as the LLM and SSM.
Each token tree has a width of 5 and a depth of 8.

Naive Multi-Step Improvement

Sampling Spec. Sampling
Alpaca 1.87 2.38 1.27%
CP 1.80 2.28 1.26X
WebQA 1.73 2.21 1.28x
CIpP 1.79 2.29 1.28x%
PIQA 1.73 2.21 1.28%X

token tree in parallel. As a comparison, all existing LLM infer-
ence systems use sequence-based decoding, which requires
decomposing a token tree into multiple sequences of tokens
and processing these sequences using separate resources due
to potential key-value cache conflicts (see §4.2). As shown in
Figure 11, Speclnfer’s tree-based parallel decoding achieves
on-par performance as existing sequence-based decoding
mechanism for small batch sizes and outperforms it by up
to 1.8 for large batch sizes. The improvement is realized
by (1) eliminating redundant attention computation for se-
quences with a shared prefix, and (2) fusing tree attention
of all tokens in a single kernel through the topology-aware
casual mask (see §4.2).

6.6 Multi-Step Speculative Sampling

This section evaluates how our multi-step speculative sam-
pling (MSS) and the VERIFYSTOCHASTIC algorithm improves
the speculative performance of SpecInfer when performing
stochastic decoding. We use naive sampling as a baseline
where Speclnfer directly samples the next token from the
LLM and examines whether the sampled token is included
in the speculated token tree (see §4.3). Since different sam-
pling algorithms involve identical speculation and verifica-
tion overheads, we focus on the average number of tokens
that can be verified in each stochastic decoding step in this
experiment. Table 3 shows the results. Compared to naive
sampling, MSS can consistently improve the number of veri-
fied tokens by 1.2-1.3X on average across a variety of prompt
datasets, while guaranteeing the same output distribution
with the LLM.

7 Related Work

Transformer-based LLMs have demonstrated significant po-
tential in numerous human-level language modeling tasks by
continuously increasing their sizes [7, 9, 37, 43, 48]. As GPT-
3 becomes the first model to surpass 100B parameters [3],
multiple LLMs (>100B) have been released, including OPT-
175B [57], Bloom-176B [38], and PaLM [7]. Recent work has
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proposed a variety of approaches to accelerating generative
LLM inference, which can be categorized into two classes.

Lossless acceleration. Prior work has explored the idea of
using an LLM as a verifier instead of a decoder to boost infer-
ence. For example, Yang et al. [53] introduced inference with
reference, which leverages the overlap between an LLM’s out-
put and the references obtained by retrieving documents, and
checks each reference’s appropriateness by examining the
decoding results of the LLM. Motivated by the idea of specula-
tive execution in processor optimizations [4, 16], recent work
proposed speculative decoding, which uses a small language
model to produce a sequence of tokens and examines the
correctness of these tokens using an LLM [5, 22, 25, 44, 51].
There are two key differences between Speclnfer and these
prior works. First, instead of only considering a single se-
quence of tokens, SpecInfer generates and verifies a token
tree, whose nodes each represent a unique token sequence.
Speclnfer performs tree attention to compute the attention
output of these token sequences in parallel and uses a novel
tree-based decoding algorithm to reuse intermediate results
shared across these sequences. Second, prior attempts gener-
ally consider a single small language model for speculation,
which cannot align well with an LLM due to the model ca-
pacity gap between them. Speclnfer introduces two novel
speculation methods, including 1) expanding from a single
SSM and 2) merging from multiple fine-tuned SSMs, and the
generated token tree largely increases the coverage of the
LLM’s output.

Prior work has also introduced a variety of techniques to
optimize ML computations on modern hardware platforms.
For example, TVM [6] and Ansor [58] automatically gen-
erate kernels for a given tensor program. TASO [20] and
PET [50] automatically discover graph-level transformations
to optimize the computation graph of a DNN. SpecInfer’s
techniques are orthogonal and can be combined with these
systems to accelerate generative LLM computation, which
we believe is a promising avenue for future work.

Lossy acceleration. BiLD [23] is a speculative decoding
framework that uses a single SSM to accelerate LLM decod-
ing. Unlike the systems mentioned above, the acceleration
is lossy: speed comes at the cost of a possible degradation
in the generated tokens. Another line of research leverages
model compression to reduce LLM inference latency while
compromising the predictive performance of the LLM. For
example, prior work proposed to leverage weight/activation
quantization of LLMs to reduce the memory and computa-
tion requirements of serving these LLMs [8, 11, 35, 52, 54].
Recent work further explores a variety of structured prun-
ing techniques for accelerating Transformer-based architec-
tures [10, 17, 49]. A key difference between SpeclInfer and
these prior works is that SpecInfer does not directly reduce
the computation requirement for performing LLM inference,
but instead reorganizing LLM inference computation in a
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more parallelizable way, which reduces memory accesses
and inference latency at the cost of manageable memory and
computation overheads.

Tree-structured attention. Nguyen et al. [31] introduced
tree-structured attention, a technique that lets a Transformer
model capture the hierarchical composition of input text by
running the model on the text’s parse tree. To process with
attention, it uses a one-on-one mapping to encode and de-
code the tree. There are two key differences from SpecInfer’s
tree-based decoding. First, SpecInfer uses a tree to combine
candidate sequences to condense prefixes, whereas Nguyen
et al. represent a single sequence with its parse tree. SpecInfer
does not incorporate parse tree into the LLM, but accelerates
inference by verifying decoded sequences in parallel. Second,
Speclnfer’s attention outputs a token sequence, not a tree.

Multi-sample decoding techniques. Like tree-based spec-
ulative inference, beam search, top-k sampling, and top-p sam-
pling consider multiple candidate token sequences at each
step and can prune low-probability options. However, tree-
based decoding in Speclnfer speculatively predicts and veri-
fies multiple candidates in parallel against an LLM to reduce
decoding iterations and latency, leveraging small specula-
tive models (SSMs). In contrast, beam search and top-k/top-
p sampling are decoding strategies applied directly to the
LLM’s output probabilities to generate high-probability se-
quences without reducing decoding steps. SpecInfer supports
beam search, top-k sampling, and top-p sampling. These tech-
niques are orthogonal decoding optimizations and can be
combined with tree-based speculative decoding.

8 Conclusion

This paper introduces Speclnfer, a system that accelerates
generative LLM inference with tree-based speculative in-
ference and verification. A key insight behind SpecInfer is
to simultaneously consider a diversity of speculation can-
didates to efficiently predict the LLM’s outputs, which are
organized as a token tree and verified against the LLM in
parallel using a tree-based parallel decoding mechanism.
Speclnfer significantly reduces the memory accesses to the
LLM’s parameters and the end-to-end LLM inference latency
for both distributed and offloading-based LLM inference.
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A Artifact Appendix
A.1 Abstract
The artifact contains the code to run SpecInfer, as well as

the datasets and scripts that can be used to reproduce the
experiments in the paper.

A.2 Artifact check-list (meta-information)

Algorithm: Tree-based Speculative Inference
Program: spec_infer.cc, incr_decoding.cc
Compilation: CMake

Hardware: Two AWS g5.12xlarge instances, each with 4

NVIDIA A10 24GB GPUs, 48 CPU cores, and 192 GB DRAM.

Metrics: End to-end average latency

e Output: End-to-end latency

Experiments: Server-grade GPU inference, Offloading-

based inference

e How much disk space required (approximately)?: 350GB
per node

e How much time is needed to prepare workflow (ap-
proximately)?: 2h

e How much time is needed to complete experiments
(approximately)?: 6h

e Publicly available?: Yes

e Code licenses (if publicly available)?: Apache License

v2.0

Data licenses (if publicly available)?: LLAMA is under

the GNU license and OPT is under a Non-commercial license

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

10854410.

A3

A.3.1 How to access. The artifact is released on Github:
https://github.com/goliaro/specinfer-ae. The repository con-
tains SpecInfer’s source code, and the instructions to build
the framework. We also provide scripts to reproduce the
experiments from the paper. To clone the repository, use
the following command (make sure to pass the —-recursive
flag):

Description

git clone --recursive \
https://github.com/goliaro/specinfer-ae.git

A.3.2 Hardware dependencies. We run out experiments
on two AWS g5.12xlarge instances, each with 4 NVIDIA A10
24GB GPUs, 48 CPU cores, and 192 GB DRAM. We provide
instructions to create and setup the instances.

A.3.3 Software dependencies. The following software
is required: CUDA 12.1, NCCL, Rust, CMake and Python3.
Further, UCX and MPI are required for the multinode experi-
ments. Additional Python dependencies are listed here: https:

//github.com/flexflow/FlexFlow/blob/inference/requirements.

txt. We recommend using the Deep Learning 0SS Nvidia
Driver AMI GPU PyTorch 2.1.0 (Ubuntu 20.04) AMI,

Run-time environment: CUDA, NCCL, MPI, UCX, Python3.
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and provide scripts and a conda environment to install all
the remaining dependencies.

A.3.4 Models. We use the following LLM/SSM models for
our experiments (for each model, we specify in parentheses
the corresponding HuggingFace repository): LLaMA-68M
(JackFram/llama-68m), LLaMA-7B (huggyllama/llama-7b),
LLaMA-65B (huggyllama/llama-65b), OPT-125M (facebook/opt-
125m), OPT-13B (facebook/opt-13b), OPT-125M (facebook/opt-
30b). You can download all these models with the script:

./download_models. sh

A.4 Installation

To reproduce the experiments, you will need access to two
AWS g5.12xlarge instances (or other machines with the same
GPU/CPU/network specs). If you are using the preconfigured
instances we provided, you can skip this step.

Launching the instances. Launch two AWS g5.12xlarge
instances using the Deep Learning 0SS Nvidia Driver
AMI GPU PyTorch 2.1.0 (Ubuntu 20.04) AMI. Make sure
to place the instances in a placement group that utilizes the
cluster strategy to achieve low-latency network performance.
Attach the same security group to all instances and add an
inbound rule in the security group to allow all incoming
traffic from the same security group. For example, you can
add the following rule: Type: All TCP, Source: Anywhere-
IPv4.

Installing the prerequisites. After gaining access to the
AWS instances, install the prerequisites by following the
steps below. First, activate the conda shell support by running
conda init bash, and then restarting the shell session.
Next, create the conda environment with all the required
dependencies by running:

conda env create -f FlexFlow/conda/flexflow.yml
conda activate flexflow

Multinode setup. Download and build UCX by running
the install_ucx. sh script. Next, if you are running Specln-
fer on two AWS instances, you will need to configure MPI so
that the two instances are mutually accessible. Pick a main
node, and create a SSH key pair with:

ssh-keygen -t ed25519

Append the contents of the public key (~/ . ssh/id_ed25519. pub)

to the ~/.ssh/authorized_keys file on BOTH the main
and secondary machine. Note that if the . ssh folder or the
authorized_keys file do not exist, you will need to create
them manually. Finally, create a file at the path ~/hostfile
with the following contents:

<main_node_private_ip> slots=4
<secondary_node_private_ip> slots=4
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replacing <main_node_private_ip>and <secondary_node_private_ip>

with the private IP addresses of the two machines, and the
number of slots with the number of GPUs available (if you
are using the recommended AWS instances, you will use a
value of 4). You can find each machine’s private IP address
by running the command (and use the first IP value that is
printed):

hostname -1I

Install SpecInfer. To install SpecInfer, run the script:

./install_specinfer.sh

A.5 Basic Test

To ensure that Speclnfer is installed correctly and is func-
tional, run the basic_test.sh script. This script will test
the basic incremental decoding and speculative inference
functionalities, on both single and multi nodes. It will also
test the support for offloading. The test passes if it prints the
"Test passed!" message.

A.6 Experiment workflow

The artifact comes with scripts to gather the data that can be
used to reproduce the results from the paper. It also comes
with scripts that can be used to convert the output data into
CSV format for plotting.

Running Experiments. We run the following two exper-
iments to evaluate SpecInfer under different hardware setups.

The output data will be saved to the FlexFlow/inference/output

path.

e Server-grade GPU evaluation. This experiment tests
the performance of SpecInfer on server-grade GPUs.
The LLMs and SSMs are loaded in GPU memory, and
we measure the end-to-end inference latency using 1
node, and 2 nodes. In the single node case, we measure
the performance using 1 GPU, or 4 GPUs. In the multin-
ode case, we use 4GPUs per node. The experiments use
LLAMA-7B, OPT-30B and LLAMA-65B as the LLMs,
and LLAMA-68M and OPT-125M as SSMs. The exper-
iment runs SpecInfer in three different modes: incre-
mental decoding, sequence-based speculative decod-
ing, and tree-based speculative decoding. The former
two are used to obtain data for the ablation study, and
the latter is the novel inference mode proposed by
SpecInfer, and will be deployed by the user. To run the
server-grade GPU evaluation, run:

./server_gpu_experiments.sh

o Offloading evaluation. This experiment tests the
performance of SpecInfer when loading only a subset
of parameters in GPU memory, while offloading the
remaining ones on CPU DRAM. This technique is used
to perform inference when the target model is larger
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than the available GPU memory. In the experiment,
SpecInfer uses a single GPU and swaps the model’s
weights to and from the CPU. To run the offloading
evaluation, run:

./offloading_experiments. sh

Third-party frameworks. Please follow the vLLM, Faster-
Transformer, and HuggingFace TGI, and FlexGen official doc-
umentation to reproduce the performance of the third-party
frameworks under the experiment scenarios.

Output data. The scripts above will generate data at
the FlexFlow/inference/output path. For each scenario,
a . txt file contains the generated output for each prompt,
and a .out file contains the stdout logs. The quality of the
generated output can be evaluated visually and compared
with the output from third-party inference frameworks. We
provide scripts to parse the raw output data and generate
CSV files that can be used to generate the paper’s figures. The
README provides all details on the scripts and the mapping
between CSV files and figures.

A.7 Evaluation and expected results

The data from the CSV files should show similar performance
to the figures from the paper. Some variability is to be ex-
pected, but overall, SpecInfer should behave according to
Figures 7-11 from the paper.

A.8 Experiment customization

Users can edit the configuration parameters from the evalu-
ation scripts to change various parameters, such as the num-
ber of GPUs/CPUs, GPU/CPU memory, batch size, LLM/SSM
models used, prompt dataset, full vs. half-precision, and the
maximum number of tokens to generate.

References

[1] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Seman-
tic parsing on Freebase from question-answer pairs. In Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1533-1544, Seattle, Washington, USA, October 2013.
Association for Computational Linguistics.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin
Choi. Piqa: Reasoning about physical commonsense in natural lan-
guage. In Thirty-Fourth AAAI Conference on Artificial Intelligence,
2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners,
2020.

F Warren Burton. Speculative computation, parallelism, and functional
programming. IEEE Transactions on Computers, 100(12):1190-1193,
1985.

[2

—

[3

[t}

[4

=



Speclinfer

(5]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[20]

[21]

[22]

(23]

[24]

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste
Lespiau, Laurent Sifre, and John Jumper. Accelerating large lan-
guage model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. TVM: An automated
end-to-end optimizing compiler for deep learning. In 13th USENLX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 578-594, 2018,

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.
Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale.
Advances in Neural Information Processing Systems, 35:30318-30332,
2022.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lep-
ikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu,
Orhan Firat, et al. Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on Machine Learning,
pages 5547-5569. PMLR, 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models
can be accurately pruned in one-shot, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq:
Accurate quantization for generative pre-trained transformers. In
International Conference on Learning Representations, 2023.

Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction
to boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-
780):1612, 1999.

Freddy Gabbay and Avi Mendelson. Speculative execution based on
value prediction. Citeseer, 1996.

Mudasir A Ganaie, Minghui Hu, AK Malik, M Tanveer, and PN Sugan-
than. Ensemble deep learning: A review. Engineering Applications of
Artificial Intelligence, 115:105151, 2022.

Aaron Gokaslan®, Vanya Cohen®, Ellie Pavlick, and Stefanie
Tellex. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor,
and Daniel Soudry. Accelerated sparse neural training: A provable
and efficient method to find n: m transposable masks. Advances in
Neural Information Processing Systems, 34:21099-21111, 2021.
HuggingFace. Large language model text generation inference. https:
//github.com/huggingface/text-generation-inference. (Accessed on
08/09/2023).

Hugging Face Inc. Hugging face. https://huggingface.co, 2023.
Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei
Zaharia, and Alex Aiken. Taso: optimizing deep learning computation
with automatic generation of graph substitutions. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, pages 47-62,
2019.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model par-
allelism for deep neural networks. In Proceedings of the 2nd Conference
on Systems and Machine Learning, SysML’19, 2019.

Joao Gante. Assisted generation: a new direction toward low-latency
text generation, 2023.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, John Canny, Jiten-
dra Malik, Michael W. Mahoney, Amir Gholami, and Kurt Keutzer. Big
little transformer decoder, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin

Zheng, Cody Yu, Joseph E Gonzalez, Hao Zhang, and Ion Stoica.
vllm: Easy, fast, and cheap llm serving with pagedattention. See

948

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

https://vilm.ai/ (accessed 9 August 2023), 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from
transformers via speculative decoding. arXiv preprint arXiv:2211.17192,
2022.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin,
and Weizhu Chen. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi
Jin, Tianqi Chen, and Zhihao Jia. Towards efficient generative large
language model serving: A survey from algorithms to systems. arXiv
preprint arXiv:2312.15234, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu
Wang, Rae Ying Yee Wong, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. Specinfer: Accelerating generative llm
serving with speculative inference and token tree verification. arXiv
preprint arXiv:2305.09781, 2023.

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin
Cui, and Zhihao Jia. Spotserve: Serving generative large language
models on preemptible instances. arXiv preprint arXiv:2311.15566,
2023.

MohamedRashad. Chatgpt-prompts. https://huggingface.co/datasets/
MohamedRashad/ChatGPT-prompts, 2023.

Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard Socher. Tree-
structured attention with hierarchical accumulation. In International
Conference on Learning Representations, 2020.

NVIDIA. Fastertransformer. https://github.com/NVIDIA/
FasterTransformer. (Accessed on 08/09/2023).

OpenAl Gpt-4 technical report, 2023.

Alessandro Palla. chatbot instruction prompts. https://huggingface.
co/datasets/alespalla/chatbot_instruction_prompts, 2023.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim,
Youngjoo Lee, and Dongsoo Lee. nugmm: Quantized matmul for
efficient inference of large-scale generative language models. arXiv
preprint arXiv:2206.09557, 2022.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng
Gao. Instruction tuning with gpt-4. arXiv preprint arXiv:2304.03277,
2023.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan
Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman
Ring, Susannah Young, et al. Scaling language models: Methods, anal-
ysis & insights from training gopher. arXiv preprint arXiv:2112.11446,
2021.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ili¢,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, Frangois
Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter open-access
multilingual language model. arXiv preprint arXiv:2211.05100, 2022.
Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gon-
zalez, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen:
High-throughput generative inference of large language models with
a single gpu, 2023.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gon-
zalez, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. High-
throughput generative inference of large language models with a single
gpu, 2023.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-
billion parameter language models using model parallelism, 2020.
James E Smith. A study of branch prediction strategies. In 25 years of
the international symposia on Computer architecture (selected papers),
pages 202-215, 1998.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley,
Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye,



ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(44

[45

(46

(47

(48

[49

(50

[l

]

]

—

[t

]

—

George Zerveas, Vijay Korthikanti, et al. Using deepspeed and mega-
tron to train megatron-turing nlg 530b, a large-scale generative lan-
guage model. arXiv preprint arXiv:2201.11990, 2022.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise par-
allel decoding for deep autoregressive models. Advances in Neural
Information Processing Systems, 31, 2018.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li,
Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford
alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos
Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati,
Pat McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,
Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. Unity: Accelerating
DNN training through joint optimization of algebraic transformations
and parallelization. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 267-284, Carlsbad, CA,
July 2022. USENIX Association.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need, 2017.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse
attention architecture with cascade token and head pruning. In 2021
IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 97-110. IEEE, 2021.

Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan
Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia.
PET: Optimizing tensor programs with partially equivalent transfor-
mations and automated corrections. In 15th USENIX Symposium on

949

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

Miao*, Oliaro*, Zhang®*, Cheng™ et al.

Operating Systems Design and Implementation (OSDI 21), pages 37-54.
USENIX Association, July 2021.

Heming Xia, Tao Ge, Si-Qing Chen, Furu Wei, and Zhifang Sui. Specu-
lative decoding: Lossless speedup of autoregressive translation.
Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song
Han. Smoothquant: Accurate and efficient post-training quantization
for large language models. arXiv preprint arXiv:2211.10438, 2022.
Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang,
Rangan Majumder, and Furu Wei. Inference with reference: Lossless
acceleration of large language models. arXiv preprint arXiv:2304.04487,
2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu,
Conglong Li, and Yuxiong He. Zeroquant: Efficient and affordable
post-training quantization for large-scale transformers. Advances in
Neural Information Processing Systems, 35:27168-27183, 2022.
Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. Orca: A distributed serving system for Transformer-
Based generative models. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 521-538, Carlsbad,
CA, July 2022. USENIX Association.

Haoyu Zhang, Jianjun Xu, and Ji Wang. Pretraining-based nat-
ural language generation for text summarization. arXiv preprint
arXiv:1902.09243, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria
Lin, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
et al. Ansor: Generating high-performance tensor programs for deep

learning. In 14th {USENIX} Symposium on Operating Systems Design
and Implementation ({ OSDI} 20), pages 863-879, 2020.



