

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Miao∗, Oliaro∗, Zhang∗, Cheng∗ et al.

due to their large volume of parameters, complex architec-

tures, and high computational requirements. For example,

the largest GPT-3 architecture has 175 billion parameters,

which requires more than eight NVIDIA 40GB A100 GPUs

to store in half-precision floating points, and takes several

seconds to serve a single inference request [3].

An LLM generally takes as input a sequence of tokens,

called prompt, and generates subsequent tokens one at a time,

as shown in Figure 1a. The generation of each token in the

sequence is conditioned on the input prompt and previously

generated tokens and does not consider future tokens. This

approach is also called autoregressive decoding because each

generated token is also used as input for generating future

tokens. This dependency between tokens is crucial for many

NLP tasks that require preserving the order and context of

the generated tokens, such as text completion [55].

Existing LLM systems generally use an incremental decod-

ing approach to serving a request where the system computes

the activations for all prompt tokens in a single step and then

iteratively decodes one new token using the input prompt

and all previously generated tokens [27]. This approach re-

spects data dependencies between tokens, but achieves sub-

optimal runtime performance and limited GPU utilization,

since the degree of parallelism within each request is greatly

limited in the incremental phase. In addition, the attention

mechanism of Transformer [48] requires accessing the keys

and values of all previous tokens to compute the attention

output of a new token. To avoid recomputing the keys and

values for all preceding tokens, today’s LLM systems use a

caching mechanism to store their keys and values for reuse

in future iterations. For long-sequence generative tasks (e.g.,

GPT-4 supports up to 32K tokens in a request), caching keys

and values introduces significant memory overhead, which

prevents existing systems from serving a large number of re-

quests in parallel due to the memory requirement of caching

their keys and values.

Motivated by the idea of speculative execution in proces-

sor optimizations [13, 42], recent work introduces sequence-

based speculative inference, which leverages a small specula-

tive model (SSM) to generate a sequence of tokens and uses an

LLM to examine their correctness in parallel [5, 22, 25, 44, 51].

These attempts only consider a token sequence generated by

a single SSM for speculation, which cannot align well with

an LLM due to the model capacity gap between them, since

SSMs are generally orders of magnitude smaller than the

LLM to maintain low memory and runtime overheads.

This paper introduces SpecInfer, a system that improves

the end-to-end latency and computational efficiency of LLM

serving with tree-based speculative inference and verifica-

tion. Figure 1b illustrates a comparison between existing

incremental decoding, sequence-based speculative inference,

and our tree-based speculative inference. A key insight be-

hind SpecInfer is to simultaneously consider a diversity of

speculation candidates (instead of just one as in existing

approaches) to maximize speculative performance. These

candidates are organized as a token tree, whose nodes each

represents a sequence of speculated tokens. The correctness

of all candidate token sequences is verified against the LLM

in parallel, which allows SpecInfer to significantly increase

the number of generated tokens in an LLM decoding step.

Compared with sequence-based speculative inference, lever-

aging tree structures can significantly improve the success

rate of verifying a token (e.g., from 52-57% to 96-97% for

stochastic decoding as shown in Table 1). However, realizing

this improvement requires addressing two unique challenges.

Next, we elaborate on these challenges and the main ideas

SpecInfer uses to address them.

First, SpecInfer must explore an extremely large search

space of candidate token sequences to maximize speculative

performance. While the idea of speculative execution has

been widely deployed in a variety of optimization tasks in

computer architecture and systems, including branch pre-

diction in modern pipelined processors and value prediction

for pre-fetching memory and files [13, 42], the search space

considered by SpecInfer is significantly larger due to two

reasons: (1) modern LLMs generally involve very large vocab-

ularies, and (2) maximizing speculative performance requires

predicting multiple future tokens (instead of just the next

token). For example, all LLMs in the OPT model family con-

sider 50,272 different possible tokens in their vocabulary,

while SpecInfer can correctly predict the next 4 tokens on

average. Achieving this goal requires considering a search

space of 502724 ≈ 6 × 1018 different combinations of tokens.

SpecInfer leverages existing distilled, quantized, and/or

pruned variants of an LLM, which we call small specula-

tive models (SSMs), to guide speculation. A key challenging

of using SSMs for speculative inference is that the align-

ment between an SSM and an LLM is inherently bounded

by the model capacity gap, since an SSM is generally 100-

1000× smaller than an LLM. Instead of using a single SSM

for sequence-based speculation, SpecInfer maximizes spec-

ulative performance by simultaneously considering a vari-

ety of token sequences organized in a tree structure for a

given input prompt. SpecInfer introduces an expansion- and

a merge-based mechanism for constructing token trees by

exploiting diversity within a single SSM and across multiple

SSMs, respectively.

A second challenge SpecInfer must address is verifying the

speculated tokens. Many LLM applications perform stochas-

tic decoding, which samples the next token from a probability

distribution instead of deterministically generating a token.

To preserve an LLM’s generative performance, SpecInfer

must guarantee that its tree-based speculative inference and

verification mechanism generates the next token by follow-

ing the exact same probability distribution as incremental

decoding. To achieve this goal, we propose multi-step spec-

ulative sampling, a new sampling approach for SSMs that

guarantees equivalence while maximizing the number of

933

SpecInfer ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 2 The speculation and verification algorithm

used by SpecInfer. Speculate takes the current token se-

quence S as an input and generates a speculated token tree

N . TreeParallelDecode generates a token O(𝑢) for each
node 𝑢 ∈ N . VerifyGreedy and VerifyStochastic exam-

ine N against O and produce a sequence of verified tokens

V using greedy or stochastic sampling, respectively.

1: Input: A sequence of input tokens I

2: Output: A sequence of generated tokens

3: S = I

4: while true do

5: N = Speculate(S)
6: O = TreeParallelDecode(LLM,N)
7: if use greedy decoding then

8: V = VerifyGreedy(O,N)
9: else

10: V = VerifyStochastic(O,N)
11: for 𝑡 ∈ V do

12: S .append(𝑡)

13: if 𝑡 = ⟨EOS⟩ then
14: return S

15:

16: function VerifyGreedy(O,N)

17: V = ∅, 𝑢 ← the root of token tree N

18: while ∃𝑣 ∈ N .𝑝𝑣 = 𝑢 and 𝑡𝑣 = O(𝑢) do
19: V .append(𝑡𝑣)

20: 𝑢 = 𝑣

21: V .append(O(𝑢))
22: return V

23:

24: function VerifyStochastic(O,N)

25: V = ∅, 𝑢 ← the root of token tree N

26: while 𝑢 is a non-leaf node do

27: H = child(𝑢) ⊲ The set of child nodes for 𝑢

28: whileH is not empty do

29: 𝑠 ∼ rand(H), 𝑟 ∼ 𝑈 (0, 1), 𝑥𝑠 = H[𝑠]
30: if 𝑟 ≤ 𝑃 (𝑥𝑠 | 𝑢,Θ𝐿𝐿𝑀)/𝑃 (𝑥𝑠 | 𝑢,Θ𝑆𝑆𝑀𝑠

)
then

31: ⊲ Token 𝑥𝑠 passes verification.

32: V .append(𝑥𝑠)

33: 𝑢 = 𝑠

34: break

35: else

36: ⊲ Normalize the residual 𝑃 (𝑥 | 𝑢,Θ𝐿𝐿𝑀)
37: 𝑃 (𝑥 | 𝑢,ΘLLM) ≔ norm(max(0, 𝑃 (𝑥 |

𝑢,ΘLLM) − 𝑃 (𝑥 | 𝑢,ΘSSM𝑠
)))

38: H.pop(𝑠)
39: if H is empty then

40: break

41: ⊲ All SSMs fail verification; sample the next token

42: 𝑥next ∼ 𝑃 (𝑥 | 𝑢,Θ𝐿𝐿𝑀)
43: V .append(𝑥next)

44: return V

Table 1. The success rate of verifying a token for LLaMA-7B

using the top-𝑘 tokens derived from LLaMA-68M. The five

prompt datasets are described in Section 6.1.

Dataset 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

G
re
e
d
y

d
e
co

d
in
g

Alpaca 68% 77% 81% 84% 85%

CP 69% 79% 83% 86% 87%

WebQA 62% 72% 77% 80% 82%

CIP 70% 81% 85% 88% 89%

PIQA 63% 75% 79% 83% 85%

S
to
ch

a
st
ic

d
e
co

d
in
g

Alpaca 54% 81% 91% 95% 97%

CP 56% 82% 92% 95% 97%

WebQA 52% 80% 90% 94% 96%

CIP 57% 84% 92% 95% 97%

PIQA 55% 82% 91% 95% 97%

step (i.e., the token decoded by the LLM is in this candidate

pool) can be greatly improved. To this end, SpecInfer aims

to construct a tree of speculated candidates by exploiting

diversity within a single SSM and across multiple SSMs. In

particular, SpecInfer’s learning-based speculator aggregates

the predictions of one or multiple SSMs to maximize specula-

tive performance while maintaining low memory overhead

and inference latency. SpecInfer uses a token tree to orga-

nize the tokens produced by the speculator and introduces

two methods for constructing token trees: expansion- and

merge-based tree constructions.

Definition 3.1 (Token Tree). A token treeN is a tree struc-

ture, where each node 𝑢 ∈ N is labeled with a token 𝑡𝑢 , and

𝑝𝑢 represents 𝑢’s parent node in the token tree. For each

node 𝑢, 𝑆𝑢 represents a sequence of tokens identified by

concatenating 𝑆𝑝𝑢 and {𝑡𝑢}1.

Expansion-based token tree construction. One approach

to creating a token tree involves deriving multiple tokens

from an SSM within a single decoding step. This approach is

motivated by an important observation that when an SSM

misaligns with an LLM (i.e., the two models select different

top-1 tokens), the token selected by the LLM is generally

among the top-𝑘 tokens from the SSM for very small values

of 𝑘 . Table 1 shows the success rate of verifying a token using

the top-𝑘 tokens derived from an SSM, where a verification

is successful if the token selected by the LLM is among the

top-𝑘 tokens from the SSM. Compared to only using the top-

1 token from an SSM, using the top-5 tokens can increase

the success rate from 70% to 89% for greedy decoding and

from 57% to 97% for stochastic decoding.

Directly selecting the top-𝑘 tokens at each step leads to

an exponential increase in the number of potential token se-

quences, which substantially elevates inference latency and

1For the root node 𝑟 , 𝑆𝑟 represents the token sequence {𝑡𝑟 }.

936

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Miao∗, Oliaro∗, Zhang∗, Cheng∗ et al.

memory overhead. Consequently, we adopt a static strategy

that expands the token tree following a preset expansion con-

figuration represented as a vector of integers ⟨𝑘1, 𝑘2, ..., 𝑘𝑚⟩,
where𝑚 denotes the maximum number of speculative decod-

ing steps, and 𝑘𝑖 indicates the number of tokens to expand for

each token in the 𝑖-th step. For example, Figure 3 illustrates

the expansion configuration ⟨2, 2, 1⟩, leading to four token
sequences. Our evaluation (see Section 6.4) shows that even

a simple strategy can generate highly accurate speculative

results. We acknowledge that dynamically expanding a token

tree from an SSM is an opening research problem beyond

the scope of this paper, which we leave as future work.

Merge-based token tree construction. In addition to us-

ing a single SSM, SpecInfer can also combine multiple SSMs

to jointly predict an LLM’s output. SpecInfer uses an unsu-

pervised method to collectively boost-tune a pool of SSMs

to align their outputs with that of the LLM by leveraging

adaptive boosting [12]. SpecInfer uses SSMs to predict the

next few tokens that an LLM will generate, and uses gen-

eral text datasets (e.g., the OpenWebText corpus [15] in our

evaluation) to adaptively align the aggregated output of mul-

tiple SSMs with the LLM in a fully unsupervised fashion. In

particular, SpecInfer converts a text corpus into a collection

of prompt samples and use the LLM to generate a token se-

quence for each prompt. SpecInfer first fine-tunes one SSM at

a time to the fullest and marks all prompt samples where the

SSM and LLM generate identical subsequent tokens. Next,

SpecInfer filters all marked prompt samples and uses all re-

maining samples in the corpus to fine-tune the next SSM to

the fullest.

By repeating this process for every SSM in the pool, SpecIn-

fer obtains a diverse set of SSMs whose aggregated output

largely overlaps with the LLM’s output on the training cor-

pus. All SSMs have identical inference latency, and therefore

running all SSMs on different GPUs in parallel does not in-

crease the latency of speculative inference compared to using

a single SSM. In addition, SpecInfer uses data parallelism to

serve SSMs across multiple GPUs, and therefore using multi-

ple SSMs does not increase the memory overhead on each

GPU. In the case where multiple SSMs are employed, the out-

put of each SSM is considered as a token tree, and SpecInfer

performs token tree merge to aggregate all speculated tokens

in a single tree structure.

Definition 3.2 (Token Tree Merge). M is the tree merge

of𝑚 token trees {N𝑖 } (1 ≤ 𝑖 ≤ 𝑚) if and only if ∀1 ≤ 𝑖 ≤
𝑚,∀𝑢 ∈ N𝑖 , ∃𝑣 ∈M such that 𝑆𝑣 = 𝑆𝑢 and vice versa.

Intuitively, each token tree represents a set of token se-

quences. Merging multiple token trees produces a new tree

that includes all token sequences of the original trees. For

example, Figure 3 shows the token tree derived by merging

four sequences of tokens. Each token sequence is identified

by a node in the merged token tree.

!#

!$

!%

!&

!' !(

!)machine

learning

algorithm

system

models

translation

design

Speculated Token SequencesExpanded Token Tree (Depth=3)

!*

system
!$#

design

Sequence 1:

machine learning algorithm is

Sequence 2:

machine learning system design

Sequence 3:

machine translation models are

Sequence 4:

machine translation system design

Step 0

Width=2

Step 1

Width=2

Step 2

Width=1

!+

is

!,

are

Figure 3. Illustration of token tree expansion.

Note that, in addition to boosting, there are several other

ensemble learning methods (e.g., voting, bagging, and stack-

ing) [14] that can be used to combine the outputs from mul-

tiple SSMs, and we leave the exploration as future work.

4 Token Tree Verifier

This section introduces SpecInfer’s token tree verifier, which

takes as input a token tree generated by the speculator and

verifies the correctness of its tokens against an LLM’s output.

A key idea behind the design of SpecInfer is simultaneously

verifying all sequences of a token tree against the original

LLM’s output bymaking a single pass over the LLM’s parame-

ters. This functionality allows SpecInfer to opportunistically

decode multiple tokens (instead of a single token in incre-

mental decoding), resulting in reduced memory accesses to

the LLM’s parameters. A challenge SpecInfer must address

in token tree verification is efficiently computing the atten-

tion scores for all sequences of a token tree. To this end,

we introduce tree attention, which generalizes the attention

mechanism [48] from sequence to tree structure. In addition,

we develop a tree-based parallel decoding mechanism that

can decode all tokens in a token tree in parallel.

ğ4.1 and ğ4.2 describe tree attention and tree-based parallel

decoding. ğ4.3 introduces the mechanism to verify a token

tree against the LLM’s output.

4.1 Tree Attention

Transformer-based language models use the attention mech-

anism to reason about sequential information [48]. LLMs

generally use decoder-only, multi-head self-attention, which

takes a single input tensor 𝑋 and computes an output tensor

𝑂 via scaled multiplicative formulations as follows.

𝑄𝑖 = 𝑋 ×𝑊𝑄
𝑖 , 𝐾𝑖 = 𝑋 ×𝑊 𝐾

𝑖 , (1)

𝑉𝑖 = 𝑋 ×𝑊𝑉
𝑖 , 𝐴𝑖 =

(𝑄𝑖×𝐾𝑇
𝑖
)√

𝑑
, (2)

𝐻𝑖 = softmax
(

mask(𝐴𝑖)
)

𝑉𝑖 , 𝑂 = (𝐻1, ..., 𝐻ℎ)𝑊𝑂 (3)

where𝑄𝑖 , 𝐾𝑖 , and𝑉𝑖 denote the query, key, and value tensors

of the 𝑖-th attention head (1 ≤ 𝑖 ≤ ℎ),𝑊𝑄
𝑖 ,𝑊 𝐾

𝑖 , and𝑊𝑉
𝑖 are

the corresponding weight matrices. 𝐴𝑖 is an 𝑙 × 𝑙 matrix that

represents the attention scores between different tokens in

the input sequence, where 𝑙 is the sequence length. To pre-

serve causality when generating tokens (i.e., a token in the

937

SpecInfer ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

sequence should not affect the hidden states of any preceding

tokens), the following causal mask function is applied:

mask(𝐴) 𝑗𝑘 =

{

𝐴 𝑗𝑘 𝑗 ≥ 𝑘
−∞ 𝑗 < 𝑘

. (4)

Intuitively, when computing the attention output of the 𝑗-th

token in the sequence, all subsequent tokens should have

an attention score of −∞ to indicate that the subsequent

tokens will not affect the attention output of the 𝑗-th token2.

In Equation 3, 𝐻𝑖 represents the output of the 𝑖-th attention

head, and𝑊𝑂 is a weight matrix used for computing the final

output of the attention layer.

Note that the attention mechanism described above ap-

plies only to a sequence of tokens. We generalize the atten-

tion mechanism to arbitrary tree structures.

Definition 4.1 (Tree Attention). For a token tree N and an

arbitrary node 𝑢 ∈ N , its tree attention is defined as the out-

put of computing the original Transformer-based sequence

attention on 𝑆𝑢 (i.e., the token sequence represented by 𝑢):

TreeAttention(𝑢) = Attention(𝑆𝑢)∀𝑢 ∈ N (5)

For a given set of token sequences, since each sequence 𝑆

is covered by a node of the merged token tree, performing

tree attention on the token tree allows SpecInfer to obtain

the attention output for all token sequences.

4.2 Tree-based Parallel Decoding

This section describes SpecInfer’s tree-based parallel decoding

mechanism for computing tree attention for all tokens in a to-

ken tree in parallel. A key challenge SpecInfer must address

in computing tree attention is managing key-value cache.

In particular, the attention mechanism of Transformer [48]

requires accessing the keys and values of all preceding to-

kens to compute the attention output of each new token,

as shown in Equation 3. To avoid recomputing these keys

and values, today’s LLM inference systems generally cache

the keys and values of all tokens for reuse in future iter-

ations, since the causal relation guarantees that a token’s

key and value remain unchanged in subsequent iterations

(i.e., mask(A)jk = −∞ for any 𝑗 < 𝑘). However, when com-

puting tree attention, different sequences in a token tree

may include conflicting key-value caches. For example, for

the speculated token tree in Figure 4, two token sequences

(𝑡2, 𝑡3, 𝑡4, 𝑡5) and (𝑡2, 𝑡3, 𝑡8, 𝑡9) have different keys and values

for the third and fourth positions.

A straightforward approach to supporting key-value cache

is employing the sequence-based decoding of existing LLM

inference systems and using a different key-value cache for

each sequence of a token tree, as shown on the left of Figure 4.

However, this approach is computationally very expensive

2Note that we use −∞ (instead of 0) to guarantee that the softmax’s output

is 0 for these positions.

and involves redundant computation, since two token se-

quences sharing a common prefix have the same attention

outputs for the common prefix due to the causal mask in

Equation 3. In addition, launching one kernel for each token

sequence introduces additional kernel launch overhead.

SpecInfer introduces two key techniques to realize tree-

based parallel decoding.

Depth-first search to update key-value cache. Instead

of caching the keys and values for individual token sequences

of a token tree, SpecInfer reuses the same key-value cache

across all token sequences by leveraging a depth-first search

mechanism to traverse the token tree, as shown in Figure 4,

where SpecInfer visits 𝑡2, 𝑡3, ..., 𝑡9 by following a depth-first

order to traverse the token tree and update the shared key-

value cache. This approach allows SpecInfer to maintain

the correct keys and values for all preceding tokens when

computing the attention output of a new token.

Topology-aware causal mask. A straightforward ap-

proach to computing tree attention is calculating the tree

attention output for individual tokens by following the depth-

first order described earlier. However, this approach would

result in high GPU kernel launch overhead since each kernel

only computes tree attention for one token sequence. In ad-

dition, executing these kernels in parallel requires additional

GPU memory to store their key-value caches separately due

to cache conflict. A key challenge that prevents SpecInfer

from batching multiple tokens is that the attention computa-

tion for different tokens requires different key-value caches

and therefore cannot be processed in parallel.

We introduce topology-aware casual mask to fuse tree at-

tention computation of all tokens in a single kernel. To batch

attention computation, SpecInfer uses a tree topology in-

stead of the original sequence topology to store the keys and

values of all tokens in a token tree in the key-value cache. For

example, to compute tree attention for the speculated token

tree shown in Figure 4, SpecInfer takes both verified tokens

(i.e., 𝑡2) and all speculated tokens (i.e., 𝑡3, 𝑡4, ..., 𝑡9) as inputs.

This approach allows SpecInfer to fuse the attention compu-

tation into a single kernel but also results in attention scores

that violate the causal dependency (e.g., 𝑡7’s attention com-

putation uses all previous tokens, including 𝑡5 which is not

in 𝑡7’s token sequence). To fix the attention scores for these

pairs, SpecInfer updates the causal mask based on the token

tree’s topology. This approach computes the exact same at-

tention output as incremental decoding, while resulting in

much fewer kernel launches compared to sequence-based

decoding.

4.3 Token Verification

For a given speculated token tree N , SpecInfer uses tree-

based parallel decoding (see Section 4.2) to compute its tree

attention and generate an output tensor O that includes a

938

SpecInfer ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

a token using stochastic decoding, where 𝑈 = 𝑢0, ..., 𝑢𝑖−1 are
previously generated tokens, 𝑢𝑖 is the next token to generate,

Θ𝐿𝐿𝑀 represents the parameterized LLM.

Let 𝑃SpecInfer(𝑢𝑖 |𝑈 ;Θ𝐿𝐿𝑀 , {Θ𝑆𝑆𝑀𝑗
}) be the probability dis-

tribution of sampling token 𝑢𝑖 using SpecInfer’s multi-step

speculative sampling (see the VerifyStochastic function in

Algorithm 2), where Θ𝑆𝑆𝑀𝑗
is the 𝑗-th parameterized SSM.

Then ∀𝑈 ,𝑢𝑖 ,Θ𝐿𝐿𝑀 ,Θ𝑆𝑆𝑀𝑗
we have

𝑃 (𝑢𝑖 | 𝑈 ;Θ𝐿𝐿𝑀) = 𝑃SpecInfer(𝑢𝑖 | 𝑈 ;Θ𝐿𝐿𝑀 , {Θ𝑆𝑆𝑀𝑗
}) (6)

A proof of this theorem is presented in [28].

We acknowledge that a more straightforward approach to

preserving the probability distribution of stochastic decoding

is directly sampling the next token 𝑥 ∼ 𝑃 (𝑢𝑖 | 𝑈 ;Θ𝐿𝐿𝑀) and
examining whether 𝑥 is a child node of𝑢𝑖−1 in the speculated
token tree. We call this approach naive sampling (NS) and

show that SpecInfer’s multi-step speculative sampling has a

uniformly lower rejection probability than naive sampling.

Theorem 4.3. Let 𝑃
(

reject | MSS,𝑈 ,ΘLLM, {ΘSSM𝑗
}
)

denote

the probability of rejecting speculation following multi-step

speculative sampling with abbreviation 𝑃 (reject | MSS), and
𝑃
(

reject | NS,𝑈 ,ΘLLM, {ΘSSM𝑗
}
)

the probability of rejecting

speculation following Naive Sampling (NS) with abbreviation

𝑃 (reject | NS). Then ∀𝑈 ,ΘLLM, {ΘSSM𝑗
}, we have

𝑃 (reject | MSS) ≤ 𝑃 (reject | NS)
We present a proof of Theorem 4.3 in [28].

Note that prior work has introduced single-step specula-

tive sampling for sequence-based speculative inference [5,

25]. Different from these approaches, SpecInfer leverages

token trees for improving speculative performance, which

requires a different verification algorithm. As a result, SpecIn-

fer performs multi-step verification (see VerifyStochastic

in Algorithm 2) across all branches of a token to maximize

the success rate while preserving equivalence as incremental

decoding. The proposed MSS algorithm not only works for

merge-based method with multiple SSMs, but also supports

expansion-basedmethodwith one SSM and top-𝑘 sampling.

5 System Design and Implementation

This section describes the design and implementation of

SpecInfer’s distributed runtime system (ğ5.1 and ğ5.2), ana-

lyzes the computation and memory overheads of speculation

and verification (ğ5.3), and introduces potential LLM appli-

cations that can benefit from SpecInfer’s techniques (ğ5.4).

5.1 SpecInfer’s Runtime Design

Figure 6 shows the workflow for one iteration of speculative

inference and verification. SpecInfer’s request manager re-

ceives LLM serving requests and schedules these requests for

serving by adapting the iteration-level scheduling policy from

Orca [55]. Specifically, SpecInfer iteratively selects requests

from a pool of pending requests and performs one iteration

LLM

Tree-based

Parallel

Decoding

SSM
1

SSM
1

SSM
2

SSM
2

Request Manager

Token Tree

Merge

S
S

M
-g

e
n
e
ra

te
d
 T

o
k
e
n
s

Token Tree

Verification

S
p
e
c
u
la

tiv
e
 T

o
k
e
n
 T

re
e
s

L
L
M

-g
e
n
e
ra

te
d
 T

o
k
e
n
s

Request

Scheduling

CPU

GPU1

GPU2

GPU3

GPU4

r1, r2

r3, r4

r1, r2

r3, r4

D
is

trib
u
tin

g
 R

e
q
u
e
s
ts

Figure 6. SpecInfer’s workflow for one iteration of specu-

lative inference and verification. SpecInfer uses data paral-

lelism to serve SSMs, and combine tensor model parallelism

and pipeline model parallelism for serving an LLM.

of speculative inference and token tree verification for the se-

lected requests. Since SSMs are small and can fit in one GPU,

SpecInfer equally distributes GPUs across SSMs and serves

these SSMs using data parallelism. For example, Figure 6

shows how SpecInfer serves two SSMs and four requests

(i.e., 𝑟1, 𝑟2, 𝑟3, and 𝑟4) on four GPUs. The SSM-generated to-

kens are sent back to the request manager, which produces a

speculated token tree for each request using the tree merge

algorithm introduced in ğ4.

SpecInfer serves an LLM using the hybrid parallelization

strategy introduced in Megatron-LM [41], which uses tensor

model parallelism for parallelizing each Transformer layer

across GPUs within a node, and uses pipeline model paral-

lelism for partitioning Transformer layers across nodes. All

GPUs perform the tree-based parallel decoding (see ğ4.2) to

compute tree attention scores and send the LLM-generated

tokens back to the request manager, which finally verifies

the speculated tokens against the LLM’s output (see ğ4.3).

Note that the overhead introduced by the request manager

(i.e., request scheduling, token tree merge, and verification) is

negligible compared to the execution time of LLM inference.

In addition, SpecInfer’s request manager and GPU workers

only communicate tokens and do not transfer the vector

representations of these tokens, which again introduces neg-

ligible communication overheads.

Continuous batching. SpecInfer uses continuous batch-

ing introduced in Orca [55] to serve multiple LLM inference

requests in parallel. Specifically, SpecInfer schedules LLM

execution at the granularity of iterations instead of requests.

After each LLM decoding iteration, SpecInfer checks each re-

quest’s status and sends the generated results of all finished

requests to the client. This design also allows SpecInfer to

start processing newly arrived requests without waiting for

all current requests to complete.

940

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Miao∗, Oliaro∗, Zhang∗, Cheng∗ et al.

5.2 SpecInfer’s Implementation

SpecInfer was implemented on top of FlexFlow [21, 47], a dis-

tributed multi-GPU runtime for DNN computation. FlexFlow

exposes an API that allows users to define a DNN model in

terms of its layers. It is compatible with PyTorch’s model

definition due to the alignment of underlying operators. For

example, the open-source LLMs from HuggingFace [19] can

be directly imported into SpecInfer for serving without mod-

ification. Users can also provide a parallelization strategy,

specifying the degree of data, model, and pipeline parallelism

for each layer. A DNN is represented as a computational

graph where each node is a region of memory, and each

edge is an operation on one or more regions. Operations

can be represented using three levels of abstraction: lay-

ers, operators, and tasks. The FlexFlow compiler transforms

the computational graph from the highest abstractions (i.e.,

layers) to the lowest (i.e., tasks). Tasks are also the unit of

parallelization; they are non-preemptible, and are executed

asynchronously.

CUDAkernel optimizations. Directly launching cuBLAS

and cuDNN kernels for calculating attention results in high

kernel launch overhead and does not leverage the shared

memory available on modern GPUs. To address this ineffi-

ciency, SpecInfer uses a customized kernel built on top of

FasterTransformer [32] for computing attention. Within this

kernel, each thread block computes a single head for a single

request. The process begins with loading the query tensor

into GPU shared memory accessible by all threads within a

thread block. Each thread then performs a segment of the

query/key product and broadcasts the result to other threads

for computing the max query/key product and exponential

sum. To support tree-based parallel decoding, SpecInfer com-

putes all tokens within a tree in parallel and leverages the

topology-aware causal mask to preserve casuality.

5.3 Overhead of Speculation and Verification

SpecInfer accelerates generative LLM inference at the cost of

additional memory and computation overheads. This section

analyzes these overheads and shows that they are generally

one or two orders of magnitude smaller than the memory

and computation cost of executing LLM inference.

Memory overhead. The memory overhead of SpecInfer’s

speculation-verification approach comes from two aspects.

First, in addition to serving an LLM, SpecInfer also needs to

allocate memory for saving the parameters of one or mul-

tiple SSMs, which collectively speculate the LLM’s output.

Our evaluation shows that SpecInfer can achieve signifi-

cant performance improvement by using SSMs 100-1000×
smaller than the LLM. As a result, hosting each SSM increases

the overall memory requirement by less than 1%. A second

source of memory overhead comes from the token tree veri-

fication engine, which verifies an entire token tree instead

of decoding a single token. Therefore, additional memory

is needed for caching the keys and values, and storing the

attention scores for all tokens. Due to the necessity for sup-

porting very long sequence length in today’s LLM serving,

we observe that the memory overhead associated with token

tree is negligible compared to key-value cache.

Computation overhead. Similarly, the computation over-

head introduced by speculation and verification also comes

from two aspects. First, SpecInfer needs to run SSMs in the

incremental-decoding mode to generate candidate tokens.

Whenmultiple SSMs are employed, SpecInfer processes these

SSMs in parallel across GPUs to minimize speculation la-

tency. Second, SpecInfer verifies a token tree by comput-

ing the attention outputs for an entire token tree, most of

which do not match the LLM’s output and therefore are un-

necessary in the incremental-decoding inference. However,

the key-value cache mechanism of existing LLM inference

systems prevents them from serving a large number of re-

quests in parallel, resulting in under-utilized computation

resources on GPUs when serving LLMs in incremental de-

coding. SpecInfer’s token tree verification leverages these

under-utilized resources and therefore introduces negligible

runtime overhead compared to incremental decoding.

5.4 Applications

Our speculative inference and token tree verification tech-

niques can be directly applied to a variety of LLM applica-

tions. We identify two practical scenarios where LLM infer-

ence can significantly benefit from our techniques.

Distributed LLM inference. The memory requirements

of modern LLMs exceed the capacity of a single compute

node with one or multiple GPUs, and the current approach

to addressing the high memory requirement is distributing

the LLM’s parameters across multiple GPUs [29]. For ex-

ample, serving a single inference pipeline for GPT-3 with

175 billion parameters requires more than 16 NVIDIA A100-

40GB GPUs to store the model parameters in single-precision

floating points. Distributed LLM inference is largely limited

by the latency to transfer intermediate activations between

GPUs for each LLM decoding step. While SpecInfer’s ap-

proach does not directly reduce the amount of inter-GPU

communications, its verification mechanism can increase

the communication granularity and reduce the number of

decoding steps.

Offloading-based LLM inference. Another practical sce-

nario that can benefit from SpecInfer’s techniques is offloading-

based LLM inference, which leverages CPU DRAM to store

an LLM’s parameters and loads a subset of these parame-

ters to GPUs for computation in a pipeline fashion [40]. By

opportunistically verifying multiple tokens, SpecInfer can

reduce the number of LLM decoding steps and the overall

communication between CPU DRAM and GPU HBM.

941

SpecInfer ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

6 Evaluation

6.1 Experimental Setup

LLMs. To compare the runtime performance of SpecInfer

with existing LLM serving systems, we evaluate these sys-

tems using two publicly available LLM families: OPT [57] and

LLaMA [46]. More specifically, we select LLaMA-7B, OPT-

13B, OPT-30B, and LLaMA-65B as the LLMs, and LLaMA-

68M and OPT-125M as the SSMs. The pre-trained model

parameters for the LLMs and SSMs were obtained from their

HuggingFace repositories [19], and we describe how SpecIn-

fer collectively boost-tunes multiple SSMs in [28].

Datasets. We evaluate SpecInfer on five datasets: Chatbot

Instruction Prompts (CIP) [34], ChatGPT Prompts (CP) [30],

WebQA [1], Alpaca [36, 45], and PIQA [2]. We only use the

prompts/questions from these datasets to form our input

prompts to simulate real-world conversation traces.

Platform. The experiments were conducted on two AWS

g5.12xlarge instances, each of which is equipped with four

NVIDIA A10 24GB GPUs, 48 CPU cores, and 192 GB DRAM.

Nodes are connected by 100 Gbps Ethernet.

Our experiments use the expansion-based method (see

Section 3) for constructing token trees and use the expan-

sion configuration ⟨1, 1, 3, 1, 1, 1, 1, 1⟩, which provides good

results for our benchmarks. We analyze the impact of ex-

pansion configurations in ğ6.4, evaluate tree-based parallel

decoding and multi-step speculative sampling in ğ6.5 and

ğ6.6, and finally compares the expansion- and merge-based

tree construction methods in [28].

6.2 Distributed LLM Inference

We compare the end-to-end distributed LLM inference perfor-

mance among SpecInfer, vLLM [24], HuggingFace Text Gen-

eration Inference (TGI) [18], and FasterTransformer [32] on

LLaMA-7B, OPT-30B, and LLaMA-65B. For LLaMA-7B and

OPT-30B, all systems serve the two LLMs in half-precision

floating points across one and four A10 GPUs using tensor

model parallelism. LLaMA-65B do not fit on four GPUs on a

single node, therefore both FasterTransformer and SpecInfer

serve it on eight A10 GPUs on two nodes by combining ten-

sor model parallelism within each node and pipeline model

parallelism across nodes. vLLM and HuggingFace TGI do

not support pipeline model parallelism and cannot serve an

LLM on multiple nodes.

To rule out potential effects of our system implementation,

we also evaluate SpecInfer with two additional configura-

tions. First, SpecInfer with incremental decoding evaluates the

runtime performance of our implementation when the spec-

ulator generates empty token trees, and the verifier verifies

exactly one token in each decoding step. Second, SpecInfer

with sequence-based speculative inference serves as a refer-

ence for existing speculative inference system and is enabled

by using a single pre-trained SSM and sequence-based de-

coding.

We use prompts from the five datasets described in ğ6.1.

For each prompt, we let all systems generate up to 128 new

tokens and report the average per-token latency in Figure 7.

Note that SpecInfer may generate more than 128 new tokens

since the verifier can verify multiple tokens in each iteration.

In this case, we truncate SpecInfer’s output to 128 tokens.

SpecInfer with incremental decoding achieves on-par perfor-

mance as existing systems. This is because all systems use

the same strategies to parallelize LLM inference across GPUs

and use the same kernel libraries (i.e., cuDNN, cuBLAS, and

cuTLASS) to execute inference computation on GPUs. With

tree-based speculative inference and verification, SpecInfer

outperforms incremental decoding systems by 1.5-2.5× for
single-node, multi-GPU inference and by 2.4-2.8× for multi-

node, multi-GPU inference, while generating the exact same

sequence of tokens as incremental decoding for all prompts.

The speedup comes from leveraging spare GPU resources to

perform tree-based parallel decoding while maintaining the

same per-iteration latency as incremental decoding.

Compared to sequence-based speculative inference, SpecIn-

fer’s tree-based approach further reduces LLM serving la-

tency by 1.2-1.5×. The improvement is achieved by (1) lever-

aging token trees to optimize speculative performance, (2)

using tree-based parallel decoding to verify an entire token

tree in parallel, and (3) performing multi-step speculative

sampling to improve verification performance. We further

evaluates these aspects in ğ6.4, ğ6.5, and ğ6.6.

Note that SpecInfer’s performance improvement over ex-

isting systems reduces as the batch size (i.e., number of

concurrent requests) increases. This is because SpecInfer

leverages spare GPU resources to perform tree-based par-

allel decoding while maintaining the same per-iteration la-

tency as incremental decoding. A larger batch size introduces

more parallelizable computation for incremental decoding,

and thus less spare GPU resources that can be leveraged by

SpecInfer. On the flip side, larger batch sizes also increase

the end-to-end latency of each request, as shown in Figure 7.

Overall, SpecInfer is most beneficial for low-latency LLM

inference.

6.3 Offloading-based LLM Inference

Another important application of SpecInfer is offloading-

based LLM inference, where the system offloads an LLM’s

parameters to CPU DRAM and loads a subset of these param-

eters to GPUs for inference computation in a pipeline fashion.

We compare the end-to-end offloading-based LLM inference

performance between SpecInfer and FlexGen [39] using a

single 24GB A10 GPU and two LLMs (i.e., OPT-13B and OPT-

30B), both of which exceed the memory capacity of an A10

GPU and requires offloading for serving. Both SpecInfer and

FlexGen retain all model parameters on CPU DRAM. During

computation, the demand weights are loaded from the CPU

942

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Miao∗, Oliaro∗, Zhang∗, Cheng∗ et al.

proposed a variety of approaches to accelerating generative

LLM inference, which can be categorized into two classes.

Lossless acceleration. Prior work has explored the idea of

using an LLM as a verifier instead of a decoder to boost infer-

ence. For example, Yang et al. [53] introduced inference with

reference, which leverages the overlap between an LLM’s out-

put and the references obtained by retrieving documents, and

checks each reference’s appropriateness by examining the

decoding results of the LLM.Motivated by the idea of specula-

tive execution in processor optimizations [4, 16], recent work

proposed speculative decoding, which uses a small language

model to produce a sequence of tokens and examines the

correctness of these tokens using an LLM [5, 22, 25, 44, 51].

There are two key differences between SpecInfer and these

prior works. First, instead of only considering a single se-

quence of tokens, SpecInfer generates and verifies a token

tree, whose nodes each represent a unique token sequence.

SpecInfer performs tree attention to compute the attention

output of these token sequences in parallel and uses a novel

tree-based decoding algorithm to reuse intermediate results

shared across these sequences. Second, prior attempts gener-

ally consider a single small language model for speculation,

which cannot align well with an LLM due to the model ca-

pacity gap between them. SpecInfer introduces two novel

speculation methods, including 1) expanding from a single

SSM and 2) merging from multiple fine-tuned SSMs, and the

generated token tree largely increases the coverage of the

LLM’s output.

Prior work has also introduced a variety of techniques to

optimize ML computations on modern hardware platforms.

For example, TVM [6] and Ansor [58] automatically gen-

erate kernels for a given tensor program. TASO [20] and

PET [50] automatically discover graph-level transformations

to optimize the computation graph of a DNN. SpecInfer’s

techniques are orthogonal and can be combined with these

systems to accelerate generative LLM computation, which

we believe is a promising avenue for future work.

Lossy acceleration. BiLD [23] is a speculative decoding

framework that uses a single SSM to accelerate LLM decod-

ing. Unlike the systems mentioned above, the acceleration

is lossy: speed comes at the cost of a possible degradation

in the generated tokens. Another line of research leverages

model compression to reduce LLM inference latency while

compromising the predictive performance of the LLM. For

example, prior work proposed to leverage weight/activation

quantization of LLMs to reduce the memory and computa-

tion requirements of serving these LLMs [8, 11, 35, 52, 54].

Recent work further explores a variety of structured prun-

ing techniques for accelerating Transformer-based architec-

tures [10, 17, 49]. A key difference between SpecInfer and

these prior works is that SpecInfer does not directly reduce

the computation requirement for performing LLM inference,

but instead reorganizing LLM inference computation in a

more parallelizable way, which reduces memory accesses

and inference latency at the cost of manageable memory and

computation overheads.

Tree-structured attention. Nguyen et al. [31] introduced

tree-structured attention, a technique that lets a Transformer

model capture the hierarchical composition of input text by

running the model on the text’s parse tree. To process with

attention, it uses a one-on-one mapping to encode and de-

code the tree. There are two key differences from SpecInfer’s

tree-based decoding. First, SpecInfer uses a tree to combine

candidate sequences to condense prefixes, whereas Nguyen

et al. represent a single sequencewith its parse tree. SpecInfer

does not incorporate parse tree into the LLM, but accelerates

inference by verifying decoded sequences in parallel. Second,

SpecInfer’s attention outputs a token sequence, not a tree.

Multi-sample decoding techniques. Like tree-based spec-

ulative inference, beam search, top-k sampling, and top-p sam-

pling consider multiple candidate token sequences at each

step and can prune low-probability options. However, tree-

based decoding in SpecInfer speculatively predicts and veri-

fies multiple candidates in parallel against an LLM to reduce

decoding iterations and latency, leveraging small specula-

tive models (SSMs). In contrast, beam search and top-k/top-

p sampling are decoding strategies applied directly to the

LLM’s output probabilities to generate high-probability se-

quences without reducing decoding steps. SpecInfer supports

beam search, top-k sampling, and top-p sampling. These tech-

niques are orthogonal decoding optimizations and can be

combined with tree-based speculative decoding.

8 Conclusion

This paper introduces SpecInfer, a system that accelerates

generative LLM inference with tree-based speculative in-

ference and verification. A key insight behind SpecInfer is

to simultaneously consider a diversity of speculation can-

didates to efficiently predict the LLM’s outputs, which are

organized as a token tree and verified against the LLM in

parallel using a tree-based parallel decoding mechanism.

SpecInfer significantly reduces the memory accesses to the

LLM’s parameters and the end-to-end LLM inference latency

for both distributed and offloading-based LLM inference.

Acknowledgement

We thank Tianqi Chen, Bohan Hou, Hongyi Jin, the anony-

mous ASPLOS reviewers, and our shepherd Shan Lu for their

feedback on this work. This research is partially supported by

NSF awards CNS-2147909, CNS-2211882, and CNS-2239351,

and research awards from Amazon, Cisco, Google, Meta,

Oracle, Qualcomm, and Samsung.

945

SpecInfer ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A Artifact Appendix

A.1 Abstract

The artifact contains the code to run SpecInfer, as well as

the datasets and scripts that can be used to reproduce the

experiments in the paper.

A.2 Artifact check-list (meta-information)

• Algorithm: Tree-based Speculative Inference

• Program: spec_infer.cc, incr_decoding.cc

• Compilation: CMake

• Run-time environment: CUDA,NCCL,MPI, UCX, Python3.

• Hardware: Two AWS g5.12xlarge instances, each with 4

NVIDIA A10 24GB GPUs, 48 CPU cores, and 192 GB DRAM.

• Metrics: End to-end average latency

• Output: End-to-end latency

• Experiments: Server-grade GPU inference, Offloading-

based inference

• Howmuchdisk space required (approximately)?: 350GB

per node

• How much time is needed to prepare workflow (ap-

proximately)?: 2h

• How much time is needed to complete experiments

(approximately)?: 6h

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License

v2.0

• Data licenses (if publicly available)?: LLAMA is under

the GNU license and OPT is under a Non-commercial license

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

10854410.

A.3 Description

A.3.1 How to access. The artifact is released on Github:

https://github.com/goliaro/specinfer-ae. The repository con-

tains SpecInfer’s source code, and the instructions to build

the framework. We also provide scripts to reproduce the

experiments from the paper. To clone the repository, use

the following command (make sure to pass the –recursive

flag):

git clone --recursive \

https :// github.com/goliaro/specinfer -ae.git

A.3.2 Hardware dependencies. We run out experiments

on two AWS g5.12xlarge instances, each with 4 NVIDIA A10

24GB GPUs, 48 CPU cores, and 192 GB DRAM. We provide

instructions to create and setup the instances.

A.3.3 Software dependencies. The following software

is required: CUDA 12.1, NCCL, Rust, CMake and Python3.

Further, UCX and MPI are required for the multinode experi-

ments. Additional Python dependencies are listed here: https:

//github.com/flexflow/FlexFlow/blob/inference/requirements.

txt. We recommend using the Deep Learning OSS Nvidia

Driver AMI GPU PyTorch 2.1.0 (Ubuntu 20.04) AMI,

and provide scripts and a conda environment to install all

the remaining dependencies.

A.3.4 Models. We use the following LLM/SSM models for

our experiments (for each model, we specify in parentheses

the corresponding HuggingFace repository): LLaMA-68M

(JackFram/llama-68m), LLaMA-7B (huggyllama/llama-7b),

LLaMA-65B (huggyllama/llama-65b), OPT-125M (facebook/opt-

125m), OPT-13B (facebook/opt-13b), OPT-125M (facebook/opt-

30b). You can download all these models with the script:

./ download_models.sh

A.4 Installation

To reproduce the experiments, you will need access to two

AWS g5.12xlarge instances (or other machines with the same

GPU/CPU/network specs). If you are using the preconfigured

instances we provided, you can skip this step.

Launching the instances. Launch two AWS g5.12xlarge

instances using the Deep Learning OSS Nvidia Driver

AMI GPU PyTorch 2.1.0 (Ubuntu 20.04) AMI. Make sure

to place the instances in a placement group that utilizes the

cluster strategy to achieve low-latency network performance.

Attach the same security group to all instances and add an

inbound rule in the security group to allow all incoming

traffic from the same security group. For example, you can

add the following rule: Type: All TCP, Source: Anywhere-

IPv4.

Installing the prerequisites. After gaining access to the

AWS instances, install the prerequisites by following the

steps below. First, activate the conda shell support by running

conda init bash, and then restarting the shell session.

Next, create the conda environment with all the required

dependencies by running:

conda env create -f FlexFlow/conda/flexflow.yml

conda activate flexflow

Multinode setup. Download and build UCX by running

the install_ucx.sh script. Next, if you are running SpecIn-

fer on two AWS instances, you will need to configure MPI so

that the two instances are mutually accessible. Pick a main

node, and create a SSH key pair with:

ssh -keygen -t ed25519

Append the contents of the public key (~/.ssh/id_ed25519.pub)

to the ~/.ssh/authorized_keys file on BOTH the main

and secondary machine. Note that if the .ssh folder or the

authorized_keys file do not exist, you will need to create

them manually. Finally, create a file at the path ~/hostfile

with the following contents:

<main_node_private_ip > slots=4

<secondary_node_private_ip > slots =4

946

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Miao∗, Oliaro∗, Zhang∗, Cheng∗ et al.

replacing <main_node_private_ip> and <secondary_node_private_ip>

with the private IP addresses of the two machines, and the

number of slots with the number of GPUs available (if you

are using the recommended AWS instances, you will use a

value of 4). You can find each machine’s private IP address

by running the command (and use the first IP value that is

printed):

hostname -I

Install SpecInfer. To install SpecInfer, run the script:

./ install_specinfer.sh

A.5 Basic Test

To ensure that SpecInfer is installed correctly and is func-

tional, run the basic_test.sh script. This script will test

the basic incremental decoding and speculative inference

functionalities, on both single and multi nodes. It will also

test the support for offloading. The test passes if it prints the

"Test passed!" message.

A.6 Experiment workflow

The artifact comes with scripts to gather the data that can be

used to reproduce the results from the paper. It also comes

with scripts that can be used to convert the output data into

CSV format for plotting.

Running Experiments. We run the following two exper-

iments to evaluate SpecInfer under different hardware setups.

The output datawill be saved to the FlexFlow/inference/output

path.

• Server-gradeGPU evaluation.This experiment tests

the performance of SpecInfer on server-grade GPUs.

The LLMs and SSMs are loaded in GPU memory, and

we measure the end-to-end inference latency using 1

node, and 2 nodes. In the single node case, we measure

the performance using 1 GPU, or 4 GPUs. In themultin-

ode case, we use 4GPUs per node. The experiments use

LLAMA-7B, OPT-30B and LLAMA-65B as the LLMs,

and LLAMA-68M and OPT-125M as SSMs. The exper-

iment runs SpecInfer in three different modes: incre-

mental decoding, sequence-based speculative decod-

ing, and tree-based speculative decoding. The former

two are used to obtain data for the ablation study, and

the latter is the novel inference mode proposed by

SpecInfer, and will be deployed by the user. To run the

server-grade GPU evaluation, run:

./ server_gpu_experiments.sh

• Offloading evaluation. This experiment tests the

performance of SpecInfer when loading only a subset

of parameters in GPU memory, while offloading the

remaining ones on CPU DRAM. This technique is used

to perform inference when the target model is larger

than the available GPU memory. In the experiment,

SpecInfer uses a single GPU and swaps the model’s

weights to and from the CPU. To run the offloading

evaluation, run:

./ offloading_experiments.sh

Third-party frameworks. Please follow the vLLM, Faster-

Transformer, and HuggingFace TGI, and FlexGen official doc-

umentation to reproduce the performance of the third-party

frameworks under the experiment scenarios.

Output data. The scripts above will generate data at

the FlexFlow/inference/output path. For each scenario,

a .txt file contains the generated output for each prompt,

and a .out file contains the stdout logs. The quality of the

generated output can be evaluated visually and compared

with the output from third-party inference frameworks. We

provide scripts to parse the raw output data and generate

CSV files that can be used to generate the paper’s figures. The

README provides all details on the scripts and the mapping

between CSV files and figures.

A.7 Evaluation and expected results

The data from the CSV files should show similar performance

to the figures from the paper. Some variability is to be ex-

pected, but overall, SpecInfer should behave according to

Figures 7-11 from the paper.

A.8 Experiment customization

Users can edit the configuration parameters from the evalu-

ation scripts to change various parameters, such as the num-

ber of GPUs/CPUs, GPU/CPU memory, batch size, LLM/SSM

models used, prompt dataset, full vs. half-precision, and the

maximum number of tokens to generate.

References
[1] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Seman-

tic parsing on Freebase from question-answer pairs. In Proceedings

of the 2013 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 1533ś1544, Seattle, Washington, USA, October 2013.

Association for Computational Linguistics.

[2] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin

Choi. Piqa: Reasoning about physical commonsense in natural lan-

guage. In Thirty-Fourth AAAI Conference on Artificial Intelligence,

2020.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. Language models are few-shot learners,

2020.

[4] FWarren Burton. Speculative computation, parallelism, and functional

programming. IEEE Transactions on Computers, 100(12):1190ś1193,

1985.

947

SpecInfer ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[5] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste

Lespiau, Laurent Sifre, and John Jumper. Accelerating large lan-

guage model decoding with speculative sampling. arXiv preprint

arXiv:2302.01318, 2023.

[6] Tianqi Chen, ThierryMoreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,

Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,

Carlos Guestrin, and Arvind Krishnamurthy. TVM: An automated

end-to-end optimizing compiler for deep learning. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

18), pages 578ś594, 2018.

[7] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,

Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,

Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language

modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[8] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.

Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale.

Advances in Neural Information Processing Systems, 35:30318ś30332,

2022.

[9] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lep-

ikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu,

Orhan Firat, et al. Glam: Efficient scaling of language models with

mixture-of-experts. In International Conference on Machine Learning,

pages 5547ś5569. PMLR, 2022.

[10] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models

can be accurately pruned in one-shot, 2023.

[11] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq:

Accurate quantization for generative pre-trained transformers. In

International Conference on Learning Representations, 2023.

[12] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction

to boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-

780):1612, 1999.

[13] Freddy Gabbay and Avi Mendelson. Speculative execution based on

value prediction. Citeseer, 1996.

[14] Mudasir A Ganaie, Minghui Hu, AK Malik, M Tanveer, and PN Sugan-

than. Ensemble deep learning: A review. Engineering Applications of

Artificial Intelligence, 115:105151, 2022.

[15] Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, and Stefanie

Tellex. Openwebtext corpus. http://Skylion007.github.io/

OpenWebTextCorpus, 2019.

[16] John L Hennessy and David A Patterson. Computer architecture: a

quantitative approach. Elsevier, 2011.

[17] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor,

and Daniel Soudry. Accelerated sparse neural training: A provable

and efficient method to find n: m transposable masks. Advances in

Neural Information Processing Systems, 34:21099ś21111, 2021.

[18] HuggingFace. Large language model text generation inference. https:

//github.com/huggingface/text-generation-inference. (Accessed on

08/09/2023).

[19] Hugging Face Inc. Hugging face. https://huggingface.co, 2023.

[20] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei

Zaharia, and Alex Aiken. Taso: optimizing deep learning computation

with automatic generation of graph substitutions. In Proceedings of the

27th ACM Symposium on Operating Systems Principles, pages 47ś62,

2019.

[21] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model par-

allelism for deep neural networks. In Proceedings of the 2nd Conference

on Systems and Machine Learning, SysML’19, 2019.

[22] Joao Gante. Assisted generation: a new direction toward low-latency

text generation, 2023.

[23] Sehoon Kim, Karttikeya Mangalam, Suhong Moon, John Canny, Jiten-

dra Malik, Michael W. Mahoney, Amir Gholami, and Kurt Keutzer. Big

little transformer decoder, 2023.

[24] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin

Zheng, Cody Yu, Joseph E Gonzalez, Hao Zhang, and Ion Stoica.
vllm: Easy, fast, and cheap llm serving with pagedattention. See

https://vllm.ai/ (accessed 9 August 2023), 2023.

[25] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from

transformers via speculative decoding. arXiv preprint arXiv:2211.17192,

2022.

[26] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin,

and Weizhu Chen. What makes good in-context examples for gpt-3?

arXiv preprint arXiv:2101.06804, 2021.

[27] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi

Jin, Tianqi Chen, and Zhihao Jia. Towards efficient generative large

language model serving: A survey from algorithms to systems. arXiv

preprint arXiv:2312.15234, 2023.

[28] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu

Wang, Rae Ying Yee Wong, Zhuoming Chen, Daiyaan Arfeen, Reyna

Abhyankar, and Zhihao Jia. Specinfer: Accelerating generative llm

serving with speculative inference and token tree verification. arXiv

preprint arXiv:2305.09781, 2023.

[29] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin

Cui, and Zhihao Jia. Spotserve: Serving generative large language

models on preemptible instances. arXiv preprint arXiv:2311.15566,

2023.

[30] MohamedRashad. Chatgpt-prompts. https://huggingface.co/datasets/

MohamedRashad/ChatGPT-prompts, 2023.

[31] Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard Socher. Tree-

structured attention with hierarchical accumulation. In International

Conference on Learning Representations, 2020.

[32] NVIDIA. Fastertransformer. https://github.com/NVIDIA/

FasterTransformer. (Accessed on 08/09/2023).

[33] OpenAI. Gpt-4 technical report, 2023.

[34] Alessandro Palla. chatbot instruction prompts. https://huggingface.

co/datasets/alespalla/chatbot_instruction_prompts, 2023.

[35] Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim,

Youngjoo Lee, and Dongsoo Lee. nuqmm: Quantized matmul for

efficient inference of large-scale generative language models. arXiv

preprint arXiv:2206.09557, 2022.

[36] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng

Gao. Instruction tuning with gpt-4. arXiv preprint arXiv:2304.03277,

2023.

[37] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan

Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman

Ring, Susannah Young, et al. Scaling language models: Methods, anal-

ysis & insights from training gopher. arXiv preprint arXiv:2112.11446,

2021.

[38] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,

Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François

Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter open-access

multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

[39] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,

Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gon-

zalez, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen:

High-throughput generative inference of large language models with

a single gpu, 2023.

[40] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,

Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gon-

zalez, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. High-

throughput generative inference of large languagemodels with a single

gpu, 2023.

[41] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,

Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-

billion parameter language models using model parallelism, 2020.

[42] James E Smith. A study of branch prediction strategies. In 25 years of

the international symposia on Computer architecture (selected papers),

pages 202ś215, 1998.

[43] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley,

Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye,

948

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Miao∗, Oliaro∗, Zhang∗, Cheng∗ et al.

George Zerveas, Vijay Korthikanti, et al. Using deepspeed and mega-

tron to train megatron-turing nlg 530b, a large-scale generative lan-

guage model. arXiv preprint arXiv:2201.11990, 2022.

[44] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise par-

allel decoding for deep autoregressive models. Advances in Neural

Information Processing Systems, 31, 2018.

[45] Rohan Taori, IshaanGulrajani, Tianyi Zhang, YannDubois, Xuechen Li,

Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford

alpaca: An instruction-following llama model. https://github.com/

tatsu-lab/stanford_alpaca, 2023.

[46] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-

Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric

Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation

language models. arXiv preprint arXiv:2302.13971, 2023.

[47] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos

Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati,

Pat McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,

Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. Unity: Accelerating

DNN training through joint optimization of algebraic transformations

and parallelization. In 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 22), pages 267ś284, Carlsbad, CA,

July 2022. USENIX Association.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need, 2017.

[49] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse

attention architecture with cascade token and head pruning. In 2021

IEEE International Symposium on High-Performance Computer Archi-

tecture (HPCA), pages 97ś110. IEEE, 2021.

[50] HaojieWang, Jidong Zhai, Mingyu Gao, ZixuanMa, Shizhi Tang, Liyan

Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia.

PET: Optimizing tensor programs with partially equivalent transfor-

mations and automated corrections. In 15th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 21), pages 37ś54.

USENIX Association, July 2021.

[51] Heming Xia, Tao Ge, Si-Qing Chen, Furu Wei, and Zhifang Sui. Specu-

lative decoding: Lossless speedup of autoregressive translation.

[52] Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song

Han. Smoothquant: Accurate and efficient post-training quantization

for large language models. arXiv preprint arXiv:2211.10438, 2022.

[53] Nan Yang, Tao Ge, LiangWang, Binxing Jiao, Daxin Jiang, Linjun Yang,

Rangan Majumder, and Furu Wei. Inference with reference: Lossless

acceleration of large language models. arXiv preprint arXiv:2304.04487,

2023.

[54] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu,

Conglong Li, and Yuxiong He. Zeroquant: Efficient and affordable

post-training quantization for large-scale transformers. Advances in

Neural Information Processing Systems, 35:27168ś27183, 2022.

[55] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and

Byung-Gon Chun. Orca: A distributed serving system for Transformer-

Based generative models. In 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22), pages 521ś538, Carlsbad,

CA, July 2022. USENIX Association.

[56] Haoyu Zhang, Jianjun Xu, and Ji Wang. Pretraining-based nat-

ural language generation for text summarization. arXiv preprint

arXiv:1902.09243, 2019.

[57] Susan Zhang, Stephen Roller, NamanGoyal, Mikel Artetxe, Moya Chen,

Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria

Lin, et al. Opt: Open pre-trained transformer language models. arXiv

preprint arXiv:2205.01068, 2022.

[58] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,

Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,

et al. Ansor: Generating high-performance tensor programs for deep

learning. In 14th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 20), pages 863ś879, 2020.

949

