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Abstract
We report explorations into prompt engineering with large pre-trained language 
models that were not fine-tuned to solve the legal entailment task (Task 4) of the 
2023 COLIEE competition. Our most successful strategy used simple text similar-
ity measures to retrieve articles and queries from the training set. We report on our 
efforts to optimize performance with both OpenAI’s GPT-4 and FLaN-T5. We also 
used an ensemble approach to find the best combination of models and prompts. 
Finally, we analyze our results and suggest ideas for future improvements.

Keywords  AI · NLP · Reasoning · Law · Legal

1  Introduction

If we hope for AI systems to have a robust understanding of the instructions they 
are given or the rules they must follow, we must advance the science of how 
human-written rules can be automatically reasoned over and resolved. Any time 
a governing law, mission order, code of ethical conduct, or other verbal or writ-
ten instruction is produced and given to a subordinate in a fixed, referable form 
(a “rule”), there is some expectation that the rule will be followed in the spirit 
in which it was created. Often this means there is an assumption (or hope) that 
the rule’s intent is adequately conveyed. However, the complete conveyance of 
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a rule’s intent requires a multitude of background knowledge: the history behind 
the statement, prototypical examples of its proper and improper interpretations, 
the intended goals of the rule’s creator, the proper scope of the rule’s open-tex-
tured predicates, and so on [1–6].

Carrying out such reasoning is a challenging task, even for state-of-the-art artifi-
cially intelligent language models (LMs). A primary reason for this difficulty is the 
prevalence of open-textured terms (OTTs)—terms whose extensions are not com-
pletely and unambiguously fixed at the time of their initial use [1, 7]. For example, 
consider a traffic regulation stating that vehicles must “keep to the right as far as is 
reasonably safe” [3] or another example, a small recreational park and an autono-
mous robot guarding that park with the rule: “No motorized vehicles in the park. 
Violations will be rectified in an appropriate manner.” The next day a person with 
a motorized wheelchair and a loud motorcycle came to that park. The robot decides 
that both the wheelchair and the motorcycle violated the rules. But how should 
it determine the “appropriate manner” to not forcefully evict the person with the 
wheelchair or to not only ask the motorcycle owner quietly to leave, which might be 
ignored [8]?

Such a regulation or rule would need to be understood and interpreted, e.g. by 
autonomous driving vehicles, traffic enforcement bots, or autonomous guarding 
robots. However, it is implausible to exhaustively list an exception-free accounting 
of all possible scenarios and conditions that can be considered instances of the open-
textured term “reasonably safe" or “appropriate manner”—any such attempt would 
inevitably limit the scope of the regulation and render it fatally inflexible in the face 
of unpredictable conditions. Using OTTs is a necessary and unavoidable feature 
of regulatory and legal language [1–6, 9]. Thus ways to work with them must be 
addressed by any sufficiently robust account of compliance detection.

There are multiple approaches for addressing this problem in AI research. The 
first approach is to reduce the open-texturedness of the rules so that they can be 
reasoned over using transparent algorithms and formal methods. For example, our 
lab has recently explored the translation of rules (containing OTTs) in a collectible 
card game into programming language code [10], which can then allow for reason-
ing over the code and the game itself [11]. The second approach is to embrace open-
texturedness; i.e., to accept that no approach will ever entirely remove the open-
texturedness of languages in rules (and to acknowledge that rule systems with no 
open-texturedness is not desirable, either), and to instead focus on how to reason 
over OTTs in their natural language forms, without forcing translations into unam-
biguous formal languages.

Under this second approach, there are multiple alternative approaches. One of 
these takes the position that for artificially intelligent systems to follow human-writ-
ten rules properly, they need to be able to interpret them, which requires resolving 
OTTs. Furthermore, the interpretation the AI chooses should be provided in a form 
that stakeholders can inspect, test, and use as precedent for future interpretations 
[8, 12, 13]. In other words, given text to be interpreted by an AI, human stakehold-
ers need to be able to inspect: (I1) how the AI interpreted that text, and (I2) why 
the AI believes that interpretation is best. An emerging body of work is exploring 
approaches to (I2) under the topic of interpretive argumentation [5, 8, 14–17]. Given 
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the difficulty of generating and evaluating interpretive argumentation, the COLIEE 
competition is a helpful stepping-stone towards that ultimate goal.

Task description. We focused on Task 4 of the COLIEE 2023 competition. This 
task was formulated as follows: We are given a set of articles A and a query q. Each 
article is a short text snippet which is a statute from the Japanese Civil Code trans-
lated into English, normally consisting of no more than a few sentences. The query 
is a short textual description of something that may or may not be true given the arti-
cles; e.g., “There is a limitation period on pursuance of warranty if there is restric-
tion due to superficies on the subject matter, but there is no restriction on pursuance 
of warranty if the seller’s rights were revoked due to execution of the mortgage.” 
Our algorithms must output either ‘Y’ or ‘N’, depending on whether q follows from 
A. Here, the articles lead as rules to open-texturedness because of the assumptions 
that need to be made on the true intent of the article to answer the query. The miss-
ing history behind the article, the proper and improper interpretations, and the cor-
rect intent are missing terms that must be embraced by the reasoner to solve the task.

Overview of Results. We submitted three entries to the 2023 COLIEE compe-
tition. Our AMHR01 submission used Flan-T5, a language model that had been 
instruction fine-tuned and which did well on the previous years’ datasets, which we 
used as a validation set (in keeping with the COLIEE-2023 rules, we did not con-
sider the test set R04 at all in selecting our models or hyperparameters). AMHR02, 
in contrast, deliberately used GPT-4—although this was a disallowed resource, we 
wanted to see how well it performed compared to other existing tools. Finally, our 
AMHR03 submission was an ensemble approach that tried to combine the recom-
mendations made by various models and hyperparameter settings. In our experi-
ments, we utilized different shot selection methods and tested advanced prompting 
strategies. Our results showed that prompting strategies combined with intelligent 
shot selection methods can achieve the results of carefully designed models. We per-
formed an in-depth analysis of those methods and strategies and the choice of tem-
perature value in LMs.

2 � Background

Methods for In-Context Learning. In recent years, advances in NLP research have 
been dominated by large language models (LLMs), which have tens or even hun-
dreds of billions of parameters [18]. These models are able to solve new tasks few-
shot, where the model is given only a small number of training examples yet can 
achieve strong task performance [19]. This has enabled a new paradigm of NLP 
engineering, where experts interact directly with LLMs and train them to solve tasks 
via prompt engineering (also called prompt tuning), whereby an input context is dis-
covered, either by manual engineering or via a search algorithm, and used to prompt 
the model [20]. In this work, we explore two broad categories of prompts: those 
which focus on finding a combination of training examples (shots) to use as con-
text (prompt retrieval) and those based on chain-of-thought prompting [21], where 
instructions given to the model are elaborated to induce more reliable and accurate 
behavior. Note that both these approaches may be used simultaneously to boost 
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performance further [22]. Prompt retrieval aims to find the optimal strategy for 
selecting the training examples to use as context. Prior work has employed super-
vised models trained to predict the most informative shots (e.g., [23–25]). Others 
have used unsupervised models based on similarity metrics, such as BM25 [26] or 
SBERT [27]. On the other hand, chain-of-thought approaches are meant to help a 
model “think step-by-step” and thus embed the correct answer as well as the rea-
soning process [21]. Other prompting methods falling into this class include faith-
ful chain-of-thought [28], self-taught reasoning [29], and maieutic prompting [30]. 
These methods have enabled high few-shot performance on challenging benchmarks 
of linguistic reasoning [31], and have been used in previous COLIEE competitions 
[32]. High performance with different prompting techniques has led to research on 
automatically tuning prompts with LMs. Zhou et al. introduced Automatic Prompt 
Engineer (APE) to generate and select instructions automatically. They report 
achieving human-level performance on different tasks [33].

Methods for Legal Domain. Nguyen et al. have utilized a BERT-base model [34], 
trained with relevant articles extracted by TF-IDF vectors from the Civil Code [35], 
for the entailment task. Rosa et al. have utilized DeBERTa [36] and monoT5 [37] 
for the legal entailment task and they have reported that monoT5 in a zero-shot set-
ting is a robust model for the task [38]. Shao et al. have applied a semantic under-
standing and exact matching algorithm for legal case retrieval and entailment tasks. 
They have used matching-based retrieval models and a BERT-PLI model proposed 
by Shao et  al. [39] for the legal case retrieval task. For the legal entailment task, 
they have applied a fine-tuned BERT. They have reported that the entailment task 
benefits from semantic understanding while both semantic understanding and exact 
matching are complementary for the retrieval task [40].

Co-occurrence-based methods such as n-grams and BM25 have also been applied 
to extract relevant cases [41]. Althammer et  al. have successfully leveraged long 
documents in retrieval tasks by splitting the documents into paragraphs, applying 
a paragraph-level retrieval task, and summarizing the cases re-ranking with BERT; 
however, the latter has not improved the generalization performance [42]. Askari 
et al. have utilized a stepwise approach for the case law retrieval task where they first 
extracted meaningful sentences and n-grams. These extracted elements have been 
used as queries to retrieve possible relevant cases, which have later been re-ranked. 
They have reported issues due to long documents for both neural and statistical 
methods and thus have employed a cluster-driven BERT model in combination with 
BM25 [43].

The In-Context Learning ability of LMs has been applied in the legal domain as 
well. Yu et al. have investigated the effectiveness of prompts utilizing zero-shot legal 
reasoning methods such as IRAC (Issue, Rule, Application, Conclusion) on GPT−
3.5. They have reported for the legal entailment task that despite achieving high 
accuracy on the COLIEE 2021 dataset, their accuracy was lower on the COLIEE 
2022 dataset. They have also reported the differences in model accuracy based on 
word selection in prompts. For example, they observed on GPT-3 that adding the 
word “following” to the premise increases the accuracy by nearly 2.5%, or replacing 
“the given premise” with “Japanese civil code statutes” decreases the accuracy by 
3.7% [32]. Savelka et al. have reported similar sensitivity issues and observed a high 
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impact on GPT-4 predictions with minor changes in prompts. They have observed 
a competitive performance of GPT-4 in the legal domain but chain-of-thought 
prompting did not noticeably improve the performance of the model [44]. Savelka 
et al. have reported hallucinations as one of the key limitations of LLMs. In their 
tests on legal corpus inserting contextual data to prompt has reduced the hallucina-
tion of GPT-4 [45].

For the COLIEE 2023 competition in Task 4, the zero-shot flan-alpaca-
xxl model of the JNLP team achieved a test set accuracy of 0.7822. Their zero-
shot flan-ul2 and flan-t5-xxl models achieved an accuracy of 0.7525. The 
UA team reformulated the task as a Natural Language Inference task and achieved 
with a fine-tuned DeBERTa-large model an accuracy of 0.6634 on the test set. The 
KIS team worked with the Japanese dataset. Their LUKE-based ensemble models 
achieved an accuracy of 0.6931 and 0.6733, while their ensemble model trained 
for problems with and without alphabetical person names achieved an accuracy of 
0.6535 [46].

Open-Texturedness in Machine Learning. Machine learning has the potential to 
drastically improve equity in the application of laws across racial, socioeconomic, 
and other categorical features. Where human judges and legal scholars may be influ-
enced by biases [47, 48], a sufficiently trained machine learning model may be able 
to objectively recognize the features of a case and render an equitable decision. 
However, models rarely improve equity in practice because of bias preservation in 
the models’ training [49–51] and open-texturedness in legal terminology.

OTTs are nearly ubiquitous within legal reasoning [52, 53], where laws may have 
overarching downstream impacts and disagreements about their scopes are often 
resolved within appellate courts by expert judges. However, because the interpreta-
tion of open-texturedness relies on the discretion of “reasonable humans,” which is 
known to suffer from biases, it presents a considerable challenge for AI models to 
interpret such terms in a human-like manner without perpetrating those same biases. 
The OTTs within legal reasoning are not only a challenge within machine learn-
ing. Legal knowledge-based systems were developed using rule-based systems to 
make legal decisions and their reasoning. However, these systems were limited by 
the open-texturedness and vagueness of the human language [54].

3 � Approach 1: GPT‑4

LLMs [19, 55] trained for text generation tend to outperform humans on various 
professional and academic benchmarks. Some of these models have been tuned to 
behave like “chatbots”, preserving conversation history and adhering to instruc-
tions. OpenAI developed a product, GPT-4,1 that can be used as a chatbot through 
their API.2 Given a chat conversation, the API returns a chat completion response, 
allowing the user to set both the human’s and the model’s previous responses. The 

1  https://​openai.​com/​resea​rch/​gpt-4.
2  https://​platf​orm.​openai.​com/​docs/​api-​refer​ence/​chat.

https://openai.com/research/gpt-4
https://platform.openai.com/docs/api-reference/chat
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API also allows the user to set a “system” prompt, which persists throughout the 
“conversation” and helps set the model’s behavior.3 According to OpenAI, GPT-4 
scores around the top 10% of test takers on a bar exam, though they provide very 
few details on this exam and how the model was used to make predictions on it. 
GPT-4 is also instruction-tuned [56] using reinforcement learning from human feed-
back (RLHF) [57] to follow a variety of written instructions. This also improves 
zero-shot performance (especially on classification tasks [58]) of the model because 
examples (shots) are no longer required to show the expected format of responses, 
the user can just tell what the format should be (more details on this training strat-
egy are provided in Sect. 4). We used the OpenAI API to experiment with multiple 
types of prompts, all of which are illustrated in Fig. 1. We incorporated the GPT-4 
as a stand-alone model and in an ensemble of 5. In the ensemble, we run tests both 
with a fixed temperature value and each with a different temperature value. We tried 
zero-shot and few-shot variants of each, and the results are shown in Table 1. The 
first two ensemble models with an ensemble size of 5 in the GPT-4 section have a 
temperature value of 1 for each model in the ensemble. The remaining two ensem-
bles have for each model the temperature values of 0, 0.25, 0.5, 0.75, and 1. The 
following two models with an ensemble size of 1 have a temperature value of 1. The 
last GPT-4 model with an ensemble size of 1 has a temperature value of 0.

Fig. 1   Model prompting structures. The above image represents a textual conversation as seen by a lan-
guage model. The green computer on the left shows the text for models that use system prompts. The 
various colored boxes show different prompting strategies where the conversation flows from top to bot-
tom. The boxes with human icons show input messages, while the boxes with the purple graph icons 
show model responses 

3  https://​platf​orm.​openai.​com/​docs/​guides/​chat.

https://platform.openai.com/docs/guides/chat
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4 � Approach 2: Instruction‑Tuned Transformers

We use the Flan-T54 [59], T05 [60] and Flan-Alpaca6 [61] checkpoints publicly 
available on HuggingFace and use the transformers library [62] to perform prompt-
tuning using the models. Our work used flan-t5-xxl, T0, T0p, T0pp, T0–3B 
and flan-alpaca-xxl checkpoints. We use the text generation pipeline provided 
by the library and prompt-tune the model to generate the correct label, given the 
validation example articles and query and an optional number of training shots. We 
use a simple regex pattern to detect if the model generated a correct label. Given the 
model’s raw outputs, we convert all text to lowercase, strip out leading and trailing 
spaces and newlines, and check if the output is any of the following strings: 

1	 If the correct label is “Y”: 
(a)	 “y”, “yes”, “the answer is yes”

2	 If the correct label is “N”: 
(a)	 “n”, “no”, “the answer is no”

We found that flan-t5-xxl and flan-alpaca-xxl were quite well-behaved on 
this task and, in the overwhelming majority of cases, generated only the label string 
and thus did not require careful pattern matching to avoid false negatives. This was 
primarily the same with T0; however, the smaller models did not always consistently 
generate only the label (e.g., “the answer is yes”), and we thus added other valid 
patterns as possible strings to match. In cases where a valid label was not detected 
or the model predicted the wrong label, we marked the example as incorrect. We 
turn off sampling in all experiments to force determinism in all generations so that 
the prompt only affects the output.7 We use a maximum sequence length of 512, 
the longest the models support. We experiment with the same chain-of-thought and 
similarity-based shot selection strategies as in our GPT-4 system (Fig.  1). How-
ever, unlike GPT-4, we found that the model’s predictions for chain-of-thought 
were purely extractive. For example, when the prompt indicated the models should 
generate reasons for the answer to be either ‘Y’ or ‘N’, the model’s rationales were 
extracted verbatim from either the articles or the query. This behavior, coupled with 
the much smaller maximum sequence length in these models, caused very poor per-
formance in our chain-of-thought prompts, and we did not investigate them in detail 
for our Huggingface models.

7  Because sampling was disabled, the temperature does not affect these models’ predictions.

4  https://​huggi​ngface.​co/​google/​flan-​t5-​xxl.
5  https://​huggi​ngface.​co/​bigsc​ience/​T0pp.
6  https://​huggi​ngface.​co/​decla​re-​lab/​flan-​alpaca-​xxl.

https://huggingface.co/google/flan-t5-xxl
https://huggingface.co/bigscience/T0pp
https://huggingface.co/declare-lab/flan-alpaca-xxl
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5 � Approach 3: Ensemble

Ensembles are a combination of multiple models used to achieve a higher prediction 
accuracy or better generalization because the different classifiers in the ensemble 
may have sensitivity for a different set of samples and have learned different subsets 
of features. By combining different classifiers, the goal is to reduce bias and error 
and to increase prediction performance [63]. Recent work has applied ensembles to 
the prompting of LMs, for example, by combining multiple prompts into an “ensem-
ble of prompts” using multiple prompts with the same model and combining the 
predictions from each using a meta-classifier  [64, 65]. We reasoned that applying 
this idea to our Huggingface models might boost performance even more.8

We tested two approaches for our ensemble model. In the first approach, we 
applied brute force search to select the best combination of models with the highest 
validation accuracy. Thus, we created an ensemble dataset from the validation set, 
where the features are the model predictions for each sample in the validation set. 
Then, for each combination of models, we calculated the model’s accuracy using 
majority voting and selected the ensemble with the highest accuracy on the valida-
tion set. The models in our best-performing brute force ensemble are three flan-
t5-xxl runs with balanced TF-IDF and two shots, a flan-t5-xxl model with 
TF-IDF unbalanced and three shots, and T0, T0p, and T0 3B each zero-shot. The 
resulting ensemble consists of 7 models. Further details on the shot selection strate-
gies used by these models are found in Sect. 6.

In the second approach, we aggregated TF-IDF vectors trained on the vali-
dation set as additional features besides model predictions. Here, we reduced the 
vocabulary size to 10% based on TF-IDF scores to reduce the feature space. Then 
we applied 5-fold cross-validation for the validation set. We used support vec-
tor machines (SVMs) [66] and random forest [67] models for the training, both of 
which were implemented in scikit-learn [68]. The parameters are chosen based on 
the validation set results. For the SVM models, the radial basis function kernel is 
used, and the regularization parameter is 1.0. For our random forest model, the max-
imum depth of the tree is 5, with a total of 100 estimators. The Gini impurity is used 
to measure the quality of the split [69].

6 � Overall Training Procedure

Per the competition specifications, we use the past four years’ datasets (H30, R01, 
R02, R03) as validation datasets and older years’ datasets as training datasets. We 
use only few-shot learning to tune all LMs, no additional pre-training, finetuning, 
or other forms of gradient updates were applied to any prompted model, and our 
ensembles were trained only on the outputs of the LMs and content of the arti-
cles and query in the training data. No external data was used to train any of the 

8  As we suspected our GPT-4 submission would likely be disqualified, we chose not to use this model in 
the ensemble.
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submitted systems beyond the data used to pre-train the LMs.9 We selected sev-
eral LMs for initial testing. Specifically, we tested RoBERTa-large  [70], which 
has shown high performance on natural language understanding (NLU) tasks [70], 
LegalBERT [71], which is pre-trained on legal data and has been a pivotal contri-
bution in previous COLIEE competitions, Meta’s OPT [72], Google’s largest Flan-
T5 [59], the T0 models from BigScience [60], EleutherAI’s GPT-J [73], and Ope-
nAI’s ChatGPT [74] and GPT-4 [75]. We found that LegalBERT, RoBERTa, GPT-J, 
and OPT performed relatively poorly and hence chose not to run extensive ablations 
on them. Chat-GPT performed reasonably well, matching or exceeding the perfor-
mance of both Flan-T5 and T0. However, because we believed that any OpenAI sub-
mission would likely be disqualified, we chose to use GPT-4 instead as our only 
submission using their API. However, we use results for Chat-GPT in some of our 
ablations reported below.

Across all LMs, we experimented with the following strategies for few-shot 
selection: 

1	 Zero-Shot: The model is given only the validation example without any further 
context.

2	 Few-Shot no TF-IDF: The model is randomly given k shots from the training 
data. The number of shots varies from two to six, depending on the model.

3	 Few-Shot with TF-IDF: Prior work has demonstrated that the choice of shots sent 
to an LM significantly impacts model performance [19, 76]. Therefore, choosing 
the shots based on some metric is important for optimizing model performance. 
Following prior work [77], we use similarity-based shot selection based on the 
cosine similarity of TF-IDF vectors. The validation example (articles + query) is 
embedded using a TF-IDF vector space, and the top k most similar examples are 
chosen and used as context. This is done for each validation example separately, 
and the exact order in which shots are presented is random. We use the training 
data articles and queries to train our TF-IDF vector space.

4	 Few-Shot Balanced with TF-IDF: Same as above, except the shot selection 
always returns a balanced number of entailment and non-entailment shots to 
prevent the model from overfitting on one label.

5	 Few-Shot Pruned with TF-IDF: When the TF-IDF vectors are calculated with 
the complete vocabulary, they are quite sparse due to the lack of overlap among 
terms across documents. Therefore, we also explored applying pruning to the vec-
tors before performing cosine similarity. After building the full TF-IDF matrix, 
we reduced the vocabulary to X% and rebuilt it based on this smaller size, where 
X% is a hyperparameter. The 6 pruned models in Table 1 have top to down the 
hyperparameters 15%, 30%, 45%, 60%, 75%, and 90%. Note that these approaches 
always used the unbalanced form of TF-IDF shot selection. As we found pruning 
always performed worse than the unpruned unbalanced TF-IDF, we chose not to 
investigate this strategy further.

9  We refer the reader to the respective papers for details on how each model was trained. Note that, at the 
time of publication, OpenAI has released no details on what data GPT-4 was trained on.
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Besides intelligent shot selection, prior work has also found that how the prompt is 
structured can significantly impact downstream performance. For example, advanced 
prompting strategies, including chain-of-thought [21] and maieutic prompting [30], 
involve asking a model a series of structured questions in order to help it arrive at 
a correct answer. We experimented with several such approaches with our models: 
(1) Select Most Relevant, (2) Consider Both Sides, and (3) Self-Ask. Furthermore, 
we included (4) Plan and Solve prompt type in our experiments. Figure  1 shows 
examples of each prompt type. Each of these approaches involves asking the model 
to explain why the answer should be yes (or no), either asking the model to select 
the most relevant information from the articles to answer the query, both of which 
we reasoned could aid the model in choosing the correct answer or asking to devise 
a plan to split the task into small subtasks and solving the task according to plan to 
output the answer [78].

7 � Results

Table 1 shows GPT-4 and Flan-T5 systems results. We compare our systems against 
the results reported by the Kano Laboratory, which achieved first place in the 2022 
Task 4 competition  [79]. Not surprisingly, our GPT-4 based submission surpasses 
the prior state-of-the-art by significant margins across all validation splits and 
achieves an overall accuracy of 83.3%, almost 20 points higher than the prior year’s 
results. Perhaps more surprising, however, is the strong performance achieved using 
flan-t5-xxl. This model has only 11 billion parameters, far less than GPT-3 with 
175 billion parameters [80].10 While this model is still considerably larger than the 
prior year’s submission, we emphasize that it was not directly trained on the train 
set. The best Flan-T5 model uses only two shots for in-context learning, which is less 
than 1% of the entire train set, though new shots are sampled each time. With flan-
alpaca-xxl models we achieved a lower accuracy than flan-t5-xxl models. 
The best Flan-Alpaca model uses two shots for in-context learning. Collectively, 
these results demonstrate the potential of applying prompting with generative LMs 
to legal reasoning tasks and show that even a relatively simple prompting strategy 
can outperform carefully tuned systems across multiple validation datasets. Results 
for each of our submitted systems on the R04 test data set are given in Table 3.

For our ensembles, the best-performing brute force approach achieved 77.0% 
accuracy on the validation set. With support vector machines, we achieved an 
ensemble accuracy of 74.9%, and for random forest, an accuracy of 74.4%, as shown 
in Table 4. According to the results, our brute force approach achieved better accu-
racy on the validation set by intensively searching for the best model combinations 
across the ensemble set, outperforming the ensemble’s performance with support 
vector machines and random forest models. In our opinion, the lack of more data 
prevented achieving higher accuracy for those models. Thus, we selected our brute 

10  Although the exact number of parameters in GPT-4 is unknown, it is likely to be on the order of hun-
dreds of billions, given the known size of GPT-3.
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force approach as our ensemble model based on the overall validation accuracy for 
our submission and achieved on the test set 64.4% accuracy. We think our model 
combination is overfitting the validation set and therefore caused the accuracy differ-
ence between the validation and test set.

7.1 � Ablations

7.1.1 � Shot Selection Strategy

For both GPT-4 and Flan-T5 models, we found that TF-IDF selection balanced 
by label achieved the highest validation accuracy (2% increase for GPT-4, 1.3% 
increase for Flan-T5 compared to 0-shot prompting). Using TF-IDF with an unbal-
anced label selection causes a slight decrease in performance for Flan-T5. This is not 
surprising; prior work has found that in-context learning is highly sensitive to the 
prompt  [81–83], and not balancing labels likely causes overfitting to the majority 
class in the prompt. Additionally, we found that few shot prompting with randomly 
chosen shots caused a substantial decrease in performance. As each validation exam-
ple contains a significant amount of terminology that may not appear elsewhere, it 
is unclear how much information an arbitrarily chosen train example will provide 
for determining the label for a validation example (i.e., knowledge of entailments on 
contract law likely provides little information for inference on a query related to the 
rights of the unborn). Our results show that some sort of intelligent shot selection is 
necessary for few-shot learning to help.

As a selection strategy, TF-IDF is a fairly simple approach that relies on syn-
tactic overlap among documents  [84]. However, information retrieval research has 
developed more sophisticated methods for document similarity that employ modern 
contextual embeddings. Such approaches include BERTScore  [85], SBERT  [27], 
and BLEURT  [86], among others. We, therefore, explored using each of these 
approaches as the similarity method for shot selection to see if an approach based on 
contextual embeddings could outperform the simpler TF-IDF vectors. We use Chat-
GPT for this ablation,11. We use standard prompting (no chain-of-thought methods), 
five shots, and a temperature of one for all models and compute the overall accuracy 
of each approach across all validation splits. Results are shown in Table 5. Although 
all similarity-based selection methods perform better than random selection, TF-IDF 
achieves the best overall accuracy. One possible explanation is that the TF-IDF vec-
tors were the only ones trained on a legal corpus (the train set), and we relied on 
the pre-trained embeddings for all other methods. It is conceivable that pre-training 
the contextual similarity metrics on a corpus of legal documents could dramatically 
improve the quality of the selected shots. However, doing this is impossible with just 
the train set as these methods require considerably more data than TF-IDF.

Finally, we found that pruning the TF-IDF vectors to select only terms with 
low document frequency consistently leads to worse validation accuracy. Our goal 

11  ‘gpt-3.5-turbo’.
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behind this method was to eliminate terms that appeared across most training exam-
ples (likely stopwords) and create better vectors for document ranking. However, it 
appeared to have the opposite effect. If the pruning was too aggressive, all vectors 
could have become orthogonal if no terms overlapped across documents. This pat-
tern was observed regardless of the pruning factor, even with minimal pruning.

7.1.2 � Advanced Prompting Strategies

We investigated various more sophisticated prompting methods (details of prompt 
structure discussed in Sect. 6). We focus on GPT−3.5 for our analysis because, as 
discussed earlier, the minimal sequence length of Flan-T5 prevented it from using 
any chain-of-thought approach effectively. Results are shown in Table  3. We find 
that no prompt outperforms the “vanilla” baseline strategy. Given that legal reason-
ing often involves highly open-textured phrases, the space of possible explanations 
may be so extensive that chain-of-thought approaches cannot effectively assist a 
model in arriving at a correct answer, which confirms with prior research on these 
prompting strategies in other specialized domains [87]. In Fig. 2, we examined the 
validation accuracy of GPT−3.5 models with different prompt types we used in the 
COLIEE competition, along with the additional “plan and solve” prompt type that 
we incorporated for subsequent testing, given the number of shots. Table 2 shows 
the results. In this table, all GPT−3.5 models have a temperature value of 1. GPT−
3.5 achieves with the “plan and solve” prompt type the highest validation accuracy 
with five shots and with the “select most relevant” prompt type with only one shot, 
while the highest accuracy for the “self-ask” and “vanilla” is achieved with zero 
shot. Among the plots, the “consider both” shows in general lower performance 
while the “plan and solve” prompt type shows the best performance except for 
three shots. In many cases of the outputs with the “plan and solve” prompt type, 
it is observed that the model suggests examining the relevant articles and gives an 
explanation of the provided articles. After the “Let’s carry out the plan and solve 
the problem step by step.” prompt, it makes a step-by-step analysis of the articles. 
Nevertheless, for the best prompting method in Fig. 2, the “plan and solve” with five 
shots, it is also observed that the model apologizes after that prompt and outputs that 
the articles do not address the specific scenario, it can not carry out plans or execute 
actions, or it does not have access to a legal database and suggests to consult to a 
legal expert.

The performance of “self-ask” is low if two, three, or four shots are provided. 
“Self-ask” has shown to be effective at assisting GPT−3.5 with composing informa-
tion it already knows in a format more suitable for reasoning. However, this relies 
on the model’s ability to answer the sub-questions it creates accurately [88]. Given 
the open nature of the dataset, the model was likely unsuccessful at breaking down 
a legal query into more digestible parts, resulting in decreased performance. As the 
plots act differently for each prompt type, we believe it is hard to express the accu-
racy given the number of shots with one general rule. But from the plots of “select 
most relevant” and “self-ask” cases we can derive that between one shot and five 
shots, the model starts to degrade when the shot number increases. We believe that 
with legal context this degradation is more apparent.
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7.1.3 � Choice of Temperature

LMs sample words from their vocabulary and choose which word to predict next—
given a sequence—from this sample. Temperature is a hyperparameter (varying 
between 0 and 1) that controls the randomness of this choice. Lower values decrease 
randomness, and higher ones increase it. We experimented with multiple temperature 
values from the set 0, 0.25, 0.5, 0.75, and 1.0. However, we found that different val-
ues did not significantly affect the performance of GPT-4. Building on this, we also 
experimented with temperature-based ensembles where each prediction (vote) came 
from a GPT-4 model with a different temperature value. We used the same set of tem-
peratures (five in total), and the majority vote was chosen as the final prediction of the 
ensemble. We found that this approach provided less than 0.5% improvement in accu-
racy and decided not to replicate it for the unbalanced GPT-4 TFIDF. Additionally, the 
added cost of testing GPT-4 resulted in us not performing the test for practical reasons. 
Results from these trials are shown in the first half of Table 1, with the rows containing 
multiple values indicating temperature-based ensembles.

Table 3   Test accuracy using 
different models

System Test accuracy

Flan-T5 65.35%
GPT-4 81.19%
Ensemble 64.36%

Table 4   Overall accuracy across 
validation splits using different 
ensemble models

Ensemble model Overall accuracy

Brute Force 77.0%
SVM 74.9%
Random Forest 74.4%

Table 5   Overall accuracy across 
validation splits using different 
contextual similarity metrics

All results use Chat-GPT, with standard prompting, five shots, and a 
temperature of one

Shot selection strategy Overall accuracy

SBERT 69.542%
BERTScore 66.307%
BLEURT​ 68.194%
TF-IDF 72.237%
Random 66.038%
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7.2 � Error Analysis

Exploring False Predictions. We perform error analysis on our systems, focusing 
on GPT-4 and Flan-T5. Table 6 lists the false positive rate (FPR), false negative rate 
(FNR), true positive rate (TPR), and true negative rate (TNR) of the best-perform-
ing Flan-T5 and GPT-4 models on the validation sets. We find that models tend to 
overpredict ‘Y’, which leads to a much higher FPR than FNR. Scaling up models 
thus does not appear to eliminate this problem. The exact cause of this behavior 
is unclear. The validation splits are somewhat unbalanced, but not by a sufficient 
degree to cause such an imbalance in error rates. Our shot selection also accounted 
for this by ensuring the labels were balanced.

In Fig. 3, we graph a histogram of the proportion of non-ensemble models that 
get each validation example correct. The goal is to determine if there are examples 
that are consistently difficult to solve. We find that this is the case and that the distri-
bution of accuracy scores is roughly bi-modal. Most examples appear relatively easy 
for our models; around 60% are correctly predicted by 80% or more of the trials. 
However, there is a significant fraction (roughly 80 examples) on which fewer than 
30% of models get the correct answer.

Notational Conventions. Notational conventions are used in legal and contrac-
tual documents to communicate information efficiently and clearly. Those symbols 
and abbreviations come in queries of our validation set in the form of letters. Three 

Fig. 2   Validation accuracy of GPT−3.5 given the number of shots for different prompt types. TF-IDF is 
applied as the similarity metric
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samples are shown in Table 8. By first converting the query text to lower case and 
marking the samples with the following abbreviations [“b”, “(b)”, “(a)”, “c”, “(c)”, 
“x”, “f”] we were able to separate all samples with notational conventions in the 

Fig. 3   Histogram of model accuracy for all examples in the validation set. For each example, we plot the 
proportion of models that get that example correct (x-axis). This is done across all validation examples, 
using only the Huggingface models

Table 6   False positive rate 
(FPR), false negative rate 
(FNR), true positive rate (TPR), 
and true negative rate (TNR) for 
the best-performing GPT-4 and 
Flan-T5 runs

Flan-T5 GPT-4
Similarity method TF-IDF Balanced TF-IDF

Shots 2 5
FPR 33.889% 24.444%
FNR 15.707% 9.424%
TPR 84.293% 90.576%
TNR 66.111% 75.556%

Table 7   The rate of true and 
false predictions for Flan-T5 
given samples with or without 
notational conventions

Predictions Including conventions

Yes No

True 19.677% 55.795%
False 10.782% 13.747%
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validation set from the others as samples consist of many different abbreviations. 
We explored the queries in the validation set to address the effects of the notational 
conventions on the false predictions. For flan-t5-xxl with balanced TF-IDF and 
two shots, the mean number of tokens for correct predictions was 40.71, while for 
false predictions the number was 47.44. The decrease in prediction accuracy with 
higher token numbers might be caused by the queries with notational conventions 
because when the queries with notational conventions are filtered out the mean num-
ber of tokens for correct predictions is 25.95 while that number is for false predic-
tions 19.08. Table  7 shows the rate of true and false predictions given notational 
conventions. The queries with notational conventions in the validation set that are 
predicted correctly are well below the prediction accuracy of the model. Therefore, 
we believe that the queries with notational conventions decrease the model’s gener-
alization performance.

Perplexity Analysis. The perplexity is the inverse of the mean probability of each 
word in the test set. Perplexity quantifies how well LMs predict the next word and 
models with lower perplexity indicate a better understanding of the context and tend 
to have fewer errors predicting the sequence of tokens. Thus, we conducted a per-
plexity analysis for the model outputs given the article and query input [89]. We 
calculated the mean perplexity score of all samples for correct and false predictions 
separately. The perplexity score was for the correctly predicted queries 15.07 while 
for false predictions the model perplexity was 372.42. When the perplexity scores 
are calculated without the queries with notational conventions the perplexity score 
for correctly predicted queries is 4.21 while the score for falsely predicted queries is 
556.87. Thus, by looking at perplexity scores for correct predictions, the model was 
more confident for predictions without notational conventions. This agrees with our 
older findings that the model struggles in queries with notational conventions.

8 � Conclusion

We have demonstrated that prompting methods using LMs can achieve competitive 
performance on legal entailment tasks and even outperform carefully engineered 
systems.

Table 8   Sample queries with notational conventions in the validation set

Queries with Notational Conventions

When A was on a long-term business trip and was absent, a part of a hedge of A’s house collapsed due 
to a strong wind. Afterward, B who has a house on a land next to A’s house performed an act for A 
without any obligation. If B has requested a gardener to repair the hedge, B may not demand the pay-
ment of the unpaid remuneration to the gardener from A

Claim X is A’s claim against B, and claim Y is B’s claim against A. If F, A’s creditor, attaches claim 
X after the due date for claim X has arrived, B may duly assert against F a set-off based on claim Y 
against claim X even before the due date for claim Y, which was acquired before the attachment

If beneficiary (B) sells and delivers X to a subsequent acquirer (D), who knows that the gifts of X will 
prejudice the obligee of A, C may claim to D to rescind the sale between B and D.
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Though our system performed quite well overall, several avenues remain for 
improvement.

We attempted to supplement the provided data using similarly structured rule 
sets to capture more robust open-textured terms. In the “consider both” prompt 
type, we attempted to create arguments for entailment and not entailment by the 
rule. Including this data in training decreased model performance and was not 
included in any of the submitted systems. However, broader rule sets may aid 
future work on few-shot prompting for legal entailment. Instruction tuning our 
Flan-T5 system on legal entailments or other legal data is also a fruitful direc-
tion for future work; we explored this option briefly but found that it required too 
much computing resources and training time to be viable. Nevertheless, directly 
training the model on this data might improve performance and generalization.

An earlier version that we experimented with used a chain-of-thought prompt-
ing approach [21], which asked the model to output explanations for why it 
thought the answer was ‘Y’ or ‘N’. In our experience with this approach, open-
textured terms ended up being the primary problem: without further context 
(which may have come from additional articles that were not included in the set 
of provided articles A), the LM did not know how to interpret certain terms of 
art or jargon that appeared in the articles or query. This is consistent with our 
view of interpretive reasoning, which suggests that properly interpreting open-
textured legal terms often requires examples of how the term has been interpreted 
in the past. However, it should be noted that it is not clear whether explanations 
given through chain-of-thought prompting actually provide insight into how the 
language model came up with the answers, or whether it was a sort of post hoc 
rationalization.

Our deeper analysis of the articles and queries shows that a considerable extent 
of the samples consists of notational conventions. We believe that a prompting 
approach focused additionally on the notational conventions would increase the gen-
eralization performance. We see that LMs struggle to interpret this kind of query in 
a legal context. We believe that those queries might be out-of-distribution for this 
kind of legal reasoning task and the different prompting approaches have only lim-
ited effect to help the model generalize this task. Our analysis of different prompt 
types with the number of shots shows that increasing the shot number does not nec-
essarily bring a better generalization performance for the model. This might limit 
the effectiveness of the prompting methods to increase the model performance. 
Therefore developing prompting strategies for legal tasks, that work complementary 
with few shots would be a good direction for future work.

Although our approach did not outperform other submissions on the test set, it 
was a successful endeavor overall. Our instruction-tuned transformers approach 
has the 7. place among all models in Task 4 of the competition and our ensemble 
approach achieves the 9. place [46]. As stated in this report’s introduction, auto-
mated reasoning over rules is extremely important for the future of human inter-
action with AI, and competitions like COLIEE allow us to better understand the 
strengths and limitations of current natural language processing tools toward that 
goal. However, replicability is necessary to improve the broader impacts of the com-
petition’s efforts. Thus, in the future, we strongly recommend that certain measures 
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be taken to ensure the integrity of the competition and to maximize its impact on the 
broader research community.

We recommend that all entrants require the release of full source code. The 
possibility of unintentionally selecting models, parameters, and hyperparameters 
that maximize performance on the test set is too great (even though the competi-
tion organizers explicitly disallowed the use of the test set for any of these). If 
code release is too limiting, a full description of methods, algorithms, parameters, 
and hyperparameters should be released before finalizing competition rankings in 
time for independent replication. This also allows for confirmation that the results 
listed in the final competition rankings were not simply due to luck—in our experi-
ence, many of the language models we used had non-deterministic output, and this 
required multiple runs in order to confirm that extremely good (or extremely bad) 
results were not simply flukes. With this spirit in mind, we publicly release our full 
source code for this competition.12
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