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Adaptive Antenna Pattern Modeling for
Interference Mitigation in Radio Astronomy

Ramonika Sengupta, Graduate Student Member, IEEE, and Steven W. Ellingson, Senior Member, IEEE

Abstract—This paper describes methods for accurate pattern
modeling of large axisymmetric paraboloidal focus-fed reflector
antenna systems. We demonstrate that the incorporation of the
developed pattern models helps in advancing the state-of-the-
art in coherent time-domain canceling (CTC) for interference
mitigation in radio astronomy. The first method yields a closed-
form expression for the antenna pattern with parameters
accounting for the focal ratio and feed pattern. In subsequent
adaptive methods, parameters of this model are calculated using
measurements of interference signals. The corrected pattern
model improves the prediction of the change in the true pattern
for future times. The methods are compared by (1) comparing
the error in the pattern model with respect to the true pattern
and (2) comparing the pattern value update period required
to achieve a specified level of residual interference when used
in CTC. The efficacy of the pattern modeling methods is
demonstrated by showing that the error in the pattern model
decreases and the pattern value needs to be updated at a much
slower rate for effective CTC.

Index Terms—Aperture antennas, Pattern model, Radiation
patterns, Receiving antennas, Time domain canceling.

I. INTRODUCTION

OHERENT time-domain canceling (CTC) has been
proposed to mitigate satellite interference to radio tele-
scopes (see e.g., [1] and references therein). A generic high-
level block diagram of CTC is shown in Fig. 1. In this
method, an estimate of the interference signal is generated
and is subtracted from the measured signal contaminated
with the interference signal. The ‘“estimate interference
waveform” block requires a certain time 7 to develop an
estimate of the interference. A precise knowledge of the
antenna pattern is required for the accurate estimation of
interference signal because the interference signal is seen
through the antenna pattern, which imposes a quickly time-
varying channel due to the motion of the satellite [2], [3].
The maximum time duration over which the stationarity of
the pattern can be assumed is potentially less than the value
of 7 assumed in the past work (see e.g., [3] and references
therein). This is the limitation of the state-of-the-art in CTC.
The present work addresses the problem of lack of pattern
knowledge by developing accurate pattern models and using
them in a modified CTC scheme (shown in Fig. 2). We
start by developing a new method for obtaining a closed-
form pattern model for large focus-fed axisymmetric reflector
antenna. This pattern model is then extended using adaptive
pattern modeling where we adjust the model based on the
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Fig. 1. A high-level generic block diagram of time-domain canceling (CTC).
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Fig. 2. A high-level generic block diagram of CTC with pattern variation
correction.

measurements from the interferer. We have shown that the
pattern model can be significantly improved using measure-
ments of the interference signal in real time. In the earlier
work [2], the effect of pattern variation on CTC performance
is discussed and an analytical expression is derived for the
time scale 7 required for updating the pattern value. Here
we have evaluated the degree to which 7 can be increased
in CTC by incorporating the developed pattern models in
the modified CTC scheme with pattern correction (Fig. 2).
The performance of CTC improves with the incorporation
of the developed pattern models, and thereby advancing the
state-of-the-art in CTC for interference mitigation.

The paper is organized as follows: A new approximate
closed-form pattern model for large focus-fed axisymmetric
paraboloidal reflector is developed in Section II. This section
also gives the comparison of the pattern obtained by this
method to the pattern calculated by physical optics (PO) and
confirms the validity of the model. To further improve the
pattern model, an adaptive method is outlined in Section III
with model parameters calculated using measurements of the
interference signals. The conclusions are given in Section IV.

II. FAST APPROXIMATE PREDICTION METHOD FOR
ANTENNA PATTERN MODELING

We consider an axisymmetric paraboloidal focus-fed re-
flector antenna having circular physical aperture. For the
aperture electric field distributions associated with such sys-
tems, the pattern can be expressed approximately in closed
form using expressions from [4] (Sec. 9.5.2). For zero edge
illumination, the normalized pattern is given as:

210 (n 4+ 2) Jui1(Basind)
F(6,n) = (Basin §)n+1

where 6 is the angle from the reflector axis of rotation, n
determines the specific distribution, .J,, is the Bessel function
of the first kind and n'* order, a is the radius of the aperture,
and (= 2x/\) is wavenumber.

D



For non-zero edge illumination (i.e., normalized aperture
field C at the reflector edge), the normalized pattern for
parabolic-on-a-pedestal distribution is given as:

C sy
o ok
N—— ——

Ap By

= AgF(6,n=0)+ ByF(6,n) )

where Ay and By are real-valued coefficients that are inde-
pendent of 6. Also, n and C do not change. The on-axis
gain G(= 4me,qpA,/A\?) of the system is determined using
the aperture efficiency €, and the physical area A, (= 7a?)
of the aperture. The aperture efficiency e, is determined
from the feed pattern and is used to estimate the value of n.

We consider the reflector system with D = 18 m, v = 1.5
GHz. For comparison with true pattern ®(6), we consider
the unnormalized model pattern /G F () for the estimated
values of n and C. In general, |®(6)| and |v/GF()| are sim-
ilar (see e.g., Fig. 3), but with significant differences. Thus
the potential benefit for the pattern correction is confirmed.

In summary, this method yields a closed-form expres-
sion (2) for the antenna pattern with parameters accounting
for the focal ratio and feed pattern. However, it may not
give a sufficiently close fit for our intended application [2].
To improve this method, an adaptive correction of the pattern
function can be done as discussed in the following section.

III. ADAPTIVE PATTERN MODELING

Now we consider whether the true pattern @(0) can
be accurately modeled using (2) with different coefficients
determined from measurements of the true pattern. Hence
we define a model pattern ®(6) as:

@) =AF@O,n=0)+BF(4,n) 3)

where A and B are constants that can be determined by
comparing ®(6) to ®(6). Note that ®(0) (and subsequently
®(0)) are not normalized; specifically, A and B may repre-
sent the gain as well as the shape of the pattern. Since <i>(0)
is in general complex-valued, the values of A and B will
also be complex.

In the following subsections, we consider the adaptive
correction methods in increasing order of complexity.

A. One-point (p = 1) Correction

We use only one measurement, Ciz(ﬁl) at angle 6, and
choose A and B such that ®(6;) = ®(#;). Thus:

AF(f1,n=0)+ BF(f;,n) = ®()) 4)

Pattern modeling using one-point correction is an under-
determined problem with one equation and two unknowns.
Hence there are multiple solutions with multiple possible
choices of A and B that satisfy the constraint at ;. However,
it is not immediately clear which solutions would yield a
reasonable fit over the entire pattern. We now examine two
solutions that are readily apparent.

In the first solution:

_ D(0)

AT A=) ©
_ o (61)

B = By Flor,n) (6)
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Fig. 3. Comparison of true pattern |®(6)| from PO, and uncorrected model
pattern [vGF(6)].
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Fig. 4. Comparison of model pattern |®(6)| from one-point correction (with

01 selected at peak of main lobe marked with “*”), true pattern \‘5(9)|, and
uncorrected model pattern [v/GF(0)|.

In the second solution:

B D(0,)

A = Aopm e 7
_ b (61)

R T e) ®

Fig. 4 shows both solutions with 6; selected at the peak
of the main lobe. Note that the model patterns ®(6) obtained
from both solutions result in a reasonable fit to the true
pattern ®(0). Fig. 5 shows both solutions applied to 6;
selected at the peak of the first sidelobe to the right of the
main lobe. In this case, the model pattern ® () obtained from
the second solution (i.e., (7) and (8)) results in a reasonable
fit to @(0) whereas the first solution (i.e., (5) and (6)) does
not.
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Fig. 5. Comparison of model pattern |®(6)| from one-point correction (with
01 selected at peak of sidelobe marked with “*”), true pattern |®(6)|, and
uncorrected model pattern |v/GF(0)].
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Fig. 6. Model pattern |®(6)| from one-point correction (at the —3 dB point
at 6 = 40.35°, marked with “*”), true pattern |®(6)|, and uncorrected
model pattern |v/GF(6)].
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Fig. 7. Difference in (a) magnitude; (b) phase between model pattern ®(6)
obtained from one-point correction (at the —3 dB point at § = +0.35°,
marked with “*”) and true pattern ®(6).

Experimentation using other values of 6; shows that ®(9)
obtained from the second solution results in a good fit to
@(9) for A, selected anywhere on the pattern other than
null points. On the other hand, ®(6) obtained from the first
solution does not fit well to ®(6) in many of these cases. A
possible reason why the second solution seems to be better
might be that the coefficients in the second solution account
for the edge illumination C' whereas the coefficients in the
first solution do not. In rest of the paper, we use the second
solution (i.e., (7) and (8)) exclusively for p = 1 correction.

Now consider an example of p = 1 correction applied at a
point on the main lobe between peak and null; e.g., at the —3
dB point at #; = 40.35° as shown in Fig. 6. Fig. 7 shows
the difference in magnitude and phase of ®(6) and ®(8).
The magnitude and phase values of ®(#) and ®(6) match
exactly at the point where correction is applied, as expected.
Fig. 7(a) shows that the error in ®(#) becomes maximum at
the nulls. Fortunately, the error in the nulls is not really of
interest in the interference canceling application because the
response to satellites is already very small there. Fig. 7(b)
shows that the error in the phase of ®(6) does not vary much
within each lobe, but does increase with increasing sidelobe.

A comparison with Fig. 3 shows that p = 1 correction
method significantly reduces the error in the magnitude of
the pattern model ®(6) (i.e., difference in magnitude of ®(0)
and ®(0)) as compared to the error in the uncorrected pattern
model |v/GF(0)|. For constraint angle #; selected at the
peaks of main lobe (i.e., 81 = 0°) and first sidelobe (i.e.,
01 = 1.10°), the maximum error within the HPBW occurs
at the edge of the range (e.g., § = £0.35°).
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Fig. 8. Model pattern [®(6)| from two-point correction (using two points
on the main lobe marked with “*”), true pattern |®(¢)| and uncorrected
model pattern |v/GF(8)].

B. Two-point (p = 2) Correction

While one-point correction clearly improves the agreement
between the model pattern and the true pattern, this is
true mainly in the angular region around the constrained
angle. For better overall fitting, especially at angles far
from the measured angle, multiple point correction should
be considered. We now consider the two-point correction
(p = 2) of the pattern.

For p = 2, we use two measurements ®(0;) and ®(6y)
at two angles 6, and 6. We constrain ®(6;) = @(91) and
®(fy) = ®(2) by solving the following linear system of
equations:

®(0,) = AF(0;,n=0) + BF(0;,n) )
d(0y) = AF(0y,n = 0) 4+ B F(f,n) (10)

In this case, we have a single solution:

A= @(Gl)F(Hg,n) —@(92)F(91,n)

F(Gl,n = O)F(QQ, n) - F(@g,n = O)F(L‘)l,n)

®(6,) F(fa,n = 0) — ®(h) F(01,n = 0)

F(917n = O)F(Hg,n) — F(Gz,n = 0)F<91, n)

The two-point correction method reduces the error in
pattern modeling as compared to the one-point correction
method. This can be seen by considering the following two
examples.

Fig. 8 shows an example of two-point correction applied
for #; and 65 both on the main lobe. These points are the
same as those used for one-point correction in Figs. 4(b)
and 6; i.e.,, #; = 0.00° and 0y = +0.35° respectively. The
maximum error in pattern magnitude decreases from 1.96 dB
in the first sidelobe (specifically 1.85 dB at §; = 0.00° and
1.96 dB at #; = 0.35°) with one-point correction to 0.78 dB
with two-point correction.

Two-point correction applied to the angles 6; = 0.00°
and 65 = +1.10°, corresponding to the peaks of main lobe
and first sidelobe, is shown in Fig. 9. These angles were
considered for one-point correction in Figs. 4(b) and 5(b).
The maximum error in pattern magnitude decreases from
0.66 dB with one-point correction to 0.06 dB with two-point
correction within the HPBW of the main lobe. The maximum
error also decreases from 1.85 dB to 0.62 dB within —3 dB
region of the first sidelobe.

In conclusion, it is observed that the two-point correction
method further reduces the error in the magnitude and phase

(1)

B =

12)
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Fig. 9. Model pattern |®(#)| from two-point correction (using two points
on the peaks of main lobe first sidelobe marked with “*”), true pattern
|®(8)| and uncorrected model pattern |v/GF(8)].

within main lobe and sidelobes as compared to the one-point
correction method.

C. Multi-point (p > 2) Correction

Now we consider the extent to which additional measure-
ments may yield further improvement in the agreement be-
tween the model pattern and the true pattern. The correction
methods can be extended for the values of ®() at more than
2 angles; i.e., given measurements ®(;), ®(6z),--- , ®(6,),

at 01,05, --- ,0,. The linear system of equations becomes:
F(61,n=0) F(6;,n) o(61)
F(GQ,TL: 0) F(Qg,n) A CI)(G
. . [ ] = (13)
: : B :
F(0p,n=0) F(0p,n) x (i)(ep)
——
M y
Mx =y (14)

The matrix x consists of the coefficients we seek and y
consists of the measured pattern values. For p > 2, the
system is overdetermined. We can still find a least-squares
solution of (14) in the sense that x minimizes ||y — Mx||*:

(M'M)"'M"y (15)

Fig. 10 shows how performance changes with increasing
number of measurements in a practical scenario, where the
number of measurements increase over time. From Sec-
tions III-A and III-B, we expect that p = 2 correction would
yield a better fit than p = 1 correction, however, this is not
the case when constraint points do not lie in the main lobe.
Tables I and II summarize the error of ®(#) compared to

®(0) for scenarios in Fig. 10. We observe:

o Although p = 2 yields a better fit than p = 1 around the
far sidelobes (viz., 0.00 dB as opposed to —1.69 dB)
where the constraint points are selected. However, p = 1
yields a better fit than p = 2 in the main lobe (viz.,
—0.39 dB as opposed to —3.27 dB) and first sidelobes
(viz., —2.23 dB as opposed to +2.71 dB).

« Significant improvement is observed for p = 6 and p =
7; i.e., once constraint points include the first sidelobe
and main lobe.

o For p = 7 having one constraint point in the main lobe,
multi-point correction is better than p = 1 correction
using the same point in the main lobe.

X =
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Fig. 10. Model pattern |®(6)| obtained from adaptive correction (using
points 1 = +3.89°,02 = +3.64°, 03 = +3.01°, 64 = +2.37°, 5 =
+1.73°, 65 = +1.10°, 7 = 0.00° marked with “*”), true pattern |®(6)|
and uncorrected model pattern |[v/GF(6)].

Therefore increasing p can significantly improve perfor-
mance, even if the additional points are in the sidelobes.

TABLE I
ERROR IN |®(0)| COMPARED TO |®(0)| AT PEAKS FOR POINTS
CONSIDERED IN FIG. 10.

Maximum error at the peaks of
Scenario || main lobe | right sidelobes
| first [ second | third [ fourth ] fifth
p=1 —0.39dB | —0.87dB | —1.63dB | —1.72dB | —1.71dB | —1.69 dB
p=2 —2.88dB | +0.70 dB | +0.12dB | +0.03 dB 0.00 dB 0.00 dB
p=3 —2.90dB | +0.70dB | +0.12dB | +0.03 dB | 40.01 dB 0.00 dB
p=4 —2.81dB | 4+0.69dB | +0.11dB | +0.02dB | —0.00 dB | 40.01 dB
p=>5 —2.57dB | +0.65dB | +0.07dB | —0.02dB | —0.04 dB | —0.04 dB
p=6 —1.06 dB | +0.21 dB | +0.35dB | —0.40dB | —0.39 dB | —0.38 dB
p="T 0.00 dB +0.15dB | —0.50dB | —0.57dB | —0.56 dB | —0.54 dB
TABLE Il
ERROR IN |®(6)| COMPARED TO |®(6)| FOR POINTS CONSIDERED IN
F1G. 10.
Error at Maximum error and its location
Scenario 0=0° in main lobe [ within —3dB points in
within HPBW | first Teft sidelobe | first right sidelobe

p=1 —0.39 dB —0.39 dB, 0.00° —2.23 dB, —0.97° | —2.23 dB, +0.97°
p=2 —2.88 dB | —3.27 dB, +0.35° | +2.71 dB, —0.97° | +2.71 dB, 40.97°
p=3 —2.90dB | —3.30 dB, +0.35° | +2.70 dB, —0.97° | +2.70 dB, +0.97°
p=4 —2.81dB | —3.19 dB, +0.35° | +2.70 dB, —0.97° | +2.70 dB, 4+0.97°
p=>5 —2.57 dB | —2.87 dB, +0.35° | +2.68 dB, —0.97° | +2.68 dB, 4+-0.97°
p==6 —1.06 dB | —1.15 dB, +0.35° | +0.98 dB, —0.97° | +0.98 dB, 4+0.97°
p="7 0.00 dB +0.04 dB, +0.35° | 40.66 dB, —1.26° | +0.66 dB, 4+1.26°

D. Effect of Pattern Variation on Performance of Interfer-
ence Canceling

Now we consider the performance of the model function
®(0(t)) in the application depicted in Fig. 2; that is, as a
means to mitigate the time variation induced by pattern and



thereby avoid bias in the estimation of waveform parameters
in CTC. In this case the variation in |®(t)| is reduced to the
variation of the ratio:

() = | =2 (16)

The upper bound on residual interference, I;;p, becomes
(see [3] Equation 3.10):

<i>(t +7) ? 2
Iy def 1_M = 1_M a7
d(t) ¢(t)
——
o(t) W (t,7)|
Ivg = [1—|U(t7)]? (18)

The performance of the models can be quantified by
comparing 7,, the time required for pattern value update,
defined in [2] and [3] as the value of T required to achieve
a specified Iy for a satellite at the —3 dB point in the main
lobe'. For an ideal model (i.e., o= ®), 7, is unbounded, and
7, becomes shorter as the model becomes worse. Now we
estimate 7, for the examples considered in Sections III-A-
III-C; i.e., transit of a LEO satellite interferer with w, =
0.550°/s (worst case scenario for Iridium as discussed in [3]).
For easier comparison of the results, we normalize ((¢) by
C(tgp), where tgp is the time corresponding to the —3 dB
point in the main lobe. Note that this normalization does not
change ¥, so Iyp is not affected by this normalization.

Figs. 11-15 show normalized ((t) for the various exam-
ples considered in Sections III-A-III-C. Normalized ((t) =
140.0316 corresponds to Iy = 0.001 (—30 dB). Note that
the values of 7, are significantly different on the two sides
of the —3 dB point. These values correspond to the satellite
moving toward or away from the reflector pointing direction.
Both values of 7, are considered since the “estimate inter-
ference waveform” block in Fig. 2 must accommodate the
possibility of the satellite moving in either direction.

Fig. 11 shows normalized ((t) for the uncorrected true
pattern é(t) This corresponds to the scenario addressed
in [2] and [3]. The values of 7, can be predicted using
(see [3] Equation 3.34)

0.654 A/ Iyp

weD

The values of 7, obtained from Fig. 11 are 25.5 ms and
26.0 ms. These values are comparable to the prediction of
Tq = 23.9 ms by (19) (using A = 0.2 m, Iyp = 0.001,w, =
0.550°/s, and D = 18 m). Even with the assumptions
considered in the derivation of (19), the predicted value of
To = 23.9 ms is very close to the values estimated from the
actual pattern variation.

Fig. 12 shows normalized ((t) for model pattern v/GF'(t)
described in previous section. The values of 7, obtained
from Fig. 12 are 355.1 ms and 1627.8 ms. Comparison with

19)

a

17, is the maximum duration for which residual interference is less than

a specified upper bound (I;7p), assuming (1) the entire duration is used
for waveform estimation, (2) the only impairment to canceling is pattern
variation, and (3) the interferer is located at the —3 dB point on the main
lobe.
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Fig. 11. Normalized ¢ for the uncorrected true pattern é(t). This corre-
sponds to the scenario addressed in reference [2].
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Fig. 12. Normalized ¢ for model pattern v/GF(t).

Fig. 11 shows that 7, increases by orders of magnitude using
this non-adaptive model pattern.

Fig. 13 shows normalized ((¢) for p = 1 correction with
constraint angle 6; = 0°, +0.35°, and +1.10° corresponding
to Figs. 4(b), 6, and 5(b). It is surprising that the values
of 7, obtained with different constraint angles are equal.
Further, these values are equal to that obtained from the
uncorrected model pattern v/GF(t). A possible reason is
that the shape of the pattern in all these scenarios is identical,
although the absolute value for the pattern is different. Fig. 14
shows normalized ((t) for p = 2 correction with constraint
angles #; = 0°, 0, = 4+0.35° and 6; = 0°,0, = +1.10°,
corresponding to Figs. 8 and 9. The values of 7, increase
for p = 2 as compared to p = 1, indicating improvement.
However, contrary to p = 1, the values of 7, are very dif-
ferent for different constraint angles selected on the pattern.
The values of 7, are larger when both the constraint angles
are in the main lobe as compared to the scenario when one
constraint point is in sidelobe and one in main lobe. Table III
summarizes values of 7, obtained from Figs. 11-14.

9, = 0° (0 dB) 6, = 0.35° (—3 dB) 1181 = 1.10° (sidelobe peak)

(o =1627.8ms | 7,=i355.1ms| lr, =1627.8ms | 7, =355.1ms| i, =1627.8ms | r, =I355.1ms
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Fig. 13. Normalized ¢ for model pattern ®(¢) for p = 1 corresponding to
Figs. 4(b), 6 and 5(b).
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Fig. 14. Normalized ¢ for model pattern ®(¢) for p = 2 corresponding to
Figs. 8 and 9.
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Fig. 15. Normalized ¢ for model pattern ®(¢) for adaptive correction
corresponding to Fig. 10. Frames (a)-(g) correspond to the frames (a)-(g)
of Fig. 10.

Fig. 15 shows normalized ((t) for adaptive modeling
corresponding to Fig. 10. The 7, values are indicated on
the frames. As observed in Fig. 10 and already discussed
in Section III-C, one-point correction yields a better pattern
model when constraint points are in the sidelobes, hence
frame (a) shows larger values of 7, as compared to frames
(b) to (e). Frame (f) (corresponding to one constraint point
in first sidelobe) has similar 7, values as frame (a). Frame
(g) with one constraint point in the main lobe has larger 7,
as compared to frame (a). Tables III and IV confirm that
increasing the number of points in the adaptive modeling
increases the quality of the pattern model. As was noted
in Section III-C, we observe that p = 1 gives a better
model when there are no constraint points in the main lobe
and the first sidelobe. In general, it is confirmed that the
pattern modeling increases the value of 7,, and the adaptive
modeling increases it further.
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TABLE III
SUMMARY OF 7, ACHIEVED FOR VARIOUS MODELS (FIGS. 11-14).

Scenario Tq on the left of —3dB | 7, on the right of —3dB
point in the main lobe point in the main lobe

True pattern ®(t) (i.e., no correction) 26.0 ms 25.5 ms
VGFE(t) (i.e., not adaptive) 1627.8 ms 355.1 ms
P(t)forp=1

(1 = 0.00°, 4-0.35°, +1.10°) 1627.8 ms 355.1 ms

®(t) forp=2

(01 = 0.00°, O = 40.35°) 2029.8 ms 757.0 ms

®(t) forp=2

01 = 0.00°, 62 = +1.10°) 1797.3 ms 524.6 ms

TABLE IV

SUMMARY OF T4 ACHIEVED FOR VARIOUS MODELS (FIG. 15(A)-(G)
CORRESPONDING TO FIG. 10(A)-(G)).

Scenario Tq on the left of —3dB

point in the main lobe

T4 on the right of —3dB
point in the main lobe

p =1 (Fig. 10(a)) 1627.8 ms 355.1 ms
p = 2 (Fig. 10(b)) 291.5 ms 149.8 ms
p = 3 (Fig. 10(c)) 280.4 ms 146.6 ms
p = 4 (Fig. 10(d)) 319.8 ms 157.1 ms
p = 5 (Fig. 10(e)) 1393.4 ms 193.4 ms
p = 6 (Fig. 10(f)) 1627.7 ms 391.4 ms
p =7 (Fig. 10(g)) 1885.8 ms 613.1 ms

IV. CONCLUSIONS

In this paper, we have described adaptive correction meth-
ods for the pattern function of a large axisymmetric reflector
antenna. The efficacy of the methods is demonstrated by
comparing the model pattern ®(6) with true pattern ® ()
obtained from PO and uncorrected pattern +/GF(6). It is
confirmed that the adaptively corrected model patterns yield
a closer fit to the true pattern as compared to \/@F (9), but
the amount of improvement is not consistent and is small
relative to the fit obtained from /G F(6).

We considered correction methods in increasing order of
complexity; i.e., from one-point (p = 1) correction method
to multi-point (p > 2) correction method. Both the one-
point and two-point correction methods were found to reduce
the error in pattern modeling substantially as compared
to uncorrected pattern. From the examples given in the
Section III-C, we infer that the one-point correction method
yields a better pattern model when constraint points are in
the sidelobes and multi-point correction (p > 2) yields better
pattern model when at least one of the constraint points lies
in the main lobe. The rate of pattern value update 7, for the
uncorrected pattern was found to be few milliseconds to few
tens of milliseconds [2], [3]. It has been demonstrated that
using the scheme shown in Fig. 2 with the pattern models
proposed here, 7, can be extended by orders of magnitude.
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