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Abstract—This paper describes methods for accurate pattern
modeling of large axisymmetric paraboloidal focus-fed reflector
antenna systems. We demonstrate that the incorporation of the
developed pattern models helps in advancing the state-of-the-
art in coherent time-domain canceling (CTC) for interference
mitigation in radio astronomy. The first method yields a closed-
form expression for the antenna pattern with parameters
accounting for the focal ratio and feed pattern. In subsequent
adaptive methods, parameters of this model are calculated using
measurements of interference signals. The corrected pattern
model improves the prediction of the change in the true pattern
for future times. The methods are compared by (1) comparing
the error in the pattern model with respect to the true pattern
and (2) comparing the pattern value update period required
to achieve a specified level of residual interference when used
in CTC. The efficacy of the pattern modeling methods is
demonstrated by showing that the error in the pattern model
decreases and the pattern value needs to be updated at a much
slower rate for effective CTC.

Index Terms—Aperture antennas, Pattern model, Radiation
patterns, Receiving antennas, Time domain canceling.

I. INTRODUCTION

C
OHERENT time-domain canceling (CTC) has been

proposed to mitigate satellite interference to radio tele-

scopes (see e.g., [1] and references therein). A generic high-

level block diagram of CTC is shown in Fig. 1. In this

method, an estimate of the interference signal is generated

and is subtracted from the measured signal contaminated

with the interference signal. The “estimate interference

waveform” block requires a certain time τ to develop an

estimate of the interference. A precise knowledge of the

antenna pattern is required for the accurate estimation of

interference signal because the interference signal is seen

through the antenna pattern, which imposes a quickly time-

varying channel due to the motion of the satellite [2], [3].

The maximum time duration over which the stationarity of

the pattern can be assumed is potentially less than the value

of τ assumed in the past work (see e.g., [3] and references

therein). This is the limitation of the state-of-the-art in CTC.

The present work addresses the problem of lack of pattern

knowledge by developing accurate pattern models and using

them in a modified CTC scheme (shown in Fig. 2). We

start by developing a new method for obtaining a closed-

form pattern model for large focus-fed axisymmetric reflector

antenna. This pattern model is then extended using adaptive

pattern modeling where we adjust the model based on the
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Fig. 1. A high-level generic block diagram of time-domain canceling (CTC).

Fig. 2. A high-level generic block diagram of CTC with pattern variation
correction.

measurements from the interferer. We have shown that the

pattern model can be significantly improved using measure-

ments of the interference signal in real time. In the earlier

work [2], the effect of pattern variation on CTC performance

is discussed and an analytical expression is derived for the

time scale τ required for updating the pattern value. Here

we have evaluated the degree to which τ can be increased

in CTC by incorporating the developed pattern models in

the modified CTC scheme with pattern correction (Fig. 2).

The performance of CTC improves with the incorporation

of the developed pattern models, and thereby advancing the

state-of-the-art in CTC for interference mitigation.

The paper is organized as follows: A new approximate

closed-form pattern model for large focus-fed axisymmetric

paraboloidal reflector is developed in Section II. This section

also gives the comparison of the pattern obtained by this

method to the pattern calculated by physical optics (PO) and

confirms the validity of the model. To further improve the

pattern model, an adaptive method is outlined in Section III

with model parameters calculated using measurements of the

interference signals. The conclusions are given in Section IV.

II. FAST APPROXIMATE PREDICTION METHOD FOR

ANTENNA PATTERN MODELING

We consider an axisymmetric paraboloidal focus-fed re-

flector antenna having circular physical aperture. For the

aperture electric field distributions associated with such sys-

tems, the pattern can be expressed approximately in closed

form using expressions from [4] (Sec. 9.5.2). For zero edge

illumination, the normalized pattern is given as:

F (θ, n) =
2n+1Γ(n+ 2) Jn+1(βa sin θ)

(βa sin θ)n+1
(1)

where θ is the angle from the reflector axis of rotation, n
determines the specific distribution, Jn is the Bessel function

of the first kind and nth order, a is the radius of the aperture,

and β(= 2π/λ) is wavenumber.
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For non-zero edge illumination (i.e., normalized aperture

field C at the reflector edge), the normalized pattern for

parabolic-on-a-pedestal distribution is given as:

F (θ, n, C) =
C

C + 1−C
n+1

︸ ︷︷ ︸

A0

F (θ, n = 0) +
1−C
n+1

C + 1−C
n+1

︸ ︷︷ ︸

B0

F (θ, n)

= A0F (θ, n = 0) +B0F (θ, n) (2)

where A0 and B0 are real-valued coefficients that are inde-

pendent of θ. Also, n and C do not change. The on-axis

gain G(= 4πεapAp/λ
2) of the system is determined using

the aperture efficiency εap and the physical area Ap(= πa2)
of the aperture. The aperture efficiency εap is determined

from the feed pattern and is used to estimate the value of n.

We consider the reflector system with D = 18 m, ν = 1.5
GHz. For comparison with true pattern Φ̃(θ), we consider

the unnormalized model pattern
√
GF (θ) for the estimated

values of n and C. In general, |Φ̃(θ)| and |
√
GF (θ)| are sim-

ilar (see e.g., Fig. 3), but with significant differences. Thus

the potential benefit for the pattern correction is confirmed.

In summary, this method yields a closed-form expres-

sion (2) for the antenna pattern with parameters accounting

for the focal ratio and feed pattern. However, it may not

give a sufficiently close fit for our intended application [2].

To improve this method, an adaptive correction of the pattern

function can be done as discussed in the following section.

III. ADAPTIVE PATTERN MODELING

Now we consider whether the true pattern Φ̃(θ) can

be accurately modeled using (2) with different coefficients

determined from measurements of the true pattern. Hence

we define a model pattern Φ(θ) as:

Φ(θ) = AF (θ, n = 0) +B F (θ, n) (3)

where A and B are constants that can be determined by

comparing Φ(θ) to Φ̃(θ). Note that Φ̃(θ) (and subsequently

Φ(θ)) are not normalized; specifically, A and B may repre-

sent the gain as well as the shape of the pattern. Since Φ̃(θ)
is in general complex-valued, the values of A and B will

also be complex.

In the following subsections, we consider the adaptive

correction methods in increasing order of complexity.

A. One-point (p = 1) Correction

We use only one measurement, Φ̃(θ1) at angle θ1, and

choose A and B such that Φ(θ1) = Φ̃(θ1). Thus:

AF (θ1, n = 0) +B F (θ1, n) = Φ̃(θ1) (4)

Pattern modeling using one-point correction is an under-

determined problem with one equation and two unknowns.

Hence there are multiple solutions with multiple possible

choices of A and B that satisfy the constraint at θ1. However,

it is not immediately clear which solutions would yield a

reasonable fit over the entire pattern. We now examine two

solutions that are readily apparent.

In the first solution:

A = A0
Φ̃(θ1)

F (θ1, n = 0)
; (5)

B = B0
Φ̃(θ1)

F (θ1, n)
(6)

Fig. 3. Comparison of true pattern |Φ̃(θ)| from PO, and uncorrected model

pattern |
√
GF (θ)|.

Fig. 4. Comparison of model pattern |Φ(θ)| from one-point correction (with

θ1 selected at peak of main lobe marked with “*”), true pattern |Φ̃(θ)|, and

uncorrected model pattern |
√
GF (θ)|.

In the second solution:

A = A0
Φ̃(θ1)

F (θ1, n, C)
; (7)

B = B0
Φ̃(θ1)

F (θ1, n, C)
(8)

Fig. 4 shows both solutions with θ1 selected at the peak

of the main lobe. Note that the model patterns Φ(θ) obtained

from both solutions result in a reasonable fit to the true

pattern Φ̃(θ). Fig. 5 shows both solutions applied to θ1
selected at the peak of the first sidelobe to the right of the

main lobe. In this case, the model pattern Φ(θ) obtained from

the second solution (i.e., (7) and (8)) results in a reasonable

fit to Φ̃(θ), whereas the first solution (i.e., (5) and (6)) does

not.

Fig. 5. Comparison of model pattern |Φ(θ)| from one-point correction (with

θ1 selected at peak of sidelobe marked with “*”), true pattern |Φ̃(θ)|, and

uncorrected model pattern |
√
GF (θ)|.
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Fig. 6. Model pattern |Φ(θ)| from one-point correction (at the −3 dB point

at θ = +0.35◦, marked with “*”), true pattern |Φ̃(θ)|, and uncorrected

model pattern |
√
GF (θ)|.

Fig. 7. Difference in (a) magnitude; (b) phase between model pattern Φ(θ)
obtained from one-point correction (at the −3 dB point at θ = +0.35◦,

marked with “*”) and true pattern Φ̃(θ).

Experimentation using other values of θ1 shows that Φ(θ)
obtained from the second solution results in a good fit to

Φ̃(θ) for θ1 selected anywhere on the pattern other than

null points. On the other hand, Φ(θ) obtained from the first

solution does not fit well to Φ̃(θ) in many of these cases. A

possible reason why the second solution seems to be better

might be that the coefficients in the second solution account

for the edge illumination C whereas the coefficients in the

first solution do not. In rest of the paper, we use the second

solution (i.e., (7) and (8)) exclusively for p = 1 correction.

Now consider an example of p = 1 correction applied at a

point on the main lobe between peak and null; e.g., at the −3
dB point at θ1 = +0.35◦ as shown in Fig. 6. Fig. 7 shows

the difference in magnitude and phase of Φ(θ) and Φ̃(θ).
The magnitude and phase values of Φ(θ) and Φ̃(θ) match

exactly at the point where correction is applied, as expected.

Fig. 7(a) shows that the error in Φ(θ) becomes maximum at

the nulls. Fortunately, the error in the nulls is not really of

interest in the interference canceling application because the

response to satellites is already very small there. Fig. 7(b)

shows that the error in the phase of Φ(θ) does not vary much

within each lobe, but does increase with increasing sidelobe.

A comparison with Fig. 3 shows that p = 1 correction

method significantly reduces the error in the magnitude of

the pattern model Φ(θ) (i.e., difference in magnitude of Φ(θ)
and Φ̃(θ)) as compared to the error in the uncorrected pattern

model |
√
GF (θ)|. For constraint angle θ1 selected at the

peaks of main lobe (i.e., θ1 = 0◦) and first sidelobe (i.e.,

θ1 = 1.10◦), the maximum error within the HPBW occurs

at the edge of the range (e.g., θ = ±0.35◦).

Fig. 8. Model pattern |Φ(θ)| from two-point correction (using two points

on the main lobe marked with “*”), true pattern |Φ̃(θ)| and uncorrected

model pattern |
√
GF (θ)|.

B. Two-point (p = 2) Correction

While one-point correction clearly improves the agreement

between the model pattern and the true pattern, this is

true mainly in the angular region around the constrained

angle. For better overall fitting, especially at angles far

from the measured angle, multiple point correction should

be considered. We now consider the two-point correction

(p = 2) of the pattern.

For p = 2, we use two measurements Φ̃(θ1) and Φ̃(θ2)
at two angles θ1 and θ2. We constrain Φ(θ1) = Φ̃(θ1) and

Φ(θ2) = Φ̃(θ2) by solving the following linear system of

equations:

Φ̃(θ1) = AF (θ1, n = 0) +B F (θ1, n) (9)

Φ̃(θ2) = AF (θ2, n = 0) +B F (θ2, n) (10)

In this case, we have a single solution:

A =
Φ̃(θ1)F (θ2, n)− Φ̃(θ2)F (θ1, n)

F (θ1, n = 0)F (θ2, n)− F (θ2, n = 0)F (θ1, n)
(11)

B = − Φ̃(θ1)F (θ2, n = 0)− Φ̃(θ2)F (θ1, n = 0)

F (θ1, n = 0)F (θ2, n)− F (θ2, n = 0)F (θ1, n)
(12)

The two-point correction method reduces the error in

pattern modeling as compared to the one-point correction

method. This can be seen by considering the following two

examples.

Fig. 8 shows an example of two-point correction applied

for θ1 and θ2 both on the main lobe. These points are the

same as those used for one-point correction in Figs. 4(b)

and 6; i.e., θ1 = 0.00◦ and θ2 = +0.35◦ respectively. The

maximum error in pattern magnitude decreases from 1.96 dB

in the first sidelobe (specifically 1.85 dB at θ1 = 0.00◦ and

1.96 dB at θ1 = 0.35◦) with one-point correction to 0.78 dB

with two-point correction.

Two-point correction applied to the angles θ1 = 0.00◦

and θ2 = +1.10◦, corresponding to the peaks of main lobe

and first sidelobe, is shown in Fig. 9. These angles were

considered for one-point correction in Figs. 4(b) and 5(b).

The maximum error in pattern magnitude decreases from

0.66 dB with one-point correction to 0.06 dB with two-point

correction within the HPBW of the main lobe. The maximum

error also decreases from 1.85 dB to 0.62 dB within −3 dB

region of the first sidelobe.

In conclusion, it is observed that the two-point correction

method further reduces the error in the magnitude and phase
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Fig. 9. Model pattern |Φ(θ)| from two-point correction (using two points
on the peaks of main lobe first sidelobe marked with “*”), true pattern

|Φ̃(θ)| and uncorrected model pattern |
√
GF (θ)|.

within main lobe and sidelobes as compared to the one-point

correction method.

C. Multi-point (p > 2) Correction

Now we consider the extent to which additional measure-

ments may yield further improvement in the agreement be-

tween the model pattern and the true pattern. The correction

methods can be extended for the values of Φ̃(θ) at more than

2 angles; i.e., given measurements Φ̃(θ1), Φ̃(θ2), · · · , Φ̃(θp),
at θ1, θ2, · · · , θp. The linear system of equations becomes:








F (θ1, n = 0) F (θ1, n)
F (θ2, n = 0) F (θ2, n)

...
...

F (θp, n = 0) F (θp, n)








︸ ︷︷ ︸

M

[
A
B

]

︸ ︷︷ ︸

x

=








Φ̃(θ1)

Φ̃(θ2)
...

Φ̃(θp)








︸ ︷︷ ︸

y

(13)

Mx = y (14)

The matrix x consists of the coefficients we seek and y

consists of the measured pattern values. For p > 2, the

system is overdetermined. We can still find a least-squares

solution of (14) in the sense that x minimizes ||y−Mx||2:

x = (MTM)−1MTy (15)

Fig. 10 shows how performance changes with increasing

number of measurements in a practical scenario, where the

number of measurements increase over time. From Sec-

tions III-A and III-B, we expect that p = 2 correction would

yield a better fit than p = 1 correction, however, this is not

the case when constraint points do not lie in the main lobe.

Tables I and II summarize the error of Φ(θ) compared to

Φ̃(θ) for scenarios in Fig. 10. We observe:

• Although p = 2 yields a better fit than p = 1 around the

far sidelobes (viz., 0.00 dB as opposed to −1.69 dB)

where the constraint points are selected. However, p = 1
yields a better fit than p = 2 in the main lobe (viz.,

−0.39 dB as opposed to −3.27 dB) and first sidelobes

(viz., −2.23 dB as opposed to +2.71 dB).

• Significant improvement is observed for p = 6 and p =
7; i.e., once constraint points include the first sidelobe

and main lobe.

• For p = 7 having one constraint point in the main lobe,

multi-point correction is better than p = 1 correction

using the same point in the main lobe.

Fig. 10. Model pattern |Φ(θ)| obtained from adaptive correction (using
points θ1 = +3.89◦,θ2 = +3.64◦, θ3 = +3.01◦, θ4 = +2.37◦, θ5 =
+1.73◦, θ6 = +1.10◦, θ7 = 0.00◦ marked with “*”), true pattern |Φ̃(θ)|
and uncorrected model pattern |

√
GF (θ)|.

Therefore increasing p can significantly improve perfor-

mance, even if the additional points are in the sidelobes.

TABLE I
ERROR IN |Φ(θ)| COMPARED TO |Φ̃(θ)| AT PEAKS FOR POINTS

CONSIDERED IN FIG. 10.

Maximum error at the peaks of
Scenario main lobe right sidelobes

first second third fourth fifth

p = 1 −0.39 dB −0.87 dB −1.63 dB −1.72 dB −1.71 dB −1.69 dB
p = 2 −2.88 dB +0.70 dB +0.12 dB +0.03 dB 0.00 dB 0.00 dB
p = 3 −2.90 dB +0.70 dB +0.12 dB +0.03 dB +0.01 dB 0.00 dB
p = 4 −2.81 dB +0.69 dB +0.11 dB +0.02 dB −0.00 dB +0.01 dB
p = 5 −2.57 dB +0.65 dB +0.07 dB −0.02 dB −0.04 dB −0.04 dB
p = 6 −1.06 dB +0.21 dB +0.35 dB −0.40 dB −0.39 dB −0.38 dB
p = 7 0.00 dB +0.15 dB −0.50 dB −0.57 dB −0.56 dB −0.54 dB

TABLE II
ERROR IN |Φ(θ)| COMPARED TO |Φ̃(θ)| FOR POINTS CONSIDERED IN

FIG. 10.

Error at Maximum error and its location
Scenario θ = 0◦ in main lobe within −3dB points in

within HPBW first left sidelobe first right sidelobe

p = 1 −0.39 dB −0.39 dB, 0.00◦ −2.23 dB, −0.97◦ −2.23 dB, +0.97◦

p = 2 −2.88 dB −3.27 dB, +0.35◦ +2.71 dB, −0.97◦ +2.71 dB, +0.97◦

p = 3 −2.90 dB −3.30 dB, +0.35◦ +2.70 dB, −0.97◦ +2.70 dB, +0.97◦

p = 4 −2.81 dB −3.19 dB, +0.35◦ +2.70 dB, −0.97◦ +2.70 dB, +0.97◦

p = 5 −2.57 dB −2.87 dB, +0.35◦ +2.68 dB, −0.97◦ +2.68 dB, +0.97◦

p = 6 −1.06 dB −1.15 dB, +0.35◦ +0.98 dB, −0.97◦ +0.98 dB, +0.97◦

p = 7 0.00 dB +0.04 dB, +0.35◦ +0.66 dB, −1.26◦ +0.66 dB, +1.26◦

D. Effect of Pattern Variation on Performance of Interfer-

ence Canceling

Now we consider the performance of the model function

Φ(θ(t)) in the application depicted in Fig. 2; that is, as a

means to mitigate the time variation induced by pattern and
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thereby avoid bias in the estimation of waveform parameters

in CTC. In this case the variation in |Φ̃(t)| is reduced to the

variation of the ratio:

ζ(t) =

∣
∣
∣
∣
∣

Φ̃(t)

Φ(t)

∣
∣
∣
∣
∣

(16)

The upper bound on residual interference, IUB , becomes

(see [3] Equation 3.10):

IUB
def
=









1−

∣
∣
∣
∣
∣

Φ̃(t+ τ)

Φ(t+ τ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Φ̃(t)

Φ(t)

∣
∣
∣
∣
∣









2

=







1− ζ(t+ τ)

ζ(t)
︸ ︷︷ ︸

|Ψ(t,τ)|








2

(17)

IUB = [1− |Ψ(t, τ)|]2 (18)

The performance of the models can be quantified by

comparing τa, the time required for pattern value update,

defined in [2] and [3] as the value of τ required to achieve

a specified IUB for a satellite at the −3 dB point in the main

lobe1. For an ideal model (i.e., Φ̃ = Φ), τa is unbounded, and

τa becomes shorter as the model becomes worse. Now we

estimate τa for the examples considered in Sections III-A-

III-C; i.e., transit of a LEO satellite interferer with ωa =
0.550◦/s (worst case scenario for Iridium as discussed in [3]).

For easier comparison of the results, we normalize ζ(t) by

ζ(tHP ), where tHP is the time corresponding to the −3 dB

point in the main lobe. Note that this normalization does not

change Ψ, so IUB is not affected by this normalization.

Figs. 11–15 show normalized ζ(t) for the various exam-

ples considered in Sections III-A-III-C. Normalized ζ(t) =
1±0.0316 corresponds to IUB = 0.001 (−30 dB). Note that

the values of τa are significantly different on the two sides

of the −3 dB point. These values correspond to the satellite

moving toward or away from the reflector pointing direction.

Both values of τa are considered since the “estimate inter-

ference waveform” block in Fig. 2 must accommodate the

possibility of the satellite moving in either direction.

Fig. 11 shows normalized ζ(t) for the uncorrected true

pattern Φ̃(t). This corresponds to the scenario addressed

in [2] and [3]. The values of τa can be predicted using

(see [3] Equation 3.34)

τa ≈ 0.654λ
√

IUB

ωaD
(19)

The values of τa obtained from Fig. 11 are 25.5 ms and

26.0 ms. These values are comparable to the prediction of

τa = 23.9 ms by (19) (using λ = 0.2 m, IUB = 0.001, ωa =
0.550◦/s, and D = 18 m). Even with the assumptions

considered in the derivation of (19), the predicted value of

τa = 23.9 ms is very close to the values estimated from the

actual pattern variation.

Fig. 12 shows normalized ζ(t) for model pattern
√
GF (t)

described in previous section. The values of τa obtained

from Fig. 12 are 355.1 ms and 1627.8 ms. Comparison with

1τa is the maximum duration for which residual interference is less than
a specified upper bound (IUB), assuming (1) the entire duration is used
for waveform estimation, (2) the only impairment to canceling is pattern
variation, and (3) the interferer is located at the −3 dB point on the main
lobe.

Fig. 11. Normalized ζ for the uncorrected true pattern Φ̃(t). This corre-
sponds to the scenario addressed in reference [2].

Fig. 12. Normalized ζ for model pattern
√
GF (t).

Fig. 11 shows that τa increases by orders of magnitude using

this non-adaptive model pattern.

Fig. 13 shows normalized ζ(t) for p = 1 correction with

constraint angle θ1 = 0◦,+0.35◦, and +1.10◦ corresponding

to Figs. 4(b), 6, and 5(b). It is surprising that the values

of τa obtained with different constraint angles are equal.

Further, these values are equal to that obtained from the

uncorrected model pattern
√
GF (t). A possible reason is

that the shape of the pattern in all these scenarios is identical,

although the absolute value for the pattern is different. Fig. 14

shows normalized ζ(t) for p = 2 correction with constraint

angles θ1 = 0◦, θ2 = +0.35◦ and θ1 = 0◦, θ2 = +1.10◦,

corresponding to Figs. 8 and 9. The values of τa increase

for p = 2 as compared to p = 1, indicating improvement.

However, contrary to p = 1, the values of τa are very dif-

ferent for different constraint angles selected on the pattern.

The values of τa are larger when both the constraint angles

are in the main lobe as compared to the scenario when one

constraint point is in sidelobe and one in main lobe. Table III

summarizes values of τa obtained from Figs. 11-14.

Fig. 13. Normalized ζ for model pattern Φ(t) for p = 1 corresponding to
Figs. 4(b), 6 and 5(b).
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Fig. 14. Normalized ζ for model pattern Φ(t) for p = 2 corresponding to
Figs. 8 and 9.

Fig. 15. Normalized ζ for model pattern Φ(t) for adaptive correction
corresponding to Fig. 10. Frames (a)-(g) correspond to the frames (a)-(g)
of Fig. 10.

Fig. 15 shows normalized ζ(t) for adaptive modeling

corresponding to Fig. 10. The τa values are indicated on

the frames. As observed in Fig. 10 and already discussed

in Section III-C, one-point correction yields a better pattern

model when constraint points are in the sidelobes, hence

frame (a) shows larger values of τa as compared to frames

(b) to (e). Frame (f) (corresponding to one constraint point

in first sidelobe) has similar τa values as frame (a). Frame

(g) with one constraint point in the main lobe has larger τa
as compared to frame (a). Tables III and IV confirm that

increasing the number of points in the adaptive modeling

increases the quality of the pattern model. As was noted

in Section III-C, we observe that p = 1 gives a better

model when there are no constraint points in the main lobe

and the first sidelobe. In general, it is confirmed that the

pattern modeling increases the value of τa, and the adaptive

modeling increases it further.

TABLE III
SUMMARY OF τa ACHIEVED FOR VARIOUS MODELS (FIGS. 11-14).

Scenario τa on the left of −3dB τa on the right of −3dB
point in the main lobe point in the main lobe

True pattern Φ̃(t) (i.e., no correction) 26.0 ms 25.5 ms√
GF (t) (i.e., not adaptive) 1627.8 ms 355.1 ms

Φ(t) for p = 1
(θ1 = 0.00◦, +0.35◦, +1.10◦) 1627.8 ms 355.1 ms

Φ(t) for p = 2
(θ1 = 0.00◦, θ2 = +0.35◦) 2029.8 ms 757.0 ms

Φ(t) for p = 2
θ1 = 0.00◦, θ2 = +1.10◦) 1797.3 ms 524.6 ms

TABLE IV
SUMMARY OF τa ACHIEVED FOR VARIOUS MODELS (FIG. 15(A)-(G)

CORRESPONDING TO FIG. 10(A)-(G)).

Scenario τa on the left of −3dB τa on the right of −3dB
point in the main lobe point in the main lobe

p = 1 (Fig. 10(a)) 1627.8 ms 355.1 ms
p = 2 (Fig. 10(b)) 291.5 ms 149.8 ms
p = 3 (Fig. 10(c)) 280.4 ms 146.6 ms
p = 4 (Fig. 10(d)) 319.8 ms 157.1 ms
p = 5 (Fig. 10(e)) 1393.4 ms 193.4 ms
p = 6 (Fig. 10(f)) 1627.7 ms 391.4 ms
p = 7 (Fig. 10(g)) 1885.8 ms 613.1 ms

IV. CONCLUSIONS

In this paper, we have described adaptive correction meth-

ods for the pattern function of a large axisymmetric reflector

antenna. The efficacy of the methods is demonstrated by

comparing the model pattern Φ(θ) with true pattern Φ̃(θ)
obtained from PO and uncorrected pattern

√
GF (θ). It is

confirmed that the adaptively corrected model patterns yield

a closer fit to the true pattern as compared to
√
GF (θ), but

the amount of improvement is not consistent and is small

relative to the fit obtained from
√
GF (θ).

We considered correction methods in increasing order of

complexity; i.e., from one-point (p = 1) correction method

to multi-point (p ≥ 2) correction method. Both the one-

point and two-point correction methods were found to reduce

the error in pattern modeling substantially as compared

to uncorrected pattern. From the examples given in the

Section III-C, we infer that the one-point correction method

yields a better pattern model when constraint points are in

the sidelobes and multi-point correction (p ≥ 2) yields better

pattern model when at least one of the constraint points lies

in the main lobe. The rate of pattern value update τa for the

uncorrected pattern was found to be few milliseconds to few

tens of milliseconds [2], [3]. It has been demonstrated that

using the scheme shown in Fig. 2 with the pattern models

proposed here, τa can be extended by orders of magnitude.
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