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Abstract

Uncertainty attribution in water supply forecasting is crucial to improve forecast
skill and increase confidence in seasonal water management planning. We develop
a framework to quantify fractional forecast uncertainty and partition it between (1)
snowpack quantification methods, (2) variability in post-forecast precipitation, and
(3) runoff model errors. We demonstrate the uncertainty framework with statistical
runoff models in the upper Tuolumne and Merced River basins (California, USA) using
snow observations at two endmember spatial resolutions: a simple snow pillow index
and full-catchment snow water equivalent (SWE) maps at 50m resolution from the
Airborne Snow Observatories. Bayesian forecast simulations demonstrate a nonlinear
decrease in the skill of statistical water supply forecasts during warm snow droughts,
when a low fraction of winter precipitation remains as SWE. Forecast skill similarly
decreases during dry snow droughts, when winter precipitation is low. During a shift
away from snow-dominance, the uncertainty of forecasts using snow pillow data in-
creases about 1.9 times faster than analogous forecasts using full-catchment SWE
maps in the study area. Replacing the snow pillow index with full-catchment SWE data
reduces statistical forecast uncertainty by 39% on average across all tested climate
conditions. Attributing water supply forecast uncertainty to reducible error sources

reveals opportunities to improve forecast reliability in a warmer future climate.
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Research Impact Statement

Quantifying uncertainty sources in seasonal water supply forecasts during snow drought can justify the adoption of snow measure-

ment and runoff modeling approaches that improve forecast reliability.

1 | INTRODUCTION

Mountains are natural reservoirs with great importance for water resources globally and in the western United States, accumulating cold-
season precipitation as snow and releasing it for downstream consumption throughout the growing season (Bales et al., 2006; Immerzeel
et al., 2020; Viviroli et al., 2007). In many areas, the timing of downstream water availability is subject to further regulation by artificial storage,
a practice necessary to buffer the effects of meteorological droughts and peak flows on daily to decadal time scales, though the historic bal-
ance between runoff timing and storage capacity is threatened by climate change (Barnett et al., 2005). Decisions about how to schedule water
releases, diversions, and other management activities depend on managers' understanding of future water availability, including uncertainty
(Pagano et al., 2004; Stillinger et al., 2021).

Statistical relationships derived from precipitation time series and other environmental data are one of the most widespread tools for
anticipating water availability, exemplified by the wide variety of drought indices (Heim, 2002; Zargar et al., 2011). In snow-dominated envi-
ronments, explicitly simulating the temporal lag effect of snowpack accumulation and ablation can better characterize the timing of drought
emergence (Staudinger et al., 2014). Similar to drought indices, statistical water supply forecasts leverage time series of environmental obser-
vations to characterize water balance deviations, typically providing predictions of runoff volume over a temporal period of interest. Seasonal
water supply forecasts based on snow and precipitation are used to anticipate future runoff volumes in mountain watersheds and thus inform
water storage and release schedules (Hartmann et al., 2002). Snow datasets are particularly useful for water supply forecasting because they
integrate precipitation throughout the winter season, and snow data have historically provided one of the largest contributions to seasonal
water supply forecast skill in the western United States (Koster et al., 2010).

Volumetric water supply forecasts are a crucial component of water management in environments like the California Sierra Nevada moun-
tain range in the western United States (Dettinger & Anderson, 2015). However, forecasts always contain some degree of uncertainty, often
represented as cumulative exceedance probabilities for a particular period, such as the spring/summer runoff season. Like all models, probabi-
listic forecasts are vulnerable to model misspecification, faulty assumptions, and data errors, giving rise to an issue of uncertainty in the uncer-
tainty. As such, water management decisions are often hedged against the possibility of worse-than-expected droughts (Stillinger et al., 2021).
Identifying sources of uncertainty and propagating their effects can improve the statistical robustness and transparency of seasonal water
supply forecasts, increasing confidence in forecast-informed water management decisions.

Climate change poses challenges to water management paradigms that have been historically successful by shifting the timing of downstream
water availability earlier in the season (Barnett et al., 2005; Knowles et al., 2006). The western United States, including the Sierra Nevada, faces a
particularly great risk of unmet warm-season water demand due to climate-induced snow drought (Li et al., 2017; Mankin et al., 2015). The high-
precipitation winters and low-precipitation springs typical of California's Mediterranean climate have historically enabled seasonal planning using
snow-based runoff forecasts in the Sierra Nevada (Pagano et al., 2004). However, significant discrepancies (40%-129% error) have also been
noted between forecast values and observed water yields in certain years (Dozier, 2011). For example, during the low runoff season of 2021,
surprising forecast overpredictions led to calls for an investigation of “missing” streamflow (Lapides et al., 2022).

As anthropogenic climate warming continues to alter the Sierra snowpack, temperature-related impacts are expected to disproportion-
ately affect mountain regions due to elevation-dependent warming (Mountain Research Initiative EDW Working Group, 2015). Temperature
increases on the order of 1°C are likely to lead to increased probabilities of below-average snowpack storage in the Sierra (Huning &
AghaKouchak, 2018), and the western United States has experienced a greater percentage increase in snow drought duration compared to
other mountain regions over recent decades (Huning & AghaKouchak, 2020). Models anticipate a decline in the winter snowpack in California
and across much of western North America (Mote et al., 2018), with periods of low-to-no snow winters possible in California within decades
(Siirila-Woodburn et al., 2021). Furthermore, legacy in situ snow monitoring technologies, such as snow pillows and snow courses, will lose
predictive power as the snowpack recedes above existing monitoring stations (Livneh & Badger, 2020). Snowpack quantification techniques
incorporating remote sensing can potentially mitigate this degradation of station-based snow information by observing the full-catchment
snowpack.

Considerable effort has been invested in improving current and future forecast skill with more accurate and representative snow measure-

ments. For example, the NASA/JPL Airborne Snow Observatory (ASO, now Airborne Snow Observatories, Inc.) improved the quantification
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of spatially distributed, full-catchment snow water equivalent (SWE) by combining snow depth maps acquired through airborne light detection
and ranging (lidar) with spectrometer measurements and physical snowpack modeling using iSnobal (Marks et al., 1999; Painter et al., 2016).
Assimilation of ASO data into snow models has resulted in large increases in model skill in snowmelt-dominated basins (Hedrick et al., 2018).
Quantifying the reduction in uncertainty associated with ASO snow monitoring techniques could justify the adoption of new forecast meth-
ods where appropriate. However, to attribute forecast improvements to a particular dataset, it is necessary to isolate the snowpack quantifi-
cation method from other sources of uncertainty.

In hydrological modeling, uncertainty arises in many forms. Beven (2016) categorizes uncertainty as aleatory, or reducible to a sta-
tionary statistical distribution; epistemic, from a lack of knowledge about the appropriate system dynamics or forcing/response data;
semantic, from ambiguities in the concepts used to discuss processes or models; and ontological, from differences in beliefs about
appropriate frameworks or assumptions. Statistical approaches to water supply forecasting have typically focused on aleatory (ran-
dom) uncertainty, estimating total forecast uncertainty through cross-validation standard error or similar techniques (Garen, 1992). In
his introduction to forecasts based on principal components regression, Garen (1992) argues that “the source of forecast error does
not matter in decision making as long as the error can be quantified and described probabilistically.” However, this assertion overlooks
the importance of separating uncertainty sources to identify opportunities for improvement. Moreover, not all sources of uncertainty
are best treated statistically, particularly those arising from “insidious” data errors (Lundquist et al., 2015) or non-stationarity (Milly
et al., 2008).

Although the broad areas of uncertainty in water supply forecasts are understood conceptually, historical conceptualizations have
seen limited investigation in the context of climate nonstationarity or recent advances in snow monitoring technology. Schaake and
Peck (1985) broadly characterized the sources of forecast uncertainty as climatological uncertainty, model uncertainty, and data error.
Although uncertainty in the future climate dominates hydrological uncertainty on multi-decadal time periods (Her et al., 2019), in the
context of seasonal water supply forecasts, climatological uncertainty refers to variability in post-forecast weather, such as the amount
of spring precipitation. In operational forecasting, post-forecast forcings are often constrained by historical climate variability or numer-
ical weather predictions (e.g., ensemble streamflow prediction: Day, 1985; Troin et al., 2021). Model uncertainty arises from structural
biases including the misrepresentation of physical processes and incomplete parameterization (e.g., missing snowmelt processes in a
physical model: Webb et al., 2022), in addition to random errors from imperfect calibration of parameter values and uncertainty from
equifinality (e.g., Beven, 2006). Data errors can accumulate from many sources, categorized by McMillan et al. (2018) as errors in the
measurement of physical quantities, the calculation of derived quantities, interpolation between sparse spatiotemporal measurements,
spatial scaling of properties, and human error associated with data management. The variety of climatological, model, and data uncer-
tainty sources each offer a potential avenue to understand total forecast uncertainty and perhaps improve water supply forecast skill
by ameliorating a particular uncertainty source. Schaake and Peck (1985) argued that the potential for improvement in seasonal water
supply forecast skill has a lower bound defined by the skill of existing forecasts and an upper bound defined by the unpredictable climate
variability inherent in natural systems.

The snow drought concept was developed to help understand the connections between meteorological conditions and hydrological
drought during years with lower than normal snowpack storage. Snow drought refers to a lack of snow compared to a historical baseline
and can be classified as “dry” or “warm” (Harpold et al., 2017; Hatchett & McEvoy, 2018). “Dry snow drought” results from dry condi-
tions when a lack of precipitation (meteorological drought) causes below-normal snow accumulation, and “warm snow drought” results
from warm conditions when the snowpack melts earlier than normal or a larger fraction of precipitation falls as rain. High interannual
precipitation variability in the Sierra Nevada mountain range results in management challenges from alternating drought and flood
years. Moreover, snow storage in western North America is vulnerable to an increasing frequency of warm snow droughts as global
temperatures increase (Dierauer et al., 2019). The frequency of consecutive snow drought years resulting from warmer conditions is
expected to increase by almost an order of magnitude by mid to late century (Marshall et al., 2019). Investigating the dynamics of snow-
pack measurement error, hydrological model uncertainty, and post-forecast precipitation variability during snow droughts is necessary
to examine vulnerabilities in existing forecast methods and identify opportunities to make water supply forecasts more resilient to
climate change.

To quantify the anticipated impact of climate change on the sources of uncertainty in snow-driven seasonal water supply forecasts, we
develop a statistical framework to attribute total forecast uncertainty to different sources. We demonstrate one application of this framework
using an ensemble of simple statistical runoff models and two different snow observation-based datasets, a snow pillow index and ASO SWE
maps, selected as endmembers of spatial resolution and technological sophistication. Our investigation of forecast uncertainty in this test case
addresses the following research question: what fraction of seasonal water supply forecast uncertainty is attributable to snowpack quantifi-
cation methods, post-forecast precipitation variability, and statistical runoff model error, and how do these uncertainty sources change during

snow drought?
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2 | METHODS
2.1 | Studyarea

We model the impact of snow drought on the sources of water supply uncertainty by propagating model error, snowpack quantification un-
certainty, and post-forecast precipitation uncertainty through a set of statistical runoff models in the Tuolumne River basin (1184 km?, mean
elevation 2721 m) and the Merced River basin (471 km?, mean elevation 2753 m), located on the west side of the southern California Sierra
Nevada mountain range (Figure 1). The Tuolumne River provides water to the City of San Francisco and other Bay Area communities, and
both rivers provide water to agricultural districts in California's Central Valley. Water supply forecasts for the Tuolumne and Merced Rivers
are operated by the California Nevada River Forecast Center using process-based runoff models and by the California Department of Water
Resources using statistical methods. In-house forecasts are also operated by multiple reservoir management groups using a variety of physi-
cal and statistical models (e.g., as described by Chris Graham for Hetch Hetchy Reservoir, 2018 Yosemite Hydroclimate Meeting, https://cafir
esci.com/s/Graham_ASO_inTuolumneForecastingComp.pdf). These models typically report uncertainty using probabilistic exceedance levels
derived from an ensemble of model runs using variable post-forecast weather conditions.

We use a Bayesian statistical framework to evaluate a suite of simplified statistical runoff models for the Tuolumne and Merced water-
sheds across a range of snow drought scenarios. The models were developed in collaboration with the management and forecasting team at
Hetch Hetchy Reservoir, part of the San Francisco Public Utilities Commission, to represent a range of structural complexities and data streams
that are analogous to operational statistical forecast methods.

2.2 | Runoff models

To analyze forecast behaviors under a range of hydrologic and climatic conditions, we implement four statistical runoff models for the
Tuolumne and Merced Rivers and propagate uncertainty through the parameters and inputs of each model. The conceptual structure of many

Watersheds

(] Tuolumne River
(1 Merced River

4220000 Runoff Points

A Hetch Hetchy Reservoir
v Happy Isles Gauge
Precipitation Station

4200000 * Tuolumne Meadows (TUM)

Snow Pillow Stations

@ Slide Canyon (SLI)

© Paradise Meadow (PDS)
O Dana Meadows (DAN)

@ Tuolumne Meadows (TUM)
@ White Wolf (WHW)

© Tenaya Lake (TNY)

@ Gin Flat (GIN)

QO Ostrander Lake (STR)

4180000

Elevation
4,000 m
1,000 m

FIGURE 1 Map of the upper Tuolumne and Merced River watersheds. A snow pillow index is calculated from eight stations spanning the
study domain (listed from north to south). Precipitation is measured at a central station. Runoff is measured at a reservoir on the Tuolumne
River and a stream gauge on the Merced River. The inset map shows the location of the study area in the State of California.
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lumped runoff models consists of an algebraic expression relating runoff, Q, to water inputs from precipitation, P, and snowpack ablation,

ASWE, under the influence of one or more additional terms. We generalize this framework to the expression:

Q=P+ ASWE - L, (1)

where L is a generalized loss function, and all terms are in area-normalized water depth units. The loss function, also known as the water balance
residual, includes the lumped effects of evapotranspiration (ET), surface or subsurface storage changes, and groundwater import or export. There is
negligible artificial regulation or anthropogenic consumption of water upstream from the runoff measurement points in the study watersheds, and
groundwater effects are expected to be small in this region of the Sierra Nevada due to the glaciated granitic lithology. To model cumulative water
yield over an extended forecast period of several months, the terms Q, P, and L are further simplified from instantaneous rates to time-integrated
volumes, or equivalently, area-normalized specific yields in units of water depth.

We define runoff equations applicable to the time interval from October 1 through July 31. This time interval includes the regional snow-
pack accumulation and ablation seasons and captures the target April-July forecast period in addition to the October-April look-back window

used to generate forecasts. We define a water balance on this time interval,

LTotaI = PTotaI - QTotaI (2)

such that Q. is the total runoff measured between October 1 and July 31, P, is the cumulative precipitation on the same time interval, and
Ly

otal 1S defined as the difference between the former terms. Since the full-season period includes the normal snowpack accumulation and ablation

seasons, ASWE is assumed to be zero and is excluded from Equation 2, although this assumption may contribute to model error in very high snow
years if some snow persists into the late summer (e.g., 2017 in the Sierra). In different cases, the terms constituting L;,,,, may have the same or
opposite sign; for instance, groundwater contributions to streamflow associated with a reduction in groundwater storage during droughts could

cause L to represent a variety of potential assumptions that can underpin empirical

Total
runoff models, defined by the functional forms of Ly

to be smaller than ET. We develop four models for L,

tal’

Ly=a, (3.1)

Ly =bxProtans (3.2)
Ly=a+bX Py, (3.3)
Ly=a+bXProa =X Qpastvear (3.4)

Model 1 (Equation 3.1) assumes Ly, is a constant, a, where the difference P-Q is the same each year. This model is assumed to approxi-
mate a storage-limited system resulting in constant ET demand that can be satisfied even during drought conditions.

Model 2 (Equation 3.2) calculates Ly, Total
work approximates a purely supply-limited system where ET increases in direct proportion to seasonal precipitation.

by applying a scale factor, b, to P. resulting in a constant runoff efficiency, Q/P. This model frame-

Model 3 (Equation 3.3) provides a linear structure for the loss term, with L., dependent on the current year's precipitation and a constant

otal
offset. The architecture of this model still assumes a closed water balance on seasonal time scales but allows for the relationship of ET and

precipitation to vary between the endmember scenarios of Model 1 and Model 2.

Model 4 (Equation 3.4) adds a second slope term, c, to L, that is applied to the previous year's total streamflow, Q| ,,ve» @S @ proxy for

otal

antecedent deficit or carryover effects. This framework implies an open water balance with a sponge-like storage system. In this case, L.,

|is
recursively dependent on each prior year's water balance. We note that the antecedent streamflow, Q| _.v., is calculated for the full October
1 to September 30 period, while the model only predicts runoff up to the end of the forecast period (July 31).

To enable analysis of water supply forecasts on variable time scales, which is necessary to accommodate the opportunistic and irregular

timing of ASO SWE acquisitions, we develop equations to scale L,

otal OVET subsets of the runoff season. Runoff efficiency, R,

QTotaI

R=
PTotaI

(4)

can be used to establish a scalable relationship between Q and P on the variable-length periods from each ASO acquisition through the end of
the forecast period. Although R varies depending on the time period under consideration, our uncertainty simulations are restricted to a single
date (April 1), so the assumption of a constant value for R in a given runoff season for each watershed should not impact the intercomparison of
uncertainty. We calculate cumulative runoff during a forecast period as R multiplied by a water balance input, which is the complete ablation of the

current snowpack plus any precipitation falling during the post-forecast period, Pspring:

Q=R (SWE+Psins)- (5)

sdny) SUONIPUOD) PUE SWLID L, 341 39S “[$Z0Z/S0/L1] U0 AIRIqIT AUIUQ AS[IA ‘OUSY BPEAIN JO ANSIDAIUL AQ [ZZE1°8891-TSLI/TTT1°01/10p/w0d Kajiav ATeaqiautiuoy/:sdny woiy papeojumo ‘0 “8891Z5LI

L19)/W00" K3[1M” qrjour

P

ASUAIT suowwo)) aaneal) aqeardde ayy £q pauIsAos aIe sa[onIe Y asn Jo s[NI 10J AIRIqIT auljuQ A3[IAN UO (SUONIPUC



u—@: WATER RESOURCES J AW R A BOARDMAN er rt-

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION

2.3 | Datasources

Evaluating Equation 5 requires measuring cumulative runoff, SWE storage, and post-forecast precipitation accumulation. Cumulative runoff
is calculated from the day of each ASO flight through the end of July by summing daily inflow estimates to Hetch Hetchy Reservoir, which
were smoothed to prevent unphysical negative values while preserving total volumes (McGurk, personal communication, 2022), and hourly
discharge values at the Happy Isles stream gauge (station number 11264500, U.S. Geological Survey, 2022) for the Tuolumne and Merced
Rivers, respectively. Since the lag between snowmelt and runoff is assumed to be an inconsequential fraction of the seasonal forecast period
in these steep, mountainous study watersheds, we neglect runoff travel time in our calculations for the sake of parsimony.

Our primary approach to high-resolution snowpack quantification leverages a dataset of 59 ASO SWE maps across winter/spring of
10 years (2013-2022) in the Tuolumne and 21 ASO SWE maps across winter/spring of years (2014-2015, 2018-2022) in the Merced (Painter
et al.,, 2018). For each ASO flight over the study basins between the months of January and June, inclusive, we aggregate the SWE maps from
the 50 m scale to mean SWE over the watershed. Additional July flights are excluded because they are too close to the end of the runoff season
to give a representative estimate of seasonal runoff dynamics around the April 1 forecast date. We note that the study period includes two
notable multi-year droughts (2013-2015 and 2020-2022), which increases the robustness of our subsequent snow drought analysis.

To evaluate the effect of the variable snowpack distribution on station-based forecasts, we use an index of eight snow pillow stations
(Figure 1) as a secondary method of snowpack quantification (California Department of Water Resources, 2022). For methodological consis-
tency, we calculate the snow pillow index only on the dates of ASO flights. Due to the nature of remote mountain infrastructure, not all snow
pillows are online at any given time, causing missing data that could bias a multi-station index. To correct for this, we use the time series of
all non-missing snow pillows and a seasonal sinusoid to fit Gaussian Process regression models (implemented in the R DiceKriging package,
Roustant et al., 2012) in order to impute missing measurements. This process attempts to emulate the effect of making inferences about miss-
ing data in real-time using all available information; that is, separate imputation models are constructed for every combination of missing and
non-missing stations that arises over the study period. A sensitivity test using the pre-imputation mean across all available stations on each
flight date shows that the imputation has minimal effect on the snow pillow index.

We calculate cumulative precipitation using the Tuolumne Meadows meteorological station (TUM) precipitation gauge (California
Department of Water Resources/DFM-Hydro-SMN, 2022). The station is centrally located within the study area at an elevation of 2635m, ap-
proximately 100 m below the mean watershed elevations of 2721 m (Tuolumne) and 2753 m (Merced). Unlike many other precipitation gauges
in mountainous regions, the TUM station is maintained year-round by National Park staff living nearby, so snow bridging and similar problems
are expected to be minimal. A sensitivity test shows that cumulative post-forecast TUM precipitation values from each ASO flight date through
the end of the forecast period (July 31) are consistent with gridMET (Abatzoglou, 2013) basin-average precipitation fields (Tuolumne correla-
tion=0.95, RMSE =5 cm; Merced correlation=0.92, RMSE =7 cm). Station-based precipitation measurements are susceptible to under-catch
and do not capture variability in the spatial pattern of precipitation, but the availability of near real-time data can support the use of station
measurements in forecast operations. The uncertainties introduced by assuming that the TUM station is representative of watershed precip-
itation are propagated through the Bayesian framework and contribute to the model backcast error, similar to the treatment of uncertainty in

other data sources such as reservoir inflows computed from release rates and water level measurements.

2.4 | Bayesian framework

A Bayesian framework is well-suited to uncertainty propagation from random and systematic sources because it quantifies our degree of cer-
tainty in beliefs about future outcomes. A set of posterior parameter samples provides an estimate of uncertainty in the mathematical shape
of the model and thus quantifies uncertainty in the model's mean output, HQTotal while the standard deviation of the model's residual errors,
o, quantifies the effect of random process variability. Each model is calibrated independently in a particular watershed using a given snow

data source (ASO SWE or the snow pillow index). To calibrate the runoff models, we choose the parameters of L;ot.) to minimize the percent

otal
uncertainty of modeled seasonal runoff, Q... imodetea Which is sampled from a distribution of possible runoff values (Equation 6), where HQTotal

is the mean of the Qq,,, o is the standard deviation, and the tilde symbol means “distributed as:”

QTotaIModeIed ~normal (”QTotah O')' (6)

However, since there are multiple irregular ASO SWE observations within most years, each defining a unique model run, we cannot di-
rectly sample the Q. distribution. Instead, we normalize the difference between measured post-flight runoff values, Q.. ,req» @nd modeled
post-flight runoff values, Qy;,qeeq With the full-season runoff value, Qq,,.imeasureq Measured from October 1 through July 31, which gives an
estimate of the error in each runoff period as a fraction of the full-season runoff. We then update the target log probability density function
(Ipdf) of the Bayesian sampler by sampling from a normal distribution with mean seasonal error of O and standard deviation ¢ according to
Equation 7:
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o,a>, 7)

where N, is the number of flights (January-June) in the year currently being sampled. This approach has the effect of weighting each year equally

target lpdf = 1 normallogPDF

QModeIed — QMeasured
Ni

TotalMeasured

in the calibration, so that years with several ASO flights are not over-fit relative to years with fewer flights. All runoff periods end on July 31, but
since each runoff period begins with a particular ASO flight date, some runoff periods are longer than others. By normalizing the model error by
QrotaiMeasureds WE Weight longer runoff periods more heavily in the calibration since longer periods more closely approximate the full seasonal water
balance. A simulated forecast using a given set of model parameters can then be reconstructed for a subseasonal timeframe, such as the period of
interest from April 1 to July 31, by calculating a deterministic value for post-forecast runoff, HQModeled: and sampling the model error as a fraction of

QrotaiModelea the total modeled runoff from October 1 to July 31:

QuModeled ~ Hqmodeled +NOrMal(0, ¢) X Qrotaimodeled (8)

This unique approach to model calibration is designed to handle multiple nested runoff intervals without biasing the model toward over-
representation of years with more ASO flights. Weighting each interval by the fraction of total seasonal runoff that it represents results in
consistent relative uncertainty between different years while minimizing the absolute uncertainty in each year's total water balance. In this
study, we are interested in seasonal water supply uncertainty on fixed April-July intervals, so we focus on reducing uncertainty in the total
water balance instead of optimizing error in runoff timing.

We use the No U-Turn Sampler (NUTS) implementation of Hamiltonian Monte Carlo in the Stan Bayesian language (Stan Development
Team, 2023) to obtain 1000 parameter samples on each of two Markov chains (2000 samples total) for each of the four models in a partic-
ular basin with a particular snow data source. Within each basin the models using snow pillow or SWE map data are calibrated separately
since any data errors in these snow quantification methods must be propagated into the model's standard error distribution. The runoff
models are purely empirical, so we lack informative priors on the model parameters and thus sample from flat priors since the models
are linear functions. Each Markov chain undergoes 5000 warmup iterations to tune the Hamiltonian Monte Carlo parameters before
drawing the desired 1000 parameter samples. We observe that effective sample sizes and plots of parameter samples are consistent with
convergence.

Using the calibrated models, we analyze model behaviors by calculating median values of L

otalr Qrotar @nd R for each model across a Py,

range of 0.4 to 1 m, which is subset from the observed range of 0.43 to 1.89 m to highlight the nonlinear behavior of R during drought con-
ditions. Additionally, we calculate median runoff values for each of the ASO flight-based calibration periods using ASO SWE and post-flight
precipitation measurements to evaluate the historical performance of the hydrological models.

2.5 | Forecast simulations

To analyze the runoff models in forecast mode, that is, only using information that would be available in real-time, we replace measured val-

ues of P with a distribution of possible values than can be propagated through the models to generate probabilistic runoff exceedance

Spring
levels. The TUM station precipitation record provides 37 years of precipitation records over water years 1986-2022. We calculate the total
precipitation recorded by the gauge from the April 1 forecast date through the end of the forecast period for each of the years of record,
producing a historical distribution for P We similarly calculate a P, .., distribution for the pre-forecast period from October 1 through

and P

Spring*

April 1. A different cutoff date separating P could be chosen to investigate uncertainty in forecasts issued at other times of

Spring Winter

year. One sample each from the P, ... and P distributions together define a unique seasonal precipitation scenario. The assumption that

Spring
post-forecast precipitation is statistically independent from pre-forecast precipitation is supported by the low correlation (r=0.17) between
the P and P, distributions in the historical record.

Spring Winter
Our statistical forecast models only predict runoff and do not have an explicit representation of snow processes, so even with a defined

value of P, the SWE volume at an arbitrary point in time is undetermined. We leverage this innate model flexibility to investigate the

Winter’
effects of warm snow drought on forecast behavior. We define the SWE fraction,

SWE

,
P Winter

SWE;,,. = 9
which relates the amount of SWE measured on the day of the forecast to the amount of pre-forecast precipitation measured at the meteorological
station, similar to the SWE/P metric of Heldmyer et al. (2023). By iterating model runs over a range of SWE fractions from 10% (minimal SWE) to
90% (almost all P, remaining as SWE), we characterize model behaviors across a range of low- to high-SWE conditions within one precipita-

tion scenario, representing different warm snow drought severities. We note that the historically observed range of SWE, __varies from ~30% to

frac
~100% for ASO flights in the March-April time period. In the study watersheds, snow cover can extend as low as the basin outlets where runoff
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is measured, so we compute SWE,___ as a catchment average; in other watersheds, SWE,___ might be more robustly computed above an elevation

frac frac

threshold defining the typical snow line.
To analyze the contribution of the post-forecast precipitation distribution to total forecast uncertainty, we evaluate the ASO-based runoff
models in both forecast and backcast modes. Forecast mode requires propagation of uncertainty in post-forecast precipitation. In contrast,

backcast mode uses only a single value of P, which, together with a single value of P,,; ... and a given value of the SWE fraction, constitutes

Spring
a unique sample of the model space:
Backcast Q ~ Q(SWE¢ac X Pwinters Popring )+ (10.1)
PSpring1
Forecast Q ~ Q| SWE¢,c X Pwinters : . (10.2)
PSpringN
We run forecast and backcast modes for synthetic “years” consisting of precipitation values sampled from PSpring and Py .- TWoO sets of

parameters and error distributions (Equation 8) are applied in each watershed, one set calibrated to ASO data and one set calibrated using
the snow pillow index. Given a particular model and a single value of X, generalized backcast distributions are created by iterating all 2000
model parameter sets over all 37 spring precipitation samples for each of the 37 winter precipitation samples (Equation 10.1). This results in
1369 posterior predictive distributions of 2000 samples each, which constrains the backcast uncertainty under a particular combination of
winter and spring precipitation conditions. Next, we create forecast distributions by iterating the model parameter sets over the same 1369
winter-spring precipitation combinations representing unique “years.” The forecast distributions are additionally iterated over all 37 random-

ized spring precipitation samples (Equation 10.2), which are all propagated through the model in place of the single P value to simulate

Spring
real-time uncertainty in post-forecast precipitation. We thereby obtain a forecast distribution of 74,000 samples (37 precipitation values times
2000 parameter sets) for each of the 1369 “years” (101,306,000 total forecast samples), which constrains uncertainty in the real-time fore-
cast. For both backcast and forecast scenarios, the prior year's runoff value, used in Model 4, is randomly sampled from the observed yearly

runoff values over the calibration period to capture a range of wet and dry antecedent conditions.

2.6 | Forecast skill

Itis impossible to directly determine the accuracy of modeled runoff in our full suite of sampled scenarios since observed runoff values are not
available across all possible combinations of meteorological and snowpack conditions. However, our Bayesian forecast framework provides an
opportunity to understand the uncertainty of a given scenario by considering the spread of the posterior predictive distribution. We estimate

expected forecast accuracy, or skill, by calculating the mean relative deviation around the median:

SkiIIEmax{O,Z?ﬂ (1— [IQ'LM“'”' )%} (11)

QMedian

Here, Qu;eqian IS the median of either a backcast or forecast distribution in a particular “year” using a particular model and snow data source,
which represents the central tendency of the model, or the 50% exceedance level. The spread of the distribution around its median charac-
terizes the forecast or backcast uncertainty, with each sample, Q;, representing a single possible value that could be the “true” future Q, with
the index i ranging from 1 to n, the number of samples in a forecast distribution (n=74,000) or backcast distribution (n=2000). Therefore, the
term inside the square brackets represents the absolute relative error between the constant modeled value, Qy;4i,,» @nd a particular possible
true value, Q;. Subtracting the absolute relative error from unity yields an estimate of accuracy, presented here as a percentage. For example,
80% forecast accuracy corresponds to an uncertainty of +20% on average. Equation 11 gives the mean expected accuracy across all samples
in a particular forecast or backcast distribution, which we define as the model skill. Although uncertainty can theoretically increase without
bound, we constrain skill to the practical range [0%,100%], where a skill of 100% results from perfect predictions and a skill of 0% indicates a
model with +100% mean error.

Our methods ultimately yield an “uncertainty function” that quantifies the uncertainty in our statistical runoff forecasts under arbitrary
precipitation and SWE conditions (Equation 11). The contribution of each uncertainty source, U, can be separated by comparing the skill of the

three model modes, as diagrammed in Figure 2 and summarized here:

UModeI =1- Ski”BackcastASO' (12.1)

UPrecipitation = Sk”IBackcastAso - SklllForecastAsov (12.2)
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FIGURE 2 Flowchart of workflow and conceptual framework. We estimate forecast uncertainty contributed by errors in the hydrological
model, variability in post-forecast precipitation, and uncertainty in station-based snowpack quantification methods by comparing three
different simulation modes that are distinguished by their unique combinations of data sources. ASO, Airborne Snow Observatories; SWE,
snow water equivalent.

USnowpack = SkIIIForecastAso - SkIIIFort-zcastStation . (123)

A theoretical “perfect model” would have 100% skill, so subtracting the skill of an actual model provides an estimate of that model's
uncertainty (Equation 12.1). The difference between the ASO-based forecast and backcast simulations is attributable to uncertainty from
post-forecast precipitation variability (Equation 12.2). The difference between ASO-based forecasts and station-based forecasts captures the
uncertainty contributed by snowpack variability that is not captured by the snow pillow index (Equation 12.3).

We analyze the sources of water supply forecast uncertainty under warm snow drought conditions by calculating the average contribution
Pspring aNd Pyyinter
we repeat these calculations using only the driest 25% of P, .., and driest 25% of P

of each uncertainty source for all discrete combinations of SWE in both watersheds for all four models. Additionally,

frac’

spring SAMPles to simulate forecast uncertainty during dry

snow droughts. In the dry snow drought scenario, the size of forecast and backcast distributions is kept consistent with the baseline simula-

tion, which uses the full 37-year record, by drawing 37 samples of P, .., and P with replacement from the lower quartile of the historical

Spring

record (9 years). In forecast mode, the P, distribution always includes the full historical range of variability, even under dry snow drought

Spring
conditions, because information about post-forecast precipitation is assumed to be unavailable in real-time. We evaluate the effect of dry
by computing the percent change in U U and U

snow drought conditions (lower-quartile P,y; ... and backcast P

Spring) Snowpack’ ~ Precipitation’ Model

between the baseline and drought simulations.

3 | RESULTS
3.1 | Runoff models

Bayesian sampling results in 2000 calibrated parameter sets for each model, in each basin, for each of the two snow data sources. Since we
assume that the distributed SWE volumes are a more reliable estimate of the snowpack conditions than the station-based measurements, we
use the ASO-based backcast model as a benchmark to examine the characteristics of each runoff model. Validation of the models on the runoff
intervals from each ASO flight through July 31 produces an average Nash-Sutcliffe model efficiency (NSE) of 0.93 across all four models in
both watersheds. We note that this high NSE value is computed for the nested intervals from each ASO flight through July 31, which is an un-
conventional runoff time series. Regardless, the models achieve a satisfactory correspondence between measured and observed runoff values
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(Figure 3). Since we use ASO flights from a range of dates to calibrate the runoff models, points in Figure 3 represent variable time periods, so

low-runoff values represent a combination of snow drought conditions and late-season periods in wetter years.

3.2 | Water balance characteristics

The calibrated loss functions indicate that the water balance residual, P-Q, is nearly constant over the observed range of precipitation inputs,
consistent with observations of nearly constant yearly ET in the Sierra Nevada by Goulden et al. (2012). The exception to this behavior is
Model 2, which forces a constant runoff efficiency and a linearly increasing P-Q residual by design. In the other three models, runoff efficiency

is nonlinearly dependent on inputs to the water balance (SWE+P, with the basin-wide seasonal runoff efficiency, Q/P, varying over a

spring)
maximum range of 56% during droughts to 83% under wet conditio:s (gFigure 4).

We find that the constant-efficiency loss function (Model 2) introduces a bias in runoff estimates (slope of best-fit line between mea-
sured and observed=1.20, average NSE over both watersheds=0.89) by not accounting for the nonlinear decrease in runoff efficiency
during low precipitation years. In contrast, the constant loss function (Model 1) produces a lower bias and better fit to the observed runoff
data (slope=0.91, NSE=0.95), suggesting that the difference between precipitation and runoff in this system is better modeled as an offset
than a ratio. This result is consistent with other work in our study area: Hedrick et al. (2020) found that evapotranspiration losses were
relatively constant in the Tuolumne watershed across a sample of dry, average, and wet years, and Henn et al. (2018) concluded that the
seasonal water balance residual in the Tuolumne watershed represented mean evapotranspiration. The relative constancy of P-Q over a
range of wet and dry years could represent the partial decoupling of plant water use from precipitation variability as observed elsewhere
in California by Hahm et al. (2019), although drought tree mortality in the Sierra Nevada suggests that this decoupling, if present in the
study watersheds, may break down in the driest years. Alternatively, the efficacy of the constant-loss model could stem from structural
factors in the analysis by compensating a latent bias in the meteorological or snowpack data or limiting the impact of extreme conditions
on uncertainty propagation.

1. Constant Loss 2. Constant Efficiency
1.5 A R
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A
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3 7S p7 1N
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S 00
>
o . .
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® 154 A A Y Merced
() : A A
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FIGURE 3 Scatter plots of modeled versus measured runoff values. Each panel represents a different empirical model parameterization
(Equations 3.1-3.4). The models are evaluated using basin-average SWE and post-flight gauged precipitation measurements for all available
January-June ASO acquisitions to predict runoff on the interval from each flight date through July 31.

sdny) SUONIPUOD) PUE SWLID L, 341 39S “[$Z0Z/S0/L1] U0 AIRIqIT AUIUQ AS[IA ‘OUSY BPEAIN JO ANSIDAIUL AQ [ZZE1°8891-TSLI/TTT1°01/10p/w0d Kajiav ATeaqiautiuoy/:sdny woiy papeojumo ‘0 “8891Z5LI

L19)/W00" K3[1M”

ASUAIIT suowwo)) aaneal) ajqeardde ayy £q pauIdsAos aIe sa[onIe Y sn Jo s[nI 10J AIRIqIT auI[uQ AJIAL UO (SUONIPUOI-PI



SOURCES OF SEASONAL WATER SUPPLY FORECAST UNCERTAINTY DURING

SNOW DROUGHT IN THE SIERRA NEVADA gy 11
g VATER RESOURCES J A W R AJ—

=
(X X] JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION
0.3— — 08— —
. e 0.7 ~— Runoff Model
S e 06—
n S — = - 1.Constant Loss
3 S
o 04— +«++ 2 Constant Efficiency
o 0.3
. — .. 3.Linear Closed
0.1— — 0.2— — Water Balance
] ot
04 05 0.6 0.7 0.8 0.9 1.0 0.4 05 0.6 0.7 0.8 09 1.0 4. Linear Open
Water Balance
-
80% — - - -
L
Watershed
o/ | ¢ e e e o o o o o o o o o o
70% Merced

60% — — e Tyolumne

Runoff Efficiency (Q/P)

0% | | | | | R
04 0.5 0.6 0.7 0.8 09 1.0

Water Input (SWE + P), m

FIGURE 4 Median characteristics of the calibrated Bayesian runoff models. The water balance residual, snow and precipitation

(SWE + P) minus runoff (Q), is modeled using four different loss functions (Equations 3.1-3.4). Runoff efficiency, the ratio of Q to (SWE +P),
is calculated using runoff outputs from the calibrated models. Models with sufficient flexibility (1, 2, and 4) indicate nonlinear decreases in
runoff efficiency during drought.

3.3 | Uncertainty sources

Running the hydrologic models in three different forecast and backcast modes allows us to partition the major sources of uncertainty during
warm snow droughts. The backcast mode, using a station-measured precipitation value and basin-wide average SWE, is always more skillful
than the forecast modes, because the latter propagate uncertainty in post-forecast precipitation. Similarly, the forecast using ASO SWE is
always more skillful than the forecast using a snow pillow index since the full-catchment SWE maps capture year-to-year variability in the
spatial snowpack distribution. Figure 5 illustrates the average skill of the four models across both watersheds, with uncertainty sources parti-
tioned analogously to the conceptual model in Figure 2. Under historical conditions with 50% to 90% of pre-forecast precipitation remaining
as SWE on April 1, on average we find that 46% of total water supply uncertainty comes from the hydrological model, 13% from post-forecast
precipitation variability, and 41% from uncertainty in station-based snowpack quantification methods. The relative proportion of total forecast
uncertainty attributable to each source is relatively constant, varying by 1%-7% across the full range of tested SWE, ,_values (Figure S1). The
total magnitude of the station-based forecast uncertainty (one minus model skill) varies between 33% when SWE, . =0.9% and 77% during

=0.1.

frac

extreme warm snow drought when SWE, .

3.4 | Snow drought effects

We observe a nonlinear decline in forecast skill during warm snow droughts, when the fraction of pre-forecast precipitation remaining as SWE
=50%)
=10%) snow drought regimes, while the forecast using ASO SWE undergoes a 31% decrease in mean skill

is less than 50% (Figure 5). The forecast using snow pillow data experiences a 59% decrease in mean skill between the historic (SWE
and anticipated future (SWE
for the same transition. In our snow-driven modeling framework, the fraction of pre-forecast precipitation remaining as SWE is the primary

frac

frac

driver of changes in overall fractional uncertainty. However, we find that the forecasts using ASO SWE are about half as sensitive to warm
snow drought conditions as forecasts using an index of snow pillows, since the station-based forecast skill decreases 1.9 times faster for the
50% to 10% SWE
Badger (2020), since remotely sensed snowpack data are less affected by a receding snowline than station-based data.

frac transition. The heightened sensitivity of the station-based forecast aligns with expectations informed by Livneh and
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FIGURE 5 Mean forecast skill across both watersheds and all four hydrological models for the April 1 forecast date. We compare the skill
of three simulation modes to isolate uncertainty arising from errors in the hydrological model, variability in post-forecast precipitation, and
heterogeneity in the snowpack distribution that is not captured by station-based snowpack quantification methods.

Increased model uncertainty during warm snow drought conditions is more substantive than differences between models (Figure 6). In the

most extreme case, when SWE, __decreases from 90% to 10%, the uncertainty contributed by errors in the statistical runoff model increases

frac
by 165% in the Merced and 178% in the Tuolumne. This extraordinary increase in model uncertainty during warm snow drought suggests

that the models are not uniformly applicable across all values of SWE_ ___, and an alternative parameterization may be preferable for simulating

frac’
runoff under low-snow conditions. However, since operational statistical models are commonly assumed valid across varied climatological
conditions, it is important to quantify the breakdown of statistical snowmelt runoff assumptions in a warmer climate.

Differences between the skill of the four models in backcast mode are on the order of 2%-16%, with the largest differences between

models in the Merced during extreme warm snow drought. Overall, all four models produce comparable uncertainty ranges, suggesting
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FIGURE 6 Effect of warm snow drought on uncertainty sources for the April 1 forecast date. As the climate becomes less snow-
dominated (smaller fraction of precipitation remaining as SWE), uncertainty in the hydrological model and station-based snowpack
quantification increase nonlinearly, rapidly outweighing the differences between model parameterization and watersheds. Note that
increasing uncertainty (longer stacked bars) causes lower forecast skill, defined as one minus the total uncertainty (c.f. Figure 5).
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that the differences in parameterization between lumped statistical models are not a dominant driver of forecast uncertainty in this system.
Interestingly, the station-based forecast using snow pillow data is most skillful when paired with the constant efficiency runoff model, even
though the constant efficiency model is biased (Figure 3) and consistently achieves the lowest backcast skill (Figure 6). In contrast, the ASO-
based forecasts are typically most skillful when paired with the constant loss or linear runoff models (Figure 6), particularly in the Merced
River basin, suggesting that the reversal in the constant efficiency model's relative performance could derive in part from an opposing bias in
the snow pillow index.

The runoff models perform similarly across both study watersheds, though forecast uncertainty is marginally higher (6-14%) in the Merced
catchment (Figure 6). Possible reasons for the slightly lower performance of the Merced forecast models include the smaller catchment size,
leading to a greater dependence on localized precipitation events, and greater geographic separation from the TUM precipitation gauge,
potentially leading to less-representative precipitation estimates. Additionally, there are fewer ASO flights in the Merced compared to the
Tuolumne (and none during 2017, the wettest year of the study period), so the Merced models could be more loosely constrained by the his-
toric calibration.

Water supply uncertainty increases during dry snow droughts due to the increased importance of post-forecast precipitation relative to
snowpack storage when Py, .. is small (Figure 7). The reduced skill of all three model modes under lower-quartile precipitation conditions
demonstrates the sources of increased water supply forecast uncertainty during dry snow droughts. Under typical historic climate conditions
(SWE
hydrological model fractional uncertainty increases by 10%-19%, and fractional uncertainty from post-forecast precipitation increases by
16%-46%, with the effect magnitude depending on the watershed and SWE
droughts than the Merced, likely due to a combination of higher baseline forecast skill in the Tuolumne (Figure 6) and the Merced watershed's

trac 20-90%) during a lower-quartile precipitation drought, fractional uncertainty from the snowpack distribution increases by 6%-29%,

frac- The Tuolumne watershed is more sensitive to dry snow
smaller area and greater separation from the precipitation station (Figure 1).

When both precipitation and the SWE
the relative partitioning of uncertainty sources remains relatively consistent. Due to the method we use to propagate random error, namely

frac are low, that is during coincident warm and dry snow droughts, overall uncertainty increases, but
a scale factor on the entire seasonal water balance, the model can counterintuitively predict a relative decrease in precipitation and snow
uncertainty sources when an extremely low precipitation amount coincides with a warm snow drought. This result follows from the lack of cor-
respondence between runoff and the snowpack mass balance in the limit where SWE approaches zero. Since it is illogical to use a snow-based
runoff model in a nearly snow-free environment, we limit our exploration of dry snow drought effects on individual uncertainty sources to
the case where >50% of pre-forecast precipitation remains as SWE on the forecast date (Figure 7). However, the relative partitioning of total
nd
. In this extreme snow drought case, the total water supply forecast uncertainty can still be reduced by 33% in the Tuolumne and 38% in

forecast uncertainty remains interpretable even during coincident warm and dry snow droughts (SWE, . =10% with lower-quartile P,

P
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FIGURE 7 Increase in uncertainty sources during dry snow droughts on the April 1 forecast date, caused by lower-quartile winter and
spring precipitation, relative to mean fractional uncertainty across all precipitation conditions. Dry snow droughts have the largest relative
effect on the uncertainty from post-forecast precipitation variability, but the severity of this effect depends on the watershed and becomes
relatively less important during coincident warm snow droughts when overall uncertainty is already high.
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the Merced by replacing the snow pillow index with full-catchment ASO SWE, comparable to the 39% average improvement when considering

the full range of drought and non-drought scenarios across both watersheds.

4 | DISCUSSION

During dry snow droughts, post-forecast precipitation becomes an increasingly important component of runoff uncertainty. Since dry snow
droughts are characterized by a low volume of pre-forecast precipitation (meteorological drought), the pre-forecast catchment water input
is relatively small compared to the potential variability in post-forecast precipitation, so the fractional uncertainty in post-forecast runoff in-
creases. During a dry snow drought with lower-quartile winter and spring precipitation, the water supply uncertainty contributed by variability
in post-forecast precipitation can increase by as much as 46%, depending on the watershed and any coincident warm snow drought condi-
tions (Figure 7). This finding is intuitive but highlights a potential weakness of forecasting paradigms that rely on black-box statistics to derive
runoff exceedance levels without considering the difference in precipitation uncertainty during wet and dry years. For example, a Principal
Components Regression (PCR) model using April 1 SWE and October-March precipitation (Garen, 1992), widely used for forecasting by the
Natural Resources Conservation Service (NRCS), could underestimate the true uncertainty range during dry snow droughts if the uncertainty
is based on fractional errors across all years. In other words, a small fractional uncertainty on average across the historical record (including
wet years) does not guarantee a small fractional error during droughts. For example, Goble and Schumacher (2023) found that incorporating
spring and summer precipitation data improved the accuracy of water supply forecasts in Colorado during the snow droughts of 2020 and
2021, when forecasts using snowpack data alone overpredicted runoff volumes. Analogously, our results demonstrate that the issue of unre-
alistic exceedance levels, driven by uncertainty in the uncertainty, can be addressed by propagating precipitation variability separately from
other uncertainty sources.

Forecast paradigms that do not explicitly propagate post-forecast precipitation variability, such as the NRCS's 2-component PCR model,
can gain increased interpretability by incorporating a separate precipitation term and calibrating the model with historic spring precipitation
data to directly constrain the uncertainty introduced by post-forecast precipitation variability. By calibrating runoff models with explicit post-
forecast precipitation values instead of absorbing precipitation variability into a black-box error term, we can better understand the effect of
dry snow droughts on water supply uncertainty. Our methods utilize records from a single precipitation station, but other approaches could
leverage an index of multiple stations or combine station measurements with a spatially distributed meteorological product.

While explicitly propagating post-forecast precipitation is necessary to adequately constrain uncertainty ranges and inform management
during dry snow droughts, the underlying component of uncertainty is analogous to Schaake and Peck (1985) description of “Unpredictable
Climate Error,” as it derives from weather phenomena on seasonal time scales, which remains difficult to forecast. The future impact of pre-
cipitation variability on runoff forecast uncertainty is unclear because advances in subseasonal-to-seasonal weather forecasts may reduce
uncertainty (e.g., DeFlorio et al., 2019; Waliser et al., 2003) while the introduction of stochastic weather generators that account for climate
non-stationarity (e.g., Steinschneider et al., 2019) may suggest increased precipitation variability. As a result, our methods highlight a latent
uncertainty source, but we do not attempt to further extrapolate the effects of dry snow drought into the future climate. In future decades,
uncertainty from post-forecast precipitation variability could be affected by the countervailing effects of improved weather forecasts and
climate nonstationarity.

Inaccurate quantification of snowpack storage is a key factor causing runoff uncertainty during both dry and warm snow droughts.
Although the snowpack represents a diminished fraction of the seasonal water balance under snow drought conditions, accurate measurement
of near-zero SWE is itself important for constraining the lower bound of water supply guidance. By estimating the SWE volume at a small value,
snowpack measurements still provide an important lower bound on runoff during low-snow periods such as the 2013-2015 and 2020-2022
Sierra Nevada snow droughts (e.g., Hetch Hetchy Reservoir operations team, personal communication, 2021-2022). However, quantifying
the snowpack volume with conventional in situ station-based methods becomes problematic when the snow line exceeds station elevations.
When snow observation stations are concentrated at mid-elevations, as in the study region, significant snow may remain even after most
stations melt out, leading to uncertainty in the actual SWE volume that corresponds to a near-zero measurement. While this phenomenon has
been raised by Livheh and Badger (2020) as an important concern for water managers, ours is one of the first studies to quantify its importance
during historical snow drought conditions in a data-driven framework.

We partially ameliorate this problem by incorporating remotely sensed, spatially distributed snowpack observations and physical model
outputs from ASO. Switching from a snow pillow index to ASO SWE maps reduced the expected water supply forecast uncertainty by an

average of 39% across all models, meteorological conditions, and both watersheds (average across SWE, __in Figure 6). Consequently, the

frac
uncertainty of the station-based forecast increases about 1.9 times as quickly as the uncertainty of the ASO-based forecast during warm
snow droughts. This finding supports our hypothesis that remotely sensed snowpack observations will become increasingly important in a
warmer future climate, when a smaller fraction of winter precipitation persists as snow. We could expect additional room for improvement in

watersheds with sparser snow monitoring station networks or greater variability in the spatial distribution.
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In our comparison of snow quantification methods, we consider only the snow pillow index and the ASO SWE maps because these datasets
are both used operationally by local water managers and represent endmembers of spatial resolution and sophistication. However, there is a
growing array of snow data products that are available for water supply forecasting. Physically based snow models can represent spatial het-
erogeneities and estimate storage even when the snowline recedes above station elevations, particularly when combined with remote sensing
data assimilation (e.g., Hedrick et al., 2018). Similarly, satellite-derived snow covered area maps are widely available and can discriminate vary-
ing levels of snow drought, which has proven useful for runoff forecasting (e.g., Martinec et al., 2008). Finally, statistical relationships between
station measurements and remote sensing or model outputs can be used to construct synthetic datasets leveraging the unique combination
of available snow data in a particular watershed or a particular year through various combinations of bias correction, weighting, and machine
learning techniques (e.g., Pflug & Lundquist, 2020).

For this study, we focus on different snow measurement resolutions using two methods that are based directly on physical measurements.
The snow pillow and ASO datasets represent endmember snow measurement methods, both in terms of technological complexity and spatial
sampling resolution, and both methods are operationally deployed in the study region. We would expect that an intermediate-fidelity product,
such as satellite-derived snow covered area or open-loop modeled SWE, would likely produce an intermediate forecast uncertainty between
the snow pillow and ASO endmembers. Future research could use a similar uncertainty quantification framework for an intercomparison of the
diverse snow data products that are becoming available in the Sierra Nevada and elsewhere, both from measurement campaigns and physical
or statistical models (e.g., Deschamps-Berger et al., 2023; Guan et al., 2013; Tarricone et al., 2023; Yang et al., 2022). Similarly, future work
could apply our comparative uncertainty framework to process-based water supply forecast models to evaluate potential improvements in
model uncertainty and the sensitivity of models to different datasets or disturbances.

During warm snow droughts, when relatively low snow storage results from warmer climate conditions, regardless of the total precipita-
tion magnitude, the empirical hydrological models become the dominant source of water supply forecast uncertainty (Figure 6). The models
presented here strongly depend on the snowpack mass balance, with the variable effects of evapotranspiration, storage change, and other
fluxes lumped together as regression coefficients. Moreover, the statistical error distributions associated with each Bayesian runoff model
subsume uncertainty in the data used to calibrate the models, so when a particular dataset becomes more important, the uncertainties associ-
ated with that dataset can have a larger impact on the backcast model skill. For instance, some or all of the higher fractional model uncertainty
observed during dry snow drought (Figure 7) could result from greater uncertainty in relatively small precipitation measurements. Similarly,
the density field used to generate SWE maps could increase the inferred statistical runoff uncertainty if the snow model uncertainty increases
during anomalous climatological conditions. With lumped empirical runoff models, it is not possible to further attribute uncertainty sources to
stochastic errors in the forcing data or shortcomings in the model, since the model itself is effectively derived from the data. Future analysis
using process-based hydrological models could potentially separate structural model errors from errors in the forcing data by applying a similar
comparative framework to an ensemble of model parameterizations.

As winter temperatures continue to increase, causing precipitation regimes to shift from snow to rain and snowmelt to occur earlier in the
runoff season, the assumption that post-forecast runoff depends primarily on April 1 SWE could become invalid. We anticipate a nonlinear

increase in the uncertainty of snow-based statistical runoff models as SWE, __ decreases on the April 1 forecast date (Figure 6). Accordingly,

frac
there is a shift toward water supply forecasting with physical hydrological models that can account for non-snow processes. In the Tuolumne
River basin, managers are testing the Precipitation Runoff Modeling System (PRMS, Markstrom et al., 2015), and ASO is testing deployment
of the WRF-Hydro model (Gochis et al., 2020) using assimilation of ASO SWE data. Transferring the statistical benefits of the Bayesian uncer-
tainty framework presented here to more complex physical models will likely necessitate innovative methods to propagate hydrological model

uncertainties into probabilistic forecasts.

5 | CONCLUSION

We have explored three key effects of snow drought on water supply forecast uncertainty: the increased importance of post-forecast pre-
cipitation variability during dry snow droughts, the breakdown of empirical model assumptions during extreme warm snow droughts, and the
value of distributed SWE data. Furthermore, we have considered several avenues to ameliorate anticipated increases in forecast uncertainty
in a warmer future climate, namely the incorporation of remotely sensed SWE data and the deployment of hydrological models that account
for liquid water storage cycles. When considering the investment required to incorporate new technologies into existing water management
systems, the comparative forecasting framework developed here could be applied to identify the most promising areas for improvement in a
cost-benefit analysis. Separating sources of uncertainty can help quantify the value of deploying updated snow monitoring technologies such
as the ASO SWE maps, which are now part of the State of California's Department of Water Resources forecast infrastructure. Warm and dry
snow droughts are expected to increasingly challenge water supply forecasting, so a rigorous treatment of uncertainty propagation during
snow drought in more complex hydrological models and operational forecasting systems is crucial to developing resilient strategies for climate
change adaptation.
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