
Vol:.(1234567890)

Data Mining and Knowledge Discovery (2023) 37:2192–2215
https://doi.org/10.1007/s10618-023-00945-5

1 3

Fast block‑wise partitioning for extreme multi‑label
classification

Yuefeng Liang1 · Cho‑Jui Hsieh2 · Thomas C. M. Lee1 

Received: 22 June 2022 / Accepted: 6 April 2023 / Published online: 26 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Extreme multi-label classification aims to learn a classifier that annotates an instance
with a relevant subset of labels from an extremely large label set. Many existing
solutions embed the label matrix to a low-dimensional linear subspace, or examine
the relevance of a test instance to every label via a linear scan. In practice, however,
those approaches can be computationally exorbitant. To alleviate this drawback,
we propose a Block-wise Partitioning (BP) pretreatment that divides all instances
into disjoint clusters, to each of which the most frequently tagged label subset is
attached. One multi-label classifier is trained on one pair of instance and label clus-
ters, and the label set of a test instance is predicted by first delivering it to the most
appropriate instance cluster. Experiments on benchmark multi-label data sets reveal
that BP pretreatment significantly reduces prediction time, and retains almost the
same level of prediction accuracy.

Keywords  Extreme multi-label problems · Non-convex optimization · Scalable
classification · Supervised learning

Responsible editor: Dragi Kocev.

 *	 Thomas C. M. Lee
	 tcmlee@ucdavis.edu

	 Yuefeng Liang
	 frnliang@ucdavis.edu

	 Cho‑Jui Hsieh
	 chohsieh@cs.ucla.edu

1	 Department of Statistics, University of California at Davis, Davis, CA 95616, USA
2	 Department of Computer Science, University of California at Los Angeles, Los Angeles,

CA 90095, USA

http://orcid.org/0000-0001-7067-405X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00945-5&domain=pdf

2193

1 3

Fast block-wise partitioning for extreme multi-label class...

1  Introduction

Advances in computing technology enable the collection, maintenance, and
analysis of extremely large data sets. Domains such as video annotation (Snoek
et al. 2006), text classification (Deng et al. 2009; Partalas et al. 2015), automated
tag suggestion (Wetzker et al. 2008) and keyword suggestion (Chang et al. 2020)
generate data sets whose numbers of labels are growing magnificently. Given
the abundance of features and labels, supervised learning with hundreds of
thousands of labels has attracted the attention of machine learning researchers
and practitioners in recent years. Automatically assigning a relevant subset of
labels from an extremely large label set to an unseen instance defines the goal in
extreme multi-label classification (Prabhu and Varma 2014; Bhatia et al. 2015).

The rapid augmentation of labels leads to numerous computational challenges.
In this paper, we focus on one critical issue that limits the performance of exist-
ing methods in real applications: prediction time. Assume there are m labels,
most of the existing methods require O(m) prediction time for each test instance
(Yu et al. 2014; Babbar and Schölkopf 2017; Yen et al. 2016, 2017). For example,
the classical one-vs-all approach transforms multi-label problems into multiple
binary classification problems. While this approach delivers competitive predic-
tion accuracy on many data sets (Babbar and Schölkopf 2017), it becomes prohib-
ited when m is extremely large (Niculescu-Mizil and Abbasnejad 2017).

To overcome this limitation, we exploit label popularity among all instances
in large-scale data sets. It turns out that in many cases, some labels are popu-
lar among all instances, while some are frequently tagged only with certain
subgroups. Given an association between a label subset and an instance sub-
group, prediction performed only from the associated label subset will almost be
as accurate as prediction performed from all m labels (Nasierding et al. 2009;
Niculescu-Mizil and Abbasnejad 2017). This observation leads to our assumption
in this paper that the feature and label spaces are so discernible that one can parti-
tion instances and labels into different clusters. This partitioning scheme allows
us to construct a one-to-one correspondence between each pair of instances and
label clusters so that we do not have to visit all m labels for every test instance.

Under our assumption, we show that from feature and label matrices, instance
and label clusters can be determined by an alternating update procedure imposed
on a discrete optimization problem. If we rearrange labels by label cluster and
instances by instance cluster, the permuted label matrix approximates a diagonal
block structure, with a majority of ones inside the blocks and zeros elsewhere.
Moreover, when an L2 penalty on the lengths of label clusters is imposed, the
number of labels assigned to each cluster is effectively monitored by the regulari-
zation parameter.

Rather than propose a classifier that competes with the existing algorithms,
we introduce a Block-wise Partitioning (BP) pretreatment on feature and label
matrices to help existing multi-label classifiers achieve faster prediction while
retaining prediction accuracy. As for training, one classifier is trained on one pair
of instance and label clusters. As for prediction, a test instance is first classified

2194	 Y. Liang et al.

1 3

into a proper instance cluster, and then the corresponding classifier is applied on
the paired label cluster. We discuss how Precision (P), propensity scored Preci-
sion (PSP) (Bhatia et al. 2016) and prediction time are impacted by BP pretreat-
ment on large-scale data sets from the Extreme Classification Repository (Bhatia
et al. 2016). For example, on the Wiki10-31K (Zubiaga 2012) data set, while PD-
Sparse (Yen et al. 2016) achieves 81.89% at P@1, BP pretreatment accelerates its
prediction by 209 times at the expense of 0.33% loss on P@1.

The rest of the paper is organized as follows. We review related work in Sect. 2
and introduce our partitioning algorithm in Sect. 3. Experimental results are pre-
sented and discussed in Sect. 4, followed by concluding remarks in Sect. 5.

2 � Related work

Most state-of-the-art methods for extreme multi-label classification are based on
trees (Jasinska et al. 2016; Khandagale et al. 2019; Prabhu and Varma 2014; Prabhu
et al. 2018; Siblini et al. 2018; Wydmuch et al. 2018), embeddings (Bhatia et al.
2015; Evron et al. 2018; Gupta et al. 2019; Jalan and Kar 2019; Tagami 2017; Yu
et al. 2014), one-versus-all (Babbar and Schölkopf 2017, 2019; Jain et al. 2019;
Khandagale et al. 2020; Prabhu et al. 2018; Yen et al. 2016, 2017) and deep learn-
ing (Chang et al. 2020; Dahiya et al. 2021b, a; Jiang et al. 2021; Liu et al. 2017;
Mittal et al. 2021, 2022; Qaraei et al. 2021; You et al. 2018). The first branch learns
a hierarchical structure of the full label set by recursively dividing feature or label
spaces. For instance, FastXML (Prabhu and Varma 2014) searches for a sparse lin-
ear separator to split each node by optimizing an nDCG (Bhatia et al. 2016) based
loss function. The second branch reduces the effective number of labels under the
low-rank assumption. For example, LEML (Yu et al. 2014) directly optimizes for
the decompression matrices using a regularized least square objective function in a
generic empirical risk minimization framework. PD-Sparse (Yen et al. 2016), DiS-
MEC (Babbar and Schölkopf 2017) and ProXML (Babbar and Schölkopf 2019) are
three methods in the third trend that attract considerable attention in the literature.
PD-Sparse makes use of both primal and dual sparsity by margin-maximizing loss
with L1 and L2 penalties. DiSMEC revisits one-versus-all paradigm and provides
prominent boosts in prediction accuracy and prediction time by explicitly induc-
ing sparsity and doubly parallel training. While many approaches treat labels with
equal importance, ProXML (Babbar and Schölkopf 2019) improves performance for
tail labels that are infrequently occurring (Wei et al. 2021). XML-CNN (Liu et al.
2017), AttentionXML (You et al. 2018) and LightXML Jiang et al. (2021) are the
very three representatives in the last trend.

Tree-based approaches are well known for their prediction accuracy (Prabhu
and Varma 2014), and embedding-based approaches are also popular as they are
straightforward and can handle label correlations (Yu et al. 2014; Bhatia et al.
2015). However, implementation on large data sets has been a subject of extensive
debate, and one of the most common remarks is on prediction time (Si et al. 2017;
Niculescu-Mizil and Abbasnejad 2017). Over the past few years, various methods
have been proposed to ameliorate the burden. For instance, PPD-Sparse (Yen et al.

2195

1 3

Fast block-wise partitioning for extreme multi-label class...

2017) adapts the parallelizability and small memory footprint of the one-versus-all
technique from DiSMEC (Babbar and Schölkopf 2017), and the sub-linear complex-
ity of primal-dual sparse method from PD-Sparse (Yen et al. 2016).

Deep learning approaches have been successful in delivering state-of-the-art
results in extreme classification benchmarks, as they borrow strength from different
machine learning domains and learn informative text representation (Chang et al.
2021; Jiang et al. 2021; You et al. 2018). XML-CNN (Liu et al. 2017) is one of
the first methods that bring deep learning into extreme classification. It learns word
embeddings directly from raw text and feeds it to one-dimensional convolutional
neural networks (CNN). To embrace the power of neural embedding-based mod-
els, AttentionXML (You et al. 2018) uses Bidirectional Long Short-Term Memory
Networks (BiLSTMs) and probabilistic label trees (PTL) to handle raw text, but its
promising performance comes at the cost of long training time and big model size
(Chang et al. 2021). Various methods have been proposed to address these com-
monly shared challenges in deep extreme classification. Notably, LightXML Jiang
et al. (2021) aims to lower computational complexity by adopting transformer mod-
els as text encoders, and performing label shortlist and label re-ranking (Chang et al.
2021).

In contrast to the above methods, we develop a pretreatment for those algorithms.
Many classical sequential, agglomerative, hierarchical and non-overlapping (SAHN)
(Day and Edelsbrunner 1984) clustering methods can be used as baseline pretreat-
ments, and the following three approaches are more relevant to ours. Label Parti-
tioning for Sub-linear Ranking (LPSR) follows a two-step approach. At the training
stage, it clusters the training instances, and then assigns a fixed number of poten-
tial labels to each cluster. At the testing stage, a test instance is first put in one of
the clusters, and its labels are predicted only from the labels attached to that cluster
(Weston et al. 2013). While LPSR and our proposal stand on the same testing stage,
three differences can be observed at the training stage. First, the optimized number
of clusters in our method is selected by the algorithm, whereas the number in LPSR
is predefined. Second, the cardinality of our label clusters may vary across clusters,
while the number of potential labels in each cluster in LPSR is fixed. Moreover, our
instance and label clusters are updated via optimization, whereas the assignment of
training instances in LPSR solely depends on the feature matrix. Consequently, our
method permits more flexibility in cluster structure.

The second method, Clustering Based Multi-Label Classification (CBMLC),
groups the training instances into a user-specified number of clusters, and trains a
multi-label classification model for each cluster (Nasierding et al. 2009). The testing
stage is identical to that of LPSR. There are several differences between CBMLC
and our approach. First, our goal is to minimize the prediction time while CBMLC
focuses on reducing the training time. Second, we formally form a clustering objec-
tive to achieve better prediction time using both features and labels, and expedite
prediction by reducing label size, whereas CBMLC takes features into consideration
only in the clustering step. Third, our number of clusters is not user-specified.

Another related approach is to pre-select a small fraction of candidate labels via
label filters (LF) (Niculescu-Mizil and Abbasnejad 2017) before the base classifier
is applied. As the number of filters increases, a larger proportion of labels will be

2196	 Y. Liang et al.

1 3

filtered out, and thus prediction time decreases without a significant impact on
prediction performance. Although LF shares the same goal as we do – to speed up
existing classifiers at prediction time by reducing the number of candidate labels,
infrequent, unnoticeable but valuable tail labels will be filtered out by LF; those
labels can be captured and stay in one of our label clusters, given that they are
closely related to a group of training instances. What is more, LF tends to select the
same candidate labels for all instances, while our method assigns customized label
subsets to different instance clusters. As a result, our method reflects more natural
characteristics of features and labels without discarding rare but rewarding signals.

3 � Proposed algorithm

This section defines the learning problem we consider. We first introduce definitions
and notations, and then explore the optimization algorithm in detail.

3.1 � Problem formulation

To formulate our partitioning problem, we adopt the following notations: lower-case
letters such as x and y denote elements of sets; upper-case letters such as C and L
denote maps; bold lower-case letters such as x and y denote vectors; bold upper-case
letters such as X and Y denote matrices; calligraphic letters such as X and L denote
sets.

Let xi = (xi1, xi2,… , xid) ∈ ℝ
d , i = 1,⋯ , n , be a d-dimensional input feature vec-

tor that forms an instance, and yi = (yi1, yi2,… , yim) ∈ {0, 1}m , i = 1,⋯ , n , be the
corresponding m-dimensional label vector. yij = 1 if the ith data point is tagged with
the jth label. Let {(xi, yi)}ni=1 be the training data set. X = [x1,… , xn]

⊤ is the n × d
feature matrix, and Y = [y1,… , yn]

⊤ is the n × m label matrix. We are interested in
simultaneously partitioning instances and labels into q (1 ≤ q ≤ min(m, n)) instance
and label clusters. Write the q instance and label clusters as {X1,X2,… ,Xq}
and {L1,L2,… ,Lq} respectively, where Xl ⊆ {1,… , n} and Ll ⊆ {1,… ,m} for
l = 1,… , q . We define a one-to-one deterministic mapping L from instance clusters
to label clusters such that

Therefore, our goal is to learn a map

that classifies instances, and an optimal set of label clusters {L∗
1
,L∗

2
,… ,L∗

q
}.

The partitioned label matrix approximates a block diagonal matrix upon row and
column permutations. The diagonal blocks are matrices of any size with a majority
of ones, and the off-diagonal elements are mostly zeros. Instance clusters are
deemed to be disjoint, and overlapping is allowed between any two label clusters,
which means there can be overlap between L∗

l
 and L∗

l�
 for any (l, l�) pair.

L(Xl) = Ll for all l.

C ∶ ℝ
d
⟶ {X∗

1
,X∗

2
,… ,X∗

q
}

2197

1 3

Fast block-wise partitioning for extreme multi-label class...

Allowing overlapping label clusters is crucial for achieving good performance
on extreme classification problems. As we stated in Sect. 1, some popular labels are
often assigned to many samples, and our clustering approach is able to capture this
information by assigning those popular labels to many clusters. Figure 1 illustrates the
approximate block diagonal structure on small-scale data set Mediamill (Snoek et al.
2006). For illustration purposes, the number of clusters q is set to 3, and only 56 out
of m = 101 labels and the first 400 train instances from each cluster are displayed. The
vertical axis represents instances, and the horizontal axis represents labels. It can be
visualized that a small set of labels located at the horizontal center are included in all
label clusters. If these popular labels were assigned to only one label cluster, the other
two would fail to capture the strong signals and thus suffer from an undesired loss in
predictive power.

After we find the optimal partitions, we learn a classifier from each pair of Xl and Yl .
Finally, given a test instance x̂ , we first classify it into one of {X∗

1
,X∗

2
,… ,X∗

q
} by con-

ducting a multinomial logistic regression on the feature space, and then predict its most
relevant labels ŷ from its label cluster.

3.2 � Block‑wise partitioning (BP)

As we mentioned in Sect. 3.1, our goal is to learn a function C and a set of label
clusters {L∗

1
,L∗

2
,… ,L∗

q
} for any given q. Let Ωq = (C, {L1,L2,… ,Lq}) . We wish

to find the optimal Ω∗
q
 which minimizes the objective function

56 labels

12
00

 in
st

an
ce

s
Cluster 1

Cluster 2

Cluster 3

Fig. 1   Truncated and permuted training label matrix of Mediamill. Black pixels are tagged labels.
Clusters are marked by bounding rectangles in different colors

2198	 Y. Liang et al.

1 3

where � is a regularization parameter. The intuition behind f (Ωq) is to search for
an equilibrium between the number of ones captured by the diagonal blocks and
the total size of label clusters. We first observe that this optimization problem is a
significant challenge, as the objective function is neither convex nor differentiable.
Furthermore, our goal is to perform optimization for data sets where d, m, and n are
substantially large. Nevertheless, when either one of the two sets of clusters is fixed,
the objective function can be minimized. To this end, we divide the optimization
problem into two phases, and implement alternating minimization.

To start with, we specify q, the initial number of paired clusters, and set t = 0 .
The selection criteria of q will be discussed in Sect. 3.3. Given a chosen q, we ini-
tialize C by applying the sparse k-means clustering on the entire training feature
matrix. In other words, we initialize {X(0)

1
,X

(0)

2
,… ,X(0)

q
} by features.

3.2.1 � Label clusters selection

From t = 1 , we fix {X(t−1)

1
,X

(t−1)

2
,… ,X(t−1)

q
} and update {L(t)

1
,L

(t)

2
,… ,L(t)

q
} . This is

a discrete optimization problem, and a naive implementation will need to check the
objective function (1) for every possible set of labels. Instead, we find the optimal
set can be efficiently computed using the following procedure.

Given an instance cluster Xl , we first calculate column sums in the label matrix for
all m labels, and then sort the m column sums in descending order. By the definition of
the objective function, we know if one label is included in Ll , then all the labels with
larger column sum should also be included in Ll (otherwise exchanging two labels will
decrease objective function). Denote J as the number of labels in Ll . Thus we add the
sorted m labels one by one to the label set Ll , and each time check the objective function

until adding one additional label will increase (2). It is obvious that further increas-
ing J will lead to a larger objective function value, thus assigning the first J labels to
Ll will be optimal.

In the following paragraph, we show that our algorithm can find the optimal label
clusters when fixing instance clusters. For any instance cluster, in sequel, we denote
Ci as the column sum of label matrix block for the ith label, i = 1,… ,m.

Proposition 1  Let {Ci}
m
i=1

 be a non-increasing sequence of non-negative integers.
Denote an = −

∑n

i=1
Ci + �n2 where 𝜆 > 0 . The sequence of real numbers {an}mn=1 is

strictly convex.

Proof  To prove the strict convexity of {an}mn=1 , it suffices to show that for
2 ≤ n ≤ m − 1,

(1)f (Ωq) = −

n∑

i=1

m∑

j=1

1[j ∈ (L◦C)(xi), yij = 1] + �

q∑

l=1

|Ll|2,

(2)−
∑

i∈Xl

J∑

j=1

1[j ∈ (L◦C)(xi)] ⋅ 1[yij = 1] + �J2

2199

1 3

Fast block-wise partitioning for extreme multi-label class...

Since an = −
∑n

i=1
Ci + �n2 , we have

as Cn ≥ Cn+1 and 𝜆 > 0 . This completes the proof.

	� ◻

Since convexity guarantees that (2) can be minimized, it implies Algorithm 1
finds the optimal label sets. Figure 2 (left) visualizes Algorithm 1 via an example
with q = 3 and m = 14 . Different colors distinguish different clusters. The top-left
number 100, for instance, is the column sum of the first column, i.e., label 1, in the
training label matrix for all samples in X1 . As the color turns lighter from left to
right, the column sums decrease, and the algorithm selects the first eight labels in
the corresponding label cluster L1.

In this procedure, computing the count of each label in each instance cluster costs
O(nnz(�)) time in total, where nnz(�) denotes the number of nonzero elements in
Y . Sorting for all the clusters costs O(qm log(m)) time. Once the label counts are
computed and sorted, every step of checking (2) only costs O(1) time, so the overall
time complexity for this step is O(nnz(�) + qm log(m)).

3.2.2 � Instance clusters selection

Now we fix {L(t)

l
}
q

l=1
 and update {X(t)

1
,X

(t)

2
,… ,X(t)

q
} . We take the following steps for

every instance. We first assign an instance to every one of the q instance clusters, and
then count the number of attached labels that belong to the corresponding label cluster.

an−1 + an+1 > 2an.

an−1 + an+1 − 2an = −

n−1∑

i=1

Ci + 𝜆(n − 1)2 −

n+1∑

i=1

Ci + 𝜆(n + 1)2 +

n∑

i=1

2Ci − 2𝜆n2

= −Cn − Cn+1 + 2𝜆n2 + 2𝜆 + 2Cn − 2𝜆n2

= Cn − Cn+1 + 2𝜆 > 0

Fig. 2   An example of label clusters selection (left) and instance clusters selection (right). For label
clusters selection, lighter colors represent lower column sums. Best viewed in color

2200	 Y. Liang et al.

1 3

If the Ith assignment yields the greatest count, then we put the instance in XI . Algo-
rithm 2 optimally solves the subproblem resulting from (1) because the summation of
maxima in each independent component is indeed the maximum. Figure 2 (right) envi-
sions Algorithm 2 for the first four sample points under the same framework as Fig. 2
(left). The 1’s in yellow are the ground truth labels in the training label matrix. For the
first sample, there are five 1’s in blue, two in green, and one in red. At this step, we fix
label clusters and update instance clusters. If we place the first sample into X1 , then five
ground truth labels will be captured in L1 . The same idea follows for green and red.
Since placing it into X1 yields the highest number of ground truth labels to be captured,
we put the first sample into X1 , and mark it in blue.

In this procedure, computing the count of each instance in each label cluster costs
O(nnz(�)) time in total, and comparing the counts of q assignments costs O(q) time for
each instance, so the overall time complexity for this step is O(nnz(�) + nq).

We iterate the above two selection procedures until the objective reaches a local
minimum. Once the difference between f (Ω(t−1)

q
) and f (Ω(t)

q
) is less than 10−5 , we stop

at time t, and report {X(t)

1
,X

(t)

2
,… ,X(t)

q
} and {L(t)

1
,L

(t)

2
,… ,L(t)

q
} as the optimal set of

instance and label clusters, respectively.
As the time complexities of label clusters selection and instance clusters selection

are O(nnz(�) + qm log(m)) and O(nnz(�) + nq) respectively, the total time complexity
of this alternating minimization procedure is O(nnz(�) + qm log(m) + nq) .

2201

1 3

Fast block-wise partitioning for extreme multi-label class...

3.3 � Optimal parameters

The regularization parameter � monitors the tradeoff between prediction speed and
prediction accuracy. The optimal � depends on one’s preference for prediction effi-
ciency and tolerance of accuracy loss. Conditional on the tolerance level, we are able
to apply cross-validation to select the optimal � . For each validation set, we record
an interval of � ’s that keeps the loss of prediction accuracy within the tolerance
level. The optimal range of � ’s is taken as the intersection of all intervals. In real data
experiments, we conduct 5-fold cross-validation, and set the tolerance level to 2%.

Note that our algorithm assumes that the numbers of label clusters and instance
clusters are equal to q, but in practice, the “true” number of paired clusters is
unknown. Nevertheless, our algorithm automatically searches for the optimal q
within a search space. On the one hand, if the diagonal blocks in the training label
matrix capture as many ones as possible, then important labels are likely to stay in at
least one of the label clusters, and thus predictive power is unaffected. On the other
hand, if q is too large, some of the paired clusters may be empty. Hence, there exists
a unique q such that the maximal proportion of ones in the full training label matrix
is attained, and all q paired clusters are non-empty. For instance, in the large-scale
data set AmazonCat-13K (McAuley and Leskovec 2013), when � = 1 , as q increases
from 2 to 5, the proportion of 1’s being captured in clusters increases from 80 to
84% . If we take q = 6 , one pair of instance and label clusters shrinks to null. There-
fore, our algorithm selects q = 5 for AmazonCat-13K.

3.4 � Prediction

To predict labels of test instances, we allocate all instances into proper instance clus-
ters based on their features. This task is a supervised learning problem, which is
handled by the linear classification package LIBLINEAR (Fan et al. 2008). We use
L2-regularized linear logistic regression in LIBLINEAR, with the default one-versus-
all approach for multi-class classification. The training is efficient since LIBLINEAR
only takes O(nnz(�)q) time per epoch. The final step of the whole process is to apply
the trained classifiers on the assigned testing instance cluster and corresponding label
cluster. The prediction only requires q inner products, and q is much smaller than the
original label size. Hence, instead of performing a linear scan on all m labels, we can
just scan at most q ⋅maxl |L∗

l
| labels in all q clusters. To demonstrate the efficiency

of LIBLINEAR, we report the train and prediction time, together with the number of
instance clusters in all data sets on which we experiment in Sect. 4.8.

4 � Experiments

We evaluate the performance of BP pretreatment on combinations of data sets and clas-
sifiers with respect to prediction accuracy and prediction time. All experiments are con-
ducted on a machine with an Intel Xeon E5-2690 2.90GHz CPU and 256GB RAM.

2202	 Y. Liang et al.

1 3

4.1 � Data

We conduct experiments on five large-scale data sets from the Extreme Classifica-
tion Repository. Table 1 shows the associated details. We use the same train-test
splits as the Repository.

subsectionClassifiers
We apply BP on one embedding and three one-versus-all based classifiers, and

then compare BP with four existing pretreatment methods. We also compare BP-
enabled classifiers with deep learning classifiers in prediction time.

•	 LEML (Yu et al. 2014) is a low-rank Empirical-Risk-Minimization solver. We
implement BP with this method because its prediction time complexity is linear
to m.

•	 PD-Sparse (Yen et al. 2016) uses L1 regularization along with multi-class loss.
Since the intermediary weight vectors need to be stored in size linear to m, we
implement BP with this algorithm.

•	 DiSMEC (Babbar and Schölkopf 2017) is a distributed framework based on one-
versus-all linear classifiers with explicit model size controlled by pruning small
weights.

•	 ProXML (Babbar and Schölkopf 2019) exploits the label-wise independence of
Hamming loss among labels and manages to detect tail labels.

•	 LPSR-NB (Weston et al. 2013) learns a hierarchy of labels as well as a classifier
for the entire label set. Since the computational cost for each task is high, train-
ing Naive Bayes (NB) classifier as the base classifier is the only possible strategy
for large-scale data sets. Results of this approach are taken from Table 1(a) in the
SLEEC paper (Bhatia et al. 2015), Table 2 in the DiSMEC paper (Babbar and
Schölkopf 2017) and the Repository.

•	 CBMLC (Nasierding et al. 2009) comprises a clustering algorithm (either
k-means (Jain and Dubes 1988) or EM (Dempster et al. 1977)) and a multi-label
classification algorithm. Since none of the four originally proposed multi-label
classifier candidates can fully scale to extreme datasets without modification, we
instantiate the clustering component using the k-means algorithm and implement
the classification component using LEML, PD-Sparse and DiSMEC.

•	 LF (Niculescu-Mizil and Abbasnejad 2017) chooses candidate labels by
projecting every test instance on a filtering line, and keeps only the labels that

Table 1   Data set statistics for extreme multi-label classification problems. ASpL and ALpS represent the
average sample per label and average labels per sample respectively

Data # Training # Testing # Features # Labels ASpL ALpS

AmazonCat-13K 1,186,239 306,782 203,882 13,330 448.57 5.04
Wiki10-31K 14,146 6,616 101,938 30,938 8.52 18.64
Delicious-200K 196,606 100,095 782,585 205,443 72.29 75.54
WikiLSHTC-325K 1,778,351 587,084 1,617,899 325,056 17.46 3.19
Amazon-670K 490,449 153,025 135,909 670,091 3.99 5.45

2203

1 3

Fast block-wise partitioning for extreme multi-label class...

Ta
bl

e 
2  

P
@

k,
 P

SP
@

k
an

d
th

eo
re

tic
al

 p
re

di
ct

io
n

sp
ee

du
p

fo
r a

lg
or

ith
m

s
w

ith
 B

P
pr

et
re

at
m

en
t.

Va
lu

es
 w

ith
 s

up
er

sc
rip

t †
 a

re
 o

bt
ai

ne
d

fro
m

 a
 s

ub
se

t o
f t

es
t s

am
pl

es
 a

s
th

e
bu

ilt
-in

 te
sti

ng
 p

ro
ce

du
re

 o
f P

D
-S

pa
rs

e
do

es
 n

ot
 sc

al
e

to
 th

at
 d

at
a

se
t

D
at

a
M

et
ho

d
P@

1
P@

3
P@

5
PS

P@
1

PS
P@

3
PS

P@
5

Sp
ee

du
p

A
m

az
on

C
at

-1
3K

 (A
Lp

S=
5.

04
)

LE
M

L
88

.8
0

70
.6

5
54

.2
2

45
.6

2
52

.6
9

53
.4

1
1×

B
P

LE
M

L
(a

cc
ur

ac
y)

87
.0

3
71

.5
0

54
.4
3

48
.7
4

55
.2
3

54
.8
5

37
×

B
P

LE
M

L
(s

pe
ed

)
86

.8
7

69
.9

4
52

.2
6

47
.7

2
53

.6
0

52
.3

2
58

×
PD

-S
pa

rs
e

89
.0
4

73
.4
6

59
.3
7

49
.5
8

61
.6
3

68
.2
3

1×
B

P
PD

-S
pa

rs
e

(a
cc

ur
ac

y)
87

.3
8

71
.7

4
57

.4
0

48
.1

6
60

.4
4

67
.1

9
8×

B
P

PD
-S

pa
rs

e
(s

pe
ed

)
87

.3
8

71
.7

4
57

.4
0

48
.1

6
60

.4
4

67
.1

9
8×

D
iS

M
EC

93
.3
8

79
.0
7

64
.0
9

59
.0
8

67
.1
0

71
.1
9

1×
B

P
D

iS
M

EC
 (a

cc
ur

ac
y)

92
.1

3
77

.5
7

62
.4

9
53

.5
8

63
.3

0
67

.6
6

5×
B

P
D

iS
M

EC
 (s

pe
ed

)
92

.1
1

77
.5

6
62

.2
7

53
.5

0
62

.9
1

66
.8

9
6×

Pr
oX

M
L

89
.2

7
74

.5
2

60
.0
6

65
.9

5
70

.0
5

70
.6

8
1×

B
P

Pr
oX

M
L

(a
cc

ur
ac

y)
89

.5
2

74
.5

1
59

.0
1

73
.3
7

78
.2
7

80
.9
3

17
×

B
P

Pr
oX

M
L

(s
pe

ed
)

89
.2

1
74

.0
8

58
.2

1
73

.0
1

77
.1

4
78

.7
4

31
×

W
ik

i1
0-

31
K

 (A
Lp

S
=

 1
8.

64
)

LE
M

L
73

.1
0

62
.1

3
54

.0
6

9.
43

10
.0
7

10
.5
3

1×
B

P
LE

M
L

(a
cc

ur
ac

y)
75

.5
7

62
.5
1

53
.7

3
9.

14
9.

48
9.

66
21

2×
B

P
LE

M
L

(s
pe

ed
)

74
.8

5
61

.9
6

52
.5

2
9.

02
9.

35
9.

35
27

4×
PD

-S
pa

rs
e

81
.8
9

65
.3
4

53
.7
4

12
.4
8

11
.8
9

12
.6
7

1×
B

P
PD

-S
pa

rs
e

(a
cc

ur
ac

y)
81

.5
6

65
.0

2
53

.0
4

11
.8

3
11

.2
8

12
.1

0
20

9×
B

P
PD

-S
pa

rs
e

(s
pe

ed
)

80
.8

9
64

.3
0

52
.6

2
11

.1
9

10
.5

6
11

.4
2

28
9×

D
iS

M
EC

85
.2
0

74
.9
0

65
.9
0

13
.5
5

13
.0
8

13
.8
1

1×
B

P
D

iS
M

EC
 (a

cc
ur

ac
y)

84
.0

8
74

.2
2

64
.9

5
10

.4
2

12
.0

7
12

.9
9

40
×

B
P

D
iS

M
EC

 (s
pe

ed
)

84
.0

8
73

.9
5

64
.3

0
10

.4
1

11
.9

0
12

.5
4

90
×

Pr
oX

M
L

85
.2

5
76

.5
3

67
.3
3

17
.1

7
16

.0
7

16
.3
8

1×
B

P
Pr

oX
M

L
(a

cc
ur

ac
y)

85
.2
9

76
.5

0
66

.7
9

17
.3
1

16
.1
0

16
.2

8
71

×
B

P
Pr

oX
M

L
(s

pe
ed

)
85

.0
2

75
.9

5
65

.8
9

16
.5

4
15

.4
6

15
.5

0
12

5×

2204	 Y. Liang et al.

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

D
at

a
M

et
ho

d
P@

1
P@

3
P@

5
PS

P@
1

PS
P@

3
PS

P@
5

Sp
ee

du
p

D
el

ic
io

us
-2

00
K

 (A
Lp

S
=

 7
5.

54
)

LE
M

L
40

.0
1

36
.9

9
35

.0
7

6.
06

7.
24

8.
10

1×
B

P
LE

M
L

(a
cc

ur
ac

y)
40

.5
2

37
.4
0

35
.4
7

5.
97

7.
10

7.
93

39
0×

B
P

LE
M

L
(s

pe
ed

)
39

.6
7

37
.3

5
35

.4
4

5.
95

6.
89

7.
64

14
67

×
PD

-S
pa

rs
e

41
.9
7

35
.2
8

32
.8
7

5.
29

5.
80

6.
24

1×
B

P
PD

-S
pa

rs
e

(a
cc

ur
ac

y)
41

.4
7

34
.7

9
31

.9
4

5.
14

5.
60

6.
05

17
56

×
B

P
PD

-S
pa

rs
e

(s
pe

ed
)

40
.9

4
34

.3
3

31
.2

2
5.

09
5.

95
6.

15
21

04
×

D
iS

M
EC

45
.5
3

38
.6
7

35
.5
2

6.
52

7.
61

8.
39

1×
B

P
D

iS
M

EC
 (a

cc
ur

ac
y)

44
.2

7
38

.2
7

35
.2

3
6.
66

7.
42

8.
03

43
6×

B
P

D
iS

M
EC

 (s
pe

ed
)

43
.6

3
37

.9
2

35
.0

9
6.

53
7.

32
7.

96
20

75
×

W
ik

iL
SH

TC
-3

25
K

 (A
Lp

S
=

 3
.1

9)
LE

M
L

19
.8

2
11

.4
3

8.
39

3.
48

3.
79

4.
27

1×
B

P
LE

M
L

(a
cc

ur
ac

y)
29

.6
8

17
.8
6

13
.2
0

7.
30

8.
10

8.
97

84
×

B
P

LE
M

L
(s

pe
ed

)
21

.9
9

11
.2

9
7.

52
4.

36
3.

97
3.

82
25

59
×

PD
-S

pa
rs

e
60

.9
8

38
.1
2

26
.5
3

28
.3
4

33
.5
0

36
.6
2

1×
B

P
PD

-S
pa

rs
e

(a
cc

ur
ac

y)
59

.2
6

37
.4

8
26

.1
4

27
.7

2
32

.4
4

35
.4

8
3×

B
P

PD
-S

pa
rs

e
(s

pe
ed

)
59

.0
1

37
.3

3
26

.0
3

27
.6

3
32

.1
1

35
.3

9
4×

D
iS

M
EC

64
.1
4

42
.4
5

31
.5
2

29
.1
0

35
.6
0

39
.5
0

1×
B

P
D

iS
M

EC
 (a

cc
ur

ac
y)

63
.5

4
42

.3
8

30
.9

7
27

.4
5

33
.6

8
37

.7
0

10
×

B
P

D
iS

M
EC

 (s
pe

ed
)

62
.8

8
40

.8
7

29
.5

3
26

.6
5

33
.6

7
37

.1
6

18
×

Pr
oX

M
L

63
.6
0

41
.5
0

30
.8
0

34
.8
0

37
.7
0

41
.0
0

1×
B

P
Pr

oX
M

L
(a

cc
ur

ac
y)

63
.0

3
41

.4
1

30
.2

8
33

.8
2

35
.7

9
39

.2
4

10
×

B
P

Pr
oX

M
L

(s
pe

ed
)

62
.4

3
39

.8
8

29
.7

6
33

.0
3

35
.7

5
38

.7
1

18
×

2205

1 3

Fast block-wise partitioning for extreme multi-label class...

Ta
bl

e 
2  

(c
on

tin
ue

d)

D
at

a
M

et
ho

d
P@

1
P@

3
P@

5
PS

P@
1

PS
P@

3
PS

P@
5

Sp
ee

du
p

A
m

az
on

-6
70

K
 (A

Lp
S

=
 5

.4
5)

LE
M

L
8.

13
6.

83
6.

02
2.

07
2.

26
2.

47
1×

B
P

LE
M

L
(a

cc
ur

ac
y)

14
.2
1

10
.6
6

8.
60

5.
87

5.
47

5.
29

38
7×

B
P

LE
M

L
(s

pe
ed

)
7.

87
5.

29
4.

12
3.

00
2.

51
2.

34
27

80
×

PD
-S

pa
rs

e
24

.4
1†

21
.5

4†
19

.7
1†

18
.8

3†
15

.7
7†

14
.5
4†

1×
B

P
PD

-S
pa

rs
e

(a
cc

ur
ac

y)
26

.8
0

22
.2
8

18
.8

2
20

.0
9

16
.8
0

12
.2

9
28

×
B

P
PD

-S
pa

rs
e

(s
pe

ed
)

23
.9

0
19

.2
7

17
.8

3
17

.8
7

14
.3

4
11

.7
8

42
×

D
iS

M
EC

44
.7
1

39
.6
5

36
.0
9

27
.8
0

30
.6
0

34
.2
0

1×
B

P
D

iS
M

EC
 (a

cc
ur

ac
y)

43
.7

8
38

.8
8

35
.4

4
24

.8
7

28
.3

6
32

.2
5

11
×

B
P

D
iS

M
EC

 (s
pe

ed
)

42
.9

1
37

.8
9

34
.1

6
24

.1
1

28
.1

4
31

.9
9

22
×

Pr
oX

M
L

43
.5
0

38
.7
0

35
.3
0

30
.8
0

32
.8
0

35
.1
0

1×
B

P
Pr

oX
M

L
(a

cc
ur

ac
y)

42
.5

5
37

.9
0

34
.7

4
27

.9
0

30
.5

7
33

.1
4

11
×

B
P

Pr
oX

M
L

(s
pe

ed
)

41
.7

2
36

.9
4

33
.4

2
27

.1
5

30
.3

6
32

.8
8

22
×

B
ol

d
va

lu
es

 in
di

ca
te

 th
e

be
st

re
su

lt
am

on
g

di
ffe

re
nt

 p
re

tre
at

m
en

t m
et

ho
ds

 u
nd

er
 th

e
sa

m
e

cl
as

si
fie

r

2206	 Y. Liang et al.

1 3

1  These choices are adopted from the Extreme Classification Repository.

have training instances in the neighborhood of this projection. The results of this
approach are taken from the LF paper.

•	 Agglomerative Hierarchical Cluster (AHC) tree (Day and Edelsbrunner 1984)
initiates an individual cluster for each instance, and pairs of clusters are merged
as one moves up the hierarchy. We employ AHC in feature clustering and apply
LEML, PD-Sparse and DiSMEC in label scanning.

•	 AttentionXML (You et al. 2018) is a label tree-based deep learning model that
utilizes label correlations to generate label partitions and shortlist candidate
labels. Since BP is mostly applicable to sparse tf-idf data representation other
than dense raw text data, we do not implement BP on AttentionXML, and the
results of this deep learning approach are adopted from the AttentionXML paper.

4.2 � Parameter setting

For LEML, we set the rank to 500 and the number of iterations to 5 for an early
stop.1 All other parameters are set as default. For PD-Sparse, DiSMEC and
ProXML, we use the default parameters provided by the authors.

4.3 � Evaluation metrics

Precision@k (P@k) counts the fraction of correct predictions in the top k scoring
labels in ŷ (this is a standard evaluation on Extreme Repository) (Hsu et al. 2009;
Agrawal et al. 2013). To examine the performance on tail labels, we also present
propensity scored Precision@k (PSP@k), as propensity score helps in making met-
rics unbiased (Jain et al. 2016). We report two versions of precision scores based
on two variants of BP. Accuracy BP aims at the highest P@k in the search space
of � . Speed BP aims at the highest speedup at the expense of at most 2% P@k loss.
To evaluate improvement in prediction efficiency, we consider theoretical speedup,
a measure with regard to number of vector multiplications (Niculescu-Mizil and
Abbasnejad 2017). We also use elapsed time to measure actual speedup.

4.4 � Prediction accuracy on classifiers

We implement BP with LEML, DP-Sparse, DiSMEC and ProXML. Table 2 dem-
onstrates that BP speeds up prediction under all scenarios with less than 2% loss
in P@k and less than 6% loss in PSP@k. Results of BP ProXML on Delicious-
200K are not reported, as both (Panos et al. 2021) and our experiments show that
ProXML does not scale to Delicious-200K. For the embedding method, accuracy
BP LEML produces better P@k than the original LEML for all data sets, and even
better PSP@k in some cases. By partitioning the original label space into differ-
ent subspaces, BP effectively reinforces low-rankness, a fundamental assumption
that LEML must satisfy to achieve good performance. For one-versus-all methods,
although the original PD-Sparse does not scale to challenging data sets, BP frees it

2207

1 3

Fast block-wise partitioning for extreme multi-label class...

from the size constraint. P@k of DiSMEC and ProXML experiences a small drop
when in most cases. For classifiers that require a linear scan over the whole label
space, skipping a subset of labels slightly impacts predictive performance.

4.5 � Role of �

Figure 3 reveals that � manages to control the trade-off between P@k and speedup.
Even though a smaller � allows more labels in label clusters, minimizing � does not
necessarily yield the best prediction performance.

4.6 � Theoretical and actual speedup

The theoretical speedup column in Table 2 is measured by the number of vector
multiplications. BP speeds up prediction up to 2780 times under all scenarios. A
negative correlation is observed between speedup and average labels per sample
(ALpS) on PD-Sparse, DiSMEC and ProXML. Note that ALpS in AmazonCat-13K,
WikiLSHTC-325K and Amazon-670K is below 6, and every sample in Delicious-
200K has 76 positive labels on average. Due to the nature of the polished one-ver-
sus-all approach, choosing the top 5 labels from 76 is much easier than choosing the
top 5 from 6. As the label size in each cluster should have been substantially large to
avoid unwanted elimination, speedup may be affected. Nevertheless, even though the
speedup is less in low ALpS data sets, we still speed up PD-Sparse, DiSMEC and
ProXML for more than 10 times on the largest Amazon-670K. We also report actual
prediction time per test instance (in milliseconds) on AmazonCat-13K, Wiki10-31K
and Delicious-200K for speed BP in Table 3. Overall, the actual speedup is similar
to and bounded by the theoretical speedup.

4.7 � BP processing time

Table 4 shows that BP does not have much overhead in the pre-processing step.
Although our goal is to speed up prediction, the training time (data partition time +
BP training time) is also shortened. Note that all clusters can be trained and tested in
a parallel manner. Parallelization can make extreme classifiers’ training and testing
faster than the single-core implementation.

4.8 � Efficiency of LIBLINEAR

To visualize the efficiency of the LIBLINEAR package, we report the training and
prediction time, together with the number of instance clusters q in all data sets for
LEML and DiSMEC in Table 5. These numbers are compatible with the training
time complexity O(nnz(�)q) time per epoch and the prediction time complexity
O(q ⋅maxl |L∗

l
|) time per epoch mentioned in Sect. 3.4.

2208	 Y. Liang et al.

1 3

0 5 10 15

40
50

60
70

80
90

lambda

P@
1/
P@

3/
P@

5

20
40

60
80

10
0

14
0

Sp
ee

d−
up

P@1 P@3 P@5 Speed−up

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90

lambda

P@
1/
P@

3/
P@

5

10
15

20
25

30
35

40
Sp

ee
d−

up

P@1 P@3 P@5 Speed−up

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90

lambda

P@
1/
P@

3/
P@

5

10
20

30
40

Sp
ee

d−
up

P@1 P@3 P@5 Speed−up

0.2 0.4 0.6 0.8 1.0

50
55

60
65

70
75

80

lambda

P@
1/
P@

3/
P@

5

10
0

15
0

20
0

25
0

30
0

Sp
ee

d−
up

P@1 P@3 P@5 Speed−up

0.5 1.0 1.5 2.0

40
50

60
70

80

lambda

P@
1/
P@

3/
P@

5

20
0

25
0

30
0

35
0

40
0

Sp
ee

d−
up

P@1 P@3 P@5 Speed−up

0.02 0.04 0.06 0.08 0.10

60
65

70
75

80
85

lambda

P@
1/
P@

3/
P@

5

40
60

80
10

0
12

0
Sp

ee
d−

up

P@1 P@3 P@5 Speed−up

10 20 30 40

34
36

38
40

lambda

P@
1/
P@

3/
P@

5

40
0

80
0

12
00

Sp
ee

d−
up

P@1 P@3 P@5 Speed−up

20 40 60 80

28
30

32
34

36
38

40
42

lambda

P@
1/
P@

3/
P@

5

50
0

10
00

15
00

20
00

Sp
ee

d−
up

P@1 P@3 P@5 Speed−up

20 40 60 80 100

34
36

38
40

42
44

lambda

P@
1/
P@

3/
P@

5

50
0

10
00

15
00

20
00

Sp
ee

d−
up

P@1 P@3 P@5 Speed−up

Fig. 3   Precision (y1 axis) and speedup (y2 axis) as a function of � . From top to bottom: AmazonCat-
13K, Wiki10-31K, and Delicious-200K. From left to right: LEML, PD-Sparse, and DiSMEC. Presented
� may be out of the optimal range

Table 3   Actual prediction time (in milliseconds) per test instance for speed BP

Method Data Original Time BP Time Actual Speedup Theo-
retical
Speedup

LEML AmazonCat-13K 5.76 0.11 52× 58×
Wiki10-31K 34.1 0.15 227× 274×
Delicious-200K 0.128 0.0001 1280× 1467×

PD-Sparse AmazonCat-13K 0.62 0.078 8× 8×
Wiki10-31K 3.38 0.03 113× 289×
Delicious-200K 5.27 0.01 527× 2104×

DiSMEC AmazonCat-13K 0.2 0.038 5× 6×
Wiki10-31K 0.12 0.0015 80× 90×
Delicious-200K 307.3 0.154 1995× 2075×

2209

1 3

Fast block-wise partitioning for extreme multi-label class...

4.9 � Comparison with other pretreatment methods

Among the four pretreatment methods to be compared with BP, AHC takes the
simplest approach: it only partitions the instance space based on features and
leaves label space unchanged. Its clustering step requires O(n2 log n ) time in
the worst scenario (Day and Edelsbrunner 1984), but no extra cost is involved
before any label classification step. CBMLC performs both feature clustering
and label assignment (Nasierding et al. 2009). Its standard k-means clustering on
feature space requires O(ndq) time per epoch, but the computational cost for its
default label assignment solutions is extremely high in the extreme classification
setting. Therefore, the first round of comparison is among AHC, CBMLC and
accuracy BP, where we focus on the effectiveness of feature clustering and aim
to achieve the highest prediction accuracy for all three methods. Table 6 indicates
that CBMLC and AHC perform better than accuracy BP in terms of P@k with
LEML. Although BP helps with low-rankness as we observe in Sect. 4.4, keeping
the original set of labels is still the best way to preserve the quality of label
embedding in LEML’s encoder-decoder architecture. For one-versus-all methods
such as PD-Sparse and DiSMEC, nevertheless, CBMLC and AHC perform worse
than accuracy BP. AHC and CBMLC in the extreme classification scenarios tend
to overlook the relationship between labels and features. Doing a linear scan

Table 4   Elapsed time (in seconds) for LEML and DiSMEC with speed BP pretreatment

Method Procedure A.-13K W.-31K D.-200K W.-325K A.-670K

BP LEML Data partitioning 2102 107 1675 7841 3049
BP LEML Training 17626 1239 4581 8800 5753
LEML Original training 28200 4448 18599 43473 9802
BP DiSMEC Data partitioning 220 6 118 89613 35735
BP DiSMEC Training 6587 541 4134 95243 49348
DiSMEC Original training 12459 2339 39439 300655 193842

Table 5   LIBLINEAR train and
prediction time (in seconds) for
LEML and DiSMEC with BP
pretreatment

Data Method Train Prediction

AmazonCat-13K BP LEML 573 3
(q = 5) BP DiSMEC 405 12
Wiki10-31K BP LEML 21 1
(q = 3) BP DiSMEC 8 1
Delicious-200K BP LEML 1233 9
(q = 10) BP DiSMEC 257 10
WikiLSHTC-325K BP LEML 8447 8
(q = 1575) BP DiSMEC 2487 27
Amazon-670K BP LEML 3375 5
(q = 2000) BP DiSMEC 937 14

2210	 Y. Liang et al.

1 3

over the whole label space without emphasis on the most relevant set of labels
introduces distraction from infrequent and unrepresentative signals.

The second round of comparisons is among LPSR, LF and BP. All three
methods follow the two-step procedure to update instance and label clusters, but
LPSR’s computational cost is so exorbitant that NB remains the only possible
base classifier in extreme classification (Babbar and Schölkopf 2017). LF is
similar to BP as they both conduct alternating minimization to find the optimal
sets of unknown parameters with a similar level of computation complexity.
LF requires O(nd + nq + n log n + m logm) time per update (Niculescu-Mizil
and Abbasnejad 2017), and BP requires O(nnz(�) + nq + qm log(m)) time as

Table 6   P@k and PSP@k for algorithms with accuracy BP, CBMLC and AHC pretreatments

Bold values indicate the best result among different pretreatment methods under the same classifier

Data Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

AmazonCat-13K
(ALpS=5.04)

BP LEML (accuracy) 87.03 71.50 54.43 48.74 55.23 54.85
CBMLC LEML 89.03 72.38 56.18 46.91 55.34 54.92
AHC LEML 89.12 72.33 55.87 47.10 55.21 54.84
BP PD-Sparse (accu-

racy)
87.38 71.74 57.40 48.16 60.44 67.19

CBMLC PD-Sparse 87.70 71.34 57.09 47.33 59.51 66.40
AHC PD-Sparse 87.54 71.12 56.96 47.30 58.96 66.01
BP DiSMEC (accuracy) 92.13 77.57 62.49 53.58 63.30 67.66
CBMLC DiSMEC 92.06 77.53 62.19 53.31 62.40 66.55
AHC DiSMEC 92.01 77.25 61.88 53.26 62.37 66.00

Wiki10-31K (ALpS =
18.64)

BP LEML (accuracy) 75.57 62.51 53.73 9.14 9.48 9.66
CBMLC LEML 74.43 63.32 55.00 8.97 10.65 10.93
AHC LEML 74.83 63.34 54.93 9.02 10.87 10.64
BP PD-Sparse (accu-

racy)
81.56 65.02 53.04 11.83 11.28 12.10

CBMLC PD-Sparse 71.16 56.51 46.28 9.85 9.20 9.98
AHC PD-Sparse 78.52 59.99 48.38 10.92 10.04 10.71
BP DiSMEC (accuracy) 84.08 74.22 64.95 10.42 12.07 12.99
CBMLC DiSMEC 84.01 73.83 64.22 10.39 11.79 12.38
AHC DiSMEC 84.04 74.01 64.45 10.40 11.98 12.61

Delicious-200K (ALpS
= 75.54)

BP LEML (accuracy) 40.52 37.40 35.47 5.97 7.10 7.93
CBMLC LEML 42.12 38.05 35.98 6.84 7.93 8.88
AHC LEML 42.15 38.07 35.58 6.87 7.97 8.54
BP PD-Sparse (accu-

racy)
41.47 34.79 31.94 5.14 5.60 6.05

CBMLC PD-Sparse 30.07 25.27 23.06 4.02 4.16 4.89
AHC PD-Sparse 38.83 27.44 24.52 4.79 4.75 5.20
BP DiSMEC (accuracy) 44.27 38.27 35.23 6.66 7.42 8.03
CBMLC DiSMEC 43.99 37.83 35.00 6.59 7.17 7.72
AHC DiSMEC 44.09 37.97 35.14 6.61 7.19 7.81

2211

1 3

Fast block-wise partitioning for extreme multi-label class...

mentioned in Sect. 3.2. As LF is shown to work well mostly with NB and SVM
(Crammer and Singer 2001) in (Niculescu-Mizil and Abbasnejad 2017), we apply
all three methods to NB. To aim for the highest prediction accuracy, we adopt the
idea of conservative LF that attempts to preserve performance other than speedup
from (Niculescu-Mizil and Abbasnejad 2017). Table 7 shows that BP and LF
significantly outperform LPSR, and BP has slightly worse accuracy but better
theoretical speedup than LF.

4.10 � Performance on tail labels

The PSP@k columns in Table 2 show that BP boosts embedding-based LEML’s
performance on many tail labels, but it introduces 1% to 6% drop to one-versus-all
methods in many cases. The PSP@k columns in Table 6 reveal that BP outper-
forms CBMLC and AHC in one-versus-all scenarios, but gives mixed outcomes
to LEML. Allowing more labels to be captured in label clusters prevents more tail
labels from elimination, but this comes at the cost of longer prediction time.

4.11 � Computation time comparison with deep learning methods

Despite long training time and big model size (Chang et al. 2021), deep learning
methods in general deliver the most accurate prediction outcomes (Bhatia et al.
2016). For example, on AmazonCat-13K, while the best representative of one-
versus-all methods, DiSMEC, gives 93.38 for P@1, deep learning methods Atten-
tionXML and LightXML bring 95.92 and 96.77 respectively (Bhatia et al. 2016).
Conditional on the availability of computation resources, deep learning methods
outperform the other three trends when it comes to time-insensitive tasks. How-
ever, it is still worth investigating the tradeoff between accuracy and efficiency when
timely iterative scoring is at risk and computation power is a constraint.

While it takes AttentionXML 1.63 milliseconds to test one sample on
AmazonCat-13K with 8 Nvidia GTX 1080Ti GPUs (You et al. 2018), it takes

Table 7   P@k and theoretical
prediction speedup for accuracy
BP NB, conservative LF NB
and LPSR-NB

Bold values indicate the best result among different pretreatment
methods under the same classifier

Data Method P@1 P@5 Speedup

Wiki10-31K
(ALpS =
18.64)

NB 80.00 57.55 1x
Accuracy BP NB 80.89 56.98 38x
Conservative LF NB 80.62 57.90 34x
LPSR-NB 72.71 49.50 –

Delicious-
200K
(ALpS =
75.54)

NB 45.33 38.08 1x
Accuracy BP NB 45.16 37.29 558x
Conservative LF NB 45.25 37.98 428x
LPSR-NB 18.59 14.07 –

2212	 Y. Liang et al.

1 3

BP DiSMEC 0.038 millisecond to do the same job without GPU according to
Table 3. We thus face a tradeoff between 43 times faster in prediction and 3.79%
(95.92 − 92.13) drop in accuracy based on Table 2. On Wiki10-31K, it takes
AttentionXML 4.53 milliseconds (You et al. 2018) and BP DiSMEC 0.0015
millisecond to finish the same task. It now comes to the debate of 3020 times faster
in prediction versus 3.39% (87.47 − 84.08) drop in accuracy. Besides prediction
time, according to Table 3, it takes BP DiSMEC 1.89 hours and AttentionXML
13.11 hours (You et al. 2018) to train their corresponding model on AmazonCat-
13K. LightXML is proven to be faster than AttentionXML in training and testing
in some use cases Jiang et al. (2021), but BP-empowered methods can still achieve
faster computation by taking some cost in accuracy.

5 � Concluding remarks

We apply BP pretreatment on extreme multi-label classifiers whose test time com-
plexity is linear to the size of the label set. The non-convex and discrete optimization
problem launched with BP is solved by an intuitive and straightforward alternating
minimization procedure. Partitioning on the instance and label matrices embraces
the strength of existing algorithms by a significant order of magnitude speedup
together with a similar level of prediction accuracy.

Author contributions  All authors contributed to the development of the proposed method and the writ-
ing of the manuscript. YL carried out most of the numerical experiments. All authors reviewed the
manuscript.

Funding  Liang and Lee were supported by the National Science Foundation under Grants CCF-1934568,
DMS-1916125 and DMS-2113605. Hsieh was supported by the National Science Foundation under
Grants CCF-1934568, IIS-1901527 and IIS-2008173.

Data availability  All data are publicly available with references provided in the paper.

Code availability  The code can be obtained from the authors. It will also be made publicly available in
github once the paper is accepted for publication.

Declarations 

Conflict of interest  The authors do not have any conflicts of interest/competing interests to declare.

References

Agrawal R, Gupta A, Prabhu Y, Varma M (2013) Multi-label learning with millions of labels:
recommending advertiser bid phrases for web pages. In: Proceedings of the 22nd international
conference on World Wide Web, ACM, pp 13–24

2213

1 3

Fast block-wise partitioning for extreme multi-label class...

Babbar R, Schölkopf B (2017) Dismec: distributed sparse machines for extreme multi-label classification.
In: Proceedings of the tenth ACM international conference on web search and data mining, ACM,
pp 721–729

Babbar R, Schölkopf B (2019) Data scarcity, robustness and extreme multi-label classification. Mach
Learn, 1–23

Bhatia K, Dahiya K, Jain H, Kar P, Mittal A, Prabhu Y, Varma M (2016) The extreme classification
repository: multi-label datasets and code. URL http://​manik​varma.​org/​downl​oads/​XC/​XMLRe​posit​
ory.​html

Bhatia K, Jain H, Kar P, Varma M, Jain P (2015) Sparse local embeddings for extreme multi-label
classification. Adv Neural Inf Process Syst, 730–738

Chang W-C, Jiang D, Yu H-F, Teo CH, Zhang J, Zhong K, Kolluri K, Hu Q, Shandilya N, Ievgrafov V
et al (2021) Extreme multi-label learning for semantic matching in product search. In: Proceedings
of the 27th ACM SIGKDD conference on knowledge discovery & data mining, 2643–2651

Chang W-C, Yu H-F, Zhong K, Yang Y, Dhillon IS (2020) Taming pretrained transformers for extreme
multi-label text classification. In: Proceedings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining, pp 3163–3171

Crammer K, Singer Y (2001) On the algorithmic implementation of multiclass kernel-based vector
machines. J Mach Learn Res 2:265–292

Dahiya K, Agarwal A, Saini D, Gururaj K, Jiao J, Singh A, Agarwal S, Kar P, Varma M (2021a)
Siamesexml: siamese networks meet extreme classifiers with 100m labels. In: International
conference on machine learning, PMLR, pp 2330–2340

Dahiya K, Saini D, Mittal A, Shaw A, Dave K, Soni A, Jain H, Agarwal S, Varma M (2021b) Deepxml:
A deep extreme multi-label learning framework applied to short text documents. In: Proceedings of
the 14th ACM international conference on web search and data mining, pp 31–39

Day WH, Edelsbrunner H (1984) Efficient algorithms for agglomerative hierarchical clustering methods.
J Classif 1:7–24

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em
algorithm. J R Stat Soc Ser B (Methodological) 39:1–22

Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image
database. In: Computer vision and pattern recognition, 2009. CVPR 2009. IEEE Conference on,
IEEE, pp 248–255

Evron I, Moroshko E, Crammer K (2018) Efficient loss-based decoding on graphs for extreme
classification. Adv Neural Inf Process Syst, 31

Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) Liblinear: a library for large linear
classification. J Mach Learn Resarch 9:1871–1874

Gupta V, Wadbude R, Natarajan N, Karnick H, Jain P, Rai P (2019) Distributional semantics meets multi-
label learning. Proc AAAI Conf Artif Intell 33:3747–3754

Hsu DJ, Kakade SM, Langford J, Zhang T (2009) Multi-label prediction via compressed sensing. In:
Advances in neural information processing systems, pp 772–780

Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall Inc
Jain H, Balasubramanian V, Chunduri B, Varma M (2019) Slice: scalable linear extreme classifiers

trained on 100 million labels for related searches. In: Proceedings of the twelfth ACM
international conference on web search and data mining, pp 528–536

Jain H, Prabhu Y, Varma M (2016) Extreme multi-label loss functions for recommendation, tagging,
ranking & other missing label applications. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, ACM, pp 935–944

Jalan A, Kar P (2019) Accelerating extreme classification via adaptive feature agglomeration. In:
Proceedings of the 28th international joint conference on artificial intelligence, pp 2600–2606

Jasinska K, Dembczynski K, Busa-Fekete R, Pfannschmidt K, Klerx T, Hullermeier E (2016) Extreme
f-measure maximization using sparse probability estimates. In: International conference on
machine learning, pp 1435–1444

Jiang T, Wang D, Sun L, Yang H, Zhao Z, Zhuang F (2021) Lightxml: transformer with dynamic
negative sampling for high-performance extreme multi-label text classification. In: Proceedings
of the AAAI conference on artificial intelligence, vol 35, pp 7987–7994

Khandagale S, Xiao H, Babbar R (2019) Bonsai-diverse and shallow trees for extreme multi-label
classification. arXiv preprint arXiv:​1904.​08249

Khandagale S, Xiao H, Babbar R (2020) Bonsai: diverse and shallow trees for extreme multi-label
classification. Mach Learn 109:2099–2119

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://arxiv.org/abs/1904.08249

2214	 Y. Liang et al.

1 3

Liu J, Chang W-C, Wu Y, Yang Y (2017) Deep learning for extreme multi-label text classification. In
Proceedings of the 40th international ACM SIGIR conference on research and development in
information retrieval, ACM, pp 115–124

McAuley J, Leskovec J (2013) Hidden factors and hidden topics: understanding rating dimensions
with review text. In Proceedings of the 7th ACM conference on recommender systems, ACM, pp
165–172

Mittal A, Dahiya K, Agrawal S, Saini D, Agarwal S, Kar P, Varma M (2021) Decaf: deep extreme
classification with label features. In Proceedings of the 14th ACM international conference on
web search and data mining, pp 49–57

Mittal A, Dahiya K, Malani S, Ramaswamy J, Kuruvilla S, Ajmera J, Chang K-h, Agarwal S, Kar
P, Varma M (2022) Multi-modal extreme classification. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 12393–12402

Nasierding G, Tsoumakas G, Kouzani AZ (2009) Clustering based multi-label classification for
image annotation and retrieval. In: 2009 IEEE international conference on systems, man and
cybernetics SMC , IEEE, pp 4514–4519

Niculescu-Mizil A, Abbasnejad E (2017) Label filters for large scale multilabel classification. In:
Artificial intelligence and statistics, pp 1448–1457

Panos A, Dellaportas P, Titsias MK (2021) Large scale multi-label learning using gaussian processes.
Mach Learn 110:965–987

Partalas I, Kosmopoulos A, Baskiotis N, Artieres T, Paliouras G, Gaussier E, Androutsopoulos I,
Amini M-R, Galinari P (2015) Lshtc: A benchmark for large-scale text classification. arXiv
preprint arXiv:​1503.​08581

Prabhu Y, Kag A, Harsola S, Agrawal R, Varma M (2018) Parabel: partitioned label trees for extreme
classification with application to dynamic search advertising. In: Proceedings of the 2018
world wide web conference, International world wide web conferences steering committee, pp
993–1002

Prabhu Y, Varma M (2014) Fastxml: a fast, accurate and stable tree-classifier for extreme multi-label
learning. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge
discovery and data mining, ACM, pp 263–272

Qaraei M, Schultheis E, Gupta P, Babbar R (2021) Convex surrogates for unbiased loss functions in
extreme classification with missing labels. In: Proceedings of the web conference, vol 2021, pp
3711–3720

Si S, Zhang H, Keerthi SS, Mahajan D, Dhillon IS, Hsieh C-J (2017) Gradient boosted decision
trees for high dimensional sparse output. In: International conference on machine learning, pp
3182–3190

Siblini W, Kuntz P, Meyer F (2018) Craftml, an efficient clustering-based random forest for extreme
multi-label learning

Snoek CG, Worring M, Van Gemert JC, Geusebroek J-M, Smeulders AW (2006) The challenge problem
for automated detection of 101 semantic concepts in multimedia. In: Proceedings of the 14th ACM
international conference on multimedia, ACM, pp 421–430

Tagami Y (2017) Annexml: Approximate nearest neighbor search for extreme multi-label classification.
In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining, ACM, pp 455–464

Wei T, Tu W-W, Li Y-F, Yang G-P (2021) Towards robust prediction on tail labels. In: Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining, pp 1812–1820

Weston J, Makadia A, Yee H (2013) Label partitioning for sublinear ranking. In: International conference
on machine learning, pp 181–189

Wetzker R, Zimmermann C, Bauckhage C (2008) Analyzing social bookmarking systems: a del. icio. us
cookbook. In: Proceedings of the ECAI 2008 mining social data workshop, pp 26–30

Wydmuch M, Jasinska K, Kuznetsov M, Busa-Fekete R, Dembczynski K (2018) A no-regret
generalization of hierarchical softmax to extreme multi-label classification. In: Advances in neural
information processing systems, pp 6355–6366

Yen IE, Huang X, Dai W, Ravikumar P, Dhillon I, Xing E (2017) Ppdsparse: a parallel primal-dual
sparse method for extreme classification. In: Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, ACM, pp 545–553

Yen I E-H, Huang X, Ravikumar P, Zhong K, Dhillon I (2016) Pd-sparse: a primal and dual sparse
approach to extreme multiclass and multilabel classification. In: International conference on
machine learning, pp 3069–3077

http://arxiv.org/abs/1503.08581

2215

1 3

Fast block-wise partitioning for extreme multi-label class...

You R, Dai S, Zhang Z, Mamitsuka H, Zhu S (2018) Attentionxml: extreme multi-label text classification
with multi-label attention based recurrent neural networks. arXiv preprint arXiv:​1811.​01727

Yu H-F, Jain P, Kar P, Dhillon I (2014) Large-scale multi-label learning with missing labels. In:
International conference on machine learning, pp 593–601

Zubiaga A (2012) Enhancing navigation on wikipedia with social tags. arXiv preprint arXiv:​1202.​5469

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

http://arxiv.org/abs/1811.01727
http://arxiv.org/abs/1202.5469

	Fast block-wise partitioning for extreme multi-label classification
	Abstract
	1 Introduction
	2 Related work
	3 Proposed algorithm
	3.1 Problem formulation
	3.2 Block-wise partitioning (BP)
	3.2.1 Label clusters selection
	3.2.2 Instance clusters selection

	3.3 Optimal parameters
	3.4 Prediction

	4 Experiments
	4.1 Data
	4.2 Parameter setting
	4.3 Evaluation metrics
	4.4 Prediction accuracy on classifiers
	4.5 Role of
	4.6 Theoretical and actual speedup
	4.7 BP processing time
	4.8 Efficiency of LIBLINEAR
	4.9 Comparison with other pretreatment methods
	4.10 Performance on tail labels
	4.11 Computation time comparison with deep learning methods

	5 Concluding remarks
	References

