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Abstract

Discrimination-aware classification methods remedy socioeconomic disparities exacer-

bated by machine learning systems. In this paper, we propose a novel data pre-processing

technique that assigns weights to training instances in order to reduce discrimination without

changing any of the inputs or labels. While the existing reweighing approach only looks into

sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones.

We formulate our weight assignment as a linear programming problem. The weights can be

directly used in any classification model into which they are incorporated. We demonstrate

three advantages of our approach on synthetic and benchmark datasets. First, discrimina-

tion reduction comes at a small cost in accuracy. Second, our method is more scalable than

most other pre-processing methods. Third, the trade-off between fairness and accuracy can

be explicitly monitored by model users. Code is available at https://github.com/frnliang/

refined_reweighing.

1 Introduction

Advances in computing technology enable automated decision-making to be popularized in

many social contexts. Artificial intelligence can be more efficient at candidate screening than

human resources recruiters [1]. Predictive policing helps forecast crime in law enforcement

operations [2]. However, the rising popularity unintentionally introduces socioeconomic and

racial disparities [3]. As anti-discrimination laws state that it may be illegal to introduce serious

bias [4, 5], discrimination-aware classification has become an important research topic in

machine learning [6].

Reweighing (RW) [7] is one of the earliest bias mitigation algorithms studied by research-

ers. It alleviates sample size disparity [4] by assigning weights to all cohort and label tuples in

the training data. Despite its easy implementation [7–12] and accuracy reservation [7], RW

has two limitations. First, it ignores potential relation between the within-cohort attributes

and other features. If other features are proxies of the within-cohort attributes, the re-weighted

data may not be discrimination-free [4]. Second, it does not allow decision makers to control

the cost in accuracy they would pay for fairness in real-world problems.

To overcome those two limitations, we propose the Refined Reweighing (RRW) technique

that generates more fine-grained weights than RW’s by investigating distributional inequity
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across all attributes in a two-phase process. In Phase I, we calculate the sample sizes of all

observed categorical attribute-label combinations and transform them into weights. We for-

mulate the weight assignment as a linear programming problem. If there exist numerical attri-

butes, we proceed with Phase II that integrates their probability distribution with weights

obtained in Phase I. The final weight assignment is independent of the ultimate prediction

method, which makes RRW versatile.

The empirical results are promising. RRW is competitive with state-of-the-art pre-process-

ing treatments [6, 12, 13] in the AI Fairness 360 toolkit [14] on accuracy and fairness in three

classification tasks. As the numbers of data points in those datasets are all under 50, 000, and

the numbers of attributes are all below 6, we conduct an extensive simulation study to evaluate

its scalability on more attributes and larger sample sizes. For example, RRW manages to han-

dle 40 million instances with 15 attributes in 2 minutes, while it takes some other methods at

least 30 minutes to do so. The effectiveness of both optimization phases are also evaluated by

simulation studies and real data experiments.

The rest of the paper is organized as follows. We review related work in Section 2 and intro-

duce our method in Section 3. Experimental results are presented and discussed in Section 4,

followed by concluding remarks in Section 5.

2 Related work

Researchers have studied various fairness measures such as statistical parity [15–17], predictive

parity [18] and equalized odds [15, 19]. Indeed, all measures fall into three main categories.

Group fairness ensures that the subjects in the protected and unprotected cohorts have similar

outcomes [13, 20, 21]. Individual fairness emphasizes that subjects possessing similar attributes

are similarly labeled [16, 22, 23]. Counterfactual fairness declares fairness to a subject if the out-

come is the same in both the real world and a counterfactual world where that subject

belonged to a different cohort based on causal graphs [24]. Our goal is to secure statistical par-

ity, a notion for group fairness.

Discrimination prevention algorithms can mitigate bias at different stages of predictive

modeling. Pre-processing [6, 10, 12, 13, 25] approaches modify the training data. In-processing
[26–28] approaches adjust classification models. Post-processing [19, 22, 29] approaches

change the predicted labels. We focus on pre-processing in this work.

Suppression, resampling, modification and reweighing are four typical techniques in pre-

processing approaches [10]. Suppression removes sensitive attributes in training and testing.

This removal alone is ineffective when some of the insensitive attributes are highly correlated

with the sensitive ones [4]. Resampling refers to stratified sampling applied on all combina-

tions of cohort and labels [10]. Each combination is either under-sampled or over-sampled.

Modification changes (1) the attributes, (2) the labels [9], or both [6]. Reweighing assigns

weights to all pairs of attributes and label. Data can be freed from discrimination without

changing its space or value [10]. The last two techniques are more relevant to RRW. We mainly

compare RRW with RW [7] and the three modification algorithms in the AI Fairness 360

toolkit [14] summarized below.

• RW [7] applies appropriate weights to different (cohort, label) tuples in the training data.

The weight is equal to the product of the marginal probabilities of cohort and label over the

observed probability of their joint distribution. If the data was unbiased, all cohorts and

labels would be statistically independent and the weights would be one.

• Learning Fair Representations (LFR) [12] is a prototype-based clustering algorithm. It maps

each individual to a probability distribution in a latent representation space in order to
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obfuscate any cohort-related information, while retaining information of other attributes as

much as possible.

• Disparate Impact Remover (DIR) [13] edits attributes from which the protected cohort can

be predicted. It explores disparate impact [30, 31], balanced error rate and �-fairness to

remove the attributes’ ability to distinguish between different cohorts while preserving rank-

ordering within cohorts.

• Optimized Pre-Processing strategy (OPT) [6] learns a probabilistic transformation that

modifies attributes and labels by taking group fairness, individual distortion and data utility

into consideration. An appropriate choice of distortion metric is essential for effective dis-

crimination reduction.

RW and RRW are reweighing methods. LFR, DIR and OPT belong to the modification cat-

egory mentioned earlier. A fundamental difference between these two groups is that modifica-

tion alters the elements of the instances, while reweighing updates the empirical distribution of

the training instances, or their influence in a classifier. This distinction leads to their different

levels of scalability and training time complexity. RW does not require any optimization, but it

does not provide any control for the fairness-accuracy trade-off. Although RRW entails a two-

phase optimization, its processing time is much shorter than the amount of time required by

most modification methods. DIR requires the user to specify a repair level, a hyper-parameter

indicating how much the user wishes for the distributions of the cohorts to overlap. LFR

changes the space of the data distribution so that classification predictions are made on proto-

types. Hyper-parameters controlling individual fairness, group fairness and prediction accu-

racy need to be carefully tuned to produce ideal results. OPT involves a large amount of

calibration that would potentially undermine its feasibility, and it is only applicable to categori-

cal attributes. The simulation study in Section 4 validates these statements.

3 Proposed technique

The main idea of RRW is to attach customized weights to training instances with different sen-

sitive attributes (cohorts), insensitive attributes and labels. The choice of sensitive attribute(s)

is presumably determined by human. We first define some terminologies used in this work.

An unfavorable class in a sensitive attribute is a discriminated cohort. An underrepresented

class in an insensitive attribute is the rarest among all classes. An instance is underprivileged

if it is either unfavorable or underrepresented, or both. The aim of the weight assignment is to

give higher weights to positive instances if the instances are underprivileged, and give lower
weights to positive instances if they are privileged. The goal of RRW is to reduce discrimination

by handling unfavorable attributes, while maintaining the overall prediction accuracy by car-

ing about underrepresented ones. We start the discussion on weight assignment from problem

formulation.

Let fðXi;Yi;DiÞg
n
i¼1

be n samples from a joint distribution pX,Y,D with domain X � Y � D.

X, Y and D denote insensitive attributes, labels, and sensitive attributes such as race and gen-

der, respectively. In this work we focus on discrete and finite domain D and binary labels

Y ¼ f0; 1g. We only present the derivation under a univariate and binary scenario

D ¼ fd1; d2g, while the proposed framework is applicable to higher dimensional D. We now

define statistical parity, the notion of our fairness goal.

Definition 1 A binary classifier Ŷ 2 Y satisfies statistical parity with respect to a sensitive
attribute D 2 D if Ŷ is independent of D:

PrðŶ ¼ 1jD ¼ dÞ ¼ PrðŶ ¼ 1jD ¼ d0Þ 8d; d0 2 D:
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To distinguish categorical insensitive attributes from numerical ones, we introduce the cate-

gorical domain X ðcÞ
and the numerical domain X ðnÞ

, and we have X = (X(c), X(n)) in

ðX ðcÞ
;X ðnÞ

Þ. If both X ðcÞ
and X ðnÞ

are non-empty, then the weight assignment is a two-phase

optimization problem: Phase I assigns weights under X ðcÞ
� Y � D, and Phase II assigns

weights under X ðnÞ
� X ðcÞ

� Y � D. If only one type of X is observed, then we implement its

corresponding phase alone.

3.1 Phase I optimization

Sample size plays a pivotal role in Phase I. Let nx,y,d be the number of instances containing the

triplet (x, y, d), and ny,d be the number of instances containing the tuple (y, d). ny and nd are

defined in a similar manner. Let W1 : X ðcÞ
� Y � D ! Rþ

be a weight function. We now

assign a non-negative weight W1(x, y, d) to every instance ðx; y; dÞ 2 X ðcÞ
� Y � D, so in total

there are at most jX ðcÞ
� Y � Dj weights to be sought. We impose the following constraints

when we search for the optimal weights.

X

ðx;y;dÞ2XðcÞ�Y�D

W1ðx; y; dÞnx;y;d ¼ n;

X

ðx;dÞ2XðcÞ�D

W1ðx; y; dÞnx;y;d ¼ ny 8y 2 Y;

X

ðx;yÞ2X ðcÞ�Y

W1ðx; y; dÞnx;y;d ¼ nd 8d 2 D;

W1ðx; y; dÞ � 0 8ðx; y; dÞ 2 X ðcÞ
� Y � D:

ð1Þ

The weights are considered optimized if they have the following three properties.

I. Independence guarantee. To achieve this goal, we borrow strength from RW that atta-

ches jY � Dj weights to all instances according to Y and D. Let W1(y, d) be the weights for all

tuples ðy; dÞ 2 Y � D. RW can be summarized as

W1ðy; dÞ ¼
pYðyÞpDðdÞ

pY;Dðy; dÞ
¼

ðny=nÞðnd=nÞ

ðny;d=nÞ
¼

nynd

ny;dn
8 ðy; dÞ 2 Y � D: ð2Þ

W1(y, d) in RW and W1(x, y, d) in RRW are closely related, as W1(y, d) can be regarded as a

weighted average of W1(x, y, d) over all x’s:

W1ðy; dÞ ¼
X

x2X ðcÞ

W1ðx; y; dÞ
nx;y;d

ny;d
8 ðy; dÞ 2 Y � D: ð3Þ

If we combine Eqs (2) and (3), we obtain another equation that is intrinsically aligned with the

first three equations in constraint set (1):

X

x2X ðcÞ

W1ðx; y; dÞnx;y;d ¼
nynd

n
8 ðy; dÞ 2 Y � D: ð4Þ

The agreement between RW and W1(x, y, d) can be acknowledged in two ways. First, con-

straint set (1) about W1(x, y, d) are compatible with analysis on W1(y, d). Second, Y and D are

independent. This can be visualized from the equivalence of the original distribution of Y and
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the weighted distribution of Y conditional on D by dividing both sides of Eq (4) by nd.

pwYjDðyjdÞ ¼

X

x2X ðcÞ

W1ðx; y; dÞnx;y;d

nd
¼

ny

n
¼ pYðyÞ:

II. Discrimination control. The above conditional probability argument leads to discus-

sion on the second goal. Group fairness is enforced when the difference between pY|D(y|d1)

and pY|D(y|d2) is under control. If we extend our scope from pY|D to pY|X(c), D, we may further

reduce the discrepancy by considering the relation between X(c) and D. We now introduce a

weighted version of the conditional probability of Y given Xc and D:

pwYjXðcÞ ;Dðyjx; dÞ ¼
pwXðcÞ;Y;Dðx; y; dÞ

pXðcÞ;Dðx; dÞ
¼

W1ðx; y; dÞnx;y;d

nx;d
:

Thus, we reduce the discrepancy of pwYjD between d1 and d2 for all (x, y) in X ðcÞ
� Y by mini-

mizing

X

ðx;yÞ2X ðcÞ�Y

W1ðx; y; d1Þnx;y;d1

nx;d1

�
W1ðx; y; d2Þnx;y;d2

nx;d2

�
�
�
�
�

�
�
�
�
�

nx

n
: ð5Þ

III. RW-Accuracy preservation. To embrace the advantages of RW, we keep our optimal

weights from being too deviated from RW’s solution by controlling the difference between

W1(x, y, d) and W1ðy; dÞ ¼
nynd
ny;dn

for all ðx; y; dÞ 2 X ðcÞ
� Y � D:

X

ðx;y;dÞ2XðcÞ�Y�D

W1ðx; y; dÞ �
nynd

ny;dn

�
�
�
�
�

�
�
�
�
�
: ð6Þ

Optimization formulation. Putting constraint set (1), Eqs (4)–(6) together, we arrive at

the optimization problem below for determining W1(x, y, d) for all ðx; y; dÞ 2 X ðcÞ
� Y � D:

min
X

ðx;yÞ2X ðcÞ�Y

W1ðx; y; d1Þnx;y;d1

nx;d1

�
W1ðx; y; d2Þnx;y;d2

nx;d2

�
�
�
�
�

�
�
�
�
�

nx

n

þl
X

ðx;y;dÞ2XðcÞ�Y�D

W1ðx; y; dÞ �
nynd

ny;dn

�
�
�
�
�

�
�
�
�
�

s:t:
X

x2X ðcÞ

W1ðx; y; dÞnx;y;d ¼
nynd

n
8 ðy; dÞ 2 Y � D;

W1ðx; y; dÞ � 0 8 ðx; y; dÞ 2 X ðcÞ
� Y � D;

ð7Þ

where λ > 0 is a tuning parameter. A smaller λ pulls the weights more toward group fairness,

as less emphasis is put on maintaining the accuracy provided by RW. Indeed, RW is a special

case of RRW.

Proposition 1 RRW is a generalized version of RW.

Proof 1 If the λ in problem (7) is sufficiently large, the first summation in the objective func-
tion is dominated by the second summation. As the second summation is non-negative, the
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minimum value of the objective function is driven down to 0. As λ ! 1,

W1ðx; y; dÞ ! W1ðy; dÞ ¼
nynd

ny;dn

for all ðx; y; dÞ 2 X ðcÞ
� Y � D. Note that

X

x2X ðcÞ

W1ðx; y; dÞnx;y;d ¼
X

x2X ðcÞ

nyndnx;y;d

ny;dn
¼

X

x2X ðcÞ

nx;y;d

 !
nynd

ny;dn
¼

nynd

n
;

and nynd
ny;dn

� 0 for all ðy; dÞ 2 Y � D, the optimal solution in RW satisfies all constraints provided

by RRW.When λ is small, the optimal solution in RRW deviates from the one in RW.

This optimization problem can be formulated to and therefore efficiently solved by linear

programming. Here we address two practical concerns for implementation.

What happen if not all combinations of X(c), Y and D exist? The underlying assumption

of RRW is that pX(c), Y, D is known along with its marginals and conditionals. If there exists at

least an (x, d) pair such that nx, d = 0, the corresponding probability is undefined. To overcome

this limitation, we exclude unobserved pairs in problem (7), and their weights will be 1, the

original value without any treatment.

What happen if there are too many x’s in X ðcÞ
? The time complexity of linear program-

ming in problem (7) is exponential to the number of categorical attributes. To avoid the poten-

tial combinatorial explosion, we consider the bias corrected Cramér’s V [32], denoted by V,

that measures pairwise association. For every xj 2 X ðcÞ
, if ∑j6¼k V(xj, xk), the sum of its pairwise

association with other attributes, is stronger than a certain threshold, then we claim the corre-

lation between xj and other attributes is so strong that xj can either be excluded from both

phases, or be viewed as numerical and handled by Phase II. This selection process ensures that

the number of attributes handled by Phase I optimization remains sufficiently small for linear

programming in high-dimensional categorical attribute spaces. In Section 4.4, we argue that

the second route is preferred.

3.2 Phase II optimization

The probability distribution of numerical insensitive attributes plays an essential role in Phase

II. Suppose x0 is a numerical insensitive attribute re-scaled to [0, 1]. For every

ðx; y; dÞ 2 X ðcÞ
� Y � D, let f(x0|x, y, d) be the frequency of x0 2 X ðnÞ

over all instances with

(x, y, d). For simplicity, we write f(x0) = f(x0|x, y, d). When x0 is discrete, we obtain f(x0) by

counting the frequencies of all available values in the training set. When x0 is continuous, we

bucketize the values into equal-sized buckets, treating these buckets as discrete values as in the

first scenario. The bucket size is determined by making each bucket as granular as possible

while remaining non-empty. Given an unknown value c ranges from min f(x0) to max f(x0), we

define devc(x0) = f(x0) − c that measures the deviation of f(x0) from c, where c is determined by
R 1

0
devcðx0Þdx0 ¼ 0. This can be solved by binary search over [min f(x0), max f(x0)]. Geometri-

cally, c is a horizontal line across f(x0) whose positive and negative vertical distances to f(x0)

integrate to 0. We provide a graphical illustration on the UCI Adult income data in the top-left

plot of Fig 1 to demonstrate that c = 131 equalizes the red and purple areas.

As c is now fixed, we denote devc(x0) by dev(x0) for simplicity. Next, let t 2 [0, 1] be another

unknown value to be solved. Let Wt
2

: X ðnÞ
� X ðcÞ

� Y � D ! Rþ
be a weight function such
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that

Wt
2
ðx0; x; y; dÞ ¼ W1ðx; y; dÞ 1 � t

devðx0Þ

max devðx0Þ

� �

:

For illustrative purposes, we express Wt
2

as a continuous function in this section. This func-

tion is not necessarily smooth in application as the weight is only defined for the points

observed in the training set. When t = 1, W1
2

is identical to the horizontal reflection of f(x0).

When t 2 [0, 1), geometrically, Wt
2

shrinks W1
2

to W1 vertically by a factor of t. The last three

plots in Fig 1 illustrate that Wt
2
ðx0; x; y; dÞ and dev(x0)/max dev(x0) move in the opposite verti-

cal direction. A nice property of Wt
2

is that for all t 2 [0, 1],

Z 1

0

Wt
2
ðx0; x; y; dÞdx0 ¼ W1ðx; y; dÞ:

Fig 1. Graphical illustrations for the role of c with the Adult income data. Top-left: f(age) against age; top-right: dev(age)/max dev(age) against age; bottom-left:

W0:5
2

(age) against age; and bottom-right: W1
2
(age) against age.

https://doi.org/10.1371/journal.pone.0308661.g001
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As shown in Fig 2, in the Adult data, lower Wt
2
’s are assigned to more frequent combinations

of age and education. The weighted average of Wt
2
(race, gender, income, age, education)

over age and education is exactly W1(race, gender, income).

Similar to expression (5), the optimized t minimizes the discrepancy of weighted condi-

tional probability between d1 and d2:

X

ðx;yÞ2X ðcÞ�Y

Z 1

0

jWt
2
ðx0; x; y; d1ÞpYjXc;Dðyjx; d1Þ

�Wt
2
ðx0; x; y; d2ÞpYjXc ;Dðyjx; d2Þj

nx

n
dx0:

ð8Þ

This t can also be solved by binary search over [0, 1]. After we get the optimized value, we

denote Wt
2

by W2 for simplicity.

In general, given m numerical insensitive attributes x0
k, k = 1, . . ., m, we assume they have

equal contribution to label prediction, as the classification model is not available under the

pre-processing setting. The weight for ðx0
1
; . . . ; x0

m; x; y; dÞ is therefore

W2ððx0
1
; . . . ; x0

m; x; y; dÞÞ ¼
1

m

Xm

k¼1

W2ðx0

k; x; y; dÞ:

It is easy to check that W1(x, y, d) is equivalent to

Z 1

0

. . .

Z 1

0

W2ððx0

1
; . . . ; x0

m; x; y; dÞÞdx0

m . . . dx0

1
:

As every W2ððx0
k; x; y; dÞÞ is independently solved in problem (8) for all x0

k and all

ðx; y; dÞ 2 X ðcÞ
� Y � D, and computation of W2ððx0

1
; . . . ; x0

m; x; y; dÞÞ is OðmÞ ¼ OðjX ðnÞ
jÞ,

the time complexity of Phase II optimization is OðjX ðnÞ
� X ðcÞ

� Y � DjÞ. In high-dimen-

sional categorical attribute spaces, where not all categorical attributes are handled by Phase I,

Phase II has a linear time complexity relative to the number of remaining categorical

attributes.

3.3 Training and prediction

RRW aims to help classifiers satisfy statistical parity by seeking independence between ŷ and d.

While the relationship between the observed y in the training set and d is established in the

two optimization phases, minimizing the gap between pY|D(y|d) and pY|D(y|d0) for all d and d0,

we also need to establish a connection between the observed y in the training set and the pre-

dicted ŷ in the test set. This connection requires the assumption that the training and test sets

share the same conditional distribution of labels given the sensitive attribute. In other words,

statistical parity can be achieved when

pŶ jDð ŷjdÞ � pYjDð yjdÞ 8d 2 D:

In practice, when we train a model with the assigned weights, we update the weights of

training instances, and feed them to the classification model. To predict labels of test instances,

we run the model on testing data as usual without any extra steps.

4 Experimental results

We evaluate the performance of RRW on both synthetic and benchmark datasets, and conduct

an extensive comparison among two baselines, six pre-processing approaches and one in-
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Fig 2. Top-left: f(age) for (non-white, female, < 50K income) individuals; top-right: f(education) for (non-white,

female, < 50K income) individuals; and bottom: W2(non-white, female, < 50K, age, education) in the Adult data.

https://doi.org/10.1371/journal.pone.0308661.g002
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processing method on three fairness metrics. Denote predicted labels by ~Y . The first fairness

measure is motivated by the “80% rule” [33] and statistical parity [15–17]:

Discriminationsp ¼ max
d;d02D

p~Y jDð1jdÞ

p~Y jDð1jd0Þ
� 1

�
�
�
�
�

�
�
�
�
�
: ð9Þ

The second measure is disparate impact [30, 31]:

Discriminationdi ¼
p~Y jDð1junfavorable dÞ

p~Y jDð1jfavorable dÞ
: ð10Þ

It focuses on the proportions of two cohorts that receive the positive outcome. The last mea-

sure is the false discovery rate. We report the trade-off between the empirical discrimination

on test set and the empirical accuracy, measured by the Area under ROC (AUC). As the accu-

racy versus discrimination pattern remains stable across various classifiers such as logistic

regression, support vector machine, random forest and Gaussian naïve bayes for all pre-pro-

cessing methods [6, 12], we only present results on logistic regression. All experiments are con-

ducted on a machine with an Intel Xeon E5-2690 2.90GHz CPU and 256GB RAM.

4.1 Phase I simulation

Data. Let D = (D1, . . ., Dn), Di 2 {+1, −1} for all i be a sensitive attribute vector of length n.

80% entries are set to be unfavorable. Categorical insensitive attributes {Xij}, i = 1, . . ., n, j = 1,

. . ., q−1 are randomly generated, and set to be binary with 1/2 chance for each outcome in

{+1, −1}. D and all X’s are independent. Let Y = (Y1, . . ., Yn) be the true label vector of length

n. We assign different coefficients, fbjg
q�1

j¼0
; b0 ¼ 0:15 and βj = 0.01 × j for j = 1, . . ., q−1, to

different outcomes of D and X so that the linear combination of Di and Xij can be used to

determine the true labels by treating Yi as a Bernoulli random variable

Yi � Bernoullið1=ð1 þ expð�ðb0Di þ
Xq�1

j¼1

bjXijÞÞÞÞ

for all i. We randomly split 80% and 20% of all instances into training and test sets.

Implementation. The parameters in LFR [12] are chosen according to its authors’ recom-

mendation: Ax = 0.01, Ay and Az 2 {0.1, 0.5, 1, 5, 10}. The regularization parameter in DIR [13]

is selected based on balanced error rate. The parameters in OPT [6] are chosen as its authors

suggest whenever they are publicly available. To demonstrate the impact of sample size on

computational time, we pick seven different values for n from 105 to 107, and set q = 5. We

compare RRW with LFR, DIR and OPT and leave out RW, as sample size does not affect the

speed of RW. We consider Eq (9) as the fairness measure.

Results. The left plot in Fig 3 reveals that OPT and LFR consume more time than DIR

and RRW. Even though there are jX ðcÞ
� Y � Dj weights to be sought in RRW, the underlying

data representations in OPT and LFR take even longer time than the reweighing in RRW. Lit-

tle computational burden is added to the linear programming step in RRW, as all nx,y,d’s are

summarized in the coefficient matrix before the optimization is conducted.

To investigate the influence of the number of attributes for RRW, we pick different values

for n from 104 to 4 × 107, and q = 5, 10, 15. As we have mentioned in Section 3.1, we select the

10 most uncorrelated insensitive attributes out of 14 when q = 15. The right plot in Fig 3 illus-

trates that weights can be assigned to 40 million instances within 30 seconds. Although elapsed
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time grows linearly as sample size increases, the growth rate is indeed significantly lower than

those of LFR, DIR and OPT, which is demonstrated by the left plot in Fig 3.

To compare their performance on fairness and accuracy, we set q = 5 (1 sensitive attribute

and 4 categorical insensitive attributes), n = 104, and set the AUC for all methods to be 0.505.

We report Discriminationsp under the best sets of parameters in Table 1. RRW outperforms all

other methods. Furthermore, for n = 105 and q = 5, 10, 15, as shown in Table 2, under the best

λ, RRW outperforms RW in Discriminationsp by at least 25%.

4.2 Phase II simulation

Data. Continue with the above setting. Let fX0
ikg, i = 1, . . ., n, k = 1, . . ., m be independent

and randomly generated numerical insensitive attributes, where X0
ik follows a Beta(k, m + 1 − k)

distribution. We assign coefficients fgkg
m
k¼1

; gk ¼ 0:01 � k for k = 1, . . ., m, to X0
ik, so the linear

combination of Di, Xij and X0
ik can be used to determine the true labels by treating Yi as a Ber-

noulli random variable with parameter

1=ð1 þ expð�ðb0Di þ
Xq�1

j¼1

bjXij þ
Xm

k¼1

gkX
0

ikÞÞÞ

for all i. We randomly split 80% and 20% of all instances into training and test sets.

Fig 3. Elapsed time versus sample size for OPT, LFR, DIR and RRW when q = 5 (left), and elapsed time versus sample size for RRW when q = 5, 10, 15 (right).

https://doi.org/10.1371/journal.pone.0308661.g003

Table 1. Discrimination for q = 5 and n = 104 under AUC = 0.505.

Method RW LFR OPT DIR RRW

Discrimination 0.004 0.008 0.006 0.037 0.003

https://doi.org/10.1371/journal.pone.0308661.t001
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Results. To demonstrate the impact of sample size on computational time in Phase II, we

choose 7 different values for n arranging from 105 to 107, q = 5 and m = 10. We compare RRW

with LFR and DIR, and leave out OPT, as OPT is not compatible with numerical attributes.

The left plot in Fig 4 reveals that LFR and DIR take more time than RRW. To investigate the

influence of the number of numerical attributes in Phase II, we pick different values for n from

105 to 107, q = 5 and m = 5, 10. The right plot in Fig 4 illustrates that under this setting, incre-

ment of m does not lead to increment of computational time. All weights can be assigned

within 100 seconds.

To better understand this observation, we look at the ratio of time spent in Phase II over

Phase I. Fig 5 reveals that the ratio is around 64 when n is large. This ratio validates the

Table 2. AUC and discrimination for full, RW and RRW and q = 5, 10, 15.

q Method AUC Discriminationsp

5 Full 0.528 0.166

5 RW 0.497 0.004

5 RRW 0.505 0.003

10 Full 0.513 0.201

10 RW 0.503 0.015

10 RRW 0.504 0.007

15 Full 0.519 0.238

15 RW 0.507 0.006

15 RRW 0.504 0.003

https://doi.org/10.1371/journal.pone.0308661.t002

Fig 4. Elapsed time versus sample size for LFR, DIR and RRW when q = 5 and m = 10 (left), and elapsed time versus sample size for RRW when q = 5 and m = 5, 10

(right).

https://doi.org/10.1371/journal.pone.0308661.g004
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theoretical time complexity of Phase I and Phase II optimizations, because jX c
� Y � Dj ¼

64 in our simulation setting, which is larger than m. Therefore, when the numbers of categori-

cal and numerical attributes are both large, one can take some of the categorical attributes as

numerical, and pass them to Phase II to reduce computational time.

To compare the performance RRW, LFR and DIRs on fairness and accuracy, we set q = 5,

m = 10 and n = 105, and set the AUC for all methods to be 0.505. We report Discrimination

under the best sets of parameters in Table 3. Once again, RRW outperforms the other two

methods. Tables 1 and 3 show that Phase I potentially plays the dominant role for bias

mitigation.

4.3 Real data experiments on statistical parity

Data. Here we present the accuracy-fairness trade-off of two baselines and four pre-pro-

cessing methods on three benchmark datasets: ProPublica’s COMPAS recidivism data, the

UCI Adult income data, and the UCI German credit data. Since OPT focuses on categorical

predictors, two numerical attributes in Adult are categorized by their authors. In our experi-

ments, we work on both the original and the categorized versions so as to set our comparison

on the same basis. Since DIR works better with numerical attributes than categorical ones,

applying DIR on categorical attributes may hinder its performance.

Implementation. “Full” uses all attributes to train and test. “Drop” leaves out race in

COMPAS, gender in Adult, and age category in German, which are considered sensitive attri-

butes. RW calculates the weights without tuning or regularization. LFR selects Ax = 0.01 for

group fairness, and we apply grid search for Ay (prediction accuracy) and Az (individual

Fig 5. Ratio of time spent in Phase II over Phase I for RRW when q = 5 and m = 5, 10.

https://doi.org/10.1371/journal.pone.0308661.g005

Table 3. Discrimination for q = 5, m = 10 and n = 105 under AUC = 0.505.

Method LFR DIR RRW

Discrimination 0.007 0.011 0.003

https://doi.org/10.1371/journal.pone.0308661.t003
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fairness) from {0.1, 0.5, 1, 5, 10} to get its top outcomes in all three datasets. The regularization

parameter in DIR is irresponsive when all attributes are categorical, so we only present one

outcome in each case. The tuning parameter in RRW takes values from the range [0.49, 0.82]

in COMPAS, [0.71, 0.90] in Adult, and [0.75, 0.95] in German, so that the trade-offs are clearly

visualized in a range in all three cases. OPT requires a large amount of calibration. Since exper-

iments in their paper are conducted in COMPAS and Adult, we adopt their choices of tuning

parameters. In German, the distortion function is chosen as default in their program, and we

select 0.2, 0.2 and 0 as the corresponding probability bounds cd,x,y. We use three levels of dis-

crimination control, � 2 {0.01, 0.05, 0.1}. We consider Eq (9) as the fairness measure.

Results. We plot the experimental results in Figs 6 and 7. The average log-discrimination

score, which is the natural log of Eq (9), and AUC are calculated by 5-fold cross validation.

Error bars and vertical shades represent values that are one standard error deviated from their

means. As λ increases, the trace in green representing RRW gradually moves from the lower

left corner to the upper right.

In COMPAS presented by Fig 6 (top), “Drop” stays close to “Full”, which implies that sim-

ply ignoring the sensitive attribute does not help reduce discrimination in this dataset. DIR is

close to the cluster of two baselines. LFR lies to the left of the cluster. RRW, RW and OPT are

the top three performers in this case. They all have similar standard errors in both directions.

RRW and OPT present the fairness-accuracy trade-off extensively, and RRW in general shows

a greater discrimination reduction than OPT. Note that RRW marginally outperforms RW by

reducing discrimination to a certain extent at the same accuracy level.

German has only 1000 samples, the least number of instances among the three datasets. It

can be visualized from Fig 6 (bottom) that all methods have large standard errors. “Drop” and

all other modification-based methods enjoy better accuracy and fairness than “Full”. “Drop”,

DIR and OPT are within the same cluster on the top right corner. LFR and RRW demonstrate

a wide range of layout, indicating that the trade-off is effectively monitored. Moreover, since

the performance of RW and RRW does not rely on the richness of sample space, they outper-

form all other methods in bias mitigation. However, since the proportions of all available attri-

bute-label combinations are unstable when different training and test sets splits are performed

within a low number of training samples, and reweighing methods rely heavily on sample

sizes, the one standard error bars of RW and RRW are wider than other methods. This obser-

vation indicates that the conditional distributions of labels given the sensitive attribute vary

between the training and test set under 5-fold cross-validation.

Fig 7 (top) illustrates the performance on categorized Adult. “Drop” stays close to RW, and

the curve of RRW is to their top left. The widespread ranges where RRW and OPT lie indicate

that the trade-off is well monitored by their parameter setting, but the range of OPT is to the

right of RRW. It is clear that RRW outperforms other methods in both fairness and accuracy.

In original Adult illustrated in Fig 7 (bottom), DIR takes the upper left corner to the most

extent compared to all other approaches, which shows that it is better at handling numerical

attributes than RRW. While “Drop”, RW and RRW lie in the same region as in categorized

Adult, RRW is marginally to the left of the other two. It is worth noting that LFR is in the mid-

dle of the RRW cluster and “Full” in terms of discrimination. Nevertheless, it has the highest

level of accuracy among all algorithms.

These real data experiments demonstrate that RRW can confidently outperform modifica-

tion methods in reducing discrimination when the majority of insensitive attributes are cate-

gorical and the training dataset is large enough to ensure that most attribute-label

combinations are well represented. When most attributes are categorical, the intermediate

representation [12], feature alteration [13], and probabilistic transformation [6] learned by

modification methods are limited by the total number of attribute-label combinations. In
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Fig 6. AUC versus Log(Discrimination) for COMPAS (top) and GERMAN (bottom).

https://doi.org/10.1371/journal.pone.0308661.g006
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Fig 7. AUC versus Log(Discrimination) for categorized Adult (top) and original Adult (bottom).

https://doi.org/10.1371/journal.pone.0308661.g007
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contrast, RRW effectively increases the representativeness of underprivileged instances. Once

the weights are correctly adjusted by RRW, the limited number of attribute-label combinations

is not a disadvantage. However, when more attributes are numerical, attribute-label combina-

tions become more granular, resulting in some combinations being so rare that the weights

learned by RRW may overreact to non-zero small counts. Consequently, RRW reduces bias

but incurs a larger reduction in accuracy compared to modification methods.

How does the inclusion of insensitive attributes refine weight assignments? Given that

the novelty of RRW lies in using both sensitive and insensitive attributes to refine weights, we

now examine COMPAS more closely to understand how these insensitive attributes contribute

to up-weighting or down-weighting a sample.

COMPAS contains a total of 5,278 data points. Charge degree, prior counts, and age cate-

gory are three categorical insensitive attributes (X). For charge degree, 3,440 samples are classi-

fied as felonies (F) and 1,838 as misdemeanors (M), making M the underrepresented class.

Regarding prior counts, 1,667 samples have 0 counts (0), 1,953 samples have 1 to 3 counts (1–

3), and 1,658 samples have more than three counts (> 3), making > 3 the underrepresented

class. In terms of age category, 1,156 samples are younger than 25 (< 25), 3,026 are between 25

and 45 (25–45), and 1,096 are older than 45 (> 45), making the > 45 class underrepresented.

Race is the sensitive attribute (D), with African-Americans (AA) considered the unfavorable

class and Caucasians (C) the favorable class. Regarding labels (Y), positive samples refer to

those without recidivism (0), while negative samples refer to those with recidivism (1).

Table 4 illustrates scenarios where a sample is either up-weighted or down-weighted. For

instance, while the RW weight for (AA, 0) is 1.132, considering prior counts, RRW assigns a

higher weight of 2.398 to (F, > 3, 25–45, AA, 0) compared to (F, 1–3, 25–45, AA, 0), as > 3 is

more underrepresented than 1–3. Similarly, while the RW weight for (AA, 1) is 0.898, consid-

ering charge degree, RRW assigns a lower weight of 0.494 to (M, > 3, 25–45, AA, 1) than to

(F, > 3, 25–45, AA, 1), as M is more underrepresented than F. The extent of weight refinement

from RW to RRW depends on the tuning parameter λ. For example, the RRW weights for (F,

0, 25–45, C, 0) and (F, 1–3, > 45, C, 0) are identical when λ = 0.5, but a smaller λ could differ-

entiate their RRW weights.

4.4 Alleviate computational burden in Phase I optimization

When the number of categorical attributes grows, the efficiency of linear programming in

Phase I is limited by its exponential time complexity. To alleviate this computational burden,

we have two potential solutions that are related to the bias corrected Cramér’s V [32]. By rank-

ing all categorical attributes starting from the one with the strongest correlation, we can either

Table 4. RW and RRW weights for a subset of sample patterns in COMPAS when λ = 0.5.

(X, D, Y) Characteristic RW Weight RRW Weight

(F, > 3, 25–45, AA, 0) underprivileged and positive 1.132 2.398

(F, 1–3, 25–45, AA, 0) underprivileged and positive 1.132 1.132

(M, > 3, 25–45, AA, 1) underprivileged and negative 0.898 0.494

(F, > 3, 25–45, AA, 1) underprivileged and negative 0.898 0.898

(F, 0, 25–45, C, 0) privileged and positive 0.851 0.851

(F, 1–3, > 45, C, 0) underprivileged and positive 0.851 0.851

(F, 0, 25–45, C, 1) privileged and negative 1.207 1.819

(M, 0, 25–45, C, 1) underprivileged and negative 1.207 1.207

https://doi.org/10.1371/journal.pone.0308661.t004
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exclude the top attributes from both phases, or exclude them from Phase I and include them in

Phase II. We consider Eq (9) as the fairness measure.

In COMPAS, as prior counts, age and charge degree follow a descending order in correla-

tion, we start with prior counts. Given a fixed set of tuning parameter λ’s, if we simply exclude

prior counts in Phases I and II, the spans of mean AUC and the mean Discrimination are

0.015 and 0.014, respectively. If we treat prior counts in Phase II, the spans of both metrics are

0.015 and 0.017. While performance in accuracy looks similar, the second approach provides

more room for improving fairness. The subtle difference is visualized in Fig 8.

If we ignore both prior counts and age in both phases, the span of the mean Discrimination

is 0.006, and the mean AUC can be lower than 0.70. By comparing Figs 8 and 9 with the left

plot of Fig 6, we can see the spans of the mean AUC and Discrimination get narrower as more

categorical attributes are excluded from Phase I. Nevertheless, if we move both attributes to

Phase II, the Discrimination span is 0.006, and the mean AUC is higher than 0.70. The differ-

ence is demonstrated in Fig 9.

If we ignore all three categorical insensitive attributes in both phases, then only race and

recidivism are considered in Phase I. Consequently, the weights generated in Phase I will be

identical to those produced by RW. Thus, λ cannot monitor the trade-off between fairness and

accuracy.

Fig 8. AUC versus Discrimination for COMPAS when prior counts is treated in two different ways.

https://doi.org/10.1371/journal.pone.0308661.g008
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In a word, to alleviate the computational burden brought up by the Phase I optimization at

the cost of restricted fairness-accuracy trade-off, it is more desirable to view the categorical

insensitive attributes with strong correlation as numerical and pass them to Phase II than to

ignore them in both phases. This analysis also confirms that Phase I plays the dominant role

over Phase II for both bias mitigation and accuracy reservation.

4.5 Additional experiments on disparate impact

To check if RRW is robust to other fairness metrics, we compare it with the other three post-

processing techniques on disparate impact in Eq (10).

• Equalized Odds Post-processing (EOP) [19] optimizes equalized odds by changing output

labels. It randomly flips prediction of test instances under the constraint that the privileged

and underprivileged cohorts have the same false negative rate and the same false positive

rate.

• Reject Option Classification (ROC) [34] gives positive outcomes to underprivileged cohorts

and negative outcomes to privileged cohorts in a confidence band around the decision

boundary with the highest uncertainty.

Fig 9. AUC versus Discrimination for COMPAS when prior counts and age are treated in two different ways.

https://doi.org/10.1371/journal.pone.0308661.g009
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• Individual and Group Debiasing post-processing (IGD) [22] uses an individual bias detector

to prioritize instances to improve disparate impact.

We optimize the parameters in all four methods to deliver a fair comparison. As shown in

Figs 10 and 11, RRW improves the most fairness with the smallest standard deviation while

maintaining accuracy in German and Adult. ROC is the second best in improving disparate

impact. IGD is the best in preserving AUC. EOP performs poorly on disparate impact in Ger-

man, because it optimizes equalized odds that does not necessarily give ideal disparate impact.

4.6 Comparison with an in-processing technique

The meta fair classifier [20] is an in-processing technique that takes the fairness metric as part

of the input and returns a classifier optimized with respect to that fairness metric. To deliver

the best outcome when we compare it with RRW in terms of false discovery rate, we use τfdr

Fig 10. Disparate impact of RRW, EOP, ROC and IGD. Colored bars represent the means, vertical error bars the

range within 1 standard deviation, and dashed line the best possible disparate impact 1.

https://doi.org/10.1371/journal.pone.0308661.g010

Fig 11. AUC of RRW, EOP, ROC and IGD. Colored bars represent the means, vertical error bars the range within 1

standard deviation, and dashed line the best possible AUC 1.

https://doi.org/10.1371/journal.pone.0308661.g011
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defined in [20] as the input, and return γfdr as the outcome, which is the ratio of false discovery

rate of different sensitive attributes. We use the original train-test split of the categorized Adult

data. For the meta fair Algo 1-FDR, the best accuracy-γfdr is 0.75-0.93, whereas the best out-

come for RRW is 0.75-0.88. This reveals that in-processing techniques may still have better

performance than pre-processing methods.

5 Conclusions

We propose a straightforward data pre-processing technique named Refined Reweighing that

assigns customized weights to training instances in order to reduce discrimination against

unfavorable groups. Simulation studies on large-scale synthetic data show that our method is

more scalable than some other approaches in the literature. The extensive exploration on three

real datasets indicates that our method is capable of controlling trade-off between fairness and

accuracy. RRW can outperform modification methods in reducing discrimination when the

training dataset is large enough to ensure that most attribute-label combinations are well rep-

resented and the majority of insensitive attributes are categorical. Furthermore, the single tun-

ing parameter in Phase I optimization helps model users easily control the amount of cost in

accuracy they would pay for fairness in a timely manner under the categorical setting. Phase II

optimization extends applicability to numerical attributes. We are confident that the feasibility

of our approach allows efficient and practical application on real-world problems in various

domains.

Despite the promising experimental results, we acknowledge that statistical parity has

become less popular due to the inherent tension between fairness and accuracy. For other

group fairness notions such as equal opportunity, the probability being equated across cohorts

is of a “correct” label rather than a “particular” label. Investigating the extensions to other

group fairness notions and further reducing the cost in accuracy in pursuing fairness are desir-

able for future work.
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