
The Annals of Applied Statistics
2024, Vol. 18, No. 1, 100–124
https://doi.org/10.1214/23-AOAS1781
© Institute of Mathematical Statistics, 2024

ESTIMATING FIBER ORIENTATION DISTRIBUTION WITH APPLICATION
TO STUDY BRAIN LATERALIZATION USING HCP D-MRI DATA

BY SEUNGYONG HWANGa, THOMAS C. M. LEEb, DEBASHIS PAULc AND JIE PENGd

Department of Statistics, University of California, Davis, asyhwang@ucdavis.edu, btcmlee@ucdavis.edu,
cdebpaul@ucdavis.edu, djiepeng@ucdavis.edu

Diffusion-weighted magnetic resonance imaging (D-MRI) is an in vivo
and noninvasive imaging technology for characterizing tissue microstructure
in biological samples. A major application of D-MRI is for white matter fiber
tract reconstruction in brains. It begins by estimating the water molecule
movements (serving as proxies for fiber directions) in the brain voxels and
then combines the results to form fiber tracts. The voxel-level fiber direc-
tion information can be modeled by a fiber orientation distribution (FOD)
function, and in this paper, we propose a computationally scalable FOD es-
timator, the blockwise James–Stein (BJS) estimator. We then apply BJS to
the D-MRI data from the Human Connectome Project (HCP) to study brain
lateralization, an important topic in neuroscience. Specifically, we focus on
the association between lateralization of the superior longitudinal fasciculus
(SLF)—a major association tract and handedness. For each subject from the
HCP data, we extract voxel-level directional information by BJS and then re-
construct the SLF in each brain hemisphere through a tractography algorithm.
Finally, we derive a lateralization score that quantifies hemispheric asymme-
try of the reconstructed SLF. We then relate this lateralization score to gender
and handedness through an ANOVA model, where significant handedness ef-
fects are found. The results indicate that the SLF lateralization is likely to
be different in right-handed and left-handed individuals. Codes and example
scripts for both synthetic experiments and HCP data application can be found
at https://github.com/vic-dragon/BJS.

1. Introduction. Diffusion-weighted magnetic resonance imaging (D-MRI) is a widely
used, noninvasive tool to probe tissue microstructure of biological samples in vivo through
measuring water diffusion characteristics. The most important application of D-MRI is the
reconstruction of white matter fiber tracts—large axon (a.k.a. nerve fiber) bundles with simi-
lar destinations in the brain. By mapping white matter fiber tracts, we can study the structural
organization of neuronal networks and understand brain functionality (Mori (2007), Sporns
(2011)). For an example of reconstructed white matter fiber tracts, see Figure 10. D-MRI has
also been used in other clinical applications, such as detecting brain abnormality in white
matter due to axonal loss or deformation, which are related to many neurodegenerative dis-
eases, including Alzheimer’s disease, and surgical planning by resolving complex neuronal
connections between white and gray matters (Nimsky, Ganslandt and Fahlbusch (2006)).

In the following we first give a brief description of the D-MRI technology and data acquisi-
tion. We then introduce our D-MRI data application, followed by the review of two common
D-MRI statistical models. Finally, we highlight our contributions.

1.1. Diffusion MRI. MRI technology can measure signals from various nuclei, whereas
diffusion MRI focuses on signals from protons. Since in the human body the majority (> 90%)
of protons are from water molecules, signals from D-MRI experiments of human brains are
sensitized to the intensity and direction of water diffusion.
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In a D-MRI experiment of the brain, a subject lies in an MRI machine with the head placed
inside a strong homogeneous magnetic field (referred to as the b0- field). The brain tissue
is then excited by applying direction-specific magnetic field gradients (i.e., magnetic fields
changing along specific directions) and pulses of radio frequency energy. Measurements are
taken on the frequency characteristics of the energy emitted from the excited tissue. These
measurements allow us to estimate, at each location in the brain (referred to as a brain voxel),
the bulk amount of water diffusion occurring along each of the magnetic field gradient direc-
tions (represented by unit-length vectors in R

3).
Specifically, at the beginning of the experiment and induced by the b0 field, water

molecules at different locations within a voxel resonate at the same frequency and with the
same phase. After turning on a magnetic field gradient for a short period of time (1 ∼ 100
ms), water molecules start to resonate at different frequencies, depending on their locations,
as different gradient field strengths were experienced at different locations. Consequently,
signals will be out of phase (referred to as dephasing), and this phase disruption leads to an
overall signal loss. The gradient field is then turned off for a short period of time, followed by
an identical (in terms of direction and strength) gradient application with the opposite polarity
such that the phase disruption will be (partially) recovered (referred to as rephasing). Perfect
rephasing only happens when water molecules remained stationary between the two gradient
applications. On the other hand, if water molecules had a significant movement between these
two gradient applications, there would be a disruption of phase across the sample, even after
rephasing, which leads to an overall signal attenuation (loss). This is the reason that D-MRI
measurements are also known as diffusion weighted measurements.

Suppose at a particular voxel, water mainly diffuses along the left-right direction. Then, for
gradient applications perpendicular to the left-right direction (e.g., those along the superior-
inferior or anterior-posterior directions), there would be little signal attenuation because there
is little water motion along those directions. As a result, at this voxel the signal intensity cor-
responding to such gradient applications would be (nearly) the same as the baseline signal
intensity. On the other hand, if a gradient application is along the left-right direction, then
there would be high signal attenuation such that at this voxel, the signal intensity correspond-
ing to the left-right gradient application would be (much) smaller than the baseline signal
intensity.

In biological samples containing fatty tissues (such as the brain), water diffuses pref-
erentially along tissue structures (such as white matter fiber tracts). This is referred to as
anisotropic diffusion. Consequently, D-MRI signals also display strong directional attenua-
tion and thus can be used to probe the anatomy of biological samples.

In addition to the directions of water diffusion and gradient application, the amount of
signal attenuation at a voxel is also affected by other factors, including the b0-field strength
and the duration of gradient applications. The aggregated effect of these factors is reflected
by an experimental parameter called the b-value. In short, the higher the b-value, the greater
is the amount of signal attenuation and the more sensitive are D-MRI measurements to water
diffusion. For more details of the D-MRI technology and data acquisition, the readers are
referred to Jones (2010), Le Bihan et al. (2001), Mori (2007).

1.2. HCP D-MRI application. In this work we are interested in investigating brain later-
alization (or hemispheric asymmetry), specifically, the association between superior longitu-
dinal fasciculus (SLF) lateralization and handedness, using the Human Connectome Project
(HCP) (Essen et al. (2013)) D-MRI data. Brain lateralization refers to the tendency for some
neural functions to be specialized to one hemisphere of the brain. Handedness refers to an
individual’s preference in using one hand over another, which is a key feature of human mo-
tor behavior. The asymmetrical functions of the hands are believed to reflect asymmetries in
brain function and structure (Budisavljevic, Castiello and Begliomini (2021)).
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The most well-known example of brain lateralization is the lateralization of the language
pathway, and it has been studied recently through neuroimaging technologies, including D-
MRI and functional MRI (fMRI). For example, Catani et al. (2007) and Gharabaghi et al.
(2009) investigated the perisylvian language pathway, the direct connections between Broca’s
and Wernicke’s territories, through D-MRI tractography. Houston et al. (2019) investigated
the association of diffusion tensor imaging (DTI) metrics with language function and de-
mographic features, including age and gender, by making use of tract based spatial statis-
tics (Smith et al. (2006)). Szaflarski et al. (2012) investigated language lateralization in left-
handed children through fMRI. Lateralization of other pathways, such as the motor pathway,
has also been studied through imaging technologies. For example, Seizeur et al. (2014) stud-
ied the association between corticospinal tract asymmetry and handedness through D-MRI
tractography. For a review of recent studies of the relationship between handedness and var-
ious white matter tracts of the brain, we refer to Budisavljevic, Castiello and Begliomini
(2021).

The main motivation to focus on SLF in this paper is that the SLF is a large lateral as-
sociation fiber tract, located in each hemisphere, involved in motor, visual, spatial, memory,
and language functions (Makris et al. (2004)). There are some recent studies on the relation-
ship between SLF structure and hand motion and handedness. For example, Budisavljevic et
al. (2017) explored how selective the three association fronto-parietal branches of the SLF
are for different kinds of hand movements through correlating D-MRI tractography results
and kinematic data in 30 right-handed subjects. They demonstrated that differences in SLF
structure and asymmetry were associated with visuomotor processing. Howells et al. (2018)
used tractography results of 51 healthy adults to evaluate differences in the three SLF tracts
asymmetry between right-handed and left-handed subjects and its association with manual
specialization across a range of motor tasks. Amemiya, Naito and Takemura (2021) studied
age dependency and lateralization of SLF tracts using the fractional anisotropy (FA) value
and tract volume data derived from coregistered T1 and D-MRI images of 82 predominantly
right-handed healthy subjects.

In this paper we leverage the large sample size of the HCP data to investigate the associ-
ation between SLF lateralization and handedness. Specifically, we select a gender-balanced
subset from the HCP young adults data that consists of D-MRI measurements and demo-
graphic information of 184 unrelated subjects, including 46 left-handed subjects and 138
right-handed subjects. D-MRI data from HCP have diffusion weighted measurements taken
under three different b-values (1000 s/mm2, 2000 s/mm2, 3000 s/mm2). For each b-value,
at each voxel (size: 1.25 × 1.25 × 1.25mm3) on a 145 × 174 × 145 3D brain grid, there are
measurements corresponding to a common set of 90 distinct gradient directions. Moreover,
six nondiffusion weighted images (referred to as b0 images) are obtained under the constant
background magnetic field (b0- field). In summary, for each of the three b-values a HCP D-
MRI data set consists of 96 grey scale images on a 145 × 174 × 145 3D grid, along with
90 3D unit vectors representing the 90 gradient directions. We first estimate the fiber di-
rection(s) at each voxel, and then we combine such voxel-level directional information for
SLF reconstruction through a tractography algorithm. We then derive a lateralization score
that quantifies hemispheric asymmetry of the reconstructed SLF. We relate this lateraliza-
tion score to gender and handedness—two commonly considered demographic/behavioral
features in brain lateralization studies—through an ANOVA model. Significant handedness
effects were observed, indicating that the SLF lateralization is likely to be different in right-
handed and left-handed individuals. In the following we first introduce two commonly used
models for extracting voxelwise directional information from D-MRI data.



ESTIMATING FOD WITH APPLICATION TO HCP D-MRI DATA 103

1.3. Single tensor model. One of the earliest and still widely used D-MRI models for
estimating watering diffusion at each voxel is the single tensor model, where the diffusion
process is modeled by a 3D Gaussian distribution whose covariance matrix is referred to as
the diffusion tensor (Mori (2007)). The single tensor model is the reason that D-MRI is also
called diffusion tensor imaging (DTI).

Specifically, the (noiseless) diffusion weighted signal at voxel v along a gradient direction
x, expressed as a 3D unit-length vector, is given by

(1) S(v,x) = S0(v) exp
{−bxᵀD(v)x

}
,

where S0(v) is the nondiffusion-weighted signal intensity at v, D(v) is a 3×3 positive definite
matrix denoting the diffusion tensor at v, and b > 0 is the b-value. As a tensor has only six
parameters, the single tensor model can be fitted with as few as seven diffusion measurements.

Notice that if x is aligned with the principal eigenvector of D(v), then we will observe the
strongest signal attenuation. Once we obtain an estimated diffusion tensor D̂(v), the voxel-
level fiber/diffusion orientation is extracted as the principal eigenvector of D̂(v) and used as
inputs in tractography algorithms for white matter tract reconstruction (Basser et al. (2000)).

The single tensor model also provides some useful image contrasts, most notably, the
fractional anisotropy (FA) that quantifies the degree of anisotropic diffusion at a voxel,

(2) FA :=
√

1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

,

where λ1 ≥ λ2 ≥ λ3 > 0 are the three eigenvalues of the diffusion tensor D(v) at that voxel.
When the diffusion is isotropic (i.e., λ1 = λ2 = λ3), the FA value reaches the lower limit 0,
and while the diffusion is highly anisotropic (i.e., λ1 � λ2, λ3), the FA value approaches the
upper limit 1.

1.4. FOD model for crossing fibers. As one may expect, the above single tensor model
cannot resolve intravoxel orientational heterogeneity, which happens when a voxel has mul-
tiple fiber populations with distinct orientations. This is estimated to be present in about 30%
white matter voxels, and, therefore, in such regions any single tensor model would lead to
misleading FA values and poor direction estimation that adversely affects fiber reconstruc-
tion. The SLF in our application is known to be difficult to reconstruct due to the crossings
between its fibers and those from the corticospinal tract (CST) (Catani (2010)).

This motivates us to employ a model that expresses the D-MRI signal at each voxel as
a convolution of an underlying fiber orientation distribution (FOD) function and an axially
symmetric response function (Tournier et al. (2004)). See Figure 1 for a graphical illustration
at a voxel with two fiber bundles crossing at 60◦, and see also (3) in Section 2.1 for a mathe-
matical description of the FOD model. When compared with the single tensor model (1), the
FOD model (3) is capable of handling intravoxel heterogeneous fiber populations. Note that,

FIG. 1. FOD model of D-MRI signal: At a voxel with two fibers crossing at a 60◦ separation angle.
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when the two smaller eigenvalues of D(v) are the same, the single tensor model (1) becomes
a special case of the FOD model (3) with a single fiber direction.

The FOD model directly describes the local spatial arrangement of axonal fiber bundles
and thus is particularly attractive when the downstream goal is white matter fiber tract re-
construction (as in our application). Particularly, the FOD model is able to resolve crossing
fibers within a voxel at the expense of requiring high angular resolution diffusion imaging
(HARDI) data (Tuch et al. (2002), Hosey, Williams and Ansorge (2005)), where a large num-
ber of gradients (such as in the HCP D-MRI experiments that this paper studies) is sampled.

Since FOD describes the distribution of fiber bundle orientation at each voxel, it is rea-
sonable to think of the FOD as a smooth function with a few sharp peaks, where each peak
corresponds to a distinct major fiber bundle within the voxel, or no peak at all in case of
isotropic diffusion. Once the FOD is estimated, the peak directions can be extracted and then
used as inputs for tractography algorithms. This means that, in the presence of any fiber bun-
dle in the voxel, it is imperative for the estimators to have sufficient angular resolution, that
is, sharp peak(s).

1.5. Contributions. In addition to the successful identification of significant handedness
effects in the SLF lateralization that enhances our understanding of brain lateralization and
brain function, this paper also makes two other major contributions as described below.

The first one is the development of a blockwise James–Stein type estimator, referred to as
BJS, for FOD estimation at each voxel. Through extensive synthetic experiments, we com-
pare BJS with two other FOD estimators, namely, SHridge that uses a ridge-type penalty
(Descoteaux et al. (2006), Yan et al. (2018)) and SCSD that applies an iterative super-
resolution sharpening (Tournier, Calamante and Connelly (2007)) upon the SHridge estima-
tor. The results demonstrate that BJS achieves competitive performance in terms of direction
estimation, particularly in maintaining angular resolution. It is also at least 10 times faster
than the other two methods. The computational efficiency of BJS is important for the kind
of applications considered in this paper, where the FOD model needs to be fitted on a large
number of voxels per image (in our application ∼ 100k) for a large number of images (here
∼ 200).

The other major contribution of this paper is the proposal of a data analysis pipeline that
can be used to identify potential associations amongst D-MRI derived brain structural con-
nectivity features and external variables. The pipeline is illustrated in Figure 2 and includes
the following major steps:

1. Preprocessing: Conducting brain extraction, white matter segmentation, and regis-
tration using the software FSL version 6.0.0 (Jenkinson et al. (2012)) and R packages fslr
(Muschelli et al. (2015)) and neurohcp (Muschelli (2018)) from the neuroconductor reposi-
tory.

2. ROI masks: Creating masks for the region of interests (ROIs) using FSLeyes
(McCarthy (2020)) and the JHUWhite-Matter Tractography Atlas (Hua et al. (2008), Wakana
et al. (2007)).

3. FOD estimation and peak detection: Deriving FOD estimates for the white-matter
voxels within the masks and extracting the peaks of the estimated FODs by a peak detection
algorithm (Yan et al. (2018)).

4. Fiber tracts reconstruction: Using extracted peak directions as inputs in a determin-
istic tractography algorithm—DiST (Wong et al. (2016)) as well as applying streamline se-
lection to further improve the reconstruction.

5. Feature extraction: Extracting brain connectivity related features.
6. Group analysis: Relating the extracted features to external variables of interest

through appropriate statistical models.
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FIG. 2. Schematic plot of data analysis pipeline for D-MRI applications. (Processing time is under a Xeon 72
core, 2.3GHz, 256GB RAM linux server).

The rest of the paper is organized as follows. Section 2 describes the FOD model and the
proposed BJS estimator. In Section 3 BJS is compared with two competing methods through
synthetic experiments. Section 4 describes the HCP D-MRI data and reports our application
on the SLF lateralization. We conclude the paper with a discussion in Section 5. Further
details can be found in the Supplementary Material. (Hwang et al. (2024))

2. Methodology. This section first describes the FOD model, followed by a discussion
of two existing FOD estimators, SHridge and SCSD. We then present the proposed estimator
BJS, which achieves superior or similar performance as SHridge and SCSD, albeit being
computationally much more efficient. We first note that, in general, a FOD is a probability
density function defined on the unit sphere.

2.1. FOD model and SH representation. The FOD model assumes that the diffusion sig-
nal at each voxel is a spherical convolution between the response function—an axially sym-
metric convolution kernel that characterizes water diffusion when there is a single dominant
fiber bundle aligned with the z-axis (the bottom-top axis)—and the FOD of fiber bundle ori-
entation at that voxel. More precisely, it assumes that the (noiseless) diffusion weighted signal
at voxel v along a gradient direction x is given by

(3) S(v,x) =
∫
S2

R
(
xT y

)
F(v,y) dω(y), x ∈ S

2,

where dω(y) is the volume element of the 3D unit sphere S2, F(v, ·) is a symmetric spherical
probability density function, and R(·) is an axially symmetric kernel and is assumed to be the
same across voxels and fiber bundles.

In practice, we can reliably estimate R(·) in (3) by using only voxels with a single domi-
nant fiber bundle, for example, those that have a high FA value under the single tensor model
(1). In fact, it is shown in Yan et al. (2018) that the FOD model is quite robust to the spec-
ification of the response function; see Section 4.3 for details. Therefore, for simplicity, in
sequel R(·) is assumed known. Moreover, hereafter, we suppress the dependency on voxel
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index v in S and F . Our goal is to estimate the FOD F(·) based on the observed diffusion
measurements. As can be seen from model (3), this amounts to a spherical deconvolution
problem.

Since S(·), F(·), and R(·) are real and symmetric functions, they can be represented by
real symmetrized spherical harmonic (SH) basis. Let {�̃lm : −l ≤ m ≤ l; l = 0,1, . . .} denote
the complex SH basis. Then a real symmetrized SH basis is defined as (Descoteaux et al.
(2007)),

(4) �lm =

⎧⎪⎪⎨⎪⎪⎩
√

2 · 	(�̃lm) if − l ≤ m < 0,

�̃l0 if m = 0,√
2 · 
(�̃lm) if 0 < m ≤ l,

for l = 0,2,4, . . ., where 	(z) and 
(z) denote the real and imaginary parts of z ∈ C, respec-
tively.

Since the response function R(·) is axially symmetric, 〈R,�lm〉 = 0, unless m = 0. Let
rl = 〈R,�l0〉 and flm = 〈F,�lm〉 be the SH coefficients of R(·) and F(·), respectively. Then,
by equation (3) and a standard result of the convolution property of the spherical harmonics
(Healy, Hendriks and Kim (1998)), the D-MRI signal S(·) has SH coefficients,

(5) slm = 〈S,�lm〉 =
√

4π

2l + 1
rlflm, −l ≤ m ≤ l; l = 0,2, . . .

The observed D-MRI measurements {yi}ni=1 are noisy corrupted versions of S(·) measured
along n gradient directions {xi}ni=1. The major source of noise (after removing artifacts due
to eddy currents, echo planar imaging distortion and subject motion) in D-MRI data is the
thermal noise in the MRI scanner. It is modeled as independent and additive white noise on
the real and imaginary parts of the signal. Since the observed D-MRI measurements are �2
norms of the complex-valued signal from the MRI scanner, they follow a Rician distribution
(Gudbjartsson and Patz (1995)). However, when the signal-to-noise ratio (SNR) level is high,
as is the case of HCP D-MRI data (see Figure 7), Rician noise can be approximated by
additive Gaussian noise (Carmichael et al. (2013)).

Use I2l+1 and In to denote the (2l +1)× (2l +1) identity matrix and n×n identity matrix,
respectively. Under the assumption that a finite level (up to lmax) of SH basis can represent
S(·) and F(·), the D-MRI measurements can then be modeled as

(6) y= �Rf+ ε, ε ∼ N
(
0, σ 2

ε In
)
,

where R is an L×L diagonal matrix (L = (lmax+1)(lmax+2)
2 being the total number of SH basis)

with the lth diagonal block equal to rl
√

4π/(2l + 1) · I2l+1, for l = 0,2, . . . , lmax. Also, �
is the n × L matrix with the elements in the ith row and (l,m)th column, given by �lm(xi ),
and f = (flm) is the L × 1 vector of SH coefficients of the FOD F(·). Moreover, the vector
ε = (εi)

n
i=1 represents observational noise and is assumed to have independent coordinates

that follow a Gaussian distribution with E(εi) = 0 and Var(εi) = σ 2
ε .

In order to achieve sufficient angular resolution, higher-order spherical harmonics are
needed to represent the FOD (i.e., sufficiently large lmax). In practice, we choose lmax to
be the largest even number such that the sample size n is still greater than the number
of SH basis L. Specifically, in the synthetic experiments lmax = 6,10,12 (L = 28,66,91)
for n = 41,81,321 gradient directions, respectively, and in the HCP application, lmax = 10
(L = 66) is used, as there are n = 90 gradient directions.

Also, note that, due to the decay of the singular values of the design matrix resulting from
the decrease of higher order SH coefficients of the response function R(·), deconvolution
becomes increasingly unstable and more susceptible to noise amplification when higher order
harmonics are used in FOD representation. Therefore, appropriate regularization is required
for accurate FOD estimation and fiber direction extraction.
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2.2. SHridge and SCSD. The SHridge estimator is motivated by Descoteaux et al. (2006)
who proposed the Laplace–Beltrami regularization to estimate the orientation distribution
function (ODF) (Tuch (2002), Tuch (2004)). The same penalty can be used for FOD estima-
tion (Yan et al. (2018)),

(7) min
f

‖y− �Rf‖2
2 + λE(F ), E(F ) :=

∫
	
(�bF )2 d	 = fT Pf,

where P is an L×L diagonal matrix with the lth diagonal block equal to l2(l +1)2 · I2l+1, for
l = 0,2, . . . , lmax, �b is the spherical Laplacian operator, and E(F ) is a measure of roughness
of spherical functions. With the objective function (7), the estimated coefficients of FOD are

(8) f̂SHridge = (
R�T �R+ λP

)−1R�T y.

The tuning parameter λ can be chosen by a grid search and the Bayesian information criterion
(BIC) (Schwarz (1978)).

The SHridge estimator suffers from low angular resolution and is inaccurate when there
are crossing fibers with moderate to small crossing angles (see Section 3). One strategy to
improve the angular resolution of FOD estimator is through a sharpening process that makes
the major peak(s) more prominent and at the same time suppresses small peaks, as they are
more likely due to noise. A good example of a sharpening procedure is the superCSD method
of Tournier, Calamante and Connelly (2007), which iteratively suppresses small and negative
values and elevates large values through a super-resolution SH representation (with an order
lsmax ≥ lmax). Details can be found in Section S.1.1 of the Supplementary Material (Hwang et
al. (2024)). We refer to the estimator resulting from applying superCSD to SHridge as SCSD.
Although SCSD is able to improve upon SHridge (see Section 3), it does so at the expense of
considerable extra computational overhead.

Next, we propose a new estimator BJS that is able to achieve a similar angular resolution
as SCSD, albeit with much less computational cost.

2.3. Blockwise James–Stein shrinkage estimator (BJS). When the sample size n is
greater than the number of SH basis L, then: (i) �T � is well conditioned (under some
weak assumptions), and (ii) R�T �R is nonsingular. However, due to finite sampling, �T �
is not an identity matrix. Also, for large L the matrix R and, consequently, R�T �R be-
comes significantly ill-conditioned, since rl decreases to zero as l increases. Therefore, a
linear estimator of FOD (e.g., SHridge) is likely to be inefficient. This motivates our pro-
posal of a nonlinear shrinkage procedure, BJS. Notice that blockwise nonlinear shrinkage
strategies have been applied successfully for adaptive estimation in nonparametric regression
(Cai (1999), Cai, Low and Zhao (2009)) and linear inverse problems (Cavalier and Tsybakov
(2002), Cavalier and Tsybakov (2001)).

The BJS estimator consists of three steps. First, we transform the data y into z, which we
call the transformed observations. We then partition z into blocks corresponding to the fre-
quency levels of the SH basis and apply a James–Stein type shrinkage estimator within each
block. Since the SH transform of the response function is constant within each harmonic
frequency level, the covariance matrix of the transformed data is reasonably homogeneous
and well conditioned within each block. Moreover, inspired by Laurent and Massart (2000)
and Cavalier and Tsybakov (2001), we adopt a more heavily penalized version of the James–
Stein shrinkage that accounts for nonisotropic covariance of the observations, thus allowing
for heteroscedasticity as well as dependency among the observations. Finally, we employ a
postestimation one-step super resolution sharpening to enhance the localized peaks of the
estimated FOD. Note that as BJS does not involve any grid search or iteration, it is computa-
tionally much more efficient than SHridge and SCSD and scales well for processing a large
number of diffusion images. The details of these three steps are as follows:
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Step 1: Transformation. Multiply K= R−1(�T �)−1�T to both sides of (6) to obtain the
transformed observations,

(9) z= Ky= f+Kε,

where

Var(z) = σ 2
ε KKT = σ 2

ε R
−1(

�T �
)−1R−1 := σ 2

ε V.

Notice that z is the ordinary least squares (OLS) solution.

Step 2: Blockwise James–Stein shrinkage. In this step we estimate f through a block-
wise James–Stein type estimator by applying an adaptive nonlinear shrinkage within each
block. Denote the block of f and z corresponding to the lth level SH basis by f(l) and
z(l), respectively. The lth block consists of (2l + 1) coordinates of the respective vector for
l = 0,2,4, . . . , lmax, and totally, there are 1 + lmax

2 blocks. Let V(l) be the corresponding
(2l + 1) × (2l + 1) submatrix of V and η(l) be the lth block of the transformed noise vector
η := Kε. Note that η(l) follows N(0, σ 2

ε V
(l)). Moreover, V(l) equals 2l+1

4πr2
l

multiplied by the

corresponding (2l +1)× (2l +1) submatrix of (�T �)−1. This is because, within each block,
R is a scalar multiple of the identity matrix. Consequently, V(l) is much better conditioned
than V, and this invites the use of blockwise shrinkage, as described next.

For each level l, we have z(l) = f(l) + η(l). For l = 0,2, . . . , l0 with l0 ≥ 2 a prespecified
even number, f̂(l) := z(l). For l > l0, we adopt a modified version of James–Stein shrinkage,
described in (10), which accounts for the nonisotropic covariance of η(l),

f̂(l) =
(

1 − σ̂ 2
ε (‖λl‖1 + 2‖λl‖2

√
t (l) + 2‖λl‖∞t (l))

‖z(l)‖2
2

)
+
z(l), l > l0,(10)

where λl is the vector of eigenvalues of V(l), ‖λl‖1, ‖λl‖2, ‖λl‖∞ are �1, �2, �∞ norm of
λl , respectively, ‖z(l)‖2

2 is the squared �2 norm of z(l), and t (l) = c log(2l + 1) (c > 1 being a
constant) is a regularization parameter. Moreover, σ̂ 2

ε is the mean squared error (MSE) of the
OLS estimates, which is used as an estimator for the error variance σ 2

ε ,

σ̂ 2
ε = ‖y− �(�T �)−1�y‖

n − rank(�)
,

where rank(�) is the rank of the matrix �. Note that, even with an ill-conditioned system,
one can still achieve a good fit of the observations by OLS and, consequently, a good estimate
of the error variance.

Also, note that shrinkage is only applied to those SH coefficients with a level higher than
l0, whereas those low order SH coefficients are estimated by OLS. The reason is to avoid
excessive bias as low order SH coefficients are expected to be large. Specifically, l0 should
be an even number no less than 2, which limits the possible choices for l0. In this paper we
set l0 = 4, meaning that we do not shrink the first three levels (i.e., l = 0,2,4) of the SH
coefficient estimates.

The specific form of the estimator in (10) is motivated by a tail-probability bound for
quadratic forms of Gaussian vectors from Laurent and Massart (2000).

Let (w1, . . . ,w2l+1) be i.i.d. standard Normal random variables and λ = (λ1, . . . , λ2l+1)

be nonnegative constants. Then, the following inequality holds for any t > 0:

P

(2l+1∑
i=1

λiw
2
i ≥ ‖λ‖1 + 2‖λ‖2

√
t + 2‖λ‖∞t

)
≤ exp(−t).



ESTIMATING FOD WITH APPLICATION TO HCP D-MRI DATA 109

Note that, in the above, the �1 term ‖λ‖1 = ∑2l+1
i=1 λi (as λis are nonnegative) is the mean

of the random variable
∑2l+1

i=1 λiw
2
i . And the above inequality is a probabilistic bound on the

fluctuation of this random variable above its mean value. The proof by Laurent and Massart
(2000) makes usage of the Laplace transform, which gives rise to the �2 term ‖λ‖2 and �∞
term ‖λ‖∞.

If, for the lth block, f(l) = 0, then z(l) = (Kε)(l) and follows the distribution of
σ 2

ε

∑2l+1
i=1 λl,iw

2
i . By the above tail probability bound, we have P(f̂(l) �= 0) ≤ exp(−t (l)) =

(2l + 1)−c, if the regularization parameter t (l) takes the form c log(2l + 1) (with c > 1). Con-
sequently, the probability of falsely detecting a (nonexistent) signal goes to zero. In addition,
by the Borel–Cantelli lemma, if there is no signal at all (i.e., all f(l) ≡ 0), then with probability
tending to 1 (as l → ∞), except for at most a finite number of blocks, all f̂(l) will be shrunk
to zero. Particularly, for blocks corresponding to higher SH levels, larger shrinkage is applied
so that the noise is more aggressively suppressed. In this paper we set c = 2. Based on the
results of a sensitivity experiment (Table S.4 in Hwang et al. (2024)), BJS is quite robust with
respect to the choice of c.

Step 3: Postestimation sharpening. The evaluation of the estimated FOD on any arbitrary
grid is given by F̂ = �̃f̂ , where �̃ is an ñ × L matrix representing the evaluation of the L

SH basis on this grid. Since the estimated FOD F̂ may have negative values caused by arti-
ficial oscillations, to impose nonnegativity the SH coefficients f̂ is further updated through
a one-step super-resolution sharpening process, using an lsmax(≥ lmax) order SH representa-
tion, which not only suppresses negative values but also sharpens the peak(s). In this paper
lsmax = 16 is used for the synthetic experiments with separation angle 30◦, while for all other
cases and the HCP application, lsmax = 12 is used; see Table S.5 in Hwang et al. (2024) for a
sensitivity experiment on the effect of lsmax. Details of the one-step sharpening are available
in the Supplementary Material (Section S.1.2 in Hwang et al. (2024)).

Note that both BJS and SCSD use a nonlinear super-resolution sharpening process. How-
ever, there are two major differences. First, BJS uses super-resolution sharpening only once,
whereas SCSD uses a computationally expensive iterative procedure. Second, in BJS only
negative values are suppressed, while in SCSD both negative and small positive values are
suppressed. Suppressing small positive values helps the iterative SCSD to converge, but it is
not required by the one-step BJS. In a sensitivity experiment, we examine the effect of sup-
pressing small positive values in the one-step sharpening of BJS and find that it does not lead
to better estimation (see Table S.6 in Hwang et al. (2024)).

A good initial estimator is crucial for the success of the one-step sharpening process. This
is evidenced by the comparison between BJS and SCSD (Section 3), where BJS is able to
achieve comparable or better accuracy in FOD estimation, largely due to its superior initial
estimator to SHridge (which is used as the initial estimator in SCSD).

More remarks on the shrinkage factor. Our formulation of the blockwise shrinkage factor
in (10) explicitly accounts for heteroscedastic and correlated noise within each block through
the eigenvalues of the covariance matrix V(l) of the lth block. In particular, one important
difference of the current setting from those in the existing works is that the covariance matrix
of the transformed data is nondiagonal. This is because, due to finite sampling, the design
matrix does not diagonalize in the same SH basis as the convolution kernel. Addressing this
point requires a careful calibration of the shrinkage factor in BJS.

Cavalier and Tsybakov (2002) solved a linear inverse problem under a Gaussian sequence
model with i.i.d. noise, using a blockwise James–Stein shrinkage rule. They first converted
the inverse problem to a direct estimation problem with independent but heteroscedastic
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noise. They showed that a larger value of the blockwise shrinkage factor than in the ordi-
nary James–Stein shrinkage procedure gave better control on the variance of the estimator at
the expense of slightly increased bias. In our context we also deal with an inverse problem,
so a good balance between variance and bias of the estimator within each block, which is
dictated by the shrinkage factor, is of great importance.

In a closely related setting, though concerning a direct rather than an inverse regression
problem involving orthogonal regressors and correlated Gaussian noise, Goldenshluger and
Tsybakov (2001) showed that the standard James–Stein estimator still has theoretically near-
optimal risk performance (in comparison with the linear oracle estimator) as long as the
correlation is mild. In our context empirical analyses show that, for the sampling design we
consider, each block of the noise covariance matrix V is quite well conditioned, even for
higher SH level l (condition number is close to 1 for l = 4 and less than 1.2 for l = 10),
while the maximum absolute correlation among the coefficients within each block is modest
(around 0.3). Thus, our choice of the shrinkage factor can be seen as a hybrid addressing
the combined scenarios dealt with by Cavalier and Tsybakov (2002) and Goldenshluger and
Tsybakov (2001). This explains the satisfactory empirical behavior of our proposed BJS.

3. Synthetic experiments. In this section we first compare the running times of the three
FOD estimators, namely, BJS, SHridge, and SCSD. Then their performances are assessed
through extensive synthetic experiments under different settings in terms of the number of
fibers, separation angles between pairs of fiber bundles, the number of gradient directions,
b-value, and signal-to-noise ratio (SNR).

In the synthetic experiments, the diffusion weighted signals along n gradient directions are
generated by adding independent Rician noises to the noiseless diffusion signals. We denote
the standard deviation of the real/imaginary components associated with the Rician noise
as σ . The noiseless diffusion signals are generated according to the convolution model (3),
where the true FOD is set as

F(θ,φ) =
K∑

k=1

wkδθk,φk
(θ,φ), θ ∈ [0, π], φ ∈ [0,2π),

with K denoting the number of fiber bundles, wk > 0,
∑K

k=1 wk = 1 being the volume frac-
tions, and δθk,φk

(., .) being the Dirac delta function at the spherical coordinates (θk, φk) of
the kth fiber bundle orientation (k = 1, . . . ,K). The volume fractions are set as w1 = 1 for
the K = 1 “single-fiber” case; w1 = w2 = 0.5 for the K = 2 “two-crossing fibers” case, and
w1 = w2 = 0.3, w3 = 0.4 for the K = 3 “three-crossing fibers” case. The response function
is set as

R
(
cos(θ)

) = S0 exp−b(λ̄ cos2 θ+λ sin2 θ), θ ∈ [0, π],
where S0 = 1, λ̄ = 1 × 10−3mm2/s, λ = 1 × 10−4mm2/s. Lastly, SNR := S0/σ .

3.1. Running time comparison. Here we consider the K = 1 “single fiber” case with
n = 81 gradient directions, b-value = 3000 s/mm2, and SNR = 50.

The execution times of the three methods across 30 simulation replicates are shown in Fig-
ure 3. For SHridge a grid with 100 values is used for tuning parameter selection (with BIC).
For SCSD the additional time by conducting the superCSD procedure is reported. Moreover,
lmax = lsmax = 10 are used for FOD representation and sharpening, respectively. On average,
it took BJS 7.246 minutes to process 100k voxels in serial computing on a server with Xeon
72 core processor, 2.3GHz, 256GB RAM. Moreover, Figure 3 shows that BJS is at least 10
times faster than the other two methods in terms of both serial and parallel computing.
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FIG. 3. Execution times: Box plots across 30 replicates; applied to 100k voxels with a single fiber, n = 81,
b-value = 3000 s/mm2, SNR = 50; set lmax = lsmax = 10; evaluated on a server with Xeon 72 core processor,
2.3GHz, 256GB RAM. Left panel—serial computing. Right panel—parallel computing with 30 cores.

3.2. Experimental settings. Here we consider two fibers crossing at five different sep-
aration angles (30◦, 45◦, 60◦, 75◦, 90◦) and three fibers crossing at two different pairwise
separation angles (60◦, 90◦). Also, two different b-values (1000 s/mm2, 3000 s/mm2) and
two different levels of SNR (20, 50), are considered. Moreover, diffusion signals are sampled
along, n = 41,81,321, respectively, gradient directions pointing to the centers of the upper-
half triangles of an icosphere mesh with increasing orders. For each setting 100 independent
replicates of diffusion weighted measurements are generated.

The synthetic experiments cover settings commonly encountered in both clinical and re-
search purpose D-MRI experiments. Especially in the HCP application, we have 90 gradient
directions at b-value 3000 s/mm2 and a median SNR around 50 (Figure 7).

3.3. Evaluation metrics. Estimated FODs are visualized and compared with the true fiber
directions in Figure 4, Figures S.1, S.2, and S.3 in Hwang et al. (2024), where the opaque
color represents the mean of the estimated FOD (across 100 replicates), the semitranslucent
color represents the mean plus two standard deviations of the estimated FODs, and the solid
lines represent the true fiber directions.

In many D-MRI applications, including the one studied in this paper, the purpose of FOD
estimation is to obtain fiber direction estimates at each voxel, which are then used as inputs
in tractography algorithms for white-matter fiber tracts reconstruction. In this paper we use a

FIG. 4. Synthetic experiment: Two fibers crossing at 45◦. The solid lines are the true fiber directions. The opaque
part and the semitranslucent part represent, respectively, the mean estimated FODs across 100 replicates and the
mean plus two standard deviations of the estimated FODs.
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peak detection algorithm (Yan et al. (2018)) to extract the peak(s) of the estimated FOD and
use the peak direction(s) as the estimated fiber direction(s). The performance in terms of fiber
direction estimation is evaluated by three metrics:

1. D.R.—Correct peak detection rate, defined as the percentage of replicates where the
peak detection algorithm finds the correct number of fibers.

2. Bias.Sep—Bias in separation angle estimation, defined as the difference between
Mean.Sep and a true separation angle, where the true separation angle is the acute angle
between two true directions and Mean.Sep is the acute angle between the two correspond-
ingly estimated fiber directions, averaged across those replicates in which the correct number
of fibers is detected, and

3. F.D.E.—Fiber direction estimation error, defined as (1 − cos(angular-error)) × 103,
where angular-error is the acute angle between a true direction and its estimated direction.

These metrics are reported in Table 1, Tables S.1, S.2, and S.3 in Hwang et al. (2024).

3.4. Results. In the case of two fibers crossing at a 45◦ separation angle (Figure 4 and
Table 1), visually, BJS is the best estimator among the three, as, on average, it shows the most
accurate direction and retains the angular resolution the best. SHridge performs the worst and
shows very poor performance, except for b = 3000 s/mm2, SNR = 50 and n = 321. Under
b = 1000 s/mm2, SCSD performs the best in terms of peak detection rate, whereas under
b = 3000 s/mm2, both BJS and SCSD can successfully identify two fibers with high rates. In
terms of direction estimation (F.D.E.), BJS and SCSD have similar performances, and both
are much better than SHridge. However, BJS has considerably less bias in separation angle
estimation (Bias.Sep) than SCSD. This phenomenon is observed across nearly all simulation
settings considered in this section.

In the case of two fibers crossing at 30◦ and b-value 3000 s/mm2, BJS outperforms both
SCSD and SHridge (Figure S.1 and Table S.1 in Hwang et al. (2024)). In terms of peak detec-
tion rate, BJS is almost twice as good as SCSD and is much better than SHridge. Moreover,
BJS has little bias in separation angle estimation, whereas SCSD tends to severely under-
estimate the separation angle (thus losing angular resolution) under the high SNR (i.e., 50)
settings.

In the case of two fibers crossing at moderate to large separation angles (60◦, 75◦, 90◦)
(Figure S.2 and Table S.2 in Hwang et al. (2024)) and three fibers crossing at a pairwise sep-
aration angle 60◦ or 90◦ (Figure S.3 and Table S.3 in Hwang et al. (2024)), BJS outperforms
SCSD in the two-fiber cases and has comparable performance with SCSD in the three-fiber
cases. Both perform better than SHridge.

In summary, when the separation angle is small (i.e., the most challenging settings), BJS
has a distinct advantage over SCSD and SHridge. Overall, BJS performs the best in separation
angle estimation and shows competitive performance in peak detection and fiber direction
estimation.

Finally, to assess the impact of FOD estimation on tracking results, we considered a two-
dimensional region on a 15 × 15 voxel-grid with two fiber bundles crossing. We applied
these three methods for FOD estimation, extracted the peak directions and then conducted
fiber tracking (Wong et al. (2016)). The results are shown in Figure S.4 of the Supplementary
Material (Hwang et al. (2024)). It can be seen that BJS and SCSD have similar performance,
and both lead to visually more accurate reconstruction than SHridge at the cross region (e.g.,
for the region indicated by the black box, part of the SHridge reconstruction of the light-gray
fiber bundle curved downward instead of following through to the upper-right corner).

As a side note and by the request of a reviewer, we also apply these three methods to a
predominantly CSF region of a HCP subject where no dominant fiber direction is expected
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TABLE 1
Synthetic experiment: Two fibers crossing at 45◦. D.R.: Correct peak detection rate; Bias.Sep: Bias (in arc degree) of separation angle estimation; F.D.E. 1/F.D.E. 2: Fiber direction

estimation errors for directions 1 and 2, respectively

BJS SCSD SHridge

Setting Design D.R. Bias.Sep F.D.E. 1 F.D.E. 2 D.R. Bias.Sep F.D.E. 1 F.D.E. 2 D.R. Bias.Sep F.D.E. 1 F.D.E. 2

b = 1000 s/mm2, lsmax = 12, SNR = 50 n = 41, lmax = 6 62% −1.33 9.13 8.93 82% −4.9 7.77 8 3% 29.37 298.23 374.3
n = 81, lmax = 10 83% −0.59 8.78 7.62 97% −4.6 7 6.68 0% - - -
n = 321, lmax = 12 100% −0.16 2.84 2.84 100% −4.87 2.91 2.6 0% - - -

b = 3000 s/mm2, lsmax = 12, SNR = 20 n = 41, lmax = 6 92% −1.71 10.41 9.31 88% −3.39 3.97 6.64 2% 21.65 460.54 57.61
n = 81, lmax = 10 97% −1.67 4.71 4.58 98% −2.59 4.06 2.91 0% - - -
n = 321, lmax = 12 100% −1.99 2.21 2.75 100% −1.61 1.25 0.97 1% −2.08 1.7 2.91

b = 3000 s/mm2, lsmax = 12, SNR = 50 n = 41, lmax = 6 100% −1.03 2.06 1.91 100% −4.55 2.69 1.56 27% 6.28 9.17 4.38
n = 81, lmax = 10 98% −0.05 0.81 0.73 100% −2.77 1.35 0.97 33% 0.24 3.79 4.45
n = 321, lmax = 12 100% −0.34 0.69 0.09 100% −0.77 0.88 0.09 99% 2.42 1.49 1.5
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in most of the voxels. As we can see from Figure S.5 in Hwang et al. (2024), both BJS and
SCSD lead to somewhat noisy estimation in the CSF region, whereas both work relatively
well in the nearby white-matter region.

4. HCP D-MRI application. In this section we investigate the association of the SLF
lateralization with gender and handedness using data collected from the WU-Minn Human
Connectome Project (HCP) (Essen et al. (2013)).

This data set contains Eddy-current-corrected 3T D-MRI data of 1206 healthy young
adults (age: 22 to 35) from 457 unique families. D-MRI measurements are taken at three
different b-values (1000 s/mm2, 2000 s/mm2, 3000 s/mm2) on a 145 × 174 × 145 grid with
voxel size 1.25 × 1.25 × 1.25 mm3. For each b-value, 90 gradient directions and six b0 im-
ages are available. In subsequent analysis D-MRI measurements with b-value = 3000 s/mm2

are used.
Using the Edinburgh Handedness Index (EHI), we classify the subjects to be left-handed

(EHI: −100 to −55) and right-handed (EHI: 85 to 100). Notice that the variability of EHI
scores for the left-handed subjects is larger than that for the right-handed subjects. This is
probably due to the fact that many left-handed individuals often have some level of mixed
dominance, as their surrounding environments tend to be developed for right-handed individ-
uals (López-Vicente et al. (2021)).

In order to remove family effects, we choose at most one subject from each family. If
all subjects from a family are right-handed, then a subject is randomly selected. Otherwise,
priority is given to left-handed members. We also balance the sample in terms of gender by
stratified sampling according to the EHI. Through the above sampling scheme, 184 subjects
(left-handed female: 23; left-handed male: 23; right-handed female: 69; right-handed male:
69) are selected. The EHI distribution of these 184 subjects by the gender-handedness group
is shown in Figure 5.

Recall that our data analysis pipeline is shown in Figure 2, and the details are given below.

4.1. Preprocessing. The D-MRI data are downloaded from the HCP database, Connec-
tomeDB. We note that two images, named T1w and T2w, are accompanied in the data. These
T1w and T2w images are typically used for brain extraction and segmentation, respectively.
We shall use them in the additional processing steps described below.

In addition, the data have gone through basic quality control and have also been minimally
preprocessed Glasser et al. (2013). These steps include: (i) intensity normalization, (ii) EPI
distortion correction, (iii) eddy current correction, (iv) gradient nonlinearity correction, and
(v) registration of the mean b0 image (T2w image) to the native volume T1w image and
the transformation of diffusion data, gradient deviation, and the gradient directions to the
structural space (T1w space). So the HCP D-MRI data have already been coregistered to the
structural space.

FIG. 5. EHI distribution: Box plots by gender-handedness group of the 184 sampled HCP subjects.
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We perform additional processing on each D-MRI image using the software FSL version
6.0.0 (Jenkinson et al. (2012)) and R packages fslr (Muschelli et al. (2015)) and neurohcp
(Muschelli (2018)) from the neuroconductor repository. The original T1w image contains
both skull and the brain. Since the HCP D-MRI data have already been coregistered to the
structural (T1w) space, we apply the T2w extracted binary brain mask, provided by HCP, onto
the original T1w image to obtain the T1w extracted brain image. Using the T1w extracted
brain image and the FAST segmentation algorithm (Zhang, Brady and Smith (2001)) in FSL,
each voxel in the brain is classified into three different tissue types (CSF—cerebrospinal fluid,
GM—grey matter, WM—white matter). The segmentation result is used to create a white-
matter mask. Hereafter, we refer to voxels within the white-matter mask as the white-matter
voxels. Moreover, the T1w image is registered to a standard space—MNI152_T1_2mm (http:
//www.bic.mni.mcgill.ca/ServicesAtlases/HomePage)—by the FSL registration tools FLIRT
(Jenkinson et al. (2002)) (for initial linear registration) and FNIRT (Woolrich et al. (2009))
(for subsequent nonlinear registration).

4.2. SLF masks. For superior longitudinal fasciculus (SLF) reconstruction, we adopt a
regional-seeding tractography strategy; see Section 4.4 for details. For this purpose we need
to create region of interest (ROI) masks that contain the SLF.

On the MNI152_T1 template space, we use FSLeyes (McCarthy (2020)) and the JHU
White-Matter Tractography Atlas (Hua et al. (2008), Wakana et al. (2007)) to create the SLF
masks in the left and right hemispheres, respectively. The left-SLF ROI contains 41,694 vox-
els, and the right-SLF ROI contains 38,386 voxels. Since it is known that the SLF and the
corticospinal tract (CST) are crossing, we further use binary masks from AutoPtx (de Groot
et al. (2013)) for streamline selection to dissect the SLF from the initial tractography results.
As can be seen in Figure 6, the binary masks are situated at the margins of the portions of the
SLF masks where the probability of being on the SLF is high, indicated by bright color.

Since all subsequent analyses are conducted on the subject native space, we use the inverse
transformation (derived from the registration step) to move the masks on the template space
back to the subject native space. On the subject native space, the numbers of voxels in left
SLF and right SLF ROIs are 47,379 ± 5912 and 42,772 ± 5430, respectively. More details
on preprocessing and ROI mask creation can be found on https://github.com/vic-dragon/BJS.

4.3. FOD estimation and peak detection. For each subject we first use the white-matter
voxels to estimate the response function R(·) in the FOD model (3), following the steps
described in Yan et al. (2018). Specifically, at each white-matter voxel we fit the single tensor
model (1) and identify voxels with a FA value (2) greater than 0.8 and a ratio between the two

FIG. 6. Left panel—SLF masks on template space (left), right panel—SLF masks on the native space of one
HCP subject: The (probabilistic) ROI masks are shown by the heatmap, where brighter color corresponds to a
higher probability. The (binary) streamline selection masks are shown by the white strips.

http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage
https://github.com/vic-dragon/BJS
http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage
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FIG. 7. Histograms of the (estimated) signal-to-noise ratio (left panel) and the ratio between leading and minor
eigenvalues of the response function (right panel): Across 184 sampled HCP subjects.

smaller eigenvalues less than 1.5 as having a single dominant fiber bundle. We then calculate
the median of the leading eigenvalue and the minor eigenvalue (defined as the average of the
two smaller eigenvalues), respectively, across these voxels and denote them by λ̄ and λ. Then
the response function is specified as the diffusion signal along directions in the y-z plane
under a single tensor model with D = diag{λ,λ, λ̄},

R
(
cos(θ)

) := S0 exp−b(λ̄ cos2 θ+λ sin2 θ), θ ∈ [0, π].
Note that, in our implementation, we first normalize the DWI measurements at each voxel

by the mean intensity of the six b0 images at that voxel. We then set S0 = 1 in the response
function. Since S0 corresponds to a multiplicative factor in the response function’s SH coef-
ficients matrix R, such a normalization would not affect the fitted FOD.

For each subject, we also estimate the signal-to-noise-ratio (SNR: = S0/σ ) using the six
b0 images: the overall SNR is taken as the median SNR over all voxels. The estimated SNR
and the ratio of the leading and minor eigenvalues of the response function across the 184
selected HCP subjects are shown in Figure 7.

BJS estimates are then obtained for white-matter voxels within the SLF masks. The peak
directions of the estimated FODs are extracted by a peak detection algorithm (Yan et al.
(2018)). Moreover, nonwhite-matter voxels within the SLF masks are automatically specified
as isotropic and thus have no associated peak direction. The peak detection algorithm asso-
ciates each voxel with either none, one, or multiple directions, and they are used as inputs
in the deterministic tracking algorithm DiST (Wong et al. (2016)) for the SLF reconstruction
described in Section 4.4.

4.4. SLF reconstruction by tractography and streamline selection. In neuroscience trac-
tography refers to the technique of reconstructing and visually representing white-matter
fibers using D-MRI data. While applying a tractography algorithm, there are several options
for seeding and terminating criteria. Tracking is initialized at so-called seed locations, and
there are generally two options: whole-brain seeding vs. seeding within a ROI, referred to as
regional-seeding. For terminating criteria, common choices include trajectory bending more
than a prespecified angle in a single step, trajectory entering a region of low FA, or trajectory
leaving the white-matter segment. Moreover, tracking may be terminated when the trajectory
leaves the ROI. For an overview of deterministic tractography, see Alexander (2010).

Here we apply the DiST tracking algorithm (https://github.com/vic-dragon/dmri.tracking),
a deterministic tractography algorithm that can handle zero or multiple directions within one

https://github.com/vic-dragon/dmri.tracking
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FIG. 8. FA corrected orientation color map of one HCP subject and the tractography of SLF: Left panel—The
(probabilistic) SLF mask on the left hemisphere is outlined by white-colored lines with saggital view at MNI
X = −38 and axial view at MNI Z = 30. Right panel—SLF tractography before and after streamline selection.
(color scheme: green: anterior-posterior; blue: superior-inferior; red: left-right).

voxel and thus is suitable for tracking in crossing fiber regions (Wong et al. (2016)). More-
over, we use the probabilistic masks for the SLF (one on each hemisphere) from the JHU
White-Matter Tractography Atlas (Hua et al. (2008), Wakana et al. (2007)) as both the seed-
ing mask and the terminating mask. This means that tracking starts from every white-matter
voxel within these masks, and the trajectories will be terminated while leaving the SLF region
specified by these masks. Another stopping criterion we use is when there is no viable voxel
within two steps, where nonviable voxels are those leading to trajectory bending more than
60 degrees or being isotropic (e.g., nonwhite-matter voxels).

Note that the SLF crosses with other fiber tracts, mainly, with the corticospinal tract (CST).
As can be seen from the orientation color map of one HCP subject (left panel of Figure 8),
the SLF region crosses with the CST (indicated by blue color, as this tract is mainly along the
inferior-superior direction). As a result, the reconstructed fibers contain not only those of the
SLF but also some of the CST. This can also be seen from the tractography results of one HCP
subject (right panel of Figure 8), which shows a big bundle of blue-colored tracks. In order to
better dissect the SLF, we further apply streamline selection. Here we use binary masks from
AutoPtx to dissect the SLF from the initial tractography results. Only tracks (streamlines) that
pass through both AutoPtx binary masks are retained.

The above regional-seeding approach is suitable for extracting a specific pathway (here
the SLF) or mapping tracts from a specific region. One advantage of the regional-seeding
approach to the whole-brain-seeding approach is that the former is computationally much less
intensive and scales better for processing a large number of subjects/images. The regional-
seeding approach may also take advantage of any existing knowledge in brain anatomy. A
potential disadvantage of the regional-seeding approach is that it may lead to incomplete
tract reconstruction. This can be mitigated by using anatomically informed masks, such as
those from a white-matter atlas, as we have done here. In Figure S.6 in Hwang et al. (2024),
we show the SLF reconstruction results of one HCP subject after streamline selection by the
AutoPtx masks under different seeding strategies. It shows that our regional-seeding approach
does not lose too many fiber tracks, compared to the whole-brain-seeding approach.

4.5. Feature extraction. After tractography and streamline selection, various brain struc-
tural connectivity features can be extracted, including the number of streamlines, the length of
such streamlines, etc. Here we focus on the difference between the left- and right-hemispheric
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FIG. 9. Lateralization score vs. number of voxels in SLF ROIs: Across 184 sampled HCP subjects.

SLF for the purpose of investigating the lateralization pattern of the SLF and its association
with gender and handedness.

Specifically, for each subject we calculate a lateralization score (LS) based on the relative
difference between the numbers of selected streamlines from the left- and right-hemispheric
SLF, respectively,

(11) LS = Streamlines in Left SLF − Streamlines in Right SLF

(Streamlines in Left SLF + Streamlines in Right SLF)/2
.

Here the denominator serves the purpose of normalization so that the LS from subjects with
different brain sizes are comparable. As can be seen from Figure 9, the LS is not correlated
with the size of the SLF ROI. A similar score was used by Catani et al. (2007) to quantify
lateralization of the language pathway.

4.6. Group analysis and results. Reconstructed SLFs of the representative subjects from
each gender-handedness group with positive- and negative-lateralization scores are displayed
in Figure 10. Moreover, the lateralization score distribution by the gender-handedness group
is shown in Figure 11.

We use a two-way ANOVA model to study the association between the SLF lateralization
score and gender and handedness,

Yijk = μ + αi + βj + γij + εijk, i = 1,2, j = 1,2, k = 1, . . . , nij ,

where Yijk is the lateralization score, μ is the overall mean, αi is the main effect of handed-
ness at level i (i = 1: left-handed, i = 2: right-handed), βj is the main effect of gender at level
j (j = 1: female, j = 2: male), γij is the interaction effect between handedness and gender
for the level combination i, j , with constraints

∑2
i=1 αi = 0,

∑2
j=1 βi = 0,

∑2
i=1 γij = 0,∑2

j=1 γij = 0, and εijk are i.i.d N(0, σ 2) errors. The diagnostic plots (Figure S.8 in Hwang
et al. (2024)) show a good model fit.

According to the ANOVA results shown in Table 2, the SLF lateralization is signifi-
cantly associated with handedness. Moreover, the 95% confidence interval of the contrast
between left-handedness and right-handedness is (−0.289,−0.041), which suggests right-
handed subjects have a greater left lateralization tendency in the SLF (i.e., larger LS) com-
pared to left-handed subjects. On the other hand, there is no significant gender effect or
gender-handedness interaction effect on the SLF lateralization score.
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FIG. 10. Reconstructed SLF (sagittal view) of representative HCP subjects. (color scheme: green: anterior-pos-
terior; blue: superior-inferior; red: left-right).

FIG. 11. Lateralization score distribution: Left panel—histogram on all 184 subjects; right panel—box plots by
gender-handedness groups.

TABLE 2
HCP D-MRI application: Type III ANOVA results

d.f. SS MS F-value p-value

Handedness 1 1.099 1.099 7.911 0.005
Gender 1 0.468 0.468 3.364 0.068
Handedness * Gender 1 0.265 0.265 1.907 0.169
Residuals 180 25.016 0.139
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Note that there are other demographic variables in the HCP data in addition to gender,
namely, age and race. The subjects in HCP consist of young adults aged from 22 to 35 and
the majority (76%) are White. Height and weight measurements are also available (Figure
S.7 in Hwang et al. (2024)). Since we did not expect these variables to have an effect on brain
lateralization, we did not include them in the model. Prompted by a reviewer’s comment,
we also looked into the model including these variables and we reached the same qualitative
conclusion, that is, only handedness has a significant effect (Table S.7 in Hwang et al. (2024)).

4.7. Comparison and validation. We also conducted the HCP D-MRI application using
DSI Studio (http://dsi-studio.labsolver.org/), a tractography software tool for D-MRI analysis
(Yeh et al. (2013), Yeh, Weeden and Tseng (2010)). DSI Studio uses orientation distribution
function (ODF) as a local fiber estimation method. ODF is the projection of the diffusion
probability density onto the surface of the unit sphere along a ray emanating from a voxel
center (Tuch (2002), Tuch (2004)). One limitation of ODF is that it does not preserve the
sharp features associated with the underlying fiber bundle orientation. Therefore, if the ob-
jective is white matter fiber tract reconstruction, it is expected that the FOD model is more
efficient, as it directly models the distribution of fiber orientation within a voxel.

The reconstructed SLF tractography results from our pipeline and DSI Studio are visually
similar in terms of shape and orientation (Figure S.9 in Hwang et al. (2024)). However, the
reconstructed SLF from DSI Studio contains a large portion of fiber tracks along the superior-
inferior direction (blue-colored tracks), which is likely to be part of the corticospinal tract
(CST). As a result, the DSI Studio procedure leads to many more selected streamlines than
our pipeline. The streamline selection strategy used in our pipeline appears to be more ef-
fective in excluding tracks on crossing white-matter fiber tracts (here CST). The extracted
features from our pipeline and DSI Studio are only weakly positively correlated (Figure S.10
in Hwang et al. (2024)). We suspect that the somewhat low correlation is partially due to dif-
ferences in preprocessing and masks (on top of using different diffusion MRI models, that is,
FOD vs. ODF, as mentioned in the previous paragraph). Lastly, when using the lateralization
scores derived from the DSI Studio tractography results as responses, there is no significant
handedness effect, gender effect, or handedness-gender interaction effect (Table S.8; Figures
S.11, S.12 in Hwang et al. (2024)).

For further validation we applied the proposed pipeline and DSI Studio to the HCP test-
retest data set, which consists of repeated D-MRI measurements for 36 subjects. From Figure
S.13 in Hwang et al. (2024), it can be seen that both the proposed pipeline (referred to as BJS)
and DSI Studio are reasonably reproducible with the (Pearson’s) correlation coefficients and
(Fisher’s) intraclass correlation coefficients between the number of streamlines in the left-
/right-SLF reconstructed from the test data and that from the retest data of the same subject
being at least 80%.

As another way for comparison and validation, we also looked into the predictive power
of the derived lateralization score in predicting handedness. Specifically, we fitted logistic
regression models (using R function glm) with handedness as the response and gender and
lateralization score as the predictors and performed 10-fold cross-validation (CV). We calcu-
lated the AUC (Area Under the ROC Curve) for each CV fold. While using the lateralization
score derived from BJS, the average AUC (across 10 CV folds) is 0.666, and the standard
deviation is 0.090; While using the lateralization score derived from DSI-Studio, the average
AUC is 0.624, and the standard deviation is 0.051. Although the predictive power of the SLF
lateralization score is not very high, comparatively, the BJS derived lateralization score is
more powerful than that derived by DSI-Studio.

More details can be found in Sections S.3.1 and S.3.2 of the Supplementary Material
(Hwang et al. (2024)).

http://dsi-studio.labsolver.org/
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5. Discussion. In this paper we investigate the association between brain structural con-
nectivity and demographic and behavioral features using D-MRI data from the Human Con-
nectome Project. Specifically, we derive a lateralization score for a major association tract,
the superior longitudinal fasciculus (SLF), and relate it to gender and handedness. We find
significant handedness effects, indicating a difference in the SLF lateralization between left-
handed and right-handed individuals. Moreover, we propose a novel computationally efficient
method, BJS, for estimating the FOD at each brain voxel. We also establish a D-MRI data
analysis pipeline that can be utilized for population level associative studies for relating brain
anatomic features to external features including demographic, behavioral, or cognitive mea-
surements.

The proposed BJS method is scalable for statistical analysis of brain structural connectivity
at a population level. It constitutes an effective improvisation of the classical James–Stein
shrinkage that solves an ill-conditioned problem with noisy measurements in a nonstandard
setting, where an exact diagonalization of the convolution operator in a basis representing the
observation vector (D-MRI measurements) is not feasible due to finite sampling effects.

To reconstruct white-matter fiber tracts, the estimated FOD at each voxel needs to provide
reasonably accurate fiber orientation information. Based on synthetic experiment results, we
believe that the estimated FODs via BJS are accurate enough to be used as inputs to a tractog-
raphy algorithm. Since the orientation of a fiber bundle usually changes smoothly from one
voxel to its neighboring voxels, spatial information may be utilized to further improve voxel-
level estimation as well tracking results. Some recent works, including Wong et al. (2016)
and Rao et al. (2016), have been proposed for fiber reconstruction where spatial constraint is
incorporated. It is conceivable that the BJS estimator may be further improved if neighboring
voxel information is utilized. We leave this as a future research direction.

We compared the proposed BJS pipeline with an existing D-MRI software DSI Studio.
We also validated the BJS pipeline, using the HCP test-retest data set, and found the re-
construction results (in terms of the number of streamlines) reproducible with correlation
coefficients between results from the test data and retest data around 90%. There are other
software packages or pipelines available for D-MRI data analysis, including FSL (Jenkinson
et al. (2012)) and PSC (Zhang et al. (2018)). Although both may potentially be used for the
type of applications presented in this paper, we did not compare with FSL, due to its slow-
ness in tractography, and we did not compare with PSC, as we could only locate a github
repository instead of a packaged software. Nevertheless, a more comprehensive comparison
with existing D-MRI data processing and analysis tools would further reveal applicability
and limitations of BJS. This will be a future research direction.

Although a large proportion of the neuronal fiber bundles can be explained by the recon-
structed neuronal fiber tracks based on D-MRI, it is not sufficient to represent the actual fiber
system in the brain. Also, the estimated fiber composition can be different depending on the
tractography algorithm (Jones, Knösche and Turner (2013)). Despite these challenges, this
paper successfully demonstrates that it is possible to extract meaningful structural connectiv-
ity information from reconstructed neuronal fiber tracts, based on D-MRI data, and to relate
such information with external features.
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Supplementary text (DOI: 10.1214/23-AOAS1781SUPPA; .pdf). A supplementary text
with additional details on FOD estimators, synthetic experiments results and the HCP D-MRI
application.

Codebase (DOI: 10.1214/23-AOAS1781SUPPB; .zip). Codes and example scripts for
synthetic experiments and the HCP application can also be found at https://github.com/
vic-dragon/BJS, together with a detailed manual on D-MRI batch downloading and prepro-
cessing.
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