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Abstract—It has been recently demonstrated that modifying the
rim scattering of a paraboloidal reflector antenna through the
use of reconfigurable elements along the rim facilitates sidelobe
modification including cancelling sidelobes. In this work we in-
vestigate techniques for determining the unit-magnitude weights
(i.e., weights which modify the phase of the scattered signals) to
accomplish sidelobe cancellation at arbitrary angles from the
reflector axis. Specifically, it is shown that despite the large
search space and the non-convexity of the cost function, weights
can be found with reasonable complexity which provide signifi-
cant cancellation capability. First, the optimal weights without
any magnitude constraints are found. Afterwards, algorithms
are developed for determining the unit-modulus weights with
both quantized and unquantized phases. Further, it is shown
that weights can be obtained that both cancel sidelobes while
providing a constant main lobe gain. A primary finding is that
sufficiently deep nulls are possible with essentially no change in
the main lobe with practical (binary or quaternary) phase-only
weights.

TABLE OF CONTENTS

1. INTRODUCTION .t tttteueenronsosssnsssssscascensnsss 1
2. SYSTEM MODEL ...uvietetenrencencencaacancascnnans 2
3. WEIGHT SELECTION ..tiutiuteatenteocaacascascnnans 3
4. RESULTS ¢itiieiieenreesensessasssssssssscsscsscnsans 4
5. CONCLUSIONS ¢ctteutsesenssssssssssssssscescascnnsns 6
ACKNOWLEDGMENTS «.vietetieencesesassncesesassncnne 7
REFERENCES «.ittiuteutenrontsncsncsssssssscascascnsons 7
BIOGRAPHY ..utitieinrneeeeeencacacencncosasescacacnnes 7

1. INTRODUCTION

Radio astronomy is an example application that relies on
large reflector antennas with high gain to receive weak signals
[1], [2], [3]. However, with the high gains obtainable with
large reflectors, these applications are still vulnerable to
interference via sidelobes. This problem can be ameliorated
by sidelobe modification or better yet, sidelobe cancellation.
The latter involves placing a pattern null so as to reject the
interference, ideally without impacting the main lobe gain.
The traditional approach to sidelobe canceling is to use an
array of feeds [4]. The short-coming of such an approach
is that it introduces greater aperture blockage and dynamic
variability in the gain of the main lobe.

Recently, another approach for cancelling (or generally mod-
ifying) the sidelobe(s) of a reflector antenna pattern has been
proposed that uses reconfigurable rim scattering [5]. In that
work it was shown that by using reconfigurable segments
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along the rim of a refletor antenna that introduce phase shifts
to the reflected signal, sidelobe patterns can be altered and
even cancelled. That work examined prime focus-fed circular
axisymmetric paraboloidal reflectors, although the concept
is not limited to that type of system. Specifically, it was
shown in [5] that as long as sufficient surface area along
the rim is reconfigurable, sidelobe cancellation is possible.
Additionally, the work showed that cancellation did not re-
quire continuously variable phase, but was in fact possible
using quantized phase shifts (viz., binary or quaternary). A
rudimentary example algorithm for determining the binary
weights was also described. We shall refer to this algorithm
as serial search.

In the current work we build on the idea proposed in [5] by
describing algorithms for determining the weights needed to
cancel sidelobes at specific angles from the reflector axis in
an open-loop fashion. More specifically, we first derive the
optimal weights needed to cancel sidelobes at an arbitrary
angle ¢.> Due to the large number of segments available
on the reflector rim, there is a large number of degrees of
freedom. Thus, we show multiple ways that these degrees of
freedom can be used to cancel sidelobes at multiple angles.
The optimal weights for this case are also derived. However,
the optimal weights prove to have two short-comings: (a) the
weights are, in general, not unit-modulus; and (b) the optimal
weights cause the main lobe gain to vary as a function of the
null direction.

To overcome the latter problem, we show that by exploiting
the large number of degrees of freedom, an additional con-
straint for the main lobe gain can be added which removes the
main lobe gain variability. The former problem (i.e., requir-
ing segment weights with non-unit gain) is more significant
since such weights would require segments which must be
able to attenuate or amplify the signal while scattering. This
is clearly undesirable from a cost/complexity perspective. To
overcome this problem, we formulate a least-squares problem
and utilize a version of the gradient projection algorithm to
force the weights to have unit modulus. It is shown that this
algorithm can be successfully used to find weights that form
one or more nulls while maintaining a constant main lobe
gain. Note that in this work we do not address the phase of
the main lobe. However, as we hope to demonstrate in future
work, we believe that the large number of degrees of freedom
should allow for phase to also be maintained.

While the algorithm described above does achieve what we
desire, it requires continuously-variable phase at each recon-
figurable segment. To overcome this requirement, we must
quantize the weights at each segment to a small number
of possible phase shifts. Unfortunately, this now becomes

2We will define the specific meaning of v in Section 2.



an optimization problem with a discrete multi-dimensional
search space. The non-convex discrete set of possible weights
does not lend itself to the aforementioned search algorithm.
Thus, we employ a different approach. Specifically we apply
the probabilistic optimization technique known as ‘simulated
annealing’ and show that it results in weights that can form
nulls at arbitrary angles. A primary finding is that sufficiently
deep nulls are possible with essentially no change in the main
lobe with practical (binary or quartenary) phase-only weights.

This contribution is organized as follows: Section 2 describes
the system model used in this work. The algorithms for
determining the weights for each reconfigurable segment are
presented in 3. Section 4 presents numerical results and
conclusions are presented in Section 5.

2. SYSTEM MODEL

The antenna system assumed in this paper is presented in
Figure 1. As is commonly done, we assume the equivalence
of transmit and receive patterns and calculate the transmit
patterns using physical optics (PO). The total electric field
intensity E2° scattered by the reflector in the far-field direction
1 is given by?

E*(¢) = E7(¢) + EX(¥) (D

where E7 is the electric field intensity due to the fixed portion

of the dish
L

where Jo(s") is the PO equivalent surface current distribu-
tion, j = v/—1, w = 27 f is the operating frequency in rad/s,
Lo is the permeability of free space, 3 is the wavenumber,
r(¢) points from the origin towards the field point in the
direction 1, 6 is the angle measured from the reflector axis
of rotation toward the rim with 0y = 6, at the rim of the fixed
portion of the dish and 6y = 6 at the rim of the entire dish
(see Figure 1), ¢ is the angular coordinate orthogonal to both
6 and the reflector axis, and ds is the differential element of
surface area. See Figure 1 for more details.

e i) BE() s
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The electric field intensity due to the reconfigurable portion
of the dish is similarly written as

/(9f =0 /¢
€)]

where the major differences between the contributions due to
the fixed and reconfigurable portions of the dish are (a) the
angles of integration for the rim and (b) the PO equivalent
surface current distribution. Due to the discrete nature of the
reconfigurable surface, we can write E2 (1)) as

S R

S . € Jﬂ’r r
E}(¢) = —jwto—— s')el P W0)s g

B
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Ei(y) = sh As
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3For simplicity/clarity and with no loss of generality we will examine the
antenna pattern in the H-plane. Further, we examine the pattern versus an
angle we define as ¢ which is the angle from the main lobe in the H-plane
(i.e., ¢p = 0 with ¢ = 90°). Clearly the antenna pattern in general depends
on both angular coordinates, but for ease of exposition we choose to stay in
the H-plane in this discussion.
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Figure 1. On-axis ( top ) and side ( middle ) views of an
electronically- reconfigurable rim scattering system along
with the geometry for analysis (bottom) assumed in this

paper.

where Jq(s!) = w,Jo(s},) is the current distribution due
to the nth segment with complex-valued weight w,,. These
weights will be designed to cancel sidelobes in the H-plane
co-pol pattern. Thus, we are primarily concerned with the
y-component of the vector EZ(¢)). Thus, we define the
complex scalar E5°°(1)) to be the y-component of the vector
E:(¢). Also, for convenience, we can write E2° (1)) in
terms of two N x 1 dimensional arrays e,, and w representing
the co-pol portion of the electric field intensity without the
influence of the segments and the complex-valued segment
gains respectively:

Eyeo(y) = epw (5)
where x7 is the transpose of the array x, w,, is the complex-
valued weight applied to the nth reconfigurable segment and
the nth element of ey, is

. 67‘7’57‘
Epn = (]wﬂo -

where the dot product (e) - y selects the y-component of the
vector e. Note that both one-dimensional arrays are of length

JO(S;)ejBf(w)-SiAS) ¥y, (6)
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N where N is equal to the number of reconfigurable segments
placed along the rim of the dish.

Now to cancel the sidelobe gain at angle v, we wish
EF* (W) + B (1) = 0 ™

or in other words, E*°(¢)) = —E7(1). Thus, we wish to
find the set of weights w such that

eiw — _ES,CO(w)

: ®)

In the following section we describe techniques to determine
w.

3. WEIGHT SELECTION

The approach to find the appropriate weights to satisfy (8)
depends on the restrictions placed on w. First, we describe
how to determine the weights with no restrictions placed on
w. Second, we will describe techniques for finding w if the
weights are restricted to unit-modulus values. Finally, we
describe approaches to finding weights if we further restrict
the weights to be discrete.

Unquantized Weights

While (8) provides the requirement for creating a null at angle
1), it does not provide the specific weights w to achieve this.
If the weights are unconstrained, to form a null at angle v we
can simply let w be equal to

*

€y
eyl

Wopt = —E}(¢) ©

where x* represents a vector where each element is the
complex conjugate of the corresponding element in x and
||x||2 represents the 2-norm of the vector x. We will term
these optimal weights since these weights guarantee that the
response of the dish in the direction v is zero. Unfortunately,
Wope in general has elements with |w;| # 1 which requires
that the segments have controllable gains (i.e., can provide
attenuation or gain to the scattered field). Such a requirement
is undesirable from a cost and complexity perspective. Thus,
we seek to restrict the weights such that |w;| = 1. This can
be written as the following minimization problem

2
W,p = min HE;’CO(w)Jreng2 (10)

wecnN
st Jwi| =1 i=1,2,...N
This is a non-convex, complex-valued, constant-modulus,
least squares optimization problem which is a special case
of non-convex quadratically-constrained quadratic program-
ming [6]. One solution to this problem is to use semi-definite
programming [6]. Unfortunately, this expands the problem
such that it is of dimension N2. Given that for moderate
to large antennas (D = 15 m to D = 100 m) and GHz
frequencies, /N can range from 103 to 105, such an expansion
is computationally complex. A more efficient solution is the
use of Gradient Projection [7]. Gradient Projection (GP)
uses standard gradient descent followed by a projection onto
a convex set. While our set of unit-modulus vectors is not
a convex set, this approach has been shown to converge for
projection onto the set of unit-modulus vectors [7]. Adapting
GP to our problem, we have the following algorithm. At the

3

kth iteration we apply standard gradient descent to create a
new vector

WD =W faet (B3 @) +e"w®) A

where o = is the adaptation constant and v €

(0,1). Of course, this is not guaranteed to provide unit-
modulus weights. Thus, we follow this with a projection step
which projects w onto an array of weights with unit-modulus

Wi
wk+) — p (V~V(k+1)> (12)

where P(x) = /4% and the vector operator /x results in a
second vector z where the ith element is the angle of z;,i.e.,
z; = /x; . The detailed algorithm follows.

GP Algorithm (single constraint/null)

1. | Initialization: £k =0, a = m, v €(0,1)
w0 — L") e (=B (v)))
Repeat
2. pF+) = wk) _ et B () + eTW(k))
3. wk+D) — i ln*tD
4. k=k+1
Until convergence

Main Lobe Variation and Nulling Multiple Angles

In the above formulation, we chose weights to cancel the
sidelobe at a single angle. However, there may be multiple
angles that we wish to null. Further, as we will show later,
nulling a particular angle may cause small changes to the
main lobe gain (this was also shown in [5]). This variation
may be tolerable in some applications, but in radio astronomy
it can be a significant problem[2]. Thus, we wish to constrain
this variation as much as possible. To accomplish both goals
(adding nulls and restricting main lobe variation) we simply
need to add these requirements to the cost function.

For example, consider the case of K desired nulls. In this
case we wish

EP© (W) + EF(W1) = 0
Bp*(b2) + BP(2) = 0
By (W) + EXCWk) = 0 (13)
Or in other words we desire
eilw = —Ey“(y1)
e, W = —E;“(Yx) (14)
Defining
Q (€415 €4, - - €] (15)
y = —[EFC@h), By (), .. By ()T, (16)

we have the requirement

Q'w=y a7)
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Using the least squares solution we obtain the optimal
weights

Worr = Q(Q7Q) 'y (18)

To avoid variation in the main lobe, we can include a con-
straint for the main lobe. Specifically, for ¢ = 0 we require
19

T —
ew =K

where x is the target constraint. Ideally, we could set
K = eOTl ~ where 1 is an N x 1 array of all ones which
would provide the same main lobe gain as the fixed reflector.
With unconstrained weights, this is possible. However, with
weights restricted to unit modulus, satisfying both the main
lobe constraint and side lobe constraints many not be possi-
ble. One option is to ease the constraints by choosing x = 0,
although this removes any contribution of the reconfigurable
portion of the reflector to the main lobe. Alternatively, we
could choose x = dE“(0) for some small value § to pro-
vide some additional gain in the main lobe. Experimentally
we have found this latter approach to be successful. Thus, we
can modify the vector of requirements to be

T
y = [k~ By, ~ By (), ... — By ()]

(20
where 11,12, ... ¥ are the K angles at which we desired
to place nulls and the first element of y corresponds to
the constraint placed on the change to the main lobe gain.
Further, we define the matrix

A= [ewo,ewl,ewz,...ewk,]T 21)
The least squares problem then becomes:
= mi Awl} 22
Wop = DN ly + Awl|; (22)
st |Jwil=1 i=1,2,...N
The resulting algorithm is then
GP Algorithm (multiple constraints)
1. | Initialization: k = 0, o = %, v €(0,1)
w(©® — ejl((AHA)—lAHy)
Repeat
3. n*+D) = wk) — g AH (y + Aw®)
4. wkt1) = i dn* D
5. k=k+1
Until convergence
Quantized Weights

The weights described in the previous sections have one
primary disadvantage: they presume continuously-variable
phase values. In a practical implementation, it is much more
reasonable that only a finite number of phase values would
be available on each reconfigurable segment. Thus, we wish
to solve the single-null problem in (10) or the multiple-null
problem (22) with the additional constraint that

wi €W = {€j27r/M’ eAm/M 6j27r(1\471)/M} CE))
where M is the number of possible phase values. The
most straightforward approach is to simply search over all

4

vectors w € W to find the one that minimizes the cost
function in (10) for a single constraint or (22) for multiple
constraints. Unfortunately, this requires a search over M
possible vectors where (as discussed above) N can be on
the order of 103 to 10° for moderate to large antennas and
GHz frequencies. For example, in the particular case we will
examine N = 2756 (see Section 4 and [5] for details). Thus,
even using binary weights a brute-force approach results in
a search over 22796 possible values of w which is obviously
infeasible.

A well-known and much more efficient approach is simulated
annealing [8]. In this approach we initialize a parameter
known as the temperature and perform a random search that
becomes more greedy in nature as the temperature “cools”.
In detail, the algorithm is as follows where the cost function

2
C(w) = HE;,co(q/;) + e5WH2 for a single constraint and

C (w) = ||y + Awl||3 for multiple constraints:

Simulated Annealing

1. | Initialization: k=0, T = [1,1,%,..., 7]
w(® randomly chosen from W/
Repeat
3. wktD) — (k)
4, n = [rand * N|,m = [rand x M|
5. wﬁf“) =W(m
6. AE = C (wh) — ¢ (wlh+D)
7. if AE >0, whth) = w(k)
8. else w(k+1) = w(k+1)
with probability p = min (1, e2ET*))
9. k=k+1
Untilk =T

Describing the above algorithm, we start by initializing a tem-
perature cooling schedule. In this work, for a series of 7' time

steps, we use the cooling schedule T = [1, %, %, e %] At
each time step we perform a local search where we randomly
choose a neighbor state. We define a neighbor as a vector
with one element being different. Thus, we randomly choose
the nth weight element and randomly change the value to one
of the other M possible weights. We then compare the cost
(denoted “energy” in simulated annealing) of each weight
vector. If the new weight vector has smaller cost (i.e., closer
to the specified constraints), the weight vector is changed to
this new weight vector. However, if the new weight vector
has a larger cost, with probability p we keep the new weight
vector despite its higher cost, and with probability 1 — p we
maintain the old weight vector. In this way, local minima are
avoided. The key is that the probability is tied to the cooling
temperature which decreases with each time step.

4. RESULTS

To demonstrate the performance of the above algorithms, in
this section we provide numerical results. We will assume
aD 18 m paraboloidal reflector operating at 1.5 GHz
where the outer 0.5 m of the reflector surface consists of
2756 contiguous reconfigurable segments. Each segment
is a square flat plate conformal to the paraboloidal surface
having side length 0.5\ (i.e., an area As = 0.25)\2). The
feed is modeled as an electrically-short electric dipole with
field additionally modified by the factor (cos6;)? ,where ¢
controls the directivity of the feed. Setting ¢ = 1 yields edge
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Reconfigurable 18m dish
Fixed 18m dish

Gain (dBi)

Angle (degrees)

Figure 2. H-plane Co-Pol Pattern for Standard (fixed) 18m
Dish and Reconfigurable 18m Dish with 0.5m
Reconfigurable Rim (i) = 1.25°)

illumination (i.e., ratio of field intensity in the direction of
the rim to the field intensity in the direction of the vertex), to
approximately -11 dB, yielding aperture efficiency of about
81.5%. Figure 2 presents the H-plane co-pol pattern of an 18
m fixed reflector (i.e., without the reconfigurable segments
or equivalently with the reconfigurable segments set to w; =
1, V4). Also plotted is the same pattern for the reconfigurable
reflector with the optimal weights (i.e., infinite quantization,
and no unit modulus constraint) defined in (9). The weights
are set to place a null at ¢ = 1.25° which is directly on the
peak of the first sidelobe in the fixed reflector pattern. We can
see from the figure that the sidelobe at ) = 1.25° is indeed
cancelled. However, the main lobe gain is reduced from 48.1
dBi (for the fixed 18m dish) to 47.7 dBi for the reconfigurable
dish.

The pattern in Figure 2 resulted from weights generated to
place a null at ¢ = 1.25°. As a result, the gain at ¢ =
1.25° is essentially zero.* This level of cancellation can be
accomplished at any angle outside the main beam as shown in
Figure 3. Specifically, in Figure 3 we plot the H-plane co-pol
gain achieved at ¢ (we will refer to this as G(¢)) when the
weights are generated using (9) to place anull at 1° < ¢ < 3°
(see plot labeled “optimal”). Note that this is not a pattern,
but rather the resulting null depth when attempting to place
a null at ¢. It can be seen that the optimal weights provide
a gain of zero to within the precision of the machine for any
angle between 1° and 3°, Similarly, the resulting main lobe
gain when cancelling a single sidelobe at angle 1) is shown
in Figure 4. It can be seen that the main lobe gain can vary
by over 0.1 dB when cancelling with the optimal weights. As
discussed above, this variation can be problematic.

Further, and as also discussed above, the optimal weights
as determined by (9) are not unit modulus and thus would

4In calculating the gains at sidelobes which were nulled, with optimal
weights the gains were measured as zero to the within the limits of machine
precision. Thus, to visualize these values, we simply mapped them to -100
dBi for plotting purposes.
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1 1.5 2 2.5 3
Sidelobe Direction Being Cancelled, ¢ (degrees)

Figure 3. H-plane Co-Pol Pattern Gain G(1)) when Placing
a Null at Angle 1 using the Proposed Algorithms and the
Serial Search Approach for Binary Weights in [5]. Note that
the gains for “optimal” and “Gradient Projection” were
measured as zero to the within the limits of machine
precision. Thus, to visualize these values, we simply mapped
them to -100 dBi for plotting purposes.

require reconfigurable segments with controllable gain. The
gain achieved at the null direction when using the weights
defined by the least-squares problem described in (10) and
determined using the Gradient Projection algorithm are also
plotted in Figure 3 (weights labeled “Gradient Projection”).
It can be seen that the unit-modulus weights also achieve a
gain of essentially zero. The corresponding mainlobe gain
is also plotted in Figure 4. The additional constraint of the
unit modulus causes more mainlobe variation as the angle
of sidelobe cancellation (¢) is changed. Specifically, the
mainlobe gain will vary by approximately 0.3 dB ~ 7%
which may be significant in radio astronomy applications. We
will address this limitation shortly. Of course, these weights,
while unit modulus, are not quantized and thus require the
segments to have continuously-variable phase.

The null depth achievable when using binary (M 2)
weights (via the serial search algorithm described in [5] and
the simulated annealing algorithm) or quaternary weights (via
the simulated annealing algorithm) are also shown in Figure
3. When using the serial search approach from [5], the
binary weights clearly get stuck in a local minimum that
limits the null achievable. The minimum gains are in the
range of 0-5 dBi which is a reduction in fixed pattern gain
of only 5-15 dB. On the other hand, when using simulate
annealing, the quantized weights can push the sidelobe gains
down to approximately -50 dBi, with the exception of a 0.2°
range around the maximum sidelobe peak at ¢ = 1.25°.
In that range, there is insufficient granularity in the weights
to completely null the power from the fixed portion of the
dish. On the other hand, the main lobe gain has roughly 0.2
dB of variation when using simulated annealing and 0.3 dB
of variation when using the serial search, although the latter
provides a higher main lobe gain by nearly 0.5 dB. Note that
this difference in main lobe gain can be reduced by changing
the main lobe constraint.

To demonstrate the performance of the algorithms to create
multiple nulls, we first examine the continuously-variable
phase case using gradient projection to solve the least squares
problem of (22). As an example, we applied the algorithm to
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Figure 4. Main Lobe Gain for H-plane Co-Pol Pattern
(G(0)) when Cancelling Sidelobe at 1) using the Proposed
Algorithms and the Serial Search Approach for Binary
Weights in [5]

Reconfigurable 18m dish
Fixed 18m dish

Gain (dBi)

Angle (degrees)

Figure 5. H-plane Co-Pol Pattern for Standard (fixed) 18m
Dish and Reconfigurable 18m Dish with 0.5m
Reconfigurable Rim (main lobe control, ¢ = 1.25°,1.5°)

two angles: 1 = 1.25° and 1 = 1.5°. The resulting pattern
is plotted in Figure 5 along with the pattern of an 18m dish
with a fixed pattern. We can see that the reconfigurable rim
provides nulls at both angles, as desired. There is a small loss
in main lobe gain (~0.1 dB), but the two nulls are sufficiently
deep.

As a last examination of the performance or the algorithms,
we now examine the ability of the approach to eliminate
main lobe gain variation (i.e., mitigate the variation seen in
Figure 4. First, we use the gradient projection algorithm (as
described above) with two constraints. The first constraint is
to maintain the main lobe gain at a constant value while the
second constraint is to cancel the sidelobe at the angle ¢. The
results are shown in Figure 6 which plot the gain of the main
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Figure 6. Main Lobe Gain of H-plane Co-Pol Pattern
(G(0)) (top) and Sidelobe Gain (G(v))) (bottom) when
Cancelling Sidelobe at ¢ while Enforcing A Main Lobe
Constraint using Gradient Projection. Note that the sidelobe
gains were measured as zero to the within the limits of
machine precision. Thus, to visualize these values, we
simply mapped them to -100 dBi for plotting purposes.

lobe (top) and cancelled sidelobe (bottom) as the sidelobe
angle 1 is varied. Again, this is not an antenna pattern but
a plot of two specific gain values for different patterns as the
direction of sidelobe cancellation is varied. It can be observed
that the main lobe gain is held constant at 47.8 dBi regardless
of the angle of the null being created. At the same time,
to within the precision of the machine, the gain at the null
direction can be set to zero.

If quantized weights are used, the results are not quite as
good as shown in Figure 7. While the main lobe gain is
still maintained with strong consistency, the null depth is not
as low as with continuously-variable phase weights. This
is certainly expected based on the results of Figure 3. The
quantized weights do not have the same capability to create
deep nulls. This is due to the fact that quantization limits
the solution space and thus weights may not exist that can
accomplish both constant main lobe gain and providing a
deep null at a specific direction. This is particularly true
around the largest sidelobe at 1.25° as was shown above. As
an example quaternary (i.e., M = 4) weights were generated
for main lobe control and a null at ¢ = 1.75°. The resulting
the H-plane co-pol and cross-pol patterns are plotted in Figure
8 along with the fixed reflector co-pol pattern. As expected,
a deep null is placed at 1.75° while maintaining the desired
main lobe gain. Further, we can see that while the weights
do degrade the cross-pol pattern (which is zero in the H-
plane in the non-reconfigurable system) the cross-pol gain
does not exceed -18 dBi. Further, it is possible that with
proper constraints, this cross-pol degradation could also be
controlled.

5. CONCLUSIONS

In this paper we have described multiple techniques for de-
termining optimal or near-optimal weights for creating nulls
in the pattern of a prime focus-fed circular axisymmetric
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Figure 8. H-plane Co-Pol Pattern for Standard (fixed) 18m
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Reconfigurable 18m Dish with 0.5m Reconfigurable Rim
and Quaternary Weights (main lobe control, ¢ = 1.75°)

paraboloidal reflector antenna. The general approach applies
to a larger class of reflector antennas, but the discussion
was limited to this specific type for demonstration purposes.
It was shown that if segments placed on the rim of the
reflector are capable of imparting both amplitude and phase
adjustment, creating nulls at arbitrary directions of arrival is
possible. Multiple nulls can be created and the gain of the
main lobe can also be simultaneously held fixed.

More importantly it was shown that more practical unit-
modulus weights can be found using a least-squares approach
based on the projection gradient algorithm. These weights
while not requiring gain control (i.e., they require phase shifts
only) and capable of placing a null at any angle, unfortunately
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require continuously-variable phase. However, it was also
shown that deep nulls can be created using quantized unit
modulus weights which require only binary or quaternary
phase values using simulated annealing. Further, it was
shown that the approach can also be used to simultaneously
create a null at a specific angle while maintaining a constant
main lobe gain. These approaches require knowledge of the
antenna pattern and are calculated “open-loop”. Future work
includes developing approaches for controlling the shape
of the main lobe, constraining the sidelobe levels over a
particular sector, and closed-loop adaptation that would not
require exact knowledge of the antenna pattern.
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