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Structural Break Detection in Non-Stationary
Network Vector Autoregression Models

Yi Han and Thomas C. M. Lee , Senior Member, IEEE

Abstract—Imagine a network, like a socialnetwork or a system
of connected devices, is being observed over time. Each node in
this network has certain measurements attached to it that can
change, like the temperature of a device. Although the overall
structure of the network remains constant, these measurements
can vary, leading to a complex multivariate time series dataset
that exhibits non-stationary characteristics over time. This paper
applies a piecewise stationary network vector autoregressive (NAR)
model to analyze these network data. The main idea is to partition
the entire dataset into segments where the NAR model for each
segment remains stationary. The identification of these segments,
along with the determination of the NAR processes’ autoregressive
lag orders, are treated as unknowns. The minimum description
length (MDL) principle is employed to develop a criterion for model
selection that estimates these unknown parameters. A two-stage
genetic algorithm is then formulated to tackle this optimization
challenge. The MDL criterion is proven to be consistent in identi-
fying the number and positions of the breakpoints - the junctures
where adjacent NAR segments intersect. The effectiveness of the
proposed method is demonstrated through simulation studies and
real data analysis.

Index Terms—Breakpoint, changepoint, genetic algorithms,
minimum description length (MDL), piecewise network vector
autoregressive (NAR) model.

I. INTRODUCTION

CONSIDER a networkA = (ai1i2) ∈ RK×K withK nodes
that may represent different relationships in different situ-

ations, such as people’s social networks, companies’ economic
networks, and physical site networks. Letai1i2 = 1 if there exists
some kind of relationship from node i1 to node i2; for example,
followers and followees on social media. On the other hand,
ai1i2 = 0 if such a relationship does not exist. Also, further
assume A cannot be self-related: ailil = 0 for il = 1, . . . ,K.
Such relationships can be either directed or undirected.

From the networkAwe can collect continuous measurements
Xit ∈ R from node i = 1, . . . ,K at time t = 1, . . . , T . Denote

Xt = (X1t, . . . , XKt)
T ∈ RK , t = 1, . . . , T,
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as the measurements from all K nodes in the whole network at
time point t.

One of the earlier and widely used models for the Xt’s is
the vector autoregressive (VAR) model; e.g., see [1] and [2].
The VAR model introduces O(K2) parameters to handle the
interactions amongst the nodes, but the estimation problem is
tremendously large if K is large. Besides, there might be other
exogenous covariates related to the nodes that also influence
the Xt’s; e.g., personal information in social networks and
regional development level in economic networks. The VAR
model unusually fails to include such information.

The network vector autoregressive (NAR) model was thus
proposed by [3] to model the Xt’s. It contains much fewer
parameters that also utilize the observed network structure A
and also allows possible exogenous covariates. Other time series
models designed for networks include [4], [5].

For each node i, assume there exists a q dimensional node-
specific exogenous covariates V i = (Vi1, . . . , Viq)T ∈ Rq. As
stated in [3] and [6], a NAR(p1, p2)model assumes the measure-
ments Xit’s are influenced by self lags (past values), network
lags (past values of “related” nodes), and node specified covari-
ates effects, and is given by

Xit = β0 + V ⊤
i γ +

p1∑

m=1

αm

K∑

j=1

aij
ni

Xj(t−m)

+
p2∑

n=1

βnXi(t−n) + εit, (1)

where ni =
∑

l ̸=i ail is the total number of nodes that i fol-
lows, β0,αm ∈ R, βn ∈ R, and γ = (γ1, . . . , γq) ∈ Rq are,
respectively, the coefficients for the network lags, the self
lags and the node specified covariates. Also, p1 and p2 are
the lag orders for the network lags and the self lags, respec-
tively. The noise εit is assumed to follow a normal distri-
bution N(0,σ2

i ). Lastly, write W = diag{n−1
1 , . . . , n−1

K }A =
(w1, . . . ,wk)T as the row-normalized network.

The NAR model has been successfully applied to solve prob-
lems in different areas, including social media analysis [3], air
quality studies [6], and economic growth evaluations [7]. How-
ever, the vast majority of these studies assume the underlying
process is stationary over the whole time span, which can be an
unrealistic assumption for multivariate time series observed in
many modern applications [8], [9].

One possible approach to mitigate this issue is to partition the
whole process into a number of shorter, stationary processes.
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That is, a sequence of piecewise stationary NAR models is used
to model the non-stationary series {Xt}Tt=1.

A precise formulation is as follows. Suppose there are m0

breakpoints; i.e., {Xt}Tt=1 is partitioned into m0 + 1 piece-
wise stationary NAR models. The m0 breakpoint locations
{τj}m0

j=1 satisfy 0 < τ1 < τ2 < . . . < τm0 < T + 1, and for
convenience, write 0 = τ0 and τm0+1 = T + 1. For all j =
1, . . . ,m0 + 1, it is assumed that the j-th segment, {Xt} with
τj−1 ≤ t < τj , follows a stationary NAR(p1,j , p2,j) model. It is
also assumed that the network structure remains unchanged in
all segments. Similar to (1), the j-th segment is modeled as

Xit,j = β0,j + V ⊤
i γj +

p1,j∑

m=1

αm,j

K∑

l=1

ail
ni

Xl(t−m)

+

p2,j∑

n=1

βn,jXi(t−n) + εit,j . (2)

Throughout the paper, we follow the same stationarity as-
sumptions in [3] for each segment, for example,

∑p1,j

i=1(|αi|+
|βi|) <= 1 is satisfied which guarantees the piecewise station-
arity. With the above piecewise NAR model, one needs to
estimate the number m0 and the locations {τ1, . . . , τm0} of the
breakpoints. One also needs to estimate the model parameters
in each segment, including the lag orders p1,j and p2,j , and
the regression coefficients β0,j , αm,j , and βn,j . It will be shown
below that for each segment, once the lag orders are determined,
the regression coefficient estimates can be obtained using max-
imum likelihood [3]. So the main challenge is to estimate the
number and locations of the breakpoints, as well as the lag orders
in each segment. Notice that this can be seen as a statistical
model selection problem, as differentm0 would lead to different
piecewise stationary models with different numbers of model
parameters.

One major contribution of this paper is the development of a
systematic method for selecting a best-fitting piecewise station-
ary NAR model (2). That is, to estimate the number and locations
of the breakpoints, as well as the orders for each stationary
NAR model between any two adjacent breakpoints. Once these
quantities are estimated, the remaining model parameters can
be estimated using maximum likelihood. The proposed method
invokes the minimum description length (MDL) principle [10],
[11] to derive an objective criterion for model selection, and uses
the genetic algorithm to solve the corresponding optimization
problem.

Breakpoint detection in network problems has been widely
investigated in recent years. Existing mainstream methods can
be broadly divided into two categories. The first group of meth-
ods begins with summarizing a certain characteristic of each
of the networks with a metric and then detects any possible
breakpoints with respect to that metric. Examples of a network
metric include various matrix norms [12], [13] and centrality
metrics [14], [15]. Reducing a (complicated) network to a simple
metric typically provides substantial speed gain, but at the same
time, it may inevitably cause information loss, which in turn
may adversely affect the final results. The second group of
methods fits a dynamic network model to the data and uses
model-based testing methods to detect breakpoints. Examples of

such a network model include generalized hierarchical random
graphs [16], Kronecker product graphs [17], and stochastic
block models [18]. Some of these model assumptions could be
restrictive, but if appropriate for the data at hand, these methods
tend to provide excellent results.

One merit of the proposed method is that no strong restrictions
are imposed on the network structures, which greatly increases
the applicability of the method. To the best of the authors’
knowledge, this is one of the first complete systematic studies
that consider structural break estimation in non-stationary NAR
models.

The rest of this paper is organized as follows. Section II derives
the MDL criterion for estimating the unknowns in the piecewise
stationary NAR model. It also studies the theoretical properties
of the criterion. Section III develops a two-stage GA algorithm
to minimize the MDL criterion. The empirical performance of
the proposed method is illustrated in Section IV via various nu-
merical simulations and in Section V via an application to some
real Manhattan yellow cab data. Lastly, concluding remarks are
offered in Section VI, while technical details and additional
simulation results are provided in the supplementary material.

II. BREAKPOINT DETECTION USING MDL

The MDL principle is a popular method for deriving an effec-
tive model selection criterion. It defines the best-fitting model
as the one that compresses the data into the shortest possible
code length for storage, where the code length represents the
bites needed to store the data. It was proposed by Rissanen [10],
[11] and has been successfully applied to solve various model
selection problems such as image segmentation [19], network
constructions [20], [21], [22], and quantile and spline regres-
sion [23], [24]. This paper focuses on the so-called “Two–Part
MDL” [25], and this section derives the corresponding MDL
criterion for fitting a piecewise stationary NAR model.

A. Derivation of the MDL Criterion

To store the observed data, one can split them into two
parts: the first part is a fitted model and the second part is the
corresponding residuals. If the fitted model is a good model, it
will be more economical to store the data in this way. Denote
CL(z) as the code length of any object z; thus, we want to
minimize CL(“data”). Also, denote the whole class of piecewise
NAR models as M, denote any model in M as F ∈ M and its
corresponding residuals as Ê . Then we have

CL(“data”) = CL(“fitted model”) + CL(“residuals”)

= CL(F) + CL(Ê |F). (3)

We need a computable expression for CL(“data”) and we first
calculate CL(F). Notice that to completely specify a model F ,
we need to know the breakpoint number m and their locations
T = {τ1, . . . , τm}. In addition, for all j = 1, . . . ,m+ 1, we
need to know the lag orders pj = (p1,j , p2,j) and regression
parameters θj = (β0,j ,α1,j , . . . ,αp1,j ,j ,β1,j , . . . ,βp2,j ,j ,γj),

for the j-th segment. Write P = (p1, . . . ,pm+1) and Θ̂ =

(θ̂1, . . . , θ̂m+1). Then we have F = (m, T ,P, Θ̂), which leads

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 23,2024 at 16:40:49 UTC from IEEE Xplore.  Restrictions apply. 



4136 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2024

to the code length decomposition:

CL(F) = CL(m) + CL(T ) + CL(P) + CL(Θ̂). (4)

When applying MDL, the code length of an unknown positive
integer I can be approximated by log(I) [10]. On the other hand,
if I is known to be upper-bounded by Iu, then its code length is
log(Iu). So the first three terms on the RHS of (4) are

CL(m) = log(m+ 1), (5)

CL(T ) = (m+ 1) log(T ), (6)

CL(P) =
m+1∑

j=1

{log(p1,j) + log(p2,j)}, (7)

where the additional 1 in CL(m) is used to make the formula
meaningful when m = 0.

For the last term in (4), we need to first estimate Θ̂ from
model (2) and then encode the resulting estimated values. For
estimation, we shall use the maximum likelihood method of [3],
while for encoding, we shall use the result of [10] that any
(scalar) maximum likelihood estimate calculated from N ob-
servations can be effectively encoded with 1

2 log(N) bits. We
first describe the maximum likelihood method of [3].

Let wi = (ail/ni : 1 ≤ l ≤ K)T ∈ RK be the i-th row vec-
tor of the row normalized network matrix W , and

Z∗
l(t−1),j := {1,wT

l Xt−1,j , . . . ,w
T
l Xt−p1,j ,j , Xl(t−1),j

, . . . , Xl(t−p2,j),j ,V
T
l }T ∈ Rp1,j+p2,j+q+1,

where Xl(t−1),j represents the l-th element of Xt−1,j . Let

Z∗
t−1,j := (Z∗

1(t−1),j , . . . , Z
∗
K(t−1),j)

T ∈ RK×(p1,j+p2,j+q+1).

Then the j-th segment, which is a NAR(p1,j , p2,j) model
(see (2)), can be rewritten in vector form as

Xt,j = Z∗
t−1,jθj + εj , (8)

where εj ∼ Nk(0,σ2
j Ik). Here the variances do not need to be

the same for the proposed method to work, but for simplicity,
below we will assume they are identical. With this, the maximum
likelihood estimator of θj is

θ̂j =

⎛

⎝
τj∑

t=τj−1+pmax,j+1

Z∗T
t−1,jZ

∗
t−1,j

⎞

⎠
−1

×
τj∑

t=τj−1+pmax,j+1

Z∗
t−1,jXt,j ∈ R(p1,j+p2,j+q+1), (9)

where pmax,j := max(p1,j , p2,j), nj := τj − τj−1, and

σ̂2
j

=

∑τj
t=τj−1+pmax,j+1(Xt,j −Z∗

t−1,j θ̂j)T (Xt,j −Z∗
t−1,j θ̂j)

K(nj − pmax,j)
.

(10)

As mentioned before, to encode a scalar maximum likelihood
estimate, the code length is 1

2 log(N) if N observations were

used for estimation. Therefore,

CL(Θ̂) =
m+1∑

j=1

p1,j + p2,j + q + 1

2
log(nj). (11)

The last term in (3) that we need to calculate is CL(Ê |F), which
equals the negative log (base 2) of the likelihood of the fitted
model F [10]. From (8), (9), and (10), we have

CL(Ê |F) =
m+1∑

j=1

[
K(nj − pmax,j)

2

{
log(2πσ̂2

j ) + 1
}]

log2 e

(12)

Combining (5), (6), (7), (11), and (12) and using logarithm base
e instead of base 2, (3) becomes

CL(“data”) = log(m+ 1) + (m+ 1) log(T )

+
m+1∑

j=1

(
log(p1,j) + log(p2,j)

+
p1,j + p2,j + q + 1

2
log(nj)

)

+
m+1∑

j=1

{
K(nj − pmax,j)

2

(
log(2πσ̂2

j ) + 1
)}

log2 e

:= MDL(m, τ1, . . . , τm, p1,1, p2,1, . . . , p1,m+1, p2,m+1).
(13)

Thus, the MDL principle suggests that the best-fitting model for
the observed data Xt,j , t = 1, . . . , nj , j = 1, . . . ,m is the one
F ∈ M that minimizes (13).

B. Theoretical Properties

Denote the true number of breakpoints as m0 and the true
locations of the breakpoints as T0 = {τ01 , . . . , τ0m0

}. Define the
true relative breakpoint locations as λ0 = {λ0

1, . . . , λ
0
m0

} with
τ0j = ⌊λ0

jT ⌋ for j = 1, . . . ,m0, where ⌊x⌋ represents the great-
est integer that is less than or equal to x. Further, write p =
(p1,1, p2,1, . . . , p1,m+1, p2,m+1) and λ = (λ1, . . . , λm). Note
that the theoretical results in this subsection will be presented in
terms of λ instead of T .

As suggested by [26], for each segment, a sufficient number
of data points are required to adequately estimate the corre-
sponding NAR model parameters. For this reason, we impose
the following constraint on the estimate of λ. First, choose ξ > 0
sufficiently small enough that ξ ≪ mini=1,...,m0+1(λ0

i − λ0
i−1).

Then define

Am = {(λ1, . . . , λm

0 = λ0 < λ1 < · · · < λm < λm+1 = 1,

λi − λi−1 ≥ ξ, i = 1, 2, . . . ,m+ 1}

Lastly, we require the estimate of λ to be an element of Am.
Using this constraint and (13), the unknown meta-parameters

are given by

{m̂, λ̂, p̂} = arg minm,p,λ∈Am

2

T
MDL(m,λ,p). (14)
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Theorem 2.1: For the piecewise stationary NAR model given
by (2), when the true number of breakpoints m0 is known, the
estimate λ̂ defined by (14) satisfies

λ̂j
a.s.−→ λ0

j , j = 1, . . . ,m0.

Corollary 2.1.1: If the number of breakpointsm0 is unknown
and estimated with (14), then

1) The estimated number of breakpoints m̂ ≥ m0 for suffi-
cient large T .

2) When m̂ > m0, for any λ0
j ∈ λ0, there exists a λ̂k such

that |λ0
j − λ̂k| < ϵ, ∀ϵ > 0 for large enough T .

3) The lag order of the model in each segment cannot be
underestimated; i.e., p̂1,j ≥ p01,j , p̂2,j ≥ p02,j , where p01,j
and p02,j are the true lag orders.

If Assumption 1 below is satisfied, a consistency result of the
MDL estimator (14) can be derived even when m0 is not known.

Assumption 1: For j = 1, . . . ,m+ 1, any fixed pj and any
sequence {g(T )}T≤1 of integers that satisfies g(T ) ≤ cT 0.5 for
some c > 0whenT is sufficiently large. Letfpj (Xi,j |Xs,j , s <
i;θj) be the conditional density function of the i-th observation
in the j-th segment. Also let lj(pj ,θj ,Xi,j |Xs,j , s < i) =
log fpj

(Xi,j |Xs,j , s < i;θj) be the conditional log-likelihood
function for Xi,j . then

1

g(T )

T∑

i=T−g(T )+1

lj(pj ,θj ,Xi,j |Xs,j , s < i)
a.s.−−→

E(lj(pj ,θj ,X1,j |Xs,j , s < 1))

and

1

g(T )

T∑

i=T−g(T )+1

l′j(pj ,θj ,Xi,j |Xs,j , s < i)
a.s.−−→

E(l′j(pj ,θj ,X1,j |Xs,j , s < 1))

where l′j(pj ,θj ,Xi,j |Xs,j , s < i) is the first derivative of
lj(pj ,θj ,Xi,j |Xs,j , s < i).

This assumption is needed to control the effects at the two
ends of the fitted segments so that the convergence rate of the
location estimator can be established.

Theorem 2.2: For the piecewise stationary NAR model given
by (2), under the assumptions of Theorem II.1(except for the
known number of breakpoints) and Assumption 1, the estimator
{m̂, λ̂} defined by (14) satisfies

m̂
a.s.−−→ m0, λ̂

a.s.−−→ λ0.

The proofs of Theorem II.1, Corollary II.1.1, and Theorem II.2
can be found in the supplementary material.

III. PRACTICAL OPTIMIZATION OF MDL USING GENETIC

ALGORITHMS

The enormous searching space makes the minimization of
(13) or (14) a non-trivial task. This section develops a genetic
algorithm (GA) for solving this problem.

A. A Brief Introduction to Genetic Algorithms

GA is a search heuristic that can be dated back as early
as [27], for which the main idea was inspired by Charles Dar-
win’s theory of natural evolution. Typically, a GA begins with
generating an initial set of possible solutions (chromosomes) to
the optimization problem of interest, which is represented by
vector form. Next, these chromosomes are weighted sampled as
parents to generate their “offspring”: parent chromosomes with
better values for the optimization problem (i.e., larger values
for maximization problems or smaller values for minimization
problems) have higher chances of being chosen. An offspring
chromosome is then produced by applying either a crossover or
a mutation operation to the chosen parent chromosomes. Such
a process repeats until some stopping criteria are met.

As suggested in [26], to preserve the evolution direction to-
wards the optimal value, the best chromosome from the previous
generation is preserved to replace the worst chromosome of the
current generation. This process is known as the elitist step and
guarantees the monotonously of the algorithm.

To speed up the algorithm, [28] introduced an island model
version that is particularly suited for parallel computing. Rather
than running with only one group of evolving chromosomes,
the island model can simultaneously run NI (number of is-
lands) subgroups of chromosomes. Periodically, chromosomes
are allowed to migrate amongst the islands, a process known as
migration. The migration policy that we use here is the same
as in [26]. The purpose of migration is to avoid sub-optimal
solutions for the subgroups. At everyMi-th generation, the worst
MN chromosomes in j-th island are replaced by the best MN

chromosomes in (j − 1)-th island, for j = 2, . . . , NI . The first
island’s worst MN chromosomes are replaced by the best MN

chromosomes in the NI-th island.

B. Implementation Details

This subsection provides details of the tailored GA that we use
to minimize (13) for the piecewise stationary NAR model (2).

1) Chromosome Representation: In general, the representa-
tion of chromosomes plays an important role in the overall
performance of GAs. A good representation should contain
all the needed information of any potential solution for the
calculation of (13). For the current problem, it suffices to in-
clude only the breakpoints T and the lag orders p, as once
these quantities are specified, the remaining unknown param-
eters can be uniquely calculated. Given this, we propose using
the following constant-length representation for a chromosome
δ = (δ1, . . . , δT ), where the gene values are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δt = −1 if time t is not a breakpoint
δt = (p1,j , p2,j) if t = τj−1 (i.e., time t is the (j-1)-th

breakpoint) and the j-th segment is a
NAR (p1,j , p2,j) model.

(15)
If t is a breakpoint location, the t-th gene consists of two values,
even though together they only use one gene index. This allows
the length of the chromosomes to remain constant T irrespective
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TABLE I
MINIMUM NUMBER OF DATA POINTS REQUIRED FOR DIFFERENT pmax

Algorithm 1: Initialization.

of the number of breakpoints, which in turn facilitates the
execution of the crossover and mutation operations.

2) Maximum Lag Order and Minimum Span: In practice
we set the maximum possible lag order as P0 = 10; i.e.,
(p1,j , p2,j) ≤ P0 for all j. Also, as mentioned before, we re-
quire each segment to have a minimum number of data points
so that reasonable parameter estimates can be obtained. This
requirement is called the minimum span constraint by [26]. For
our problem, the minimum span mpmax of a segment with a
maximum lag order pmax,j = max(p1,j , p2,j) can be found in
Table I.

3) Generating the First Generation Chromosomes: The way
we generate the first-generation chromosomes is summarized
in Algorithm 1. We denote a pre-specified parameter rG as the
probability for any time point t to be a breakpoint. See section B
of the supplementary material for other methods for generating
the first-generation chromosomes.

Once the first generation is available, we select parent chromo-
somes from it and apply the crossover and mutation operations
to produce offspring chromosomes. We denote the pre-specified
probability for performing a crossover operation as rC , and the
probability for mutation is 1− rC .

4) Crossover: In the crossover operation, one offspring chro-
mosome is generated in a manner that is summarized by Algo-
rithm 2.

5) Mutation: During mutation, one offspring chromosome is
produced by Algorithm 3.

Algorithm 2: Crossover.

6) Stopping Criterion: As mentioned in the previous section,
the island model will be used, which allows migration after every
Mi generation. The algorithm will finish if the chromosome with
the smallest MDL value does not change for MC consecutive
migrations or if the total number of migrations exceeds an upper
bound MU . The chromosome with the smallest MDL value will
be taken as the final solution provided by the algorithm.

Algorithm 4 provides an overall summary that links all the
above ingredients of the genetic algorithm.

7) Refined Estimates for the Lag Orders: Although the above
GA provides good results in estimating the number and locations
of the breakpoints, the estimated locations are not always equal
to the true ones. This could have negative impacts on the esti-
mation of the lag orders if the estimated segment contains data
points from its adjacent segments.

As Corollary II.1.1 states, although the estimated breakpoint
locations are not necessarily to be exact, the true locations will
likely be within some neighborhoods of the estimated ones. In
light of this, when we estimate the lag orders (p1,j , p2,j) of
the j-th estimated segment [τ̂j−1, τ̂j), we only use data from
[τ̂j−1 +Rn, τ̂j −Rn), where Rn is a calculated radius of the
neighborhood, which can be calculated using the similar way as
in [29]. The simulation results below show that this improves the
estimation of the lag orders. We also only use those data from
the shortened segment to estimate the regression parameters.

Fig. 1 shows the flowchart of this two-stage genetic algorithm.

IV. SIMULATION RESULTS

A. General Parameter Settings

We first specify the parameter values that we used in the GA
in all simulation settings: upper bound of lag order P0 = 10;
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Algorithm 3: Mutation.

number of islands NI = 40; number of chromosomes in each
island nm = 40; migration frequency Mi = 5; migration num-
bers MN = 2; stopping criterion MC = 20, MU = 100; initial-
ization probability rG = 0.1; crossover probability rC = 0.9;
mutation probabilities rP = rN = 0.3; neighborhood radius
Rn = 0.5 log(K) log(T ) as suggested in [29].

Three network structures from [3] are considered in each of
the five simulation scenarios below:

1) Power-Law Distribution Structure: this structure mimics
the phenomenon when a majority of nodes have very few
edges while a few nodes have enormous numbers of edges.

Algorithm 4: Genetic Algorithm for Solving (14).

Fig. 1. Flowchart for the two-stage genetic algorithm.
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Fig. 2. Typical simulated data sets with estimated breakpoints (vertical red lines). Left: power-law network structure; middle: dyad independence network
structure; right: stochastic block network structure.

A discrete power-law distribution is used to generate in-
degree di =

∑
j ̸=i aji, where P (di = x) = cx−1.2 with a

constant c set to c = 1.5. Then for each node i, randomly
select di nodes to follow it.

2) Dyad Independence Structure: A dyad is defined as
a pair of nodes Dij = (aij,aji), 1 ≤ i < j ≤ K and it
is assumed that different dyads are independent. We
set P (Dij = (1, 1)) = 0.1, P (Dij = (1, 0)) = P (Dij =
(0, 1)) = 0.05, and P (Dij = (0, 0)) = 0.85.

3) Stochastic Block Structure: Randomly assign each node
a block label uniformly from 5 groups; i.e., {1, . . . , 5}.
We set P (aij = 1) = 0.15 if {i, j} belong to the same
group, and P (aij = 1) = 0.015 if {i, j} belong to differ-
ent groups. This implies that nodes within the same group
will have higher chances of being connected.

The node specific covariates are generated as V i = 0.15Zi,
where Zi = (Zi1, . . . , Zi4)T ∈ R4 is from a multivariate
normal distribution with N4(0,ΣZ) with ΣZ = (σj1j2) =
(0.5|j1−j2|)w. For all different scenarios below, we set the num-
ber of time points T = 300, the number of nodes K = 20, and
the number of simulation runs to 100.

B. Scenario 1: Impact of the Refining Step of Section III-B7

In this first scenario, breakpoints are set as T = (T3 ,
2T
3 ) =

(100, 200), with two sets of error variances: σ1 = σ2 = σ3 =
0.1 and σ1 = σ2 = σ3 = 0.3. We have p1,j = p2,j for all seg-
ments:

Segment 1: p1,1 = p2,1 = 1, θ1 = (β0,1,α1,1,β1,1,γ1) =
(0,−0.1, 0.2, 0.1, 0.4, 0.1, 0.2) ∈ R7.

Segment 2: p1,2 = p2,2 = 2, θ2 = (β0,2,α1,2,α2,2,β1,2,
β2,2,γ2) = (0, 0.2,−0.22,−0.12, 0.4,−0.1, 0.1,
0.2,−0.1)∈ R9.

Segment 3: p1,3 = p2,3 = 2, θ3 = (β0,3,α1,3,α2,3,β1,3,
β2,3,γ3) = (0,−0.12, 0.1, 0.25,−0.4, 0.2,−0.5,
0.1, 0.1)∈ R9.

The above regression coefficients guarantee that the NAR
model in each segment is stationary [3], [6].

For each of the three network structures, 100 data sets were
generated, and the proposed method was applied to estimate the
breakpoints and other model parameters. One typical data set
(with σ1 = σ2 = σ3 = 0.1) from each of the network structures
are shown in Fig. 2, while the breakpoint estimation results for
the 100 runs are summarized in Tables II and III respectively
for smaller and larger error variances. One can observe that the

TABLE II
RESULTS OF SELECTED BREAKPOINTS OF SCENARIO 1 WHEN

σ1 = σ2 = σ3 = 0.1

TABLE III
SIMILAR TO TABLE II BUT FOR σ1 = σ2 = σ3 = 0.3

proposed method successfully detected the correct number of
breakpoints in all cases when error variances were smaller. The
method also produced excellent estimates for the breakpoint lo-
cations, as shown by their mean values and standard deviations.

We compare the estimation results of the lag orders without
and with the refining step described in Section III-B7: the
results for the smaller error variance cases are summarized,
respectively, in Tables IV and V. The results for the larger error
variance cases are similar and hence omitted for brevity. One can
observe that the refining step did indeed improve the estimation
results of the lag orders. So if not specified, the refining step was
applied in all the numerical work presented below.

The estimation results of the regression parameters
(θ1, θ2, θ3) are delayed to section C in the supplementary mate-
rial.

C. Scenario 2: Different Segment Lengths

In the second scenario, two sets of breakpoints were used:
T = (T3 ,

2T
3 ) = (100, 200) and T = (T6 ,

5T
6 ) = (50, 250). The

error variances are σ1 = σ2 = σ3 = 0.1, and other model pa-
rameters are:

Segment 1: p1,1 = p2,1 = 1, θ1 = (β0,1,α1,1,β1,1,γ1) =
(0,−0.1, 0.2, 0.1, 0.4, 0.1, 0.2) ∈ R7.
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TABLE IV
ESTIMATED LAG ORDERS IN EACH SEGMENT OF THREE NETWORK

STRUCTURES OF SCENARIO 1 WITHOUT THE REFINING STEP OF
SECTION III-B7, WHERE σ1 = σ2 = σ3 = 0.1

TABLE V
SIMILAR TO TABLE IV BUT WITH THE REFINING STEP OF SECTION III-B7

TABLE VI
SIMILAR TO TABLE II BUT FOR SCENARIO 2 WITH TRUE BREAKPOINTS

T = (100, 200)

Segment 2: p1,2 = 2, p2,2 = 1, θ2 = (β0,2,α1,2,α2,2,β1,2,
γ2)=(0, 0.2,−0.22,−0.12,−0.1, 0.1, 0.2,−0.1)
∈ R8.

Segment 3: p1,3 = 1, p2,3 = 2, θ3 = (β0,3,α1,3,β1,3,β2,3,
γ3) = (0,−0.12, 0.25,−0.4, 0.2,−0.5, 0.1, 0.1)
∈ R8.

The estimated breakpoints from 100 simulation runs are
summarized in Tables VI and VII , in a similar fashion as in

TABLE VII
SIMILAR TO TABLE II BUT FOR SCENARIO 2 WITH TRUE BREAKPOINTS

T = (50, 250)

TABLE VIII
SIMILAR TO TABLE V BUT FOR SCENARIO 2 WITH TRUE BREAKPOINTS

T = (100, 200)

TABLE IX
SIMILAR TO TABLE V BUT FOR SCENARIO 2 WITH TRUE BREAKPOINTS

T = (50, 250)

Scenario 1. The proposed method selected the correct number
of breakpoints for all cases. It also gave excellent location
estimates, as reflected by the mean and standard deviations.

Estimation results of the lag orders are summarized in
Tables VIII and IX. The results seem to be slightly worse for
breakpoints T = (50, 250) when compared to T = (100, 200).
One possible explanation is that the first and third segments are
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Fig. 3. Typical simulated data sets with a slowly varying coefficient. Left: power-law network structure with no detected breakpoint; middle: dyad independence
network structure with no detected breakpoint; right: stochastic block network structure with one detected breakpoint (red vertical line).

TABLE X
SIMILAR TO TABLE II BUT FOR SCENARIO 3

TABLE XI
SIMILAR TO TABLE V BUT FOR SCENARIO 3

shorter, and hence there were less number of data points available
for the estimation of the lag orders.

D. Scenario 3: Correlated Variance Matrices

Here we set the breakpoints as T = (T3 ,
2T
3 ) = (100, 200)

and adopt a more complicated error structure: the errors are
correlated and the covariance matrix of the error terms is dense.
To be more specific, we assume the covariance matrix of errorεj
isΣεj = 0.01((σij))T×T with σij = 0.5|i−j|. All the remaining
model parameters are the same as those in Scenario 2.

The estimation results for breakpoints and lag orders are
summarized, respectively, in Tables X and XI. One can observe
that the proposed method performed very well in this scenario,
which confirms the applicability of the method in the case of
correlated error terms. These results verify our previous claim

TABLE XII
SIMILAR TO TABLE II BUT FOR SCENARIO 5 WITH πT ∼ N(0, 0.12)

TABLE XIII
SIMILAR TO TABLE II BUT FOR SCENARIO 5 WITH πT ∼ N(0, 0.52)

that the variances of the error terms do not have to be the same
for the proposed method to work.

E. Scenario 4: Slowly Varying Coefficient

In this scenario we consider the case that there is no
breakpoint and one of the coefficients is slowly vary-
ing. The exact specification is: p1 = p2 = 1 and θ =
(β0,α1,β1,γ1) = (0, at,−0.1, 0.1, 0.4, 0.1, 0.2), where at =
0.55− 0.25 cos(πt/T ) changes over time. Typical realizations
of this process are shown in Fig. 3 with breakpoints estimated
by the proposed method.

For both the Power-Law and Dyad Independence Structures,
no breakpoint was detected in any of the simulation runs, while
for the Stochastic Block Structure, one breakpoint was always
detected near 0.6T . The reason may be that the Stochastic Block
structure has the lowest structure sparsity, so it contains less
information in this difficult scenario.

F. Scenario 5: Mis-Specified W

In this last scenario, the row normalized network matrixW is
mis-specified. Although W is always assumed known and can
be derived directly from the network structure matrix A in NAR
models, in many applications, it is reasonable to assume that
it is empirically defined and hence it may not be exactly accu-
rate [6]. Here we use W obs = W + πT with πT ∼ N(0, 0.12)
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TABLE XIV
SIMILAR TO TABLE V BUT FOR SCENARIO 5 WITH πT ∼ N(0, 0.12)

TABLE XV
SIMILAR TO TABLE V BUT FOR SCENARIO 5 WITH πT ∼ N(0, 0.52)

and πT ∼ N(0, 0.52). Other model parameters are the same as
those in Scenario 2 with true breakpoints T = (100, 200).

The estimation results for the breakpoints and lag orders are
summarized in Tables XIIto XV. These results are comparable
to those from Scenario 2, which suggests that the introduction of
the error term πT did not affect the estimation results too much.
In other words, the results suggest that the proposed method is, to
a certain extent, robust against changes in the network structure
matrix.

V. REAL DATA ANALYSIS

This section applies the proposed method to a Manhattan
yellow cab demand data set, which was obtained from the
NYC Taxi and Limousine Commission’s website.1 This dataset
depicts the number of yellow cab pick-ups in different taxi zones
and is aggregated spatially over the zipcodes. Here, Manhattan
was divided into 64 taxi zones, as shown in Fig. 4. Note that

1Online. [Available]: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-
data.page

Fig. 4. Taxi Zones of Manhattan2.

Fig. 5. The one-lag difference time series of the Manhattan yellow cab data
set in 59 taxi zones over 96 time points taken on April 16th, 2014. Altogether 3
breakpoints were detected (red vertical lines).

zones 103, 104, 105, 202, and 194 are isolated with no common
boundaries with any other zones, thus these five zones were not
included in the analysis.

For the remaining 59 zones, we aggregated the numbers of
their yellow cab pick-ups temporally over 15-minutes intervals
for the date April 16th, 2014. Thus, there are T = 96 time points
with K = 59 nodes at each time point. The network structure
A = (ai1,i2) ∈ R59×59 was constructed by using the physical
relationships of these taxi zones: ai1,i2 = 1 if zones i1 and i2
share a common boundary, otherwise ai1,i2 = 0. We considered

2Online. [Available]: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-
data.page
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the average tip amount of the trips in different zones in April
2014 as the node-specified exogenous covariates.

We performed a first-order difference to the data to remove
the first-order non-stationarities. Altogether, three breakpoints
were detected by the proposed method; they are shown in Fig. 5.
These three breakpoints correspond to 6:15 AM, 11:30 AM, and
5:45 PM, which seem to coincide with the daily major changes
in traffic patterns in Manhattan: people commute to work, go
out for lunch, and return home after work. These results broadly
agree with those in [29]. Lastly, the fitting time for this data set
is about 46.7 seconds per generation on a 2020 Macbook Pro
with an M1 chip.

VI. CONCLUDING REMARKS

This paper developed a method for simultaneous multiple
breakpoint detection and parameter estimation for piecewise
stationary NAR models. The proposed method utilizes the MDL
principle to derive an objective criterion for estimating the
breakpoints as well as other model parameters. It has been shown
that the MDL estimates enjoy desirable asymptotic properties.
To optimize the MDL objective criterion, the proposed method
uses a tailor-made GA. Through a sequence of simulation ex-
periments, the proposed method is shown to possess excellent
empirical properties. Lastly, the proposed method was applied
to analyze a Manhattan yellow cab data set and yielded similar
results as those reported in the literature.

The proposed methodology offers several notable advantages,
such as its statistical consistency and the straightforward inter-
pretation offered by piecewise stationary NAR models. How-
ever, it is not without its limitations. One key constraint is its
reliance on the piecewise stationary assumption; deviation from
this assumption could lead to the identification of breakpoints
that do not truly exist, such as in cases where the data undergo
gradual changes without clear breakpoints. Additionally, the
method presupposes an observed network structure that stays
constant throughout the observation period, a condition that may
not always hold. While network imputation techniques [30],
[31], [32] offer a remedy by enabling the reconstruction of the
missing network structure, they introduce a layer of uncertainty
to the analysis.

Future work includes two ambitious goals. First, we aim to
enhance the method by incorporating uncertainty quantification
for the fitted piecewise stationary NAR model. This development
would provide a deeper understanding of the model’s predictive
confidence across different segments. Second, we plan to explore
strategies for condensing the network without losing critical
information. This endeavor will investigate approaches similar
to factor modeling in high-dimensional time series analysis,
aiming to maintain the important information hidden in the data
while simplifying the model’s complexity.
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