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Abstract

Let k be a field and Q € Kk[x, ..., xs] a form (homogeneous polynomial) of degree
d > 1. The k-Schmidt rank rky (Q) of Q is the minimal  such that Q = > ;_, R;S;
with R;, S; € K[x1, ..., xs] forms of degree < d. When k is algebraically closed
and char(k) doesn’t divide d, this rank is closely related to codimas (VQ(x) = 0)
- also known as the Birch rank of Q. When k is a number field, a finite field or a
function field, we give polynomial bounds for kg (Q) in terms of rky (Q) where K is
the algebraic closure of k. Prior to this work no such bound (even ineffective) was
known for d > 4. This result has immediate consequences for counting integer points
(when Kk is a number field) or prime points (when k = Q) of the variety (Q = 0)
assuming rkk (Q) is large.

1 Introduction

In [16], Schmidt made the following definition:

Definition 1.1 Let k be a field and Q € Kk[x, ..., x5] a form, i.e. homogeneous
polynomial. The Schmidt rank rkg(Q) is the smallest natural number r such that
0 = Z?:l R;S; with R;, S; € K[x1, ..., x;5] forms of positive degree. If Q is any
degree d polynomial, we define rkk (Q) as the rank of its degree d part.

Note that for [ € K[xy, ..., x] linear and non-constant, rkx (/) = oo. Schmidt
introduced this quantity when k = @Q and Q is homogeneous and proved that if
rkg(Q) is sufficiently large then a certain local-global rule applies for counting the
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number of integer points in the set {x € Z°, |[x| < P : Q(x) = 0}. He also showed
that rkc (Q) is essentially equivalent to codimcs (VQ(x) = 0), known as the Birch
rank of Q (we will define Birch rank more generally in the next section). Note that
it follows immediately from the definition that rkc(Q) < tkg(Q). The object of this
paper is to prove a polynomial bound in the opposite direction, for k = Q and several
other fields. For perfect fields k, inequalities bounding rky (Q) in terms of ki (Q) are
known for d = 2, 3 [5] and for d = 4 there is an ineffective bound when char(k) # 2
[10]. The bound we prove is quite interesting in its own right, but also has a number
of immediate applications to Diophantine equations, since many results which use the
Hardy-Littlewood circle method assume the Birch rank is large. Our result allows us
to relax this assumption to large Schmidt rank over the base field.

We describe some direct applications of our result in the next section - counting
prime solutions to Diophantine equations, counting integer solutions to polynomial
equations over number fields, and an analogue for function fields.

Definition 1.2 We call the following fields admissible: number fields, finite fields and
finite separable extensions of IF; (7).

We prove the following:
Theorem 1.3 (Schmidt rank and field extensions) Let k be an admissible field, K its
algebraic closure, and Q € K[x1, ..., xs] a polynomial of degree d > 1 such that

char(k) > d or char(K) = 0. Then there exist constants A = A(k,d), B = B(k, d)
such that

rkk(Q) < Alrkg(Q) + 115.

We will soon give explicit values for the constants A, B. Our result generalizes to
collections of forms of the same degree, with an appropriate definition of rank.

Definition 1.4 Let Qy, ..., O, € K[x], ..., x;] be homogeneous polynomials all of
degree d > 1. Their collective Schmidt rank is defined to be

n
kg (01, ..., Op) = O;Ie%ier}(" ki (;ai . Qi) .
If Q1,....Q, are all of degree d but not necessarily homogeneous, we define
kg (Q1, ..., Qp) in terms of their degree d parts.

Theorem 1.5 (Schmidt rank and field extensions) Let k be an admissible field, K its
algebraic closure, and Q1, ..., Qn € K[x1,...,x5] a collection of polynomials of
common degree d > 1 such that char(k) > d or char(k) = 0. Then there exist
constants A = A(K, d), B = B(K, d) such that if K is a perfect field we have

kg (Q1, ..., Qn) < Aln -1k (Q1, ..., Qn) + 115,
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and if K is an imperfect field we have

B
K01, 0) < A0V (k01 00+ D]

We can take Ak, d), B(Kk, d) as follows:

(1) A=49"1d(,%)", B=dwhenk =Q.

2 2
(2) A= 229 ), B =22"" whenk is a finite field.

(3) A= 2d_1(Ld72J)d, B = d when K is a finite field and |\K| > F (tkx(Q1, ..., On),
n,d)

(4) A=21"1d—1)(

extension of Fy (t).

2d
desz) , B =2d when K is a number field or a finite separable

We mention a conjecture stated in [1]

Conjecture 1.6 Letd > 1 andletk be a field with char (k) > d or char(k) = 0 There
exists a constant C(d) such that for any polynomial Q € K[xy, ..., x;] of degree d
we have

tkx (Q) < C -1kg (0).

This conjecture is known for d = 2, 3 when k is a perfect field [5].

The paper is organized as follows: In section 2 we give some number theoretic
applications of our results. In section 3 we explain how to deduce them from an
analogous theorem about multilinear polynomials. In section 4 we prove theorem 1.5
for finite fields and for Q (the result for QQ relies on the finite fields result), and in
section 5 we prove it for number fields and for finite separable extensions of I, (7).

2 Applications

In [2], Birch defined a geometric notion of rank which is closely related to the singular
locus of the variety defined by a collection of polynomials. In many applications of
the Hardy-Littlewood circle method, it’s necessary to assume that the Birch rank of
the polynomials we are interested in is large.

Definition 2.1 Let Q € k[x1, ..., x4] be a form of degree d. The Birch rank of Q is
kg (Q) = codimys (VQ(x) = 0). Given a collection Qy, ..., Q, € K[xy, ..., x4]
of forms of degree d, we define S(Q1, ..., Q) to be the variety where the matrix
of partial derivatives (dQ;/0x;) has rank < n. The Birch rank of the collection is
tkp(Q1, ..., Qn) = codimps S(Q1, ..., Qn). Forageneral collection of polynomials
O1,..., 0, € K[xy, ..., xs] of degree d, we define their Birch rank in terms of the
homogeneous degree d parts. As a matter of convention, set rkp (¥) = s.

It’s not difficult to show that there is an inequality

tkp(Q1, ..., On) < 2rkp(Q1, ..., On).

) Birkhauser
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Let us discuss for a moment what happens with quadratics. For a single quadratic
0, there is an elementary inequality in the opposite direction rkx (Q) < tkp(Q). If k
is algebraically closed, we can take the union of the Birch singular loci of non-trivial
linear combinations ¢ Q1 + - - - + ¢, Qn, Which correspond to points of P! and
apply the above inequality to deduce:

ki (Q1, ..., On) <1kp(Q1,..., Q) +n— 1.

As a consequence, when rkx(Q1, ..., Q) > 2n — 1 we deduce that X = {Q| =
... = Qp, = 0} is a complete intersection of codimension . For suppose Y C X has
codimension < n. Since rkp(Q1, ..., Qn) > n, there exists a point y € Y such that

the Jacobian matrix has rank » at y. But then the tangent space at y has codimension
n, contradicting the fact that the local codimension at y is < n.

Kazhdan, Polishchuk and the first author [9] extended results of Schmidt to show
that a similar inequality holds also for higher degrees. Cohen and Moshkovitz [3]
proved a similar result for a single multi-linear polynomial.

Theorem 2.2 (Theorem 1.4 in [9]) Assume that d > 2, K is algebraically closed, and
char(K) doesn’t divide d. Then we have

ki (Q1, ..., On) = (d = D [tkp(Q1, ..., Q) +n —1].

In particular, if tk(Q1,...,0n) > (d—-1)2n—1)then (Q1=...= 0, =0)isa

complete intersection of codimension n.

Corollary 2.3 Let k be an admissible field, and Q1, ..., O, € K[xy, ..., x;] forms
of degree d > 2, such that char(K) > d or char(k) = 0. Then there exist con-
stants A’ = A'(K,d), B = B'(Kk, d) such that if tkx(Q1, ..., Qu) > A'(nr)B then
tkp(Q1, ..., Qn) > r. In particular, if r > n then (Q1 = ... = Q, = 0)isa
complete intersection of codimension n.

Proof 1f A’, B’ are taken sufficiently large then by theorem 1.5 we obtain

kg (Q1,...,0n) 2 (d = D(r +n—1).
Plugging this into theorem 2.2 proves the corollary. O

As we mentioned above, many applications of the Hardy-Littlewood circle method
require that the Birch rank of the collection of forms be large. The above corollary
which follows immediately from theorem 1.5 allows us to replace this condition by
requiring the Schmidt rank to be large. We now give some examples of this.

2.1 Prime solutions
Yamagishi [19], extending a result of Cook and Magyar [4], proved a local to global
rule holds for counting prime solutions to systems of integral polynomial equations

with sufficiently large Birch rank. Cook and Magyar conjectured that it’s sufficient
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to assume that the Schmidt rank over Q is large. The conjecture was proved for
polynomials of degree < 3 in [18]. As a consequence of our results, we can prove
their conjecture for polynomials of any degree. Let D > 1,andlet Q = (01, ..., Op)
be a system of polynomials in Z[xy, ..., xs], where Qd = (Qa,1, ..., Qayy) is the
subsystem of degree d polynomials of 0 <d < D). Let X ={0Q = 0} be the
affine variety defined by Q. Following Cook and Magyar, we use a different notion
of rank for systems of linear polynomials. If /1, ..., [, are linear polynomials with
degree one homogeneous parts L1, ..., L, we define r(/1, ..., [,) to be the minimum
number of non-zero coefficients in a non-trivial linear combination

)\lLl +"'+)‘-nLn’

where A = (Ay,---, ;) € Q"\{0}. Let A be the von Mangoldt function, Given
x = (x1,...,Xx5), welet
Ax) = Alxy) ... Alxg).

Set

M(N) = Z Ax) 1x(x).

xe€[0,N]*

As an immediate consequence of combining corollary 2.3 with Yamagishi’s result
we obtain:

Theorem 2.4 There exists a constant x = x(D, 1, ..., p) such that ifr(Q1) > x

and er_(Qd) > x foreach 2 < d < D with t; > 0 then there exist constants
C =C(Q), and ¢ > 0 such that

_ D NS_chi):l dig

MG(N) =C(Q) NS 2a=1dt o | —————— |

o(N) (9) + Tog N

Furthermore, if the system of equations Q = 0 has a non-singular solution in Z;,
the units of the p-adic integers, for each prime p, and the system of homgeneous
equations given by the leading forms has a non-singular real point in (0, 1)°, then

C(Q) > 0.

2.2 Number fields

Frei and Madritsch [7], extending an earlier result of Skinner [17], proved a local to
global rule for counting integral solutions to a system of polynomial equations over a
number field, assuming the Birch rank is sufficiently large. Let K be a number field
of degree n over Q. Let Q be a system of polynomials in s variables over the ring of
integers O of K with maximal degree D. We assume the polynomials to be ordered
by their degrees, that is, for each d € {1, ..., D}, we are given polynomials

0a=(Qats--\0ay) € Oklxi, ..., x]

) Birkhauser
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of degree d, where t; > 0 with rp > 1. Fix an integral ideal n of O and a Z-basis
1, ..., w, of n. We will also consider w1, ..., w, as an R-basis of V := K ®q R.
By a box B aligned to the basis, we mean the set of all x = (xq, ..., x5) € V¥, where
each x; has the form x; jw; + - - - + X; y@,, such that the coordinates (x; ;); ; € R™
lie in a given box B C [—1, 1]™ with sides aligned to the coordinate axes of R"’.
Given such a box B, we define the counting function

N(P):=|{x e’ NPB: Qgi(x)=0foralll <d <D,1<i<t}|.

Let
A:={1<d<D:t;>1}.

Let Dy :=0and, forl <d < D,
Dj:=t +2t +---+dty,

so that D := Dp is the sum of the degrees of all the polynomials Qg ;. Set

D
ug = sz—l(k— Dty for 1<d<D+1,

k=d
D
so(d) == Dg 2" + ugy1) + ug1 + Z ujtj
j=d+1

so := max{so(d) : d € A U{0}}.
By combining corollary 2.3 with the result of Frei and Madritsch we obtain:

Theorem 2.5 There exist constants A(d), B(d) such that if for all d € A we have
tkx (Q4) > A(tys0)® then there is a positive § with

N(P) = 63 . Pn(S_D) + O(Pn(S—D)—é‘)

for P — oo. Here, G is the usual singular series and J is the usual singular integral.

2.3 Function fields

For function fields, Lee proved a local to global rule for systems of polynomials
with high Birch rank [13]. Suppose k = F,(7) where g is a prime power and write
A =T,[t]. Let Q = (Q1,..., On) € Alx1, ..., x;] be forms of degree d. Let | - |
be the absolute value on k given by |f/g| = g%/~9€¢ For x € k® we define
|x|loc = max;e[s) |x;|. For P > 0 set

N(P)=#{x € A : |x]lo < ¢”, Qi(x) =0 Vi € [n]}.
Corollary 2.3, together with Lee’s result yields:

W Birkhauser
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Theorem 2.6 There exist constants A(d), B(d)) such that the following holds: Assume
char(k) > d, tk(Q) > An®, and that {Q = 0} contains a non-singular point in the
completion of k at every place. Then we have

N(P) — lqu(S—nd) + O(qP(S—nd)—(S)

where 1,8 > 0.

3 Reduction to multilinear polynomials and universality

In this section we reduce theorem 1.5 to a statement about multilinear forms. Let V be a
finite dimensional vector space overk and Q € K[V ]aform of degree d. Suppose either
char(k) = Oorchar(k) > d. Then there is an associated multilinear form Q V4 5k
given by Q(xl, ..., Xg) = Vx, ... Vg, Q which satisfies Q(x) = %Q(x, ..., Xx). For
multilinear forms such as this there is a finer notion of rank.

Definition 3.1 Let k be any field, Vi, ..., V; finite dimensional vector spaces over
k,and P : Vi x ... x V; — k a multilinear form. We say that P has partition
rank 1 if there exists a partition [d] = I U J with I, J # (J and multilinear forms
R:[lie; Vi >k S:[];c; Vj — ksuch that

P(x) = R((Xi)ier) - S((X})jes).

In general the partition rank prky (P) is the smallest natural number r such that P =
P14 ---+ P, and P; has partitionrank 1 forall 1 <i <r.

The next claim states that the partition rank of Q is essentially equivalent to the
rank of Q.

Claim 3.2 Let V be a finite dimensional vector space over k and Q € k[V] a form of
degree d. Suppose either char(k) = 0 or char(k) > d. then

rkk (Q) < prky (Q) < ( )rkk<Q).

d
ld/2]

Proof For the left inequality, suppose Q(x) = Y i_ R(x) - S(x) and plug in

1 - 1 «
Q(x):aQ(x,...,x)zE;Ri(x,...,x)-Si(x,...,x).

r

For the right inequality, suppose Q(x) = Y 7_| R;(x)S;(x) and take derivatives

OX1,...,xXq) = Z Z Ri (X)) je) Si (i) keans)-

i=1 JC[d],|J|=deg R;

O

) Birkhauser
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Partition rank is also defined for collections of multi-linear forms.

Definition3.3 Let P;,..., P, : Vi x ... x V; — Kk be multilinear forms. Their
partition rank is

n
prky (P1, ..., P,) = min prky <Zai . Pi) .
i=1

0#aek™

By claim 3.2, we can deduce theorem 1.5 from a corresponding theorem for multi-
linear forms.

Theorem 3.4 (theorem 1.5 for multi-linear forms) Let k be an admissible field,
Vi, ..., V4 finite dimensional vector spaces overK, and Py, ..., P, : Vi x...xV; —
Kk multi-linear forms. There exist constants A(K, d), B(k, d) such that if K is a perfect
field we have

prii (P, ..., Py) < Aln - prg(Pr, ..., Py) + 117,
and if K is an imperfect field we have
prky(Pr. ... Py) < Al V4 pr(Py, . Py + DI

Proof of theorem 1.5 assuming theorem 3.4 We will show that theorem 1.5 holds with

A=A (Ld‘jzj) % and B = B. Let k be an admissible field and let 01, ..., 0, bedegree

d polynomials with char(k) > d or char(k) = 0. Let Q Iy vvns Qn be the associated
multi-linear forms. If k is perfect then by claim 3.2 and theorem 3.4

ki (Q1. ... On) < prky(O1..... On) < Aln - prkg(Q1. ... On) + 117

. d B
A |:n . (Ld/zj)rkl‘((Ql, s On) 1:|

i g )P
= <|_d/2J) n -tk (Q1, ..., On) .

IA

A

If k is imperfect then again by claim 3.2 and theorem 3.4

ki (Q1. ... On) < prky (Ot ... On) < A[n"™V9 - (prki(Oy. ..., Op) + D15

At l+1/d ) .
= (<Ld/2j)rkk(Q1"-w 0n) + D]

A d ’ 1+1/d B B
= A(Ldm) [ (01, 0+ D)

W Birkhauser
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We prove theorem 3.4 for all of the above fields (except Q) via a universality
result, which may be of independent interest. This generalizes a universality result of
Kazhdan and Ziegler appearing in [12].

Theorem 3.5 (Universality) Let k be an admissible field and Ry, . .., R, : (k)¢ — k
multilinear forms of degree d. There exist constants C (K, d), D (K, d) such that when-
ever P, ..., P, : Vi x...x Vg — karemultilinear forms with ptky (Py, ..., Py) >
C(ntd)D, there exist linear maps T; : K' — V; such that Pjo(Ty x...xTy) =R;.

We now explain how theorem 3.4 follows from theorem 3.5. Theorem 3.5 will be
proved in the following sections.

Proof of theorem 3.4 assuming theorem 3.5 We will show that theorem 3.4 holds with
A = C, B =dD. Supposing

prky (P1, ..., Py) > C(n1+1/df)dD,

we will show that prkg (P, ..., P,) > r. By theorem 3.5 with t = nr, there exist
linear maps 7; : k — V; such that

jr d
PjoT = Z l_lxi(k) =:D;.

k=(j—Di+1i=1

Clearly prki (P1, ..., Py) > prkp(D1, ..., Dy). To show that the right hand side
equals 7, we need the following simple claim:

Claim3.6 Letkbeafieldand P : V| x ... x V; — k a multilinear form. The variety
Zp :={(a,...,vq9): P(-,vy,...,v9) =0}
satisfies
codimy, x. xv,Zp < prky(P).

Proof Suppose P =Y j _; Ri((Xi)ier,) - Sk((X;) jefanz,) and assume without loss of
generality that 1 ¢ [ forall k. Thenthe variety {R; = ... = R, = 0} has codimension
< r and is contained in Zp. O

Lemma3.7 prky (D1, ..., Dy) =7.

Proof Obviously the partition rank is < 7. On the other hand, let D = Z?: 1a;Dj
be a non-trivial linear combination, and assume without loss of generality that
ay,...,am # 0and a1 = ... = a, = 0 for some m > 1. We can decompose
Zp explicitly,

d
Zp = {l—[xi(k) =0:Vk e [mf]} = U {X5(j)(J) =0:Vj € [mr]}.
Ht

i=2 o:[mr]—[2,d]

) Birkhauser
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Zp is a finite union of linear subspaces of codimension mr, so codimy, .. .xv,Zp =

mr > 7. By the previous claim, we get prkg(Dy, ..., D) > 7. O
This completes the proof of theorem 3.4 for all fields in the case n = 1 and

for imperfect fields in the case of general n. To obtain our improved bounds for

perfect fields and general n we use the following argument which we learned from A.

Polishchuk.

Proof of theorem 3.4 for perfect fields assuming the case n = 1. Let

7 =prkp(P1,..., Py), P =spp(P1,..., Py)

Choose 0 # P € P withrkg(P) = r.Let P’ C Pbethe k-subspace spanned by P and
its Galois conjugates. By Galois descent, P’ = spi (Py, ..., P,,) for some polynomials
P{, ..., P, esp(Pr,..., Py).Let P'(k) := spy(Py, ..., P,) and choose 0 # P’ €
P’(Kk). Since dim P’ < n, there are Galois conjugates oq - P, ..., oy, - P such that
P e spig(o1 - P, ..., 0, - P). By our assumption on P this means rkR(P’) < nr,
which by theorem 3.4 implies

ki (P) < A(ni 4+ 1)E.

O

We now begin the proof of theorem 3.5, which will be completed in subsequent
sections. Assume without loss of generality that V; = k®. Then linear maps 7; :
k' — V; are of the form 7;(x) = A; - x where A; € My, (k). For ji, ..., ji, [ the
coefficient of y}l o yj.’d in Py o (T1 x ... x Ty) is given by a multilinear form

.....

,,,,,

,,,,,

,,,,,

Proof For a multilinear form P = ., — , a
Jtseeesja

ki,...kq ield]

Therefore, P}, j, (A1, ..., Ag)isjust P withrelabeled variables, meaning they have
the same rank. So for any c1, ..., ¢, and fixed ji, ..., j; we have

W Birkhauser
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/I _ l l i . . . .
I\jow letP' =3 ¢ itonjaPir,... j, De@non-trivial linear combination with, say,

¢y....1 # 0 for some /. Restricting to the subspace

U={Aik, j)=0:Vi kVj# 1}

,,,,,

The desired equalities P; o (A} X ... X Ay) = Ry are in fact ntd equations of the
form

1 _ 0
Pho A A =rh 1)
and we have just proved that the collection of multi-linear forms appearing has partition
rank prky (P1, ..., P,). Our goal in the next sections is to show that such a system of

equations has a k-solution.

4 Proof of results for finite fields and for Q
4.1 Proof for finite fields

We start by defining bias.

Definition 4.1 Let V be a finite dimensional vector space over a finite field k and
f 'V — k some function. The bias of f is

bias(f) = [Exev x (f(x))]

where x : k — C is some non-trivial character, and E,cx denotes |17| Zx cx for a
finite set X.

The bias of f depends also on the choice of character y but this won’t matter in
what follows. The key to proving theorem 3.5 is the following theorem relating rank to
bias for multilinear polynomials. The first part is due to Milicevic [15], with a similar
result proved independently by Janzer [8], and the second to Cohen-Moshkovitz [3].

Theorem 4.2 Let k be a finite field and P : Vi x ... x Vg — K a multilinear form.
Assume either of the following conditions holds for some r > 1:

0@?) 2
(1) prky (P) > arP, for constants a(d) =24, B(d) = 22°".
(2) |k| > F(r,d) and prk(P) > 247y,

Then bias(P) < |k|~.

) Birkhauser
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The proof of theorem 3.5 for finite fields, and hence of theorems 3.4 and 1.5, now

follows by a routine Fourier-analytic argument.

o(d
Proof We will show that theorem 3.5 holds for finite fields with C = 2‘12
2
220(d k or with C = 2971 D = 1 under the additional assumption that

2)

’

k|

v

F(nt?, d). Recall that we want to show the existence of a k-solution to the system of

nt? multilinear equations (1)

l _
P (At Ad) =1

We ShOW Cd in Clalm :;.8 t] 1at
E k(Pl ) Ik 1 ,.-.,1 .
J1seesJd lajlsu.aj p k( 1 n)

Applying theorem 4.2, we get that any nontrivial linear combination satisfies

: I I —ntd
: Pt ) <
bias Z oo Pivja | S KT
LjlseJd

We can therefore estimate the number of solutions

As we saw in the previous section, this proves theorem 3.4 with the constants
- 0@y . 2

) A=c=2"" ", B=dD=2>""".

Q) A=C =21 B=dD =dif k| > F(prky(Py, ..., P,),n,d),

and theorem 1.5 with the constants

- B 0w ~ ow?
() A=A(,,) =2, B=B=22""

@ Aa=Ai(4)" = 2d—1(tdszj)", B=B=dif|k| > Fke(Q1..... 0y).n.d).

Ld/2]

W Birkhauser
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4.2 Proof for Q

Now we turn to proving theorem 3.4 for the rationals. We prove it in the case n = 1.
The case of general n follows by the argument given for perfect fields in the previous
section.Let P : Q! x...xQ* — QQbe amulti-linear form, and write s = s1+- - -+s54.
Assume without loss of generality that P has integer coefficients. We will show that
for all but finitely many primes p, the reduction P mod p has partition rank which
is bounded from below in terms of prkg (P).

Proposition4.3 Let P : Q%' x ... x Q% — Q be a multi-linear form with integer
coefficients. Then for all sufficiently large primes p we have

d—1
prkg(P) =2°7'd - prk]Fp(P mod p).

We now complete the proof of theorem 3.4 and theorem 1.5 for QQ assuming propo-
sition 4.3.

Proof Suppose prkq (P) > 49-14 .7 By proposition 4.3 we get that for sufficiently
large primes p, we have prka(P mod p) > 2471 .7 By theorem 3.4 for suffi-
ciently large finite fields, we conclude that for p sufficiently large we have prkﬂfp (P
mod p) > r. By a model-theoretic result (corollary 2.2.10 in [14]), we deduce that
prkg(P) = 7. This completes the proof of theorem 3.4 with

A=4"14 B =d.

By the argument given in the last section this proves theorem 1.5 with
(d P d \ _
A:A( ) =4d—1d< ),B:B:d.
ld/2] ld/2]

In order to prove proposition 4.3, we will need a simple scaling result for solutions
to systems of multilinear equations.

O

Lemma4.4 Let Q = Q1,..., Q, : Z°' x---x 7% — G beacollection of multilinear
maps where G is some abelian group. For a positive integer R let

Ng(Q)=|{x €Z': Qi(x) =0Vi €[n],0 <x; < RVj € [s]}]
NR(Q) = l{x € Z* : Qi(x) =0Vi € [n], —R < x; < RVj € [s]}.

Then for any positive integer L we have
NLr(Q) < L NR(Q),

where s = 51 + - -+ + 54.
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Proof By induction on d. For the base case d = 1, first note that for any ¢; € G
the number of solutions to Q;(x) = ¢; in [0, R)® is bounded above by N}Q(Q).
This follows by substracting a single solution from every one of the others. Writing
R = (R, ..., R), we have

Nrr(Q) = Z 1g;(x)=0 = Z Z Lo, et R)=0

0<xj<LR we{0,1,...,L—1}* 0<x; <R

= > Y low—oiwh

wef0,1,...,L—1}* 0<x; <R

< Y. NR(Q)=L°NR(D).

wel0,1,....L—1}

For general d, we have

Ner(@ = > Ner(QGx1,) = Y LT PN (O(xy, )

0<x1(i)<LR 0<x1(i)<LR
= Lt > NLR(Q(. X2, -+ %q))
IX2llo0s s [IXalloo <R
<L > NR(O( X2, -+ . Xg)) = L*NR(Q),
IX2llo0s s 1Xalloo <R

where the first inequality follows from the inductive hypothesis and the second one
follows from the base case d = 1. O

Proof of proposition 4.3 Lets = s; + --- + s4—1. Suppose p is a prime and prkg (P

r

mod p) = r. By the inequality bias(P mod p) > p~", proved in [11], we have

r

|{X€Zx:P(Xl,...,Xd_l,')ZO mod p}'ZPS7 .

Given 0 < n < 1, we can apply lemma 4.4 to the collection of multilinear maps

QZQ[""VQSd:ZS] X ... X 2541 _>]Fp7

where
Qi(x) = P(X1,...,X4-1,¢;) mod p,
to get
Np(Q) < Tp" "’ Ni i (Q) K5 p* ' PN 7 (D),
SO

Nip(Q) 5 "M gy, [p"° 7770,
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For n = é and ||X|lco < [p] we have |P (X, ¢;)| K p% so for sufficiently large p,
P(x,¢;/) =0 mod p — P(x,¢;) =0.
Therefore,
(x € Z°: P(x,) =0, |Ixlloo < [P/ >, [PV

By corollary 5.7, which will be proved in the next section, this implies prkg (P) <
24=14r. o

5 Proof for number fields and finite separable extensions of 4 (t)

The obstruction to the solution to a system of equations given by multi-linear forms
is the Birch singular locus.

Definition 5.1 Let P : V| x ... x V; — Kk be a multilinear form of degree d > 1.
The Birch singular locus is the subvariety

Vix...x Vg1 DZp={(X1,...,X4-1) : P(X1,...,Xq-1,-) =0}
For a collection P = (P, ..., P,) the Birch singular locus is

ZP = {(le"'»xd—l) : Pl(xlv'~~sxd—ls')a"'an(le"'»xd—l»')
are linearly dependent}.

Kazhdan, Polishchuk and the first author [9] extended a result of Schmidt [16] and
showed a relationship between the Birch singular locus and the Schmidt rank for a
multilinear form P over a general field k.

Theorem 5.2 Let gx(P) denote the codimension in Vi x ... x Vy_| of the Zariski
closure of Zp (k). Then prk, (P) < 24=1. o1 (P).

By adapting an argument that Schmidt gave for QQ in [16], this extends to collections
of multilinear forms over some fields.

Proposition 5.3 Let k be a number field or a finite separable extension of ¥, (t), and
P=(P,....,P) K" x...xk" - k

a collection of multilinear forms. Suppose for some ci, ...,c, € K the system of
equations (P; = c;) has no solution in K*' x ... x K*. Then

prk, (P) < 297 1(d — 1)n?.
To prove proposition 5.3 we need an effective version of Noether normalization.
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Lemma 5.4 (Noether normalization) Let kK be an algebraically closed field and let
V C K® be an algebraic set of codimension t defined by m homogenenous equations
of degree < n. Look at matrices M € M (s_s)xs(K). There exists a constant C(s, m, n)
(independent of V!) such that for any set U C Kk of size |U| > C we can find a matrix
M with entries in U for which the map M : V — K*~" has finite fibers of size bounded
by C.

Proof of lemma Just follow the proof of linear Noether normalization, for example
in [6]. Note that we need to choose the entries of M to avoid solutions of certain
polynomial equations of degree < n. O

This lemma gives us a useful corollary when we have a pseudo-norm at our disposal.
It will be convenient to use a slightly non-standard definition.

Definition 5.5 Let A be a ring. We call a function ¢ : A — ZZ0 a pseudo-norm if it
satisfies the following conditions:

(1) ¢(x+y) =)+ o).
2) ¢(xy) K ¢(x)¢(y) where the implied constant is independent of x, y.

Given (A, ¢) as above and R > 0 we write Br(A) := {a € A : ¢(a) < R} for the
ball of radius R. We say (A, ¢) has linear growth if for all 0 < R < oo the set Bg(A)
is finite and satisfies | Bcgr(A)| < ¢ |Br(A)| for any constant C.

Lemma 5.6 (Point counting and dimension) Let A be an infinite integral domain
equipped with a pseudo-norm ¢ such that (A, ¢) has linear growth. Let k be the
fraction field of A and V C k® an algebraic set defined over A by m homogeneous
equations of degree n. For R > 0 set

Ng = |V N (Br(A)'].

Given D > 0, there exists Ryo(s, m,n, D) (but independent of V!) such that if for
some R > Ro we have Ng > D|Br(A)|*~! then codim(V) < t.

Proof oflemma 5.6 Suppose, to get a contradiction, that codim(V) = ¢ > ¢. By

infinitude of A, we can apply lemma 5.4 to get a constant C = C(s,m,n) and a
matrix M € M ;_yxs(A) with entries in B¢ (A) such that M : V — k*~ has fibers
of size < C. This allows us to bound Ny

Ng < C - IM((BRA))| < C - B ™" g BRI,
where C' = C’(s, m, n). The second and third inequalities use the fact that ¢ is a
pseudo-norm and that (A, ¢) has linear growth, respectively. If Ng > D|Bg(A)|*~*
then we combine with the above inequality to get

D < D'|Bgr(A)|™!

where D' = D’(s,m,n) > 0. By infinitude of A, this is impossible for R >
Ro(s, m,n, D), so we must have codim(V) < ¢. ]
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Corollary 5.7 Let A be an infinite integral domain equipped with a pseudo-norm ¢ such
that (A, ¢) has linear growth. Let k be the fraction field of A, P : K*! x ... x k% — k
a multilinear form and D a positive constant. Write s = s1 + - - - + s4—1. Then there
exists Ro(s, d, D) independent of P such that if we have

|Zp (k) N (Br(A))'| = DIBr(A)*™'

for some R > Ry then prk, (P) < 2d=1 ¢
Proof Combine lemma 5.6 and theorem 5.2. O

Corollary 5.7 is the result that we will actually use in our proof of proposition 5.3,
the other lemmas were preliminary.

Proof of proposition 5.3 Let s = s; + --- + s4—1. First we claim that our hypothesis
implies Zp(k®) = k*. Indeed, suppose this isn’t the case. Then there is some x €
k*\Zp(k*), meaning P; (X, -) are linearly independent and P; (X, -) = ¢; has a solution
in k*@. The proof of the proposition will be similar for both types of fields.

Number fields: Let A be the ring of integers of k. Recalling that A = Z™ as
Z-modules, we define a pseudo-norm on A with linear growth by

¢(l’l1, ,nm) = m_aX Inl|
l

Assume without loss of generality that the collection P has coefficients in A. Now,
suppose x € Zp(k) N Br(A)*. Then the matrix M = (m; ;), where m; ; =
Pj(x1,...,X4-1,¢€;), isof rank < n — 1 and has ¢ (m; ;) <K R for all i, j.-Bya
standard linear algebra argument, we obtain a small vector in the kernel of M.

Claim 5.8 Suppose (A, ¢) is an integral domain equipped with a pseudo-norm. Sup-
pose M € My;x,(A) has tk(M) < n — 1 and ¢(m; j) < T for all i, j. Then there
exists 0 # a € A" such that Ma = 0 and ¢ (a;) <, T"~! for all i.

Proof Suppose without loss of generality that the first j < n — 1 rows of M are a k-
basis for row(M). We obtain a new matrix by deleting the other rows and then adding
n — j rows of standard basis vectors to obtain an invertible n x n matrix which we call
M'.Let D = det M'. Then Cramer’s rule gives a solution 0 # a € A” to the equation
M'a = (0, ...,0, D) which satisfies ¢ (a;) <, T"! forall . O

Therefore, there is a nontrivial solution a € A" to the equation Ma = 0 which
satisfies ¢ (a;) < RU=D®=D for all i. The number of possibilities for such an a
is « RMn@d=Dn=1 Hepce there must be some nontrivial linear combination P =
a Py +---+a, P, with

Zp(K) N (BR(A))® > R™Ms—@=Dr],
If R is sufficiently large, we can apply corollary 5.7 to obtain

prky (P) <2971 (d — 1)n?.
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Finite separable extensions of I, (r): Let A be the integral closure of F,[] in k.
Then A = I, [¢]™ as a F,[f]-module, with the same proof as for rings of integers in
number fields. Define a pseudo-norm on F [¢] with linear growth by ¢ (f) = gqdeeN)
and extenditto Aby ¢ (fi, ..., fin) = max; ¢ (fi). Assume without loss of generality
that P has coefficients in A. From here the proof proceeds in a similar manner: If x €
Z'p(k)ﬂBqR(A)S then the matrix M = (m; ;), wherem; ; = Pj(X1,...,X4_1, €;), 18
ofrank < n—1landhas¢ (m; ;) < g®R@=D foralli, j. By claim 5.8 there is a nontrivial
solution a € A" to the equation Ma = 0 which satisfies ¢ (a;) < gR¢=D@=D for all
i. The number of possibilities for such an a is < ¢""®@=D@=D Hence there must
be some nontrivial linear combination P = a; Py + - - - + a, P, with

Zp (k) N (B,r(A)* > g Ris—(@d=n]
If R is sufficiently large, we can apply corollary 5.7 to obtain
prky (P) <297 1(d — 1)n?.

O
Now we can finish the proof of theorem 3.5, and hence of theorems 3.4 and 1.5.

Proof We will show that theorem 3.5 holds for number fields and finite separable
extensions of [, (¢) with constants C = 24=Yg — 1), D = 2. Suppose Py, ..., P,
satisfy prky (P1, ..., Py) > 2d-1 (d— 1)(ntd)2. Recall that we proved that this implies
prkk(P;I jd) > 2¢471(d — 1)(nt?)%. By proposition 5.3 the system of equations

.....

from the end of section 3 has a k-solution as desired. Recall that for the constants A, B
of theorem 3.4 we can take

A=C=2"%d—-1), B=dD =12,

and for the constants A, B of theorem 1.5 we can take

. d B g d 2d .
A=A =2"1d -1 , B=B=2d.
(Ld/2J> ( )<Ld/2J)
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