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MAXIMAL MULTIPLICITY OF LAPLACIAN EIGENVALUES
IN NEGATIVELY CURVED SURFACES

Cyril Letrouit and Simon Machado

Abstract. In this work, we obtain the first upper bound on the multiplicity of Lapla-
cian eigenvalues for negatively curved surfaces which is sublinear in the genus g. Our
proof relies on a trace argument for the heat kernel, and on the idea of leveraging an
r-net in the surface to control this trace. This last idea was introduced in 2021 for
similar spectral purposes in the context of graphs of bounded degree. Our method
is robust enough to also yield an upper bound on the “approximate multiplicity” of
eigenvalues, i.e., the number of eigenvalues in windows of size 1/ logβ(g), β > 0. This
work provides new insights on a conjecture by Colin de Verdière and new ways to
transfer spectral results from graphs to surfaces.

1 Introduction

1.1 Main results. Let M be a closed, connected Riemannian manifold, and let Δ
denote the Laplace-Beltrami operator on M , simply called “Laplacian” in the sequel,
which is self-adjoint and non-positive. The operator −Δ has a discrete spectrum

0 = λ1(M) < λ2(M) ≤ · · · → +∞, (1)

where the λi(M) are repeated according to their multiplicity.
Our first main result deals with the case where M is a closed negatively curved

surface. We denote by T the set of triples

T = {(a, b, ρ) ∈ R
3 | b ≤ a < 0, ρ > 0}.

For any (a, b, ρ) ∈ T , let M(a,b,ρ)
g be the set of closed connected surfaces of genus g,

with injectivity radius ≥ ρ, and with Gaussian curvature c(x) satisfying b ≤ c(x) ≤ a

for any x ∈ M . An important example is obtained by taking (a, b, ρ) = (−1,−1, ρ),
in which case M(a,b,ρ)

g is the set of hyperbolic surfaces (i.e., with constant curvature
−1) of injectivity radius ≥ ρ.

We obtain a general sublinear upper bound on the maximal multiplicity of λ2(M)
for negatively curved surfaces. Our first main result is the following:

Theorem 1.1 (Maximal multiplicity of λ2). For any (a, b, ρ) ∈ T , there exists C0 > 0
such that for any g ≥ 2 and any M ∈ M(a,b,ρ)

g , the multiplicity of λ2(M) is at most

C0
g

log log(1+g) .
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For any (a, b, ρ) ∈ T and δ > 0, there exist C1, α > 0 such that for any g ≥ 2 and

any M ∈ M(a,b,ρ)
g with spectral gap λ2(M) ≥ δ, the multiplicity of λ2(M) is at most

C1
g

logα g .

The dependence of C0,C1, α on a, b, ρ, δ is explicit. For instance, C0 = C �
0
|b|+ρ−2

|a|
with C �

0 > 0 universal, see Remark 4.2. Our strategy of proof partly relies on a
geometric idea which takes its source in [J+21]. This last work proves the same
sublinear bound as ours, for the adjacency matrix of combinatorial graphs with a
uniform bound on the degree.

Our next statement is stronger than Theorem 1.1, in the sense that it accommo-
dates for “approximate multiplicity” in a window of size O(1/ logβ(g)), β > 0 (see
Remark 4.6 for comments on the size of this window). This result parallels a similar
statement [M+22, Theorem 1.6] for graphs with a uniform bound on the degree of
each vertex.

Theorem 1.2 (Maximal approximate multiplicity of λj). For any j ∈ N≥2, any

(a, b, ρ) ∈ T , and any β,K > 0, there exists C0 > 0 and g0 ∈ N≥2 such that the num-

ber of eigenvalues in [λj(M), (1 + K
logβ g

)λj(M)] is at most C0
g

log log g for any g ≥ g0

and any M ∈ M(a,b,ρ)
g .

Following an analogous result on regular graphs [MRS21, Proposition 5.3] and
using a graphs to surfaces transfer principle due to Colin de Verdière and Colbois
[CV88], we also provide a construction of closed hyperbolic surfaces with high ap-
proximate multiplicity. This result shows that if the injectivity radius is allowed to
tend to 0, no bound like the one in Theorem 1.2 can hold.

Proposition 1.3. For any sequence of positive numbers (εg)g∈N≥2 , there exists a family

of connected closed hyperbolic surfaces (Mg)g∈N≥2 , where Mg has genus g, with at

least g − 1 eigenvalues in [λ2(Mg), (1 + εg)λ2(Mg)].

1.2 A general volume-dependent bound. Theorems 1.1 and 1.2 are deduced
from more general statements, which bound the (approximate) multiplicity in terms
of three geometric quantities: the volume, the injectivity radius, and a lower bound
on the Gaussian curvature. For instance:

Theorem 1.4. For any ρ > 0 and b < 0 there exists C0 > 0 such that for any closed,

connected Riemannian surface M with injectivity radius inj(M) ≥ ρ and Gaussian

curvature ≥ b, the multiplicity of λ2(M) is at most C0(1 + vol(M)
log log(3+vol(M))).

If a negative upper bound on the Gaussian curvature is imposed in addition, then
together with the Gauss-Bonnet theorem this implies Theorem 1.1. In complement
to Theorem 1.4, we refer the reader to Theorem 4.1, which is a version of Theo-
rem 1.4 with spectral gap, to Theorem 4.4, which accommodates for approximate
multiplicity and works for any λj , and to Theorem 4.7, which is a scale-free version
of Theorem 1.4.
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1.3 Bibliographical comments. The maximal multiplicity of Laplacian eigenval-
ues has been studied at least since the 1970’s and a seminal paper of Cheng [Che76].
We review the literature, mostly focusing on the case of surfaces (see however the
last paragraph of this section on higher dimension). For M a closed surface of genus
g, let mi(M) denote the maximal multiplicity of the i-th eigenvalue of a Riemannian
Laplacian on M (with the convention (1) on indexing of eigenvalues).

Linear bounds. Cheng proved in [Che76] that mi(M) ≤ 1
2(2g + i)(2g + i + 1). This

result has been improved by Besson in [Bes80] who sharpened the bound down to
4g +2i−1. Both papers proceed by bounding the order of vanishing of eigenfunctions
and obtaining a contradiction if an eigenspace is too large (see also [SY94, Section
III.6]). Then, Sévennec [Sev02] proved that in negative Euler characteristic, m2(M) ≤
5−χ(M); in particular, if M is orientable of genus g ≥ 2, then m2(M) ≤ 2g +3. This
bound has been improved to 2g − 1 for closed hyperbolic surfaces of sufficiently high
genus in [FP23, Theorem 9.5].

Sublinear bounds. Some sublinear bounds on the multiplicity of eigenvalues on
surfaces are already available in the literature. However these bounds work only under
two strong assumptions: first, they hold for hyperbolic surfaces only and second, they
require some control (i) either over the number of closed geodesics of length ≤ c log(g)
for c > 0 a small constant, (ii) or, for any L > 0, over the number of closed geodesics of
length ≤ L as g → +∞. This control is related to the notion of Benjamini-Schramm
convergence (see [A+17]), satisfied in particular with high probability by hyperbolic
surfaces drawn with respect to the Weil-Petersson probability measure.

The assumption of hyperbolicity allows to use tools which are not available for
general negatively curved surfaces: for instance, the Selberg trace formula which
relates, in closed hyperbolic surfaces, the spectrum of the Laplacian to the set of
lengths of closed geodesics. This formula has been used in [Mon22, Theorem 1.6]
to derive a sublinear bound on the multiplicity of Laplacian eigenvalues for random
hyperbolic surfaces (see [Gil21, Corollary 1.7] for a different but related sublinear
bound using the Selberg transform). Relying also on the Selberg trace formula, [FP23,
Proposition 9.3] gives a sublinear bound when λ2(M) − 1

4 is of order 1/ log(g)2.
Finally, we mention [A+17] which proves sublinear bounds for the related problem of
limit multiplicities under Benjamini–Schramm convergence, and the papers [DW78],
[SX91] and [Gam02] which give precise rates of convergence - with power saving -
under more restrictive arithmetic assumptions.

Our method, which works for any surface and does not assume a control over the
number of closed geodesics of length ≤ L for large L, is totally different. It relies
mainly on an ingredient inspired from the work [J+21] pertaining to multiplicities in
graphs (see Sect. 1.4), and on heat kernel estimates, which correspond geometrically
to random walks and not to closed geodesics.

We mention the fact that our results yield a sublinear bound on multiplicity when
restricting to the set of Riemannian covers of a fixed negatively curved surface. Also,
when a = b = −1 and ρ is small, we see that the set of hyperbolic surfaces considered
in Theorem 1.1 covers most of the moduli space of closed hyperbolic surfaces of genus
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g ≥ 2 since the event of having injectivity radius ≥ ρ has probability roughly 1 − ρ2

for the Weil-Petersson probability measure (see [MP19, Theorem 4.1]).
Colin de Verdière’s conjecture. Colin de Verdière conjectures in [Ver86, Section

V] a much stronger bound of order √
g for the maximal multiplicity. More precisely,

he conjectures that

m2(M) = chr(M) − 1 (2)

where chr(M) is the chromatic number of M , defined as the largest n such that the
complete graph on n vertices embeds in M . By a result of Ringel and Youngs [RY68],

chr(M) =
⌊1

2

(
7 +

√
49 − 24χ(M)

)⌋
,

(if M is not the Klein bottle, for which chr(M) = 6), and since χ(M) = 2 − 2g for
closed orientable surfaces, m2(g) would be of order

√
12g.

Although a clear improvement over the linear bound of Cheng and Besson, our
sublinear bound m2(M) � g/ log log(g) is far from the conjectured

√
12g. However,

since the first version of this paper appeared, the Colin de Verdière conjecture has
been disproven for genus g = 10 and g = 17 [M+23]. It is unclear whether these are
isolated cases or indicative of a much more general failure of the conjecture. Precisely,
is the right order of magnitude for m2(M) closer to √

g or g/ log log g?
This conjecture was mostly supported by two lower bounds: first, Colbois and

Colin de Verdière constructed in [CV88] for any g ≥ 3 a closed hyperbolic surface
of genus g such that the multiplicity of λ2 is

⌊
1+
√

8g+1
2

⌋
, which has the same or-

der of growth as the conjectured upper bound (2). Secondly, it is proved in [Ver87,
Théorème 1.5] that m2(M) ≥ chr(M)−1 for arbitrary M , if m2(M) denotes the max-
imal multiplicity of λ2, where the maximum is taken over all Schrödinger operator
on M for which λ1 = 0.

The Colin de Verdière conjecture was also supported by the fact that (2) is sat-
isfied for simple choices of M : the sphere [Che76], the torus [Bes80], the projective
plane [Bes80], the Klein bottle [Ver87], [Nad87]. The work [FP21] shows that the
Klein quartic maximizes the multiplicity of λ2 among all closed hyperbolic surfaces
of genus 3, with multiplicity equal to 8, which also matches the equality (2). The
proof is based on the Selberg trace formula.

Proving upper bounds on the multiplicity seems much more challenging. Propo-
sition 1.3 highlights some of the challenges. For instance, extending Theorem 1.2 to
surfaces with small injectivity radius would require a proof which separates between
eigenvalues very close to one another, since there exist hyperbolic surfaces M of
(large) genus g with “approximate multiplicity” of λ2(M) of order g.

Literature on graphs. As already mentioned in Sect. 1.1, our inspiration comes
from the following result proved in [J+21, Theorem 2.2]:

Theorem 1.5 ([J+21]). For every j and every d, there is a constant C = C(d, j) so

that the adjacency matrix of every connected n-vertex graph with maximum degree

at most d has j-th eigenvalue multiplicity at most Cn/ log log n.
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The main motivation of the authors of [J+21] is the equiangular problem, namely
the computation of the maximal number of lines in R

d which are pairwise separated
by the same angle. This problem shows up for instance through tight frames in coding
theory. In [J+21, Theorem 1.2], the equiangular problem for a fixed angle α between
the lines is solved by showing that it may be reduced to Theorem 1.5.

We also mention the work [MRS21], in which an improvement of [J+21, The-
orem 2.2] is proven for regular graphs. This improvement does not seem easy to
transfer to (negatively curved) surfaces.

Higher dimension. On any closed manifold M of dimension n ≥ 3, it is possible to
construct a sequence of metrics whose first non-trivial eigenvalue multiplicity tends
to +∞ (see [Ver86]). On the other hand, it is proved in [Asm16, Corollary 1.1]
that for n-dimensional manifolds whose geometry is controlled, the multiplicity of
λ2 is bounded: there exists C depending on n only such that in any n-dimensional
Riemannian manifold with Ricci ≥ −(n − 1)κ for some κ ≥ 0, the multiplicity of λ2
is at most C0(1 + vol(M)(κn/2 + inj(M)−n)) where inj(M) denotes the injectivity
radius of M . This has to be compared with our Theorem 4.7. Indeed, we believe that
our proofs of Theorems 1.4 and 4.7 work in any dimension, up to changing constants
depending on n. We do not pursue this here since this paper is mostly devoted to
surfaces.

1.4 Strategy of proof.

1.4.1 Warm-up: proof in the graph case. Our strategy to prove Theorems 1.1
and 1.2 is partly inspired by the proof of Theorem 1.5 worked out in [J+21]. We
provide here a summary of this proof.

Let d > 0 and let G be a connected graph with degree ≤ d, whose adjacency
matrix is denoted by AG. The authors of [J+21] introduce a subgraph H ⊂ G whose
complement G \ H is an r1-net: it means that any vertex of G is at distance at most
r1 from G \ H . The parameter r1 is chosen as r1 = 	c log log(n)
, where n is the
number of vertices of G and c > 0 is a small constant.

The first step is to find an upper bound for the trace of A2r1
H , where AH is the

adjacency matrix of H . For this, the authors of [J+21] leverage the usual technique
of expressing a trace as a number of closed paths. The trace Tr(A2r1

H ) is bounded
above by the number of paths of length 2r1 in G, which start from a given vertex
x ∈ H and do not belong to the r1-net G\H at time r1. It follows from the definition
of an r1-net that this number is smaller by at least 1 than the total number of paths
of length 2r1 in G which start from x and end at x: we call this the “gain of 1”.

This gain of 1 is transformed into a larger gain by considering the trace of A2r2
H

with r2 = 	c log(n)
 � r1, instead of the trace of A2r1
H . The argument to get this

larger gain relies on the Perron-Frobenius theorem and the min-max principle applied
locally in balls of radius r2. The large gain which is obtained provides a strong bound
on Tr(A2r2

H ), and thus on the number of eigenvalues of AH close to λ2(AH) (recall
that λ1(AH) > λ2(AH) ≥ . . .).
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Finally, the Cauchy interlacing theorem (Theorem A.1) converts this bound into
a similar bound on the eigenvalues of AG. The bounds depend on d.

1.4.2 Main steps. The main steps of our proof of Theorem 1.4 mimic the above
proof, with many additional difficulties and several new ideas. We focus on the case
where vol(M) � 1, since the small volume case will be seen to follow from [Asm16].

(i) We consider, instead of directly λ2 = λ2(M), the maximal multiplicity of
e−tλ2(M) as an eigenvalue of etΔ, thus reinterpreting the problem in terms of
heat kernels (and random walks).

(ii) In analogy with the graph case, we set r1 = c log log(vol(M)) where c > 0 is a
small constant. In the setting of Theorem 1.1, r1 ≈ c log log g, and the genus
g plays the role of the number of vertices n in the graph case. We choose
an r1-net {x1, . . . , x�} ⊂ M : this means that any point in M is at distance
at most r1 from one of the xk’s. Then we fix around each xk an open set
Vk of measure ∼ 1. We define the operator P : L2(M,ν) → L2(M,ν) as the
orthogonal projection to the space of functions which are L2-orthogonal to
the (normalized) characteristic functions of the Vk’s.

(iii) We use a Cauchy interlacing theorem in Hilbert spaces (see Theorem A.1):
we compare the multiplicity m of e−r1λ2 as an eigenvalue of er1Δ with the
multiplicity m� of e−r1λ2 as an eigenvalue of Per1ΔP .

The Cauchy interlacing theorem implies that

m ≤ m� + rank(Id − P ). (3)

Our choice of P guarantees that rank(Id − P ) = O(vol(M)/ log log(vol(M))),
or even rank(Id − P ) = O(vol(M)/ logα(vol(M))) when we work under the
assumption λ2(M) ≥ δ (to prove the second part of Theorem 1.1). The next
steps prove an upper bound on m�.

(iv) We choose r2 = c log vol(M) and n ≈ 	r2/r1
 and we compute the trace of
(Per1ΔP )2n to bound above m�:

m�e−2nr1λ2 ≤ Tr((Per1ΔP )2n). (4)

The trace in the right-hand side may in turn be written as an integral of the
form

Tr((Per1ΔP )2n) =
∫

M
‖(Per1ΔP )nδx‖2dν(x). (5)

(v) We leverage the averaging properties of the heat kernel to prove an inequality
which roughly looks like1

‖(Per1ΔP )�r2/r1�δx‖ ≤
(
(1 − ε)e−r1λ2

)�r2/r1�
(6)

1 Here we warn the reader that the sequence of inequalities we prove is actually much more subtle
than (6).
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for “most points” x ∈ M . The assumption on the injectivity radius in Theo-
rem 1.4 comes from the proof of (6), but also from the construction of the
r1-net in Step (ii).

Combining (4), (5) and (6) we obtain for some C0 > 0

m� ≤ C0vol(M)(1 − ε)2�r2/r1� ≤ C0vol(M) exp (−2ε	r2/r1
) (7)

The quantity ε > 0, which depends on the volume vol(M), is the “gain”, and
we prove it to be sufficiently large, so that Theorem 1.4 follows from (3), (7)
and our choices of r1, r2, P .

The proof of Step (v) is the heart of our contribution, and a more detailed summary
of this step is provided at the beginning of Sect. 3.3, before its actual proof. Whereas
the “gain” is straightforward to obtain for graphs (see Sect. 1.4.1), we have to face
in the case of surfaces several difficulties.

A first difficulty comes from the infinite speed of propagation of the heat kernel.2
This property a priori prevents us from using any local argument in the manifold;
however, as mentioned in Sect. 1.4.1, we need to apply the min-max principle locally
in balls of radius ≈ r2 to obtain the quantitative gain ε. To overcome this difficulty
we introduce some cut-offs χx (approximately the characteristic function of a ball
of center x and radius C �r2 for some large C �) commuting with P , and consider
the compact operators Bx = Pχxer1ΔχxP instead of Per1ΔP in (6). The remainder
terms which unavoidably appear when replacing Per1ΔP by Bx are handled through
classical heat kernel estimates in the universal cover of M .

Another difficulty arises from the fact that the operator Bx, which somehow
plays locally around x the role of Ar1

H in Sect. 1.4.1, has one main difference with
Ar1

H : its matrix elements are not necessarily non-negative (the condition f, g ≥ 0 does
not imply that (Bxf, g) ≥ 0), and the Perron-Frobenius theorem therefore does not
apply to Bx; however, as mentioned in Sect. 1.4.1, we do need to apply a Perron-
Frobenius-type argument in local balls. We overcome this difficulty by analyzing the
interplay between the positive and the negative part of the top eigenvector ϕx of
Bx. This allows us to recover a gain ε despite the lack of positivity (in the sense of
matrix elements) of Bx.

Organization of the paper. The paper is organized as follows. We introduce useful
notation in Sect. 2.1, and we prove elementary results regarding r-nets in Sect. 2.2.
In Sect. 2.3 we state estimates on the heat kernel in M and its universal cover M̃ .
Section 3 gathers the key lemmas used in the proof of Theorem 1.4: in Sect. 3.1
we compare the trace Tr((Per1ΔP )n) to an integral of local Rayleigh quotients and
we estimate the error terms; in Sect. 3.2 we draw several consequences from the

2 Although there exists a “random walk at speed 1” on manifolds (see for instance [LM10]),
whose kernel is the most obvious analogue of the adjacency matrix AG of Sect. 1.4.1, we use in this
paper the heat kernel because it seems more natural to understand the Laplacian on manifolds, and
because the bounds available on the kernel of the “random walk at speed 1” are not as good as the
ones available on the heat kernel.
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min-max principle used to bound the previously mentioned Rayleigh quotients; in
Sect. 3.3, we prove the gain described in Step (v) above. In Sect. 4.1, we proceed with
the proof of Theorems 1.4 and 1.1, and in Sect. 4.2 we explain how to modify this
proof to obtain Theorem 1.2. In Sect. 4.3 we prove version of Theorem 1.4 involving
only quantities which are invariant under rescaling of the metric (“scale-free”). In
Sect. 4.4 we prove Proposition 1.3, relying on a construction due to [CV88]. In
Appendix A.1, we gather several elementary results such as the Cauchy interlacing
theorem in infinite dimensional Hilbert spaces and an upper bound for the first
eigenvalues of closed negatively curved surfaces. Finally in Sect. A.2 we prove the
heat kernel estimates stated in Sect. 2.3.

2 Preliminaries

This section gathers notation and elementary results concerning Voronoi cells in
closed surfaces, r-nets and the heat kernel. We work in the general setting of Theo-
rem 1.4, therefore we fix ρ > 0, b < 0 and M a closed, connected Riemannian surface
with injectivity radius inj(M) ≥ ρ and Gaussian curvature c(x) ≥ b for any x ∈ M .
We also assume that vol(M) ≥ 3, in order for log log(vol(M)) to be well-defined; the
case of small volumes will be handled separately at the end of Sect. 4.1.

2.1 Notation. The Riemannian distance in M is denoted by d(·, ·) and the open
ball of center x ∈ M and radius r > 0 is Bd(x, r).

We denote by ν the Riemannian volume on M , by 〈·, ·〉 the scalar product with
respect to ν, and by ‖ · ‖ the associated norm. We introduce the positive parameters

r1 = c log log(vol(M)), r2 = c log vol(M) (8)

where c > 0 is a small constant which will be fixed in Sect. 4.1 (see Remark 4.3 for
an explanation on the choice of these parameters).

Let (M̃, d
M̃

) be the universal cover of M endowed with the lifted Riemannian
metric. Let Vol

M̃
be the Riemannian volume on M̃ . We recall that the volume of

any ball B(x, r) of radius r in M̃ satisfies

Vol
M̃

(B(x, r)) ≤ 4π

|b| sinh2

(√
|b|
2

r

)
(9)

according to the Bishop-Gromov inequality.
Heat kernels. We denote by kt : M̃ × M̃ → R the heat kernel in M̃ , so that for

any f ∈ L2(M̃, dVol
M̃

), the solution u : R+ × M̃ → R of ∂tu = Δu with initial datum
u(0, ·) = f is given by

u(t, x) =
∫

M̃
kt(x, y)f(y)dVol

M̃
(y).
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By a slight abuse, in the case where M̃ has constant curvature, we use the same
notation kt (with only one argument) for the function kt : R+ → R defined by
kt(dM̃

(x, y)) = kt(x, y) for any x, y ∈ M̃ . This definition makes sense since kt(x, y)
only depends on d

M̃
(x, y).

The linear operator eΔ is compact, self-adjoint in L2(M,ν), with norm 1. We
denote by Kt(x, y) the heat kernel on M , i.e., it satisfies for any t ≥ 0

etΔf(x) =
∫

M
Kt(x, y)f(y)ν(dy).

We have etΔδx = Kt(x, ·) ∈ L2(M,ν) for any t > 0 and x ∈ M . Writing M = Γ\M̃ ,
we have the formula

Kt(x, y) =
∑
γ∈Γ

kt(x̄, γȳ) (10)

where x̄, ȳ are lifts of x, y in a fixed fundamental domain of M in M̃ (the convergence
of this sum is proved in the proof of Lemma 2.5 in Appendix A.2).

By rescaling the Riemannian metric on H
2, we create a space M̃K of constant

Gaussian curvature K < 0, which is a simply connected space form. The universal
cover of a closed surface with constant Gaussian curvature K is isometric to M̃K .

The following lower bound on the heat kernel is proved in [DGM76, Théorème 1].

Lemma 2.1 (Comparison for the heat kernel). Let M̃ be a complete and simply con-

nected Riemannian manifold with associated distance d
M̃

and heat kernel kt(·, ·).
Assume that its sectional curvature is bounded below by b. Then for any x,x0 ∈ M̃

and any t > 0,

k
(b)
t (d

M̃
(x0, x)) ≤ kt(x0, x)

where k
(K)
t (·) denotes the heat kernel (with radial variable) on M̃K .

Concerning upper bounds on the heat kernel, our main tool is the bound (61)
below, due to [Dav93, Theorem 3] (when combined with [Cro80, Proposition 14]).

Constants. Throughout the paper we use the following conventions to denote
constants:

– we keep the same notation for constants which may change from line to line.
– Constants with an integer subscript, namely C0, C1, . . ., depend on a, b and ρ

only.
– C > 0 and C � > 0 denote two sufficiently large constants whose values are fixed

in the proof of Theorem 1.4, in (47)-(49). C and C � are introduced respectively
in Lemma 2.4 and at the beginning of Sect. 3.1.

– The constant c > 0 introduced in (8) is fixed in (50) (chosen sufficiently small).
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2.2 r-nets and Voronoi cells. As explained in Sect. 1.4, we need for our proof to
consider a subset V of measure of order 1 such that any point of M is at distance ≤ r1
of V . In the context of graphs, e.g., in [J+21], such sets, called r1-nets, are subsets
of the sets of vertices. In the case of a closed negatively curved surface M , we cut
M into Voronoi cells and select a (not too large) subset of cells well distributed over
M . This section gathers the necessary definitions and results.

In the sequel, an r-separated set is a set of points x1, . . . , xm ∈ M such that
d(xi, xj) ≥ r for any distinct i, j ∈ {1, . . . ,m}. An r-net is a set of points x1, . . . , xm ∈
M such that for any y ∈ M there exists i ∈ N such that d(y,xi) ≤ r.

The following two lemmas prove the existence of r-nets whose size is not too
large.

Lemma 2.2. For any ρ > 0 there exists C0 > 0 such that for any closed, connected

Riemannian surface M with inj(M) ≥ ρ, and for any r ≥ 1, there exists an r-net in

M of cardinal at most max(1,C0vol(M)/r).

Proof. The proof follows classical arguments, see e.g. [Asm16, Lemma 2.2]. Let ρ >

0 and b < 0. If diam(M) ≤ r, then there is an r-net of size 1. So suppose that
diam(M) > r. Let x1, . . . , x� ∈ M be an r-separated set of maximal cardinality in
M . Then X := {x1, . . . , x�} is an r-net of M and Bd(xi, r/2) ∩ Bd(xj , r/2) = ∅ for all
i �= j. So

� min
i∈{1;...;�}

vol(Bd(xi, r/2)) ≤
�∑

i=1
vol(Bd(xi, r/2)) ≤ vol(M). (11)

It thus suffices to show that for any x ∈ M , Bd(x, r/2) has volume at least C1r for
some constant C1 > 0 (depending on b < 0 and ρ > 0 only). Fix x ∈ M . Take any
y ∈ M such that d(x, y) ≥ r/2 – there must be at least one such y since diam(M) > r

– and let γ : [0; r/2] → M be a continuous path of minimal length from x to y.
Then the balls Bd(γ(n),1/2) for n ∈ {0, . . . , 	(r − 1)/2
} are pairwise disjoint and
contained in Bd(x, r/2). There is in addition a universal constant C2 > 0 such that
vol(Bd(z,1/2)) ≥ C2ρ2 for all z ∈ M (due to [Cro80, Proposition 14]), and we use
this for z = γ(n), n ∈ {0, . . . , 	(r − 1)/2
}. So

vol(Bd(x, r/2)) ≥
(⌊r − 1

2

⌋
+ 1
)

C2ρ2 ≥ C2ρ2 r

2
. (12)

Hence, � ≤ C3
ρ2

vol(M)
r for some universal constant C3 > 0. �

Lemma 2.3. For any ρ, δ > 0 and b < 0 there exists C0 > 0, such that for any closed,

connected Riemannian surface M with inj(M) ≥ ρ and spectral gap λ2(M) ≥ δ, and

for any r such that 1 ≤ r ≤ 1√
|b|

log(|b|vol(M)/8π), there exists an r-net in M of

cardinal at most max(1,C0vol(M)/eδ′r) where δ� = max(
√

δ√
20 , δ

4
√
|b|

).

Proof. By the Buser inequality [Bus82], the Cheeger constant h(M) verifies δ ≤
λ2(M) ≤ 2h(M)

√
|b| + 10h(M)2, hence h(M) ≥ δ�. Besides, for any x ∈ M and any
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r as in the statement, we have

vol(Bd(x, r)) ≤ Vol
M̃

(B
M̃

(r)) ≤ 4π

|b| sinh2
(√

|b|r
2

)
≤ 1

2
vol(M)

where the second inequality comes from (9) and the third one from our assumption
on r. Hence by definition of the Cheeger constant,

dvol(Bd(x, r))
dr

= lim
ε→0

vol(Bd(x, r + ε)) − vol(Bd(x, r))
ε

= |∂Bd(x, r)| ≥ δ�vol(Bd(x, r))

which implies that vol(Bd(x, r)) ≥ vol(Bd(x,1))eδ′r. But vol(Bd(x,1)) ≥ C1ρ2 for
some universal C1 > 0 (due to [Cro80, Proposition 14]). Replacing in (11) and (12)
we find the result. �

We fix a 1-separated set V = {v1, . . . , vm} of maximal cardinality m in M , and we
consider the Voronoi cells

Vk = {q ∈ M | ∀i ∈ {1, . . . ,m}, d(q, vk) ≤ d(q, vi)}, k = 1, . . . ,m.

By our choice of V , there holds Bd(vk,1/2) ⊂ Vk ⊂ Bd(vk,1) for any k ∈ {1, . . . ,m}.
We notice that if ṽk denotes a lift of vk to a fundamental domain of M in M̃ ,

4π

|b| sinh2

(√
|b|
2

)
≥ Vol

M̃
(B

M̃
(ṽk,1))) ≥ vol(Vk) ≥ C0ρ2. (13)

for some universal C0 > 0, where the leftmost inequality comes from (9), and the
rightmost inequality from [Cro80, Proposition 14].

We fix a subset N ⊂ {1, . . . ,m} with the following properties:

– #N ≤ C0vol(M)/r (or #N ≤ C0vol(M)/eδ′r if λ2(M) ≥ δ is assumed).
– There exists a family of points (xk)k∈N forming an r1-net, such that for any

k ∈ N , xk ∈ Vk.

The set N is constructed by first considering an r1-net {x1, . . . , x�}, and then for each
j ∈ [�], putting in N the index of (one of) the Voronoi cell(s) to which xj belongs.

For any k ∈ N , we denote by ψk the normalized characteristic function of the
interior ΣVk of Vk, i.e., ψk(x) = 1√

vol(Vk)
1x∈ΣVk

. It follows from (13) that ‖ψk‖L∞(M) ≤
C2
ρ .
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We denote by P the orthogonal projection3 on the orthogonal of the ψk with
respect to ν:

∀f ∈ L2(M,ν), Pf = f −
∑
k∈N

〈f,ψk〉ψk.

If δx denotes the Dirac mass on a manifold (defined as δx(f) = f(x)) then Pδx is a
distribution, defined as

Pδx = δx −
∑
k∈N

ψk(x)ψk. (14)

2.3 Heat kernel estimates. The following lemmas on the heat kernels in M̃ and
M (see definitions in Sect. 2.1) will be instrumental in the proof of Theorem 1.4.
The proof of these lemmas is postponed to Appendix A.2.

Estimate (15) reflects the fact that the mass of kt(x, ·) is small outside a ball
of radius Ct around x for C sufficiently large. Then, the estimate (16) shows that
when restricting to the interior of a ball of radius Ct, the heat kernel varies not too
wildly over scales ≤ 4t (any other constant than 4 would also work, but 4 is the right
constant for Lemma 3.7).

Lemma 2.4 (Estimates on the heat kernel in M̃ ). The following estimates hold:

– (L1 norm outside a ball of radius Ct). There exists C0 > 0 such that for any

C ≥ 8
√

|b| + 4, t ≥ 1 and x ∈ M̃ ,

‖kt(x, ·)‖
L1(M̃\B

M̃
(x,Ct)) ≤ C0 exp

(
|b|t − C2t

16

)
. (15)

– (Variations over larger scales inside a ball of radius Ct). There exists C0 > 0 such

that for any t ≥ 1, C > 0, x, y, z ∈ M̃ with d(x, y) ≤ Ct and |d(x, y) − d(x, z)| ≤
4t + 4, there holds

kt(x, z)
kt(x, y)

≥ C0 exp (−5(1 + |b|)(1 + C)t) . (16)

The following lemma on the L∞ norm of the heat kernel in M is not sharp, but
it is sufficient for our purpose. A proof can be found in Appendix A.2.

Lemma 2.5 (L∞ norm of the heat kernel in M ). There exists C1 > 0 such that for

any t ≥ 1 there holds

‖Kt(·, ·)‖L∞(M×M) ≤ C1 exp(4|b|t).

3 The idea of considering these projections is inspired by the paper [Bus77], which shows that in
a closed hyperbolic surface M of genus g, the number of eigenvalues below 1/4 is bounded above
by 4g − 2. The proof goes by considering a triangulation of M into 4g − 2 geodesic triangles, and
showing that in each of these triangles, the smallest positive eigenvalue of the Neumann problem
is at least 1/4. The functions which are considered in the Rayleigh quotient minimization problem
are orthogonal to the characteristic functions of the geodesic triangles.
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3 Key lemmas

This section is devoted to the proof of several lemmas which are key ingredients of
the proof of Theorem 1.4 provided in Sect. 4.1. As in Sect. 2, we fix ρ > 0, b < 0
and M a closed, connected Riemannian surface with inj(M) ≥ ρ and c(x) ≥ b for any
x ∈ M . We also assume that vol(M) is sufficiently large, so that r1 is well-defined
and ≥ 1.

3.1 Error term estimates. As explained in Sect. 1.4, our proof relies on finding
an upper bound on the trace of the trace-class operator (Per1ΔP )n, and the first
step is to write this trace as an integral

Tr((Per1ΔP )2n) =
∫

M
‖(Per1ΔP )nδx‖2dν(x) (17)

(see Lemma A.3). We actually choose n = 	r2/r1
 + 1.
To leverage the gain of ε that we will obtain in Sect. 3.3 (and which is described

in Step (v) of Sect. 1.4), we have to compare ‖(Per1ΔP )nδx‖2 to a quantity of the
form ‖(Per1ΔP )nϕ‖2 for some well-chosen ϕ ∈ L2(M,ν) depending on x ∈ M , see
(19) below. We work this out in the present section, and we provide estimates for
the error terms which unavoidably appear along the way.

We denote by χx the indicator function of the subset
⋃

Vk∩Bd(x,C′r2)�=∅
Vk, (18)

where C � will be fixed in Sect. 4.1. This subset contains Bd(x,C �r2). Besides,
[χx, P ] = 0 for any x ∈ M , as a consequence of the definition of P and the equal-
ity 〈χxf,ψk〉ψk = 〈f,χxψk〉ψk = 〈f,ψk〉χxψk, valid for any f ∈ L2(M,ν) and any
k = 1, . . . ,m.

The main result of this section is the following one.

Lemma 3.1. There exists C0 > 0 such that if C � ≥ 32
√

|b| + 16, then for any x ∈ M ,

‖(Per1ΔP )�r2/r1�+1δx‖

≤ C0

(
sup

ϕ
=1

‖(Pχxer1ΔχxP )�r2/r1�ϕ‖ + exp
(

−C �2r2

32

))
. (19)

The proof of Lemma 3.1 relies on the following intermediate result.

Lemma 3.2. There exists C0 > 0 such that if C � ≥ 32
√

|b| + 16, then for any x ∈ M ,

‖
(
Per1ΔP

)�r2/r1�+1
δx −

(
Pχxer1ΔχxP

)�r2/r1�+1
δx‖ ≤ C0 exp

(
−C �2r2

32

)
.

Remark 3.3. The cut-offs χx are introduced to overcome the difficulty caused by the

infinite speed of propagation of the heat kernel. We expect that most of the mass of
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(Per1ΔP )�r2/r1�+1δx is contained in a ball of radius C �r2. Lemma 3.2 proves that the

remainder term coming from the complement of supp(χx) is small.

Proof of Lemma 3.2. Write n := 	r2/r1
 + 1. We first notice that the difference(
Per1ΔP

)n
δx −

(
Pχxer1ΔχxP

)n
δx is equal to the telescopic sum

n−1∑
l=0

(
Pχxer1Δ

)n−l−1
P (1 − χx)

(
er1ΔP

)l+1
δx (20)

(to show this, write P (1 − χx) = P − Pχx, recall that [P,χx] = 0, and after removing
telescoping terms, use χxδx = δx).

Next, we estimate the norm of each term of (20) individually. For n − 1 ≥ l ≥ 0,
the quantity

||
(
Pχxer1Δ

)n−l−1
P (1 − χx)

(
er1ΔP

)l+1
δx||

is bounded above by

|| (1 − χx)
(
er1ΔP

)l+1
δx|| (21)

because eΔ, χx and P have operator norm 1. We start by estimating this last quantity
when l = 0. We remark first of all that

||(1 − χx)er1ΔPδx|| ≤ ||(1 − χx)e(r1−1)Δ
∣∣∣eΔPδx

∣∣∣ || (22)

according to the triangle inequality. In order to make sense of the right-hand side,
notice that eΔPδx is equal to the element φ of L2(M,ν) defined by

φ : y �−→ K1(y,x) − ψkx(x)
∫

M
K1(y, z)ψkx(z)dν(z)

Here kx denotes the unique k ∈ N such that ψk(x) �= 0 if it exists (then kx is auto-
matically unique), and ψkx = 0 otherwise. The notation |eΔPδx| then corresponds to
the absolute value of φ.

We provide now an estimate of the right-hand side of (22). As a general fact, we
have for any t > 0,

||(1 − χx)etΔ
∣∣∣eΔPδx

∣∣∣ || ≤ || (1 − χx)etΔK1(·, x)|| + C0|| (1 − χx)etΔ(eΔψkx)||

where we have used that |ψkx(x)| ≤ C0 for any x (see Sect. 2.2). We have moreover
according to (18)

|| (1 − χx)etΔK1(·, x)|| ≤ ||Kt+1(·, x)||L2(M\Bd(x,C′r2)). (23)

Now, since the ψk’s are bounded above by C0 and supported on subsets of diameter
bounded above by 2, using (10) and Lemma 2.1 we obtain that there is a constant
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C1 such that K1(y,x) ≥ k1(d(x, y)) ≥ k
(b)
1 (d(x, y)) ≥ C1ψkx(y). Hence,

|| (1 − χx)etΔ(eΔψkx)|| ≤ C1|| (1 − χx)e(t+1)ΔK1(·, x)||

≤ C1||Kt+2(·, x)||L2(M\Bd(x,C′r2))

According to Lemma 2.5,

||Kt+2(·, x)||L2(M\Bd(x,C′r2)) ≤ C2 exp(2|b|t)||Kt+2(·, x)||1/2
L1(M\Bd(x,C′r2))

≤ C2 exp(2|b|t)||kt+2(·, x)||1/2
L1(M̃\B

M̃
(x,C′r2))

where in the last line we used (10). The same argument applied to the right-hand
side of (23) yields the same bound, at time t+1. From now on, we assume t ∈ [0,2r2].
Using the heat kernel estimate (15) applied with C = C �r2/(t + 2) ≥ 8

√
|b| + 4 and

C = C �r2/(t + 1) ≥ 8
√

|b| + 4 we thus have

||(1 − χx)etΔ
∣∣∣eΔPδx

∣∣∣ || ≤ C3 exp
(

5
2

|b|t − C �2r2
2

8(t + 2)

)
. (24)

Applying to t = r1 − 1 and combining with (22) we get an upper bound for (21) for
l = 0.

We turn now to the case l ≥ 1. For any f ∈ L2(M,ν), t ≥ 0 and y ∈ M we have

|PetΔf(y)| ≤ etΔ|f |(y) +
∑
k∈N

ψk(y)
∫

M×M
ψk(w)Kt(w,z)|f(z)|dν(w)dν(z).

The ψk’s are bounded by C0 and supported on pairwise disjoint subsets of diameter
bounded above by 2. Therefore, there is a constant C4 > 0 such that for any y,w ∈ M ,

∑
k∈N

ψk(y)ψk(w) ≤ C4k
(b)
1 (d

M̃
(y,w)) ≤ C4k1(y,w) ≤ C4K1(y,w)

(where we used Lemma 2.1 and (10)). This yields
∑
k∈N

ψk(y)
∫

M
ψk(w)Kt(w,z)|f(z)|dν(w)dν(z) ≤ C4e(t+1)Δ|f |(y).

Hence,

|PetΔf(y)| ≤ (etΔ + C4e(t+1)Δ)|f |(y). (25)

A simple induction then shows that,

|P
(
etΔP

)l−1
f(y)| ≤ (etΔ + C4e(t+1)Δ)l−1|Pf |(y).

Applying the above with t = r1 and f = er1ΔPδx yields

|| (1 − χx)
(
er1ΔP

)l+1
δx|| ≤ ||(1 − χx)er1Δ(er1Δ + C4e(r1+1)Δ)l−1|Per1ΔPδx|||.
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Applying (25) with t = r1 − 1 and f = eΔPδx we find

|Per1ΔPδx|(y) ≤ (e(r1−1)Δ + C4er1Δ)|eΔPδx|(y)

for all y ∈ M . So the triangle inequality yields

|| (1 − χx)
(
er1ΔP

)l+1
δx|| ≤

l∑
j=0

(
l

j

)
Cj

4 ||(1 − χx)e((l+1)r1+j−1)Δ
∣∣∣eΔPδx

∣∣∣ ||. (26)

All in all, we have, using successively (26) and (24) (since (l + 1)r1 + j + 1 ≤ (l +
1)(r1 + 1) ≤ 2r2)

||
(
Pχxer1Δ

)n−l−1
P (1 − χx)

(
er1ΔP

)l+1
δx||

≤
l∑

j=0

(
l

j

)
Cj

4 ||(1 − χx)e((l+1)r1+j−1)Δ
∣∣∣eΔPδx

∣∣∣ ||

≤
l∑

j=0

(
l

j

)
Cj

4C3 exp
(

5
2

|b|r2 − C �2r2
2

8 (l + 1) (r1 + 1)

)

= (1 + C4)lC3 exp
(

5
2

|b|r2 − C �2r2
2

8 (l + 1) (r1 + 1)

)
. (27)

Finally, combining (20) with the estimate (27) and the estimate on the l = 0 term,
we find

||
((

Per1ΔP
)n

−
(
Pχxer1ΔχxP

)n)
δx||

≤ C3 exp
(

5
2

|b|r2 − C �2r2
2

8(r1 + 1)

)

+
n−1∑
l=1

(1 + C4)lC3 exp
(

5
2

|b|r2 − C �2r2
2

8 (l + 1) (r1 + 1)

)
(28)

≤ C3 exp
(

5
2

|b|r2 − C �2r2
2

8(r1 + 1)

)

+ C3n(1 + C4)n exp
(

5
2

|b|r2 − C �2r2
2

8n (r1 + 1)

)
(29)

≤ C5 exp
(

−C �2r2

32

)
(30)

where we have estimated all terms of the sum by the maximal one in going from
(28) to (29), and we used that n(r1 + 1) ≤ 2r2 and that n(1 + C4)n is negligible
compared to exp(|b|r2/2) to go from (29) to (30) (together with the fact that C � ≥
32
√

|b| + 16). �
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The end of this section is devoted to the proof of Lemma 3.1.

Proof of Lemma 3.1. Notice that the operator Pχxer1ΔχxP is compact as an oper-
ator on L2(M,ν), as a composition of bounded (linear) operators with the compact
operator er1Δ. Now we notice that

‖(Per1ΔP )�r2/r1�+1δx‖ ≤ ‖(Pχxer1ΔχxP )�r2/r1�+1δx‖ + C0 exp
(

−C �2r2

32

)

for some C0 > 0 due to Lemma 3.2. Then we set Bx = Pχxer1ΔχxP . We prove be-
low that ‖Bxδx‖ ≤ C1 for some C1 > 0 (as always, depending only on (a, b, ρ) ∈ T ).
Therefore,

‖(Per1ΔP )�r2/r1�+1δx‖ ≤ ‖B�r2/r1�
x Bxδx‖ + C0 exp

(
−C �2r2

32

)

≤ C1 sup

ϕ
=1

‖B�r2/r1�
x ϕ‖ + C0 exp

(
−C �2r2

32

)
,

which is exactly (19). There remains to justify that ‖Bxδx‖ ≤ C1. We first have

‖Bxδx‖ ≤ ‖eΔχxPδx‖ (31)

since the operator norms of P , χx and e(r1−1)Δ are all equal to 1. If we denote by
kx the only k ∈ N such that x ∈ Vkx when it exists (and ψkx = 0 otherwise), then by
definition of P we have

‖eΔχxPδx‖ = ‖eΔPχxδx‖ ≤ ‖eΔδx‖ + C0‖eΔψkx‖ ≤ ‖eΔδx‖ + C0 (32)

where we used that ‖ψk‖ = 1 and that the operator norm of eΔ : L2(M,ν) → L2(M,ν)
is equal to 1. Using (10), we get

‖eΔδx‖2 = ‖K1(x, ·)‖2 ≤ ‖K1(x, ·)‖L∞‖K1(x, ·)‖L1 = ‖K1(x, ·)‖L∞ ≤ C2 (33)

where the last inequality is a consequence of Lemma 2.5. Combining (31), (32), (33),
we get ‖Bxδx‖ ≤ C1, which concludes the proof. �

3.2 Applications of the min-max. Our proof of Theorem 1.4 relies fundamentally
on the Courant–Fischer min-max lemma (see e.g. [RS78, Theorem XIII.1]) through
the lemma proved in this section. In all the sequel,

μ2 = e−λ2(M)

denotes the largest eigenvalue of eΔ strictly smaller than 1.
As in Sect. 3.1, the main quantity of interest in this section is, for any fixed x ∈ M ,

sup

ϕ
=1

‖Pχxer1ΔχxPϕ‖. (34)
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We denote by ϕx ∈ L2(M,ν) a function which attains the supremum (34), i.e.,

‖Pχxer1ΔχxPϕx‖ = sup

ϕ
=1

‖Pχxer1ΔχxPϕ‖, ‖ϕx‖ = 1. (35)

By the min-max principle ϕx is an eigenfunction of the compact, self-adjoint and
non-negative operator Pχxer1ΔχxP . Since [χx, P ] = 0 and P and the operator of
multiplication by χx are orthogonal projections, the eigenfunction ϕx verifies

Pϕx = ϕx and χxϕx = ϕx. (36)

The following result serves as a replacement for the bound on the set U in the
proof of [J+21, Theorem 2.2].

Lemma 3.4. There exists C0 > 0 and a subset S ⊂ M of area ν(S) ≤ C0 ×
exp(2C �r2

√
|b|) such that for any x /∈ S,

‖er1Δ|ϕx|‖ ≤ μr1
2 . (37)

Proof. Assume by contradiction that it is possible to find x1, x2 ∈ M at distance
> 2C �r2 + 4 such that (37) does not hold. Then ‖er1Δ|ϕx1 |‖ > μr1

2 and ‖er1Δ|ϕx2 |‖ >

μr1
2 . Then |ϕx1 | and |ϕx2 | have disjoint supports since χxj ϕxj = ϕxj for j = 1,2 (recall

(18) and the fact that the Vk have diameter at most 2). Thus they are orthogonal,
and they contradict the min-max principle for e2r1Δ in L2(M,ν). This proves (37)
and shows that S has diameter ≤ 2C �r2 + 4. Finally, take x ∈ S (if not empty) and
notice that

ν(S) ≤ ν(Bd(x,2C �r2 + 4)) ≤ 4π

|b| exp((2C �r2 + 4)
√

|b|)

by (9), which concludes the proof. �

3.3 Estimate of the gain ε. The heart of our proof, the “gain of ε”, corresponding
to Step (v) in the strategy of proof in Sect. 1.4, is carried out in this section.

At the beginning of the proof of Theorem 1.4 in Sect. 4.1, we will prove using
Sect. 3.2 that m� is controlled by the integral in x of the quantity ‖Pχxer1ΔχxPϕx‖
where ϕx has been introduced in (35).

In the present section we show that the quantity ‖Pχxer1ΔχxPϕx‖ = ‖Pχx ×
er1Δϕx‖ (see (36)) is, in turn, bounded above by (1 − ε)‖er1Δ|ϕx|‖ up to remainders,
where ε is “not too small” (depending on the volume). This gain of a quantitative
ε, combined with an upper bound on ‖er1Δ|ϕx|‖ obtained through Lemma 3.4, is
sufficient to conclude the proof of Theorem 1.4 in Sect. 4.1.

The gain of ε is proved by writing the identity (full details are provided in the
proof of Lemma 3.8)

‖er1Δ|ϕx|‖2 − ‖Pχxer1ΔχxPϕx‖2
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= 4〈er1Δϕ+, er1Δϕ−〉︸ ︷︷ ︸
:=G1

+
∑

k∈Nx

(〈er1Δϕ+, ψk〉 − 〈er1Δϕ−, ψk〉)2

︸ ︷︷ ︸
:=G2

+ ‖(1 − χx)er1Δϕx‖2

where ϕ± = max(±ϕx,0) and Nx is introduced in (44). The key observation is that
G1 and G2 play opposite roles. While G1 quantifies the interaction (or lack thereof)
between er1Δϕ+ and er1Δϕ−, G2 measures the discrepancy between the mass left
by er1Δϕ+ and er1Δϕ− on the Voronoi cells Vk. Since the variations of er1Δϕ+ and
er1Δϕ− are very well controlled at scale O(1) (see Lemma 3.5, which is a consequence
of (16)), er1Δϕ+ and er1Δϕ− must interact on the Voronoi cells Vk in order for G2 to
be small. In turn, this prevents G1 from being small. In other words, G1 + G2 (hence
ε) cannot be small. This will be expressed in practice as a lower bound for G1 + G2
in terms of the L2-norm of er1Δ|ϕx|.

The following lemma, used in the end for r = r1 but valid for any r ≥ 1, illustrates
the idea that the solutions of the heat equation at time r do not vary too much over
scales of size � r. We set

wC(r) = C0 exp (−5(1 + |b|)(1 + C)r) . (38)

where C0 is given in (16).

Lemma 3.5 (Small scale invariance). There exists C0 > 0 such that for any C ≥
max(8

√
|b| + 4,16), any r ≥ 1, and any positive function f with ‖f‖ = 1 there exists

R ∈ C0(M) with

‖R‖ ≤ C0 exp
(

|b|r − C2r

64

)

and the inequality

erΔf(x) ≥ wC(r)(erΔf(x�) − R(x�)) ≥ 0

holds for any x,x� ∈ M at distance at most 4r + 4 from each other.

Proof. Recall that erΔf(x) =
∫

M Kr(x, y)f(y)dy. For every x, y ∈ M define

K≤C
r (x, y) :=

∑
γ∈Γ, d

M̃
(x̄,γȳ)≤Cr

kr(x̄, γȳ)

and

K>C
r (x, y) :=

∑
γ∈Γ, d

M̃
(x̄,γȳ)>Cr

kr(x̄, γȳ)

for any choice of lifts x̄, ȳ of x, y to M̃ . We have Kr = K>C
r + K≤C

r according to (10).
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For x ∈ M we set

R>C(x) :=
∫

M
K>C

r (x, y)f(y)dν(y). (39)

Notice that R>C ∈ C0(M). It follows from the Schur test that

||R>C ||L2 ≤ sup
x∈M

||K>C
r (x, ·)||L1 ||f ||L2 . (40)

Take x ∈ M and choose x̄ ∈ M̃ a lift of x. We have

||K>C
r (x, ·)||L1 =

∫

M̃\B
M̃

(x̄,Cr)
kr(x̄, ȳ)dȳ ≤ C0 exp

(
|b|r − C2r

16

)
(41)

according to (15). Besides, K≤C has controlled variations in terms of C: we prove
that for all x,x�, y ∈ M with d(x,x�) ≤ 4r + 4 we have

K≤C
r (x, y) ≥ wC(r)K≤C−8

r (x�, y). (42)

For this, we fix lifts x̄, x̄� of x,x� at distance ≤ 4r + 4. Using that if d
M̃

(x̄�, γȳ) ≤
(C − 8)r, then d

M̃
(x̄, γȳ) ≤ Cr, together with (16) applied with t = r we get

K≤C
r (x, y) =

∑
γ∈Γ,d

M̃
(x̄,γȳ)≤Cr

kr(d
M̃

(x̄, γȳ))

≥ wC(r)
∑

γ∈Γ,d
M̃

(x̄,γȳ)≤Cr

kr(d
M̃

(x̄�, γȳ))

≥ wC(r)
∑

γ∈Γ,d
M̃

(x̄′,γȳ)≤(C−8)r
kr(d

M̃
(x̄�, γȳ)) = wC(r)K≤C−8

r (x�, y).

We deduce from (42) and positivity of the heat kernel

erΔf(x) ≥ wC(r)(erΔf(x�) − R>C−8(x�)).

Set R = min(R>C−8, erΔf). Combining (40), (41) and the inequality C − 8 ≥ C/2 we
obtain the lemma. �

For f ∈ L2(M,ν) we set f± = max(±f,0). The next lemma, when used for r = r1,
shows that the interaction 〈er1Δf+, er1Δf−〉 between positive and negative parts can
already be detected coarsely on the Voronoi cells Vk. Its proof relies on Lemma 3.5.

Lemma 3.6. There exist C0,C1 > 0 such that for any C ≥ max(8
√

|b| + 4,16), any
r ≥ 1, and any f ∈ L2(M,ν) with ‖f‖ = 1, there holds

〈erΔf+, erΔf−〉 ≥ C0wC(r)2
∑
k∈N

m+
k m−

k − C1 exp
(

|b|r − C2r

64

)

where m±
k = 〈f±, erΔψk〉.
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Instead of wC(r)2 we could put the better wC(2)2 in the right-hand side. But
for simplicity of notation, since wC(r) appears at other places in the sequel whereas
wC(2) does not, we present the statement in the above form.

Proof of Lemma 3.6. We denote by R± the remainder corresponding to f± in
Lemma 3.5. We recall that C0 ≤ vol(supp(ψk)) ≤ C1 (see (13)).

Let k ∈ N and x ∈ supp(ψk). Averaging over x� in the support of ψk and using that
4r + 4 ≥ 2 ≥ diam(Vk) and ‖ψk‖L∞ ≤ C2 (see Sect. 2.2), we deduce from Lemma 3.5
that

erΔf±(x) ≥ C−1
2 wC(r)

vol(supp(ψk))
(〈erΔf±, ψk〉 − 〈R±, ψk〉)

≥ C3wC(r)m±
k − C4‖R±‖L2(supp(ψk)) ≥ 0 (43)

where we used the Cauchy-Schwarz inequality for the second term.
We notice that

∑
k∈N

m−
k ‖R+‖L2(supp(ψk)) ≤

(∑
k∈N

‖R+‖2
L2(supp(ψk))

) 1
2
(∑

k∈N

(
m−

k

)2
) 1

2

≤ C5 exp
(

|b|r − C2r

64

)

and similarly for the sum with switched signs, i.e., with m+
k and R−. Then using

(43) and the fact that wC(r) ≤ 1 we obtain

〈erΔf+, erΔf−〉

≥
∑
k∈N

∫

supp(ψk)
erΔf+(x)erΔf−(x)dν(x)

≥ C0
∑
k∈N

(
C3wC(r)m+

k − C4‖R+‖L2(supp(ψk))
) (

C3wC(r)m−
k − C4‖R−‖L2(supp(ψk))

)

≥ C6wC(r)2
∑
k∈N

m+
k m−

k − C7 exp
(

|b|r − C2r

64

)

which concludes the proof. �

We provide now what will serve as the lower bound for G1 + G2 alluded to at the
beginning of this section.

Lemma 3.7. For any x ∈ M set

Nx = {k ∈ N | supp(ψk) ∩ Bd(x,C �r2) �= ∅}. (44)
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There exist constants C0,C1 > 0 such that for any C ≥ max(8
√

|b| + 4,16), any f ∈
L2(M,ν) with ‖f‖ = 1, any x ∈ M ,

∑
k∈Nx

〈er1Δ|f |, ψk〉2

≥ C0 exp(−2r1

√
|b|)wC(r1)2‖χxer1Δ|f |‖2 − C1 exp

(
|b|r1 − C2r1

64

)
.

Proof. For any k ∈ N , we denote by yk a point where er1Δ|f | attains its minimum
on Vk = supp(ψk). We first show that

supp(χx) ⊂
⋃

k∈Nx

Bd(yk,2r1 + 2). (45)

Let z ∈ supp(χx). If z ∈ supp(χx) \ Bd(x,C �r2), then z ∈ Vk for some k ∈ N , and
d(z, yk) ≤ diam(Vk) ≤ 2r1 + 2. Otherwise, z ∈ Bd(x,C �r2), and therefore there exists
z� ∈ Bd(x,C �r2 − r1) at distance at most r1 from z. We have Bd(z�, r1) ⊂ B(x,C �r2),
therefore there exists an element of the r1-net xk ∈ B(x,C �r2) with d(xk, z�) ≤ r1. It
follows that

d(yk, z) ≤ d(yk, xk) + d(xk, z�) + d(z�, z) < 2r1 + 2.

Using Lemma 3.5 and noticing that 4r1 +4 is the diameter of the ball Bd(yk,2r1 +
2), we have

〈er1Δ|f |, ψk〉2 ≥ C0(er1Δ|f |(yk))2

≥ C0 exp(−2r1

√
|b|)wC(r1)2

∫

Bd(yk,2r1+2)
(er1Δ|f |(x�) − R(x�))2ν(dx�)

where we used that vol(Bd(yk,2r1 +2)) ≤ C1 exp(2r1
√

|b|) according to (9). Summing
over k ∈ Nx and using (45), we obtain
∑

k∈Nx

〈er1Δ|f |, ψk〉2 ≥ C0 exp(−2r1

√
|b|)wC(r1)2

∫

M
χx(x�)(er1Δ|f |(x�) − R(x�))2ν(dx�)

≥ C0 exp(−2r1

√
|b|)wC(r1)2‖χxer1Δ|f |‖2 − C2‖R‖

where in the last line we developed the square in the right-hand side, we used the
Cauchy-Schwarz inequality in L2(M,ν) and the bound ‖er1Δ|f |‖ ≤ 1. �

Lemma 3.8. Let ϕx be a function which attains the supremum in (34). There exist

C0,C1 > 0 such that for any C ≥ max(8
√

|b| + 4,16) and any x ∈ M ,

‖(Pχxer1ΔχxP )ϕx‖2 ≤ (1 − C0 exp(−2r1

√
|b|)wC(r1)4)‖er1Δ|ϕx|‖2

+ C1 exp
(

|b|r1 − C2r1

64

)
.
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Proof. We fix x ∈ M . We compute ε = ‖er1Δχx|ϕx|‖2 −‖Pχxer1ΔχxPϕx‖2 which can
be simplified to

ε = ‖er1Δ|ϕx|‖2 − ‖Pχxer1Δϕx‖2

due to (36). First we compute without the absolute value on ϕx, and we use from
line 1 to line 2 that χx ∈ {0,1}:

‖er1Δϕx‖2 − ‖Pχxer1Δϕx‖2 = 〈(Id − χxPχx)er1Δϕx, er1Δϕx〉

= ‖(1 − χx)er1Δϕx‖2 + ‖(Id − P )χxer1Δϕx‖2

= ‖(1 − χx)er1Δϕx‖2 +
∑

k∈Nx

〈er1Δϕx, ψk〉2

where Nx has been introduced in (44).
Then we notice the following identity:

‖er1Δ|ϕx|‖2 − ‖er1Δϕx‖2 = 4〈er1Δϕ+, er1Δϕ−〉

where ϕ± = max(±ϕx,0). All in all,

ε = 4〈er1Δϕ+, er1Δϕ−〉 + ‖(1 − χx)er1Δϕx‖2 +
∑

k∈Nx

(〈er1Δϕ+, ψk〉 − 〈er1Δϕ−, ψk〉)2

(we write the last term as a difference on purpose). Using Lemma 3.6, its notation
and the fact that m+

k + m−
k = 〈er1Δ|ϕx|, ψk〉 we have

ε ≥
∑

k∈Nx

(m+
k − m−

k )2 + 2
(

C0wC(r1)2
∑
k∈N

m+
k m−

k − C1 exp
(

|b|r1 − C2r1

64

))

+ 2〈er1Δϕ+, er1Δϕ−〉 + ‖(1 − χx)er1Δϕx‖2

≥ min
(

1,
C0wC(r1)2

2

) ∑
k∈Nx

〈er1Δ|ϕx|, ψk〉2

− 2C1 exp
(

|b|r1 − C2r1

64

)
+

‖(1 − χx)er1Δ|ϕx|‖2

2
.

Using Lemma 3.7 and its notation we obtain that there exist C2,C3 > 0 such that

ε ≥ C2 exp(−2r1

√
|b|)wC(r1)4‖χxer1Δ|ϕx|‖2 +

‖(1 − χx)er1Δ|ϕx|‖2

2

− C3 exp
(

|b|r1 − C2r1

64

)

≥ C2 exp(−2r1

√
|b|)wC(r1)4‖er1Δ|ϕx|‖2 − C3 exp

(
|b|r1 − C2r1

64

)
,

which concludes the proof. �
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4 Proof of the main results

4.1 Proof of Theorems 1.1 and 1.4. Building upon the results of Sect. 3, we
proceed with the proof of Theorem 1.4, and we explain at the end of the section how
to deduce Theorem 1.1. We fix ρ > 0, b < 0 and M a closed, connected Riemannian
surface with inj(M) ≥ ρ and c(x) ≥ b for any x ∈ M . We also assume vol(M) ≥ 3 in
order for r1, r2 to be well-defined. The case of small volumes is handled at the end.

We recall that μ2 = e−λ2(M). We denote by m the multiplicity of λ2(M) as an
eigenvalue of −Δ. Then, m is also the multiplicity of μr1

2 as an eigenvalue of er1Δ.
We denote by m� the multiplicity of μr1

2 as an eigenvalue of Per1ΔP , which is also
compact, self-adjoint and non-negative.

In the sequel, we provide an upper bound on m� which will be seen to be sufficient
to bound m (see (56) below).

Since eΔ is a trace-class operator, (Per1ΔP )2�r2/r1�+2 is also trace-class. We have
by Lemma A.3

m�μ
2r1(�r2/r1�+1)
2 ≤ Tr((Per1ΔP )2�r2/r1�+2) =

∫

M
‖(Per1ΔP )�r2/r1�+1δx‖2dν(x)

The right-hand side is bounded above by

C0

(
exp

(
−C �2r2

32

)
vol(M) +

∫

M
sup

ϕx
=1

‖(Pχxer1ΔχxP )�r2/r1�ϕx‖2dν(x)
)

due to Lemma 3.1. This last expression is equal to

C0

⎛
⎝exp

(
−C �2r2

32

)
vol(M) +

∫

M

(
sup

ϕx
=1

‖(Pχxer1ΔχxP )ϕx‖2

)�r2/r1�

dν(x)

⎞
⎠ (46)

since Pχxer1ΔχxP is self-adjoint on L2(M,ν).
To continue, we need to fix the parameters C, C � and the parameter c introduced

in (8). We denote by C2 ∈ (0,1) a constant such that μ2 ≥ C2 for any M of curvature
≥ b (thanks to Lemma A.2). We choose successively (in this order) C �, C and c > 0
such that

C �2

32
≥ max(32

√
|b| + 16,−4 log C2 + 1) (47)

C2

64
≥ |b| + 25(1 + |b|)(1 + C) − 2 log(C2) (48)

and C ≥ max(8
√

|b| + 4,16) (49)

1
4

≥
(

2C �
√

|b| − 4 log C2 + 25(1 + |b|)(1 + C)
)

c. (50)

We also assume vol(M) large enough so that r1 ≥ 1. We separate the integral in (46)
into an integral over S and an integral over M \S, where S is chosen as in Lemma 3.4.
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Due to Lemma 3.4, the integral over S is bounded above by ν(S) ≤ C1 exp(2C �r2
√

|b|)
since the operator norms of er1Δ, χx and P are equal to 1. The integral over M \ S

is bounded above by

∫

M\S

(
(1 − C4 exp(−hr1))2 ‖er1Δ|ϕx|‖2 + C3 exp

(
|b|r1 − C2r1

64

))�r2/r1�

dν(x) (51)

by Lemma 3.8 (which we can apply thanks to (49)), where

h = 25(1 + |b|)(1 + C).

For any x ∈ M \ S, we have by definition of S

(1 − C4 exp(−hr1))2 ‖er1Δ|ϕx|‖2 ≤ (1 − C4 exp(−hr1))2μ2r1
2 . (52)

Thanks to (48),

C2

64
r1 ≥ |b|r1 + hr1 − 2 log(C2)r1.

Therefore we get, again for vol(M) large enough,

C4

2
exp

(
|b|r1 − C2r1

64

)
≤ C4

2
exp(−hr1)μ2r1

2

≤ μ2r1
2

(
1 − C4

2
exp(−hr1)

)2
− μ2r1

2 (1 − C4 exp(−hr1))2.

Combining with (52), we obtain that (51) is bounded above by

C0μ
2r1�r2/r1�
2

∫

M\S

(
1 − C4

2
exp(−hr1)

)2�r2/r1�
dν(x)

≤ C0vol(M)
(

μr1
2

(
1 − C4

2
exp(−hr1)

))2�r2/r1�

due to Lemma 3.4. Summarizing, we have obtained

m�μ
2r1(�r2/r1�+1)
2 ≤ C0vol(M)

(
μr1

2

(
1 − C4

2
exp(−hr1)

))2�r2/r1�
(53)

+ C0 exp(2C �r2

√
|b|) + C0 exp

(
−C �2r2

32

)
vol(M)

We divide by μ
2r1(�r2/r1�+1)
2 and use the inequality 1 − x ≤ e−x to deduce that m�

is bounded above by

C0

(vol(M)
μ2r1

2
exp (−C5 exp(−hr1)	r2/r1
)
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+
exp(2C �r2

√
|b|) + exp(−C �2r2/32)vol(M)

μ4r2
2

)
(54)

Thanks to our choice of parameters (47) and (50) we get that

exp(2C �r2
√

|b|) + exp(−C �2r2/32)vol(M)
μ4r2

2
≤ vol(M)

1
2 + vol(M)1−c.

Thanks to (50) we have for vol(M) sufficiently large

vol(M)
μ2r1

2
exp (−C5 exp(−hr1)	r2/r1
) ≤ vol(M) exp

(
−C6 log2/3 vol(M)

)
.

All in all, we find that for vol(M) sufficiently large,

m� ≤ C0vol(M) exp
(
−C6 log2/3 vol(M)

)
. (55)

By the Cauchy interlacing theorem (Theorem A.1) there holds

m ≤ m� + rank(Id − P ). (56)

Under the assumptions of Theorem 1.4 we can choose the r1-net in a way that
rank(Id − P ) ≤ C0vol(M)/r1 according to Lemma 2.2, which together with (55) and
(56) concludes the proof in this first case for vol(M) large enough. Combining with
[Asm16, Corollary 1.1] we get the result for any vol(M).

Under the additional assumption that λ2(M) ≥ δ, we can choose the r1-net in a
way that rank(Id − P ) ≤ C0vol(M)/eδ′r1 according to Lemma 2.3 (with δ� given in
this lemma), which together with (55) and (56) proves the following statement:

Theorem 4.1. For any ρ > 0, b < 0 and δ > 0 there exist C0, α > 0 such that

for any closed, connected Riemannian surface M with inj(M) ≥ ρ, Gaussian cur-

vature ≥ b and spectral gap λ2(M) ≥ δ, the multiplicity of λ2(M) is at most

C0(1 + vol(M)
logα(3+vol(M))).

The first part of Theorem 1.1 follows from Theorem 1.4 together with the Gauss-
Bonnet theorem, which implies that vol(M) ≤ 4π

|a| (g − 1). Similarly, the second part
of Theorem 1.1 follows from Theorem 4.1 together with the Gauss-Bonnet theorem.

Remark 4.2. To make the constants C0,C1 and α in Theorem 1.1 explicit, we

first multiply the Riemannian metric on M by |b| 1
2 + ρ−1 to obtain M �. Then

M � ∈ M(a′,−1,1) where a� = a
(
|b| 1

2 + ρ−1
)−2

. Combining Theorem 1.4 (resp. Theo-

rem 4.1) applied to M � with parameters b = −1 and ρ = 1 (resp. b = −1, ρ = 1 and
δ(

|b|
1
2 +ρ−1

)2 ) and the Gauss–Bonnet formula we get that C0,C1, α may be taken as

C0 = C1 = Cu
|b| + ρ−2

|a| and α = cu

max
( √

δ√
20 , δ

4
√
|b|

)

|b| 1
2 + ρ−1
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where Cu > 0 and cu > 0 are two universal constants computable - in principle - from

our methods.

Remark 4.3. One can draw from (54) a justification for our choices of r1 and

r2 as (8). Indeed, our goal is to make (54) sublinear in vol(M). For the term

exp(2C �r2
√

|b|)/μ4r2
2 , this requires r2 = O(log vol(M)). At the heuristic level, beyond

time log vol(M), the heat kernel is spread almost uniformly over M (whose typi-

cal diameter is of order log vol(M) for negatively curved surfaces under the spectral

gap assumption), and extracting any kind of information from its analysis becomes

difficult.

In turn, the term vol(M)
μ

2r1
2

exp (−C5 exp(−hr1)	r2/r1
) requires exp(−hr1)	r2/r1
 →
0 as vol(M) → +∞, in particular r1 = O(log(r2)). We need r1 largest possible

due to (56) and the fact that rank(Id − P ) is a decreasing function of r1 (see

Lemma 2.2 and Lemma 2.3). This explains our choice of r1 = Θ(log log vol(M)) and

r2 = Θ(log vol(M)).
In particular, the term rank(Id − P ) in the right-hand side of (56) cannot be

made smaller than vol(M)
log log vol(M) with our arguments (or vol(M)

logα vol(M) , if the spectral gap

assumption is made). And we notice that this term is precisely the one which one

would need to improve in order to enhance the final bound on m, since the bound

(55) on m� is indeed already much better.

4.2 Proof of Theorem 1.2. Theorem 1.2 is a direct consequence of the Gauss-
Bonnet formula together with the following result, which we prove in this section
through elementary modifications of Sect. 4.1.

Theorem 4.4. For any j ∈ N≥2, any ρ,K,β > 0 and b < 0 there exist C0, v0 >

0 such that for any closed, connected Riemannian surface M with inj(M) ≥ ρ,

vol(M) ≥ v0, and Gaussian curvature ≥ b, the number of eigenvalues in [λj(M), (1 +
K

logβ vol(M))λj(M)] is at most C0(1 + vol(M)
log log(3+vol(M))).

Proof. We need the following straightforward adaptation of Lemma 3.4.

Lemma 4.5. For any j ∈ N≥2, there exists C �
j > 0 and a subset S ⊂ M of area ν(S) ≤

C �
j exp(2C �r2

√
|b|) such that for any x /∈ S,

‖er1Δ|ϕx|‖ ≤ μr1
j

where ϕx has been introduced in Sect. 3.2.

Fix j ∈ N≥1 and β,K > 0. We denote by m� the number of eigenvalues of Per1ΔP

contained in [μr1
j (1 − δ), μr1

j ] where δ = K log log vol(M)
logβ vol(M) . Compared to (47)-(50), the

constants C � and C are fixed using Cj (coming from Lemma A.2) instead of C2, and
(50) is replaced by

β

4
≥
(

2C �
√

|b| − 4 log Cj + 25(1 + |b|)(1 + C)
)

c.
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Instead of (53) we obtain using Lemma 4.5

m�μ
2r1(�r2/r1�+1)
j (1 − δ)2�r2/r1�+2

≤ C0vol(M)
(

μr1
j

(
1 − C4

2
exp(−hr1)

))2�r2/r1�
+ C0 exp(2C �r2

√
|b|)

+ C0 exp
(

−C �2r2

32

)
vol(M).

Dividing by μ
2r1(�r2/r1�+1)
j (1 − δ)2�r2/r1�+2 and proceeding as in Sect. 4.1, we obtain

instead of (55)

m� ≤ C0vol(M) exp
(
− log1−β

2 vol(M)
)

(1 − δ)−2�r2/r1�−2

and thanks to the definition of δ and the inequality (1 − δ)n ≤ e−nδ, we finally get
for sufficiently large g

m� ≤ C0g exp
(
(4K log1−β vol(M)) − (log1−β

2 vol(M))
)

≤ C0
vol(M)

log log vol(M)
.

By the Cauchy interlacing theorem (Theorem A.1) we obtain that the number m of
eigenvalues of er1Δ in [μr1

j (1 − δ), μr1
j ] is bounded above by C0

vol(M)
log log vol(M) . It implies

the same bound for the number of eigenvalues of eΔ in [μj(1 − K
2c logβ vol(M)), μj ], and

Theorem 4.4 follows. �
Theorem 1.2 follows directly from Theorem 4.4 together with the Gauss-Bonnet

formula which implies that vol(M) ≤ 4π
|a|g for M ∈ M(a,b,ρ)

g .

Remark 4.6. In the present paper, we rely on the trace method to bound eigen-

value multiplicity. The natural time scale of the trace which we consider, namely

(Per1ΔP )�r2/r1�+1 ≈ e�r2/r1�r1Δ, is O(r1	r2/r1
) = O(c log vol(M)). With this time

scale, it is impossible to distinguish eigenvalues that differ by O(1/ log vol(M)). Anal-
ogously, the spectral bounds obtained in [Mon22, Theorems 4 and 5] do not give

precise information in spectral windows of size � 1/
√

log(g).

4.3 Scale-free version of Theorem 1.4. We conclude this section with a version
of Theorem 1.4 which involves only quantities which are invariant under rescaling of
the metric, in the spirit of [Asm16, Corollary 1.1]. For a closed connected Riemannian
surface M , we define κ(M) as the smallest κ ≥ 0 such that c(x) ≥ −κ for any x ∈ M .
We set

G(M) = vol(M)(κ(M) + inj(M)−2)

which is a scale-free quantity, meaning that if the metric on M is multiplied by a
factor R > 0, G(M) remains unchanged.

Theorem 4.7. There exists C0 > 0 such that for any closed, connected Riemannian

surface M , the multiplicity of λ2(M) is at most C0(1 + G(M)
log log(3+G(M))).
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Theorem 4.7 improves (for surfaces) over the bound (1.14) in [Asm16], which
is linear in G(M). It is possible to prove scale-free bounds similar to Theorem 4.7
which generalize the second part of Theorem 1.1 (with spectral gap assumption),
and Theorems 1.2 and 4.4.

Proof of Theorem 4.7. Let M be a closed connected Riemannian surface. Denote
by MR the surface obtained by multiplying the metric on M by R > 0. For some
R0 ≤ max(κ(M)1/2, inj(M)−1), we have inj(MR) ≥ 1 and κ(MR) ≤ 1 for any R ≥
R0. Applying Theorem 1.4 to MR0 , we obtain that the multiplicity of λ2(MR0) is
≤ C0(1 + vol(MR0 )

log log(3+vol(MR0 ))), and the same bound holds for the multiplicity of λ2(M)
since multiplicity is preserved under scaling. Since vol(MR0) ≤ G(M), we get the
result. �

4.4 Proof of Proposition 1.3. Our proof of Proposition 1.3 essentially relies on
the following lemma, extracted from [CV88].

Lemma 4.8 (Extracted from [CV88]). Let G = (V,E) be a non-oriented finite graph,

possibly with loops and multiedges, whose vertices have degrees di ≥ 3 for any i ∈ V ,

and whose edge lengths are denoted by (θi,j){i,j}∈E . Then there exists a sequence of

closed hyperbolic surfaces (Xε)ε>0 of genus |E|−|V |+1 whose first |V | eigenvalues of
the positive Laplacian λ1(ε) ≤ · · · ≤ λ|V |(ε) (repeated according to multiplicities) sat-

isfy λj(ε) = εζj + O(ε2) where ζ1 ≤ · · · ≤ ζ|V | are the |V | eigenvalues of the quadratic

form

qθ(x) =
1
π

∑
{i,j}∈E

θi,j |xi − xj |2, x ∈ R
V (57)

on L2(V,μ) and μ = 2π
∑

i∈V (di − 2)δi with δi the Dirac mass on i ∈ V .

Sketch of proof of Lemma 4.8 extracted from [CV88]. For any i ∈ V , we denote by
Vi the multiset of j ∈ V such that {i, j} ∈ E (the fact that Vi is a multiset comes
from the fact that we allow loops and multiedges). The degree of i ∈ V is di = |Vi| ≥ 3.

The authors of [CV88] first construct a closed hyperbolic surface X as follows: to
the vertex i ∈ V is associated Xi, a compact hyperbolic surface with di free geodesics
(γi,j)j∈Vi on its boundary, by gluing di −2 pants (see [CV88, Section VI] and its figures
for the case of the complete graph). This is done in a way that the length �(γi,j) is
equal to θi,j . To construct the surface X we glue the pieces Xi as indicated by the
graph G: for {i, i�} ∈ E, we glue Xi and Xi′ by identifying γi,i′ with γi′,i without
twist. In particular if i = i�, i.e. the edge {i, i�} is a loop, we identify without twist
one γi,i with another γi,i.

In [CV88, Section II], the authors construct from X a family of closed hyperbolic
surfaces Xε (0 < ε ≤ 1) as follows. The geodesics in the pant decomposition of X

which do not belong to the boundary of one of the Xi, i ∈ V , remain of fixed length.
For {i, j} ∈ E, the geodesic γi,j of X is replaced in Xε by a geodesic γε

i,j of length
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�ε
i,j = εθi,j . Note that vol(Xε

i ) = vol(Xi) = 2π(di − 2) for any i ∈ V , by the Gauss-
Bonnet formula.

Then, in [CV88, Section V], the authors consider the measure μ = 2π
∑

i∈V (di −
2)δi on G, and the quadratic form qθ on L2(V,μ) given by (57), which is the Dirichlet
form on G endowed with edge lengths θ = (θi,j){i,j}∈E . Then in [CV88, Sections I
and V] they exhibit a quadratic form qε

θ on L2(V,μ) (depending continuously on
the geometric parameter θ) whose spectrum is the set of first |V | eigenvalues of
Xε and such that limε→0 ‖(qε

θ/ε) − qθ‖ = 0, uniformly in θ ∈ W for every compact
W � (R>0)E . In particular it implies that the eigenvalues (λi(ε))i∈V of Xε verify
λi(ε) ∼ εζi (ε → 0) where the (ζi)i∈V are the eigenvalues of qθ on L2(V,μ).

The genus of Xε is equal to (p + 2)/2 where p =
∑

i∈V (di − 2) = 2|E| − 2|V | is the
number of pants used in the decomposition. This concludes the proof of Lemma 4.8.

�
End of the proof of Proposition 1.3. Let n ∈ N≥3. We consider the star graph Fn

with n branches (i.e. n edges and n+1 vertices). Since this graph has leaves (vertices
of degree 1), we cannot apply Lemma 4.8 directly to Fn. Therefore, we also consider
Gn the graph obtained by adding a loop at each of the n leaves of Fn. The central
vertex of Gn has degree n, and all n other vertices of Gn have degree 3. All edges of Fn

and Gn have length 1. We denote by Vn the vertex set of Gn, and by En its multiset
of edges. We have |Vn| = n+1 and |En| = 2n. Finally, we set μn = 2π

∑
i∈Vn

(di −2)δi.
The eigenvalues of the quadratic form qθ given by (57) (for Gn) on L2(Vn, μn) are

equal to those of the (positive) Laplacian on Gn given by

(Δx)i =
1

di − 2
∑
j∈Vi

xi − xj

(see e.g. [Ver88, Sect. 4]). Its eigenvalues are 2n−2
n−2 , 1 and 0, with respective multi-

plicities 1, n − 1 and 1.
For a given n, we use Lemma 4.8 for sufficiently small εn. We obtain a closed

connected hyperbolic surface Mgn of genus

gn = |En| − |Vn| + 1 = n. (58)

having at least n − 1 eigenvalues in [λ2(Mgn), (1 + Cnεn)λ2(Mgn)] for some Cn > 0
which does not depend on εn. Taking εn < εgn/Cn, this concludes the proof. �

Appendix

We gather in this appendix several statements and proofs of elementary facts that
are used throughout the proof of our main results.

A.1: Eigenvalues and trace

We first prove an infinite-dimensional version of the Cauchy interlacing theorem (see
also [DD87, Theorem 2]).
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Theorem A.1 (Cauchy interlacing theorem). Let A be a positive compact self-adjoint

operator on a Hilbert space H . Let P = P� be an orthogonal projection onto a sub-

space of H of codimension k ∈ N. We denote by α1 ≥ α2 ≥ . . . the eigenvalues of A,

and by β1 ≥ β2 ≥ . . . those of B = PAP . Then for any j ∈ N,

αj ≥ βj ≥ αj+k.

Proof of Theorem A.1. Since B is compact and self-adjoint, the spectral theorem
provides a basis (bj)j∈N of normalized eigenvectors of B, with Bbj = βjbj for any
j ∈ N (notice that to order the βj we use that B ≥ 0). We set Sj = Span(b1, . . . , bj)
and we notice that Sj ⊂ Im(P ). We compute

βj = min
x∈Sj , 
x
=1

(PAPx,x) = min
x∈Sj , 
x
=1

(Ax,x)

≤ max
V, dim(V )=j

min
x∈V, 
x
=1

(Ax,x) = αj .

Also, noticing that PS⊥j−1 has codimension at most k + j − 1 we obtain

βj = max
x∈S⊥

j−1, 
x
=1
(PAPx,x) ≥ max

x∈P S⊥
j−1, 
x
=1

(PAPx,x)

= max
x∈P S⊥

j−1, 
x
=1
(Ax,x) ≥ min

V, codim V≤k+j−1
max

x∈V, 
x
=1
(Ax,x) = αk+j

which concludes the proof. �

We recall the following estimate:

Lemma A.2 (Upper bound on eigenvalues). For any b ∈ R and any j ∈ N≥2, there

exists Cj > 0 such that any closed surface M with curvature bounded below by b

verifies λj(M) ≤ Cj .

Proof. The diameter d of a closed surface M with curvature bounded below by b is
bounded below since for any x ∈ M̃ ,

4π

|b| ≤ vol(M) ≤ Vol
M̃

(B
M̃

(x,d)) ≤ 4π

|b| sinh2
(

d

2

√
|b|
)

where the left-hand side comes from Gauss-Bonnet and the right-hand side from (9).
Combining with [Che75, Corollary 2.3] we get the result. �

Lemma A.3 (Computation of the trace). For any n ∈ N≥1 and t ≥ 1, there holds

Tr((PetΔP )2n) =
∫

M
‖(PetΔP )nδx‖2dν(x).

Proof. We set Q = PetΔP . Let (uj)j∈N denote an orthonormal basis of eigenfunctions
of the compact and self-adjoint operator Qn, with associated eigenvalues ζj . For any
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x ∈ M we set ux =
∑

j∈N ζjuj(x)uj . We know that Q2n is trace-class since eΔ is
trace-class, and

Tr(Q2n) =
∑
j∈N

ζ2
j =

∫

M

⎛
⎝∑

j∈N
ζ2

j uj(x)2

⎞
⎠ν(dx) =

∫

M
‖ux‖2ν(dx). (59)

In particular, ux ∈ L2(M,ν) for ν-almost every x ∈ M . For any such x and any
f ∈ C∞(M), written as f =

∑
j∈N ajuj , we have

〈Qnδx, f〉D′,D = 〈Pδx, etΔPQn−1f〉D′,D = etΔPQn−1f(x) −
∑
k∈N

〈etΔPQn−1f,ψk〉ψk(x)

= Qnf(x) =
∑
j∈N

ajζjuj(x) =
∫

M
ux(y)f(y)ν(dy)

where the first equality comes from the fact that the transpose (in the sense of dis-
tributions) of the continuous linear map from smooth functions to smooth functions
etΔPQn−1 is Qn−1PetΔ; and the second equality follows from (14). We deduce from
this computation that Qnδx coincides with the distribution 〈ux, ·〉L2(M,ν), which is
identified to ux ∈ L2(M,ν). Plugging into (59), this concludes the proof. �

A.2: Heat kernel: comparison and estimates

We provide here the proofs of Lemma 2.4 and 2.5 on the heat kernel in M̃ and M .

Proof of Lemma 2.4. We recall from [Dav89, Theorem 5.7.2] that there exist con-
stants c1, c2 > 0 such that for any η, t > 0,

c1g1(t, η) ≤ kH
2

t (η)

where kH
2 denotes the heat kernel in the hyperbolic plane (equal to k(−1) with the

notation of Lemma 2.1) and

g1(t, η) =
1
t

1 + η

(1 + η + t) 1
2

exp
(

− t

4
− η

2
− η2

4t

)
.

For K < 0 we consider

g|K|(t, η) = |K|g1(|K|t, |K| 1
2 η) =

1
t

1 + |K| 1
2 η

(1 + |K| 1
2 η + |K|t) 1

2
exp

(
−|K|t

4
− |K| 1

2 η

2
− η2

4t

)
,

which is the analogue of g1 on the space form M̃K introduced in Sect. 2.1. Using
Lemma 2.1 we obtain for the heat kernel kt(·, ·) in M̃ that

c1g|b|(t, dM̃
(x, y)) ≤ kt(x, y) (60)
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for any x, y ∈ M̃ and any t > 0. Combining [Dav93, Theorem 3] and [Cro80, Propo-
sition 14] we also get the bound

kt(x, y) ≤ C0
1
t

(
1 +

d
M̃

(x, y)2

t

)
exp

(
−

d
M̃

(x, y)2

4t

)
(61)

where C0 > 0 depends on b and ρ.
For (15), we set for n ∈ N

An =
{

y ∈ M̃ | Ct + n ≤ d
M̃

(x, y) < Ct + n + 1
}

⊂ M̃.

Then Vol
M̃

(An) ≤ Vol
M̃

(B(x,Ct + n + 1)) ≤ C0 exp((Ct + n)
√

|b|) according to (9).
We write M̃ \ B

M̃
(x,Ct) =

⋃∞
n=0 An, and then using (61) and the fact that C, t ≥ 1,

we obtain

‖kt(x, ·)‖
L1(M̃\B

M̃
(x,Ct)) ≤ C3

∞∑
n=0

(Ct + n)2

t
exp

(
−(Ct + n)2

4t

)
Vol

M̃
(An)

≤ C3

∫ ∞

Ct−1

η2

t
exp

(
−η2

4t

)
exp(η

√
|b|)dη

≤ C3 exp(|b|t)
∫ ∞

Ct−1

η2

t
exp

(
−(η − 2t

√
|b|)2

4t

)
dη (62)

where C3 = C0
ρ2 (1 + |b|2) for some universal constant C0 > 0. We make the change of

variables η� = η −2t
√

|b| and we use that Ct−1−2t
√

|b| ≥ 3Ct/4 and η +2t
√

|b| ≤ 2η

for η ≥ 3Ct/4 to obtain that (62) is bounded above by

C3 exp(|b|t)
∫ ∞

3Ct/4

η2

t
exp

(
−η2

4t

)
dη.

Computing this last integral gives the result.
For (16), we set η = d

M̃
(x, y) and α = d

M̃
(x, z) − d

M̃
(x, y). We have, using again

(60) and (61),

kt(x, z)
kt(x, y)

≥ C4
tg|b|(t, η + α)(

1 + η2

t

)
exp

(
−η2

4t

)

= C4
t
(
1 + |b| 1

2 (η + α)
)

(
1 + η2

t

)(
1 + |b| 1

2 (η + α) + |b|t
) 1

2
h(α,η) (63)

where

h(α,η) = exp
(

−|b|t
4

− |b| 1
2 (η + α)

2
− (η + α)2

4t
+

η2

4t

)
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≥ C5 exp
(

−|b|t
4

− |b| 1
2 (C + 4)t

2
− 2C(t + 1) − 4t

)

≥ C5 exp
(

−|b|t
4

− (1 + |b|)(C + 4)t
4

− 4(C + 1)t
)

(64)

where we used in the second line η ≤ Ct and |α| ≤ 4t + 4, and in the last line that
(1+ |b|) ≥ 2|b| 1

2 and t ≥ 1. Combining (63) and (64), and using η ≤ Ct and |α| ≤ 4t+4
again, we get (16). �

Proof of Lemma 2.5. We write M = Γ\M̃ . We prove that there exists C0 > 0 uni-
versal such that for any η ≥ 0 and any x̄ ∈ M̃ , the number of elements γ ∈ Γ such
that d

M̃
(x̄, γx̄) < η + 1 is at most C0ρ−2eη

√
|b|. By definition of the injectivity radius

ρ, the open balls Bγ of center γx̄ and radius ρ/2, for γ ∈ Γ, are disjoint. If γ ∈ Γ is
such that d

M̃
(x̄, γx̄) < η + 1, then Bγ is included in the ball of center x̄ and radius

η + 1 + ρ/2. According to (9), the volume of a ball of radius η + 1 + ρ/2 in M is
at most 4π

|b| sinh2(1
2(η + 1 + ρ/2)

√
|b|), and according to [Cro80, Proposition 14], the

volume of a ball of radius ρ/2 is at least C1ρ2 > 0. Therefore, the number of γ ∈ Γ
such that d

M̃
(x̄, γx̄) < η + 1 is smaller than

C0

ρ2|b| sinh2
(1

2

(
η + 1 +

ρ

2

)√
|b|
)

which in turn is bounded above by C0|b|−1ρ−2eη
√
|b|.

As a consequence, for any x̄, ȳ ∈ M̃ and η ≥ 0,

#{γ ∈ Γ | η ≤ d(x̄, γȳ) < η + 1} ≤ C0

|b|ρ2 e2η
√
|b|. (65)

Below, x̄, ȳ are lifts of given x, y ∈ M to a fundamental domain of M in M̃ . For any
y ∈ M we have, using (61) in the first line and (65) in the second line,

∑
γ∈Γ

kt(x̄, γȳ) ≤ C1

∞∑
η=0

(#{γ ∈ Γ | η ≤ d(x̄, γȳ) < η + 1})
1
t

(
1 +

η2

t

)
exp

(
−η2

4t

)

≤ C1

∞∑
η=0

1
t

(
1 +

η2

t

)
exp

(
2η
√

|b| − η2

4t

)

where C1 > 0 depends on b and ρ. For any t > 0 this sum converges. Using then a
series-integral comparison for the last inequality (cutting the sum at η = 4t

√
|b|) and

(10) we get the result. �
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