Geom. Funct. Anal. Vol. 0 (0000) 1-37 | GAFA Geometric And Functional Analysis
https://doi.org/10.1007/s00039-024-00691-w

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024
Check for

updates

MAXIMAL MULTIPLICITY OF LAPLACIAN EIGENVALUES
IN NEGATIVELY CURVED SURFACES

CYRIL LETROUIT AND SIMON MACHADO

Abstract. In this work, we obtain the first upper bound on the multiplicity of Lapla-
cian eigenvalues for negatively curved surfaces which is sublinear in the genus g. Our
proof relies on a trace argument for the heat kernel, and on the idea of leveraging an
r-net in the surface to control this trace. This last idea was introduced in 2021 for
similar spectral purposes in the context of graphs of bounded degree. Our method
is robust enough to also yield an upper bound on the “approximate multiplicity” of
cigenvalues, i.e., the number of eigenvalues in windows of size 1/log”(g), > 0. This
work provides new insights on a conjecture by Colin de Verdiére and new ways to
transfer spectral results from graphs to surfaces.

1 Introduction

1.1 Main results. Let M be a closed, connected Riemannian manifold, and let A
denote the Laplace-Beltrami operator on M, simply called “Laplacian” in the sequel,
which is self-adjoint and non-positive. The operator —A has a discrete spectrum

0=M(M)<X(M)<--- = o0, (1)

where the \;(M) are repeated according to their multiplicity.
Our first main result deals with the case where M is a closed negatively curved
surface. We denote by T the set of triples

T ={(a,b,p) eR*|b<a<0, p>0}.

For any (a,b,p) € T, let ./\/léa’b’p ) be the set of closed connected surfaces of genus ¢,
with injectivity radius > p, and with Gaussian curvature c(z) satisfying b < c¢(z) < a
for any x € M. An important example is obtained by taking (a,b,p) = (—1,—1, p),
in which case M_S,“’b”’ ) is the set of hyperbolic surfaces (i.e., with constant curvature
—1) of injectivity radius > p.

We obtain a general sublinear upper bound on the maximal multiplicity of Ao (M)
for negatively curved surfaces. Our first main result is the following:

Theorem 1.1 (Maximal multiplicity of A\2). For any (a,b,p) € T, there exists Cy >0
such that for any g > 2 and any M € Méa’b’p), the multiplicity of M\o(M) is at most

g
Co loglog(1+g) -
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For any (a,b,p) € T and § > 0, there exist C, a >0 such that for any g > 2 and
any M € ./\/léa’b’p) with spectral gap Xo(M) > 6, the multiplicity of Ao(M) is at most

g9
110gag-

The dependence of Cy,Ci, on a,b, p,d is explicit. For instance, Cy = C’(’)lblTap[Z
with C{ > 0 universal, see Remark 4.2. Our strategy of proof partly relies on a
geometric idea which takes its source in [J+21]. This last work proves the same
sublinear bound as ours, for the adjacency matrix of combinatorial graphs with a
uniform bound on the degree.

Our next statement is stronger than Theorem 1.1, in the sense that it accommo-
dates for “approximate multiplicity” in a window of size O(1/log?(g)), 8> 0 (see
Remark 4.6 for comments on the size of this window). This result parallels a similar
statement [M+422, Theorem 1.6] for graphs with a uniform bound on the degree of
each vertex.

Theorem 1.2 (Maximal approximate multiplicity of A;). For any j € N>o, any
(a,b,p) €T, and any B, K >0, there exists Cy >0 and go € N>o such that the num-
ber of eigenvalues in [N\;(M), (1 + —5-)\;(M)] is at most Cotogingg Jor any g = go

log” g
and any M € /\/léa’b’p).

Following an analogous result on regular graphs [MRS21, Proposition 5.3] and
using a graphs to surfaces transfer principle due to Colin de Verdiére and Colbois
[CV88], we also provide a construction of closed hyperbolic surfaces with high ap-
proximate multiplicity. This result shows that if the injectivity radius is allowed to
tend to 0, no bound like the one in Theorem 1.2 can hold.

Proposition 1.3. For any sequence of positive numbers (ag)gesz, there exists a family
of connected closed hyperbolic surfaces (My)gen.,, where My has genus g, with at
least g — 1 eigenvalues in [Aa(My), (1 4 e4)Aa(My)].

1.2 A general volume-dependent bound. Theorems 1.1 and 1.2 are deduced
from more general statements, which bound the (approximate) multiplicity in terms
of three geometric quantities: the volume, the injectivity radius, and a lower bound
on the Gaussian curvature. For instance:

Theorem 1.4. For any p >0 and b <0 there exists Cy > 0 such that for any closed,
connected Riemannian surface M with injectivity radius inj(M) > p and Gaussian

curvature > b, the multiplicity of Ao(M) is at most Cy(1 + M).

If a negative upper bound on the Gaussian curvature is imposed in addition, then
together with the Gauss-Bonnet theorem this implies Theorem 1.1. In complement
to Theorem 1.4, we refer the reader to Theorem 4.1, which is a version of Theo-
rem 1.4 with spectral gap, to Theorem 4.4, which accommodates for approximate
multiplicity and works for any A;, and to Theorem 4.7, which is a scale-free version
of Theorem 1.4.
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1.3 Bibliographical comments. The maximal multiplicity of Laplacian eigenval-
ues has been studied at least since the 1970’s and a seminal paper of Cheng [Che76].
We review the literature, mostly focusing on the case of surfaces (see however the
last paragraph of this section on higher dimension). For M a closed surface of genus
g, let m;(M) denote the maximal multiplicity of the i-th eigenvalue of a Riemannian
Laplacian on M (with the convention (1) on indexing of eigenvalues).

Linear bounds. Cheng proved in [Che76] that m;(M) < £(2g+14)(2g+i+1). This
result has been improved by Besson in [Bes80] who sharpened the bound down to
49+ 2i— 1. Both papers proceed by bounding the order of vanishing of eigenfunctions
and obtaining a contradiction if an eigenspace is too large (see also [SY94, Section
I11.6]). Then, Sévennec [Sev02] proved that in negative Euler characteristic, mq(M) <
5—x(M); in particular, if M is orientable of genus g > 2, then mq(M) < 2¢g+ 3. This
bound has been improved to 2g — 1 for closed hyperbolic surfaces of sufficiently high
genus in [FP23, Theorem 9.5].

Sublinear bounds. Some sublinear bounds on the multiplicity of eigenvalues on
surfaces are already available in the literature. However these bounds work only under
two strong assumptions: first, they hold for hyperbolic surfaces only and second, they
require some control (i) either over the number of closed geodesics of length < clog(g)
for ¢ > 0 a small constant, (ii) or, for any L > 0, over the number of closed geodesics of
length < L as g — 4o00. This control is related to the notion of Benjamini-Schramm
convergence (see [A+17]), satisfied in particular with high probability by hyperbolic
surfaces drawn with respect to the Weil-Petersson probability measure.

The assumption of hyperbolicity allows to use tools which are not available for
general negatively curved surfaces: for instance, the Selberg trace formula which
relates, in closed hyperbolic surfaces, the spectrum of the Laplacian to the set of
lengths of closed geodesics. This formula has been used in [Mon22, Theorem 1.6]
to derive a sublinear bound on the multiplicity of Laplacian eigenvalues for random
hyperbolic surfaces (see [Gil21, Corollary 1.7] for a different but related sublinear
bound using the Selberg transform). Relying also on the Selberg trace formula, [FP23,
Proposition 9.3] gives a sublinear bound when Ao(M) — 1 is of order 1/log(g)?.
Finally, we mention [A+17] which proves sublinear bounds for the related problem of
limit multiplicities under Benjamini—Schramm convergence, and the papers [DW78],
[SX91] and [Gam02] which give precise rates of convergence - with power saving -
under more restrictive arithmetic assumptions.

Our method, which works for any surface and does not assume a control over the
number of closed geodesics of length < L for large L, is totally different. It relies
mainly on an ingredient inspired from the work [J+21] pertaining to multiplicities in
graphs (see Sect. 1.4), and on heat kernel estimates, which correspond geometrically
to random walks and not to closed geodesics.

We mention the fact that our results yield a sublinear bound on multiplicity when
restricting to the set of Riemannian covers of a fixed negatively curved surface. Also,
when a = b= —1 and p is small, we see that the set of hyperbolic surfaces considered
in Theorem 1.1 covers most of the moduli space of closed hyperbolic surfaces of genus



C. LETROUIT, S. MACHADO GAFA

g > 2 since the event of having injectivity radius > p has probability roughly 1 — p?
for the Weil-Petersson probability measure (see [MP19, Theorem 4.1]).

Colin de Verdiére’s conjecture. Colin de Verdiére conjectures in [Ver86, Section
V] a much stronger bound of order /g for the maximal multiplicity. More precisely,
he conjectures that

mo(M) = chr(M) — 1 (2)

where chr(M) is the chromatic number of M, defined as the largest n such that the
complete graph on n vertices embeds in M. By a result of Ringel and Youngs [RY68],

chr(M) = E (7 +1/49 — 24X(M))J,

(if M is not the Klein bottle, for which chr(M) = 6), and since x(M) =2 — 2g for
closed orientable surfaces, ms(g) would be of order 1/12¢.

Although a clear improvement over the linear bound of Cheng and Besson, our
sublinear bound mq(M) < g/loglog(g) is far from the conjectured /12g. However,
since the first version of this paper appeared, the Colin de Verdiere conjecture has
been disproven for genus g =10 and g =17 [M+23]. It is unclear whether these are
isolated cases or indicative of a much more general failure of the conjecture. Precisely,
is the right order of magnitude for my(M) closer to /g or g/loglogg?

This conjecture was mostly supported by two lower bounds: first, Colbois and

Colin de Verdiere constructed in [CV88] for any g > 3 a closed hyperbolic surface

14+/8gF1
2

of genus ¢ such that the multiplicity of Ay is { J, which has the same or-

der of growth as the conjectured upper bound (2). Secondly, it is proved in [Ver87,
Théoreme 1.5] that (M) > chr(M) —1 for arbitrary M, if o (M) denotes the max-
imal multiplicity of Ao, where the maximum is taken over all Schrédinger operator
on M for which \; =0.

The Colin de Verdiére conjecture was also supported by the fact that (2) is sat-
isfied for simple choices of M: the sphere [Che76], the torus [Bes80], the projective
plane [Bes80], the Klein bottle [Ver87], [Nad87]. The work [FP21] shows that the
Klein quartic maximizes the multiplicity of Ay among all closed hyperbolic surfaces
of genus 3, with multiplicity equal to 8, which also matches the equality (2). The
proof is based on the Selberg trace formula.

Proving upper bounds on the multiplicity seems much more challenging. Propo-
sition 1.3 highlights some of the challenges. For instance, extending Theorem 1.2 to
surfaces with small injectivity radius would require a proof which separates between
eigenvalues very close to one another, since there exist hyperbolic surfaces M of
(large) genus g with “approximate multiplicity” of \y(M) of order g.

Literature on graphs. As already mentioned in Sect. 1.1, our inspiration comes
from the following result proved in [J+21, Theorem 2.2]:

Theorem 1.5 ([J+21]). For every j and every d, there is a constant C = C(d,j) so
that the adjacency matriz of every connected n-vertex graph with maximum degree
at most d has j-th eigenvalue multiplicity at most Cn/loglogn.
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The main motivation of the authors of [J+21] is the equiangular problem, namely
the computation of the maximal number of lines in R¢ which are pairwise separated
by the same angle. This problem shows up for instance through tight frames in coding
theory. In [J+21, Theorem 1.2], the equiangular problem for a fixed angle a between
the lines is solved by showing that it may be reduced to Theorem 1.5.

We also mention the work [MRS21], in which an improvement of [J+21, The-
orem 2.2] is proven for regular graphs. This improvement does not seem easy to
transfer to (negatively curved) surfaces.

Higher dimension. On any closed manifold M of dimension n > 3, it is possible to
construct a sequence of metrics whose first non-trivial eigenvalue multiplicity tends
to +o0o (see [Ver86]). On the other hand, it is proved in [Asm16, Corollary 1.1]
that for n-dimensional manifolds whose geometry is controlled, the multiplicity of
Ao is bounded: there exists C' depending on n only such that in any n-dimensional
Riemannian manifold with Ricci > —(n — 1)k for some x > 0, the multiplicity of Ay
is at most Cy(1 + vol(M)(x™? + inj(M)™™)) where inj(M) denotes the injectivity
radius of M. This has to be compared with our Theorem 4.7. Indeed, we believe that
our proofs of Theorems 1.4 and 4.7 work in any dimension, up to changing constants
depending on n. We do not pursue this here since this paper is mostly devoted to
surfaces.

1.4 Strategy of proof.

1.4.1  Warm-up: proof in the graph case. Our strategy to prove Theorems 1.1
and 1.2 is partly inspired by the proof of Theorem 1.5 worked out in [J+21]. We
provide here a summary of this proof.

Let d > 0 and let G be a connected graph with degree < d, whose adjacency
matrix is denoted by Ag. The authors of [J+21] introduce a subgraph H C G whose
complement G \ H is an ri-net: it means that any vertex of G is at distance at most
r1 from G\ H. The parameter r; is chosen as r = |cloglog(n)|, where n is the
number of vertices of G and ¢ > 0 is a small constant.

The first step is to find an upper bound for the trace of Ai}"l, where Apg is the
adjacency matrix of H. For this, the authors of [J+21] leverage the usual technique
of expressing a trace as a number of closed paths. The trace Tr(A%}l) is bounded
above by the number of paths of length 2r; in G, which start from a given vertex
x € H and do not belong to the r1-net G'\ H at time ry. It follows from the definition
of an ri-net that this number is smaller by at least 1 than the total number of paths
of length 2ry in G which start from x and end at x: we call this the “gain of 1”.

This gain of 1 is transformed into a larger gain by considering the trace of A%{”’
with ry = |[clog(n)] > r1, instead of the trace of A7/'. The argument to get this
larger gain relies on the Perron-Frobenius theorem and the min-max principle applied
locally in balls of radius 75. The large gain which is obtained provides a strong bound
on Tr(A%?), and thus on the number of eigenvalues of Ay close to Ag(Ay) (recall
that )\1(AH) > )\Q(AH) > .. )
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Finally, the Cauchy interlacing theorem (Theorem A.1) converts this bound into
a similar bound on the eigenvalues of Ag. The bounds depend on d.

1.4.2

Main steps. The main steps of our proof of Theorem 1.4 mimic the above

proof, with many additional difficulties and several new ideas. We focus on the case
where vol(M) > 1, since the small volume case will be seen to follow from [Asm16].

(i)

(i)

(iii)

We consider, instead of directly Ay = A\y(M), the maximal multiplicity of
e (M) a5 an eigenvalue of e'®, thus reinterpreting the problem in terms of
heat kernels (and random walks).

In analogy with the graph case, we set r; = cloglog(vol(M)) where ¢ >0 is a
small constant. In the setting of Theorem 1.1, r; = cloglogg, and the genus
g plays the role of the number of vertices n in the graph case. We choose
an ri-net {x1,...,z,} C M: this means that any point in M is at distance
at most r; from one of the x;’s. Then we fix around each x; an open set
Vi of measure ~ 1. We define the operator P : L*(M,v) — L*(M,v) as the
orthogonal projection to the space of functions which are L?-orthogonal to
the (normalized) characteristic functions of the Vj’s.

We use a Cauchy interlacing theorem in Hilbert spaces (see Theorem A.1):
we compare the multiplicity m of e "*? as an eigenvalue of e™? with the
multiplicity m’ of e "*2 as an eigenvalue of Pe" 2P,

The Cauchy interlacing theorem implies that

m <m’ + rank(Id — P). (3)

Our choice of P guarantees that rank(Id — P) = O(vol(M)/loglog(vol(M))),
or even rank(Id — P) = O(vol(M)/log®(vol(M))) when we work under the
assumption \y(M) >0 (to prove the second part of Theorem 1.1). The next
steps prove an upper bound on m/’.

We choose ry = clogvol(M) and n =~ [ry/r;| and we compute the trace of
(Pe™2 P)?" to bound above m':

mle 2z < Tr((Pe“AP)Q"). (4)

The trace in the right-hand side may in turn be written as an integral of the
form

Tr((Pe™2P)*") = /M | (Pe™ A P)"6,||*dv(x). (5)

We leverage the averaging properties of the heat kernel to prove an inequality
which roughly looks like!

)LW/HJ (6)

|(Per2p)lra/mils || < ((1 _g)eme

! Here we warn the reader that the sequence of inequalities we prove is actually much more subtle
than (6).
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for “most points” x € M. The assumption on the injectivity radius in Theo-
rem 1.4 comes from the proof of (6), but also from the construction of the
ri-net in Step (ii).

Combining (4), (5) and (6) we obtain for some Cy > 0

m' < Covol(M)(1 — )2l2/m) < Cyvol (M) exp (—2¢|ra/r1]) (7)

The quantity € > 0, which depends on the volume vol(M), is the “gain”, and
we prove it to be sufficiently large, so that Theorem 1.4 follows from (3), (7)
and our choices of rq, ro, P.

The proof of Step (v) is the heart of our contribution, and a more detailed summary
of this step is provided at the beginning of Sect. 3.3, before its actual proof. Whereas
the “gain” is straightforward to obtain for graphs (see Sect. 1.4.1), we have to face
in the case of surfaces several difficulties.

A first difficulty comes from the infinite speed of propagation of the heat kernel.?
This property a priori prevents us from using any local argument in the manifold;
however, as mentioned in Sect. 1.4.1, we need to apply the min-max principle locally
in balls of radius = ro to obtain the quantitative gain €. To overcome this difficulty
we introduce some cut-offs x, (approximately the characteristic function of a ball
of center z and radius C'ry for some large C’) commuting with P, and consider
the compact operators B, = Py,e"*2x, P instead of Pe"2P in (6). The remainder
terms which unavoidably appear when replacing Pe™®P by B, are handled through
classical heat kernel estimates in the universal cover of M.

Another difficulty arises from the fact that the operator B,, which somehow
plays locally around x the role of A} in Sect. 1.4.1, has one main difference with
A’} its matrix elements are not necessarily non-negative (the condition f,g > 0 does
not imply that (B, f,g) >0), and the Perron-Frobenius theorem therefore does not
apply to B,; however, as mentioned in Sect. 1.4.1, we do need to apply a Perron-
Frobenius-type argument in local balls. We overcome this difficulty by analyzing the
interplay between the positive and the negative part of the top eigenvector ¢, of
B,.. This allows us to recover a gain ¢ despite the lack of positivity (in the sense of
matrix elements) of B,.

Organization of the paper. The paper is organized as follows. We introduce useful
notation in Sect. 2.1, and we prove elementary results regarding r-nets in Sect. 2.2.
In Sect. 2.3 we state estimates on the heat kernel in M and its universal cover M.
Section 3 gathers the key lemmas used in the proof of Theorem 1.4: in Sect. 3.1
we compare the trace Tr((Pe™®P)") to an integral of local Rayleigh quotients and
we estimate the error terms; in Sect. 3.2 we draw several consequences from the

% Although there exists a “random walk at speed 1” on manifolds (see for instance [LM10)),
whose kernel is the most obvious analogue of the adjacency matrix A of Sect. 1.4.1, we use in this
paper the heat kernel because it seems more natural to understand the Laplacian on manifolds, and
because the bounds available on the kernel of the “random walk at speed 1” are not as good as the
ones available on the heat kernel.
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min-max principle used to bound the previously mentioned Rayleigh quotients; in
Sect. 3.3, we prove the gain described in Step (v) above. In Sect. 4.1, we proceed with
the proof of Theorems 1.4 and 1.1, and in Sect. 4.2 we explain how to modify this
proof to obtain Theorem 1.2. In Sect. 4.3 we prove version of Theorem 1.4 involving
only quantities which are invariant under rescaling of the metric (“scale-free”). In
Sect. 4.4 we prove Proposition 1.3, relying on a construction due to [CV88]. In
Appendix A.1, we gather several elementary results such as the Cauchy interlacing
theorem in infinite dimensional Hilbert spaces and an upper bound for the first
eigenvalues of closed negatively curved surfaces. Finally in Sect. A.2 we prove the
heat kernel estimates stated in Sect. 2.3.

2 Preliminaries

This section gathers notation and elementary results concerning Voronoi cells in
closed surfaces, r-nets and the heat kernel. We work in the general setting of Theo-
rem 1.4, therefore we fix p >0, b <0 and M a closed, connected Riemannian surface
with injectivity radius inj(M) > p and Gaussian curvature c(x) > b for any = € M.
We also assume that vol(A) > 3, in order for loglog(vol(M)) to be well-defined; the
case of small volumes will be handled separately at the end of Sect. 4.1.

2.1 Notation.  The Riemannian distance in M is denoted by d(-,-) and the open
ball of center x € M and radius r > 0 is By(x,r).

We denote by v the Riemannian volume on M, by (-,-) the scalar product with
respect to v, and by || - || the associated norm. We introduce the positive parameters

r1 = cloglog(vol(M)), 12 = clogvol(M) (8)

where ¢ > 0 is a small constant which will be fixed in Sect. 4.1 (see Remark 4.3 for
an explanation on the choice of these parameters).

Let (M, dy;) be the universal cover of M endowed with the lifted Riemannian
metric. Let Vol be the Riemannian volume on M. We recall that the volume of

any ball B(z,r) of radius r in M satisfies

4m 9 b
Vol (B(z,7)) < Wsinh <T’r> 9)

according to the Bishop-Gromov inequality.

Heat kernels. We denote by k; : M x M — R the heat kernel in M , so that for
any f e L*(M, dVol ), the solution u: R™ x M — R of du = Au with initial datum
u(0,-) = f is given by

ult,z) = [ kula, ) (4)dVol 5 (v).
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By a slight abuse, in the case where M has constant curvature, we use the same
notation k; (with only one argument) for the function k; : Rt — R defined by
ki(dgy(z,y)) = ki(,y) for any z,y € M. This definition makes sense since ki (z,y)
only depends on d(x,y).
The linear operator e® is compact, self-adjoint in L2(M,v), with norm 1. We

denote by K;(z,y) the heat kernel on M, i.e., it satisfies for any ¢ >0

B f(x) = /M Ki(z,y)f(y)v(dy).

We have e'?6, = Ky(z,-) € L>(M,v) for any t >0 and 2 € M. Writing M = F\M,
we have the formula

Ki(z,y) =Y ki(z,79) (10)

yel’

where z,y are lifts of z,y in a fixed fundamental domain of M in M (the convergence
of this sum is proved in the proof of Lemma 2.5 in Appendix A.2).

By rescaling the Riemannian metric on H?, we create a space M, x of constant
Gaussian curvature K < 0, which is a simply connected space form. The universal
cover of a closed surface with constant Gaussian curvature K is isometric to M. K.

The following lower bound on the heat kernel is proved in [DGM76, Théoréme 1].

Lemma 2.1 (Comparison for the heat kernel). Let M be a complete and simply con-
nected Riemannian manifold with associated distance dy; and heat kernel k(-,-).
Assume that its sectional curvature is bounded below by b. Then for any x,xy € M
and any t >0,

kP (d (20, 2)) < Ke(wo, )

where k:t(K)() denotes the heat kernel (with radial variable) on M.

Concerning upper bounds on the heat kernel, our main tool is the bound (61)
below, due to [Dav93, Theorem 3] (when combined with [Cro80, Proposition 14]).

Constants. Throughout the paper we use the following conventions to denote
constants:

— we keep the same notation for constants which may change from line to line.

— Constants with an integer subscript, namely Cy, C1, ..., depend on a, b and p
only.

— C >0 and C’ > 0 denote two sufficiently large constants whose values are fixed
in the proof of Theorem 1.4, in (47)-(49). C and C’ are introduced respectively
in Lemma 2.4 and at the beginning of Sect. 3.1.

— The constant ¢ > 0 introduced in (8) is fixed in (50) (chosen sufficiently small).
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2.2 r-nets and Voronoi cells. As explained in Sect. 1.4, we need for our proof to
consider a subset V' of measure of order 1 such that any point of M is at distance < rq
of V. In the context of graphs, e.g., in [J+21], such sets, called ri-nets, are subsets
of the sets of vertices. In the case of a closed negatively curved surface M, we cut
M into Voronoi cells and select a (not too large) subset of cells well distributed over
M. This section gathers the necessary definitions and results.

In the sequel, an r-separated set is a set of points zi,...,z,, € M such that
d(z;,z;) > r for any distinct 4,5 € {1,...,m}. An r-net is a set of points x1,..., 2, €
M such that for any y € M there exists i € N such that d(y,x;) <r.

The following two lemmas prove the existence of r-nets whose size is not too
large.

Lemma 2.2. For any p > 0 there exists Cy > 0 such that for any closed, connected
Riemannian surface M with inj(M) > p, and for any r > 1, there exists an r-net in
M of cardinal at most max(1, Covol(M)/r).

Proof. The proof follows classical arguments, see e.g. [Asm16, Lemma 2.2]. Let p >
0 and b < 0. If diam(M) < r, then there is an r-net of size 1. So suppose that
diam(M) > r. Let x1,...,2¢ € M be an r-separated set of maximal cardinality in
M. Then X :={x1,...,2¢} is an r-net of M and Bgy(z;,7/2) N Ba(z;,7/2) =0 for all
i# . So
¢

Eze?lune} vol(By(zi,7/2)) < ;vol (Ba(ziyr/2)) < vol(M). (11)
It thus suffices to show that for any x € M, Bg(x,r/2) has volume at least Cyr for
some constant C7 > 0 (depending on b <0 and p > 0 only). Fix x € M. Take any
y € M such that d(z,y) > r/2 — there must be at least one such y since diam(M) > r
— and let «:[0;7/2] = M be a continuous path of minimal length from z to y.
Then the balls Bg(v(n),1/2) for n € {0,...,|[(r —1)/2]} are pairwise disjoint and
contained in Bg(z,7/2). There is in addition a universal constant Cy > 0 such that
vol(By(z,1/2)) > Cyp? for all z € M (due to [Cro80, Proposition 14]), and we use
this for z=~(n), n€{0,...,[(r—1)/2]}. So

vol(Ba(z,1/2)) > ([%J + 1) Cap? > Cop?. (12)

Hence, £ < %M for some universal constant C3 > 0. O

Lemma 2.3. For any p,d >0 and b <0 there exists Cy > 0, such that for any closed,
connected Riemannian surface M with inj(M) > p and spectral gap Mo(M) >, and
for any r such that 1 <r < ﬁlog(|b|vol(M)/87r), there exists an r-net in M of

cardinal at most max(1,Covol(M)/e® ™) where §' = max (2 7
Proof. By the Buser inequality [Bus82], the Cheeger constant h(M) verifies 0 <
Ao (M) < 2h(M)+/]b] + 10h(M)?, hence h(M) > §'. Besides, for any x € M and any
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r as in the statement, we have

r

AT .,
vol(By(x,r)) < Vol (B (r)) < 7 sinh ( |b] 5

< ) < %VOI(M)

where the second inequality comes from (9) and the third one from our assumption
on r. Hence by definition of the Cheeger constant,

dvol(Bg(z,r)) vol(Bg(z,r +¢€)) — vol(Bg(x,))

— 13 _ /

o = ll_r)[(l) - = [0Bg4(x,r)| > §'vol(Bqy(z,r))
which implies that vol(By(z,7)) > vol(By(x,1))e’”. But vol(Bgy(z,1)) > Cip? for
some universal C7 >0 (due to [Cro80, Proposition 14]). Replacing in (11) and (12)
we find the result. O

We fix a 1-separated set V = {v1,..., vy} of maximal cardinality m in M, and we

consider the Voronoi cells
Vi={qe M |Vie{l,...,m}, d(q,vx) <d(q,v:)}, k=1,....,m.

By our choice of V, there holds Bg(vg,1/2) C Vj, C By(vk,1) for any k€ {1,...,m}.
We notice that if vy denotes a lift of v, to a fundamental domain of M in M,

4 V|0
ﬁ sinh? <#> > Vol = (B (Uk, 1))) = vol (Vi) > Cop?. (13)
for some universal Cy > 0, where the leftmost inequality comes from (9), and the
rightmost inequality from [Cro80, Proposition 14].

We fix a subset N’ C {1,...,m} with the following properties:

— H#N < Covol(M) /1 (or #N < Covol(M) /e’ if Ao(M) > 6 is assumed).
— There exists a family of points (zg)ren forming an ri-net, such that for any

kGN, T € Vi.

The set N is constructed by first considering an r1-net {x1,...,x¢}, and then for each

J € [¢], putting in A the index of (one of) the Voronoi cell(s) to which z; belongs.
For any k € N, we denote by 1, the normalized characteristic function of the

interior ¥, of V, i.e., ¢y (z) = —=L 1,y - It follows from (13) that |1kl zoc(ar) <

v/ vol(Vy)

Cy
R
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We denote by P the orthogonal projection® on the orthogonal of the i, with
respect to v:

VfELZ(M,I/), Pf:f_z<f7¢k>wk
keN
If 6, denotes the Dirac mass on a manifold (defined as 6,(f) = f(z)) then PJ, is a
distribution, defined as

keN

2.3 Heat kernel estimates. The following lemmas on the heat kernels in M and
M (see definitions in Sect. 2.1) will be instrumental in the proof of Theorem 1.4.
The proof of these lemmas is postponed to Appendix A.2.

Estimate (15) reflects the fact that the mass of k;(z,-) is small outside a ball
of radius Ct around z for C sufficiently large. Then, the estimate (16) shows that
when restricting to the interior of a ball of radius C'%, the heat kernel varies not too
wildly over scales < 4t (any other constant than 4 would also work, but 4 is the right
constant for Lemma 3.7).

Lemma 2.4 (Estimates on the heat kernel in ]\7) The following estimates hold:

— (L' norm outside a ball of radius Ct). There exists Co > 0 such that for any
C>8|b|+4,t>1 andxe M,

C%t
||kt($’ ')HLl(]\’Z\BA}(;r,Ct)) <Co exp <|b|t - 16) : (15)

— (Variations over larger scales inside a ball of radius Ct). There exists Co > 0 such
that for any t > 1, C >0, z,y,z € M with d(z,y) < Ct and |d(x,y) — d(x,2)| <
4t + 4, there holds

ki(x, 2)
ho(z g) > Coexp (=5(1+ (1 +C)0). (16)

The following lemma on the L° norm of the heat kernel in M is not sharp, but
it is sufficient for our purpose. A proof can be found in Appendix A.2.

Lemma 2.5 (L*° norm of the heat kernel in M). There exists C1 >0 such that for
any t > 1 there holds

HKt('7 ')||L°°(M><M) <Ci eXp(4|b|t).

3 The idea of considering these projections is inspired by the paper [Bus77], which shows that in
a closed hyperbolic surface M of genus g, the number of eigenvalues below 1/4 is bounded above
by 4g — 2. The proof goes by considering a triangulation of M into 4g — 2 geodesic triangles, and
showing that in each of these triangles, the smallest positive eigenvalue of the Neumann problem
is at least 1/4. The functions which are considered in the Rayleigh quotient minimization problem
are orthogonal to the characteristic functions of the geodesic triangles.
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3 Key lemmas

This section is devoted to the proof of several lemmas which are key ingredients of
the proof of Theorem 1.4 provided in Sect. 4.1. As in Sect. 2, we fix p >0, b <0
and M a closed, connected Riemannian surface with inj(M) > p and ¢(x) > b for any
x € M. We also assume that vol(M) is sufficiently large, so that r; is well-defined
and > 1.

3.1 Error term estimates. As explained in Sect. 1.4, our proof relies on finding
an upper bound on the trace of the trace-class operator (Pe"®P)" and the first
step is to write this trace as an integral

Tr((Pe2P)?") = /M |(Pe™A P)*5,||*dv(z) (17)

(see Lemma A.3). We actually choose n=|ry/ri| + 1.

To leverage the gain of € that we will obtain in Sect. 3.3 (and which is described
in Step (v) of Sect. 1.4), we have to compare ||(Pe"*P)"6,||? to a quantity of the
form ||(Pe™2P)"p||? for some well-chosen ¢ € L?(M,v) depending on z € M, see
(19) below. We work this out in the present section, and we provide estimates for
the error terms which unavoidably appear along the way.

We denote by x, the indicator function of the subset

U Vie, (18)

VkﬂBd(w,C/T‘g)#@

where C” will be fixed in Sect. 4.1. This subset contains By(z,C’rs). Besides,
[Xz, P] =0 for any = € M, as a consequence of the definition of P and the equal-

ity <Xzf> wk>wk = (fa X:rwk>¢k = <f7 wk>X;rwka valid for any f € LZ(Mv V) and any
k=1,...,m.
The main result of this section is the following one.

Lemma 3.1. There exists Co > 0 such that if C' > 32/|b| + 16, then for any x € M,

[(Pen&p)laimiti, |

"y
<Oy <81|1p1 H(ancenAXxP) L7’2/’"1Jg0H +exp (_ % 2)) . (19)
ol=

The proof of Lemma 3.1 relies on the following intermediate result.

Lemma 3.2. There exists Co >0 such that if C’ > 32/]b| + 16, then for any x € M,

[r2/r1]+1 [r2/r1]+1 C"?ry
TlA _ T’lA _
I (Pe P) O (PXa:e XmP) 3|l < Coexp < 3 .

REMARK 3.3. The cut-offs x, are introduced to overcome the difficulty caused by the
infinite speed of propagation of the heat kernel. We expect that most of the mass of
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(PerAP)lr2/miltls s contained in a ball of radius C'ry. Lemma 3.2 proves that the
remainder term coming from the complement of supp(x.) is small.

Proof of Lemma 3.2. Write n := |rq/r1] + 1. We first notice that the difference
(Pe“AP> Oy — (wae”AXwP> 0, is equal to the telescopic sum

"2_:1 (sze”A)n_l_l P(1—xy) (e”AP)l—H Oz (20)
1=0

(to show this, write P(1 — x,) = P — Pxy, recall that [P, x,| =0, and after removing
telescoping terms, use X0, = d,).

Next, we estimate the norm of each term of (20) individually. For n —1>1>0,
the quantity

1(Pen®) ™ P = o) (22P) " 5]

is bounded above by

10— x0) (22P) | (21)

because e, x, and P have operator norm 1. We start by estimating this last quantity
when [ = 0. We remark first of all that

11 = X)€" A Pa | < [I(1 = xa)e D2 2 Pa, | (22)

according to the triangle inequality. In order to make sense of the right-hand side,
notice that e® P§, is equal to the element ¢ of L?(M,v) defined by

01y — Kaly,2) =i, (@) [ Koy, 2)h (2)av(2)

Here k, denotes the unique k& € N such that ¢ (x) # 0 if it exists (then k, is auto-
matically unique), and 1, = 0 otherwise. The notation |e® P§,| then corresponds to
the absolute value of ¢.

We provide now an estimate of the right-hand side of (22). As a general fact, we
have for any ¢ > 0,

11— xa)e'® ‘eAP&r <111 = xo) €KL (@) + Col | (1= xa) €2 (e, )

where we have used that |y, (z)| < Cj for any x (see Sect. 2.2). We have moreover
according to (18)

(1= x2) e K1 ()| < 1Kewt (0| 220 Bate,crra)- (23)

Now, since the 1;’s are bounded above by Cy and supported on subsets of diameter
bounded above by 2, using (10) and Lemma 2.1 we obtain that there is a constant
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Ci such that Ki(y,x) > ki(d(z,y)) > kgb)(d(a:,y)) > C1y, (y). Hence,
(1= xa) €2 (34, )| < Crll (1= xa) D2 B (- 2)|
< Crl[Kps2(5,2)|| L2 (v Ba(,C7r2)

According to Lemma 2.5,

1/2
1K) |2 Bae.crayy < Caexp(@BIE) Kool )20 paeicrrny

1/2

< Coexp(@lbilhisaC.) 25
where in the last line we used (10). The same argument applied to the right-hand
side of (23) yields the same bound, at time ¢+ 1. From now on, we assume ¢ € [0, 2r5].
Using the heat kernel estimate (15) applied with C' = C'ro/(t +2) > 8/|b| + 4 and
C=C'ry/(t+1) >84/|b] + 4 we thus have

(1 = xe)e™ ‘eAP(;x’ || < Csexp §|b|7§ - Cory . (24)
* - 2 8(t+2)

Applying to t =r; — 1 and combining with (22) we get an upper bound for (21) for
[=0.
We turn now to the case [ > 1. For any f € L?>(M,v), t >0 and y € M we have

P2 @) < AU+ X o) [ )i ) dv(w)d(z).

keN

The 1’s are bounded by Cy and supported on pairwise disjoint subsets of diameter
bounded above by 2. Therefore, there is a constant Cy > 0 such that for any y,w € M,

> Gk (y) i (w) < Caki? (dgg (y,w)) < Caka (y, w) < C4 (y,w)
keN

(where we used Lemma 2.1 and (10)). This yields

S vnlw) [ nlw)Eiw, )| ()dv(w)du(z) < Cae* V2 f](y).

keN

Hence,
|Pe'® f(y)] < (e + Cue™ V%) (). (25)

A simple induction then shows that,
-1
P(2P) ™ flu)] < (& + Cac V)1 P,
Applying the above with t =r; and f = e PJ, yields

I+1
10— xe) (2P) 7 8,11 < (11— xa)e A (€ + Caelr#D2) ! Perid pi |



C. LETROUIT, S. MACHADO GAFA

Applying (25) with t =7, — 1 and f = e®PJ, we find
[Per AP, |(y) < (e 7D 4 Cue )] Poy|(y)

for all y € M. So the triangle inequality yields

|| (1 - Xw) <6r1AP) 5 H < Z ( )C]H )e((l+1)r1+j—1)A ‘GAP(;w’ || (26)

All in all, we have, using successively (26) and (24) (since (I4+ 1) +j+1< (I +
1)(1”1 + ].) S 2’1"2)

(P )™ P = o) (22P) " 4]

l
l . )
<> <J> OJlI(1 — o)+ H=DA A P,

=0
!
I\ . 5 C"r2
< )CICsexp [ =|blry — 2
—j:()(]) s p<2H2 8(l+1)(r1+1)>
5 0/27‘2
_ ! 0 B 2
= (1+Cy)'Cszexp <2]b]r2 NI 1)> . (27)

Finally, combining (20) with the estimate (27) and the estimate on the [ =0 term,
we find

I ((Pe”AP>n - (Pxxe”AXxP)n) 0z

12,.2
< Csexp <g]blr2 — &>

8(r1+1)
+§(1+C'4)ZC3exp (g\bm -5 ﬁf(’"fl _ 1)> (28)
< Cszexp <g]blr2 — %)
+ Csn(1+ Cy)"exp <g|b|r2 - 87@3"12?1» (29)
< Csexp (— 0;22r2> (30)

where we have estimated all terms of the sum by the maximal one in going from
(28) to (29), and we used that n(r; + 1) < 2ry and that n(1 + C4)" is negligible
compared to exp(|blra/2) to go from (29) to (30) (together with the fact that C" >

32./b] + 16). O
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The end of this section is devoted to the proof of Lemma 3.1.

Proof of Lemma 3.1. Notice that the operator Py,e"*x,P is compact as an oper-
ator on L?(M,v), as a composition of bounded (linear) operators with the compact
operator . Now we notice that

12
H (PeTIAP) \_rz/rlj-i-l(szu < H(ererlAXIP) \_Tz/nj+1(5zH +Co exp (_ 0327"2>

for some Cy > 0 due to Lemma 3.2. Then we set B, = Pxze"*x,P. We prove be-

low that ||Bgd,|| < C; for some C; >0 (as always, depending only on (a,b,p) € T).
Therefore,

T2

12
H(Pe”AP)LTz/ﬁJ*l(SIH < HB;”/TIJBz(SIH + Cyexp (—C >

32

Cv/27,,2
< Cy sup ||Br2/mlp||+ Coexp [ — ,
llpll=1 32

which is exactly (19). There remains to justify that ||B,d.| < Cy. We first have
1B20: ]| < llexaPds| (31)

since the operator norms of P, y, and e ~D2 are all equal to 1. If we denote by
k. the only k € N such that x € Vi, when it exists (and ¢, =0 otherwise), then by
definition of P we have

le®Xa POa|| = [le® Pxadz |l < [le®0:]| + Colle® v, I| < [le®dz]| + Co (32)

where we used that |[1x|| = 1 and that the operator norm of 2 : L?(M,v) — L*(M,v)
is equal to 1. Using (10), we get

s> = [ K1 (2, )|I* < [ K, )l | Ka (e, )l = [ Ka(e, )= <Co - (33)

where the last inequality is a consequence of Lemma 2.5. Combining (31), (32), (33),
we get || B0z || < C1, which concludes the proof. O

3.2 Applications of the min-max. Our proof of Theorem 1.4 relies fundamentally
on the Courant—Fischer min-max lemma (see e.g. [RS78, Theorem XIII.1]) through
the lemma proved in this section. In all the sequel,

pig = e~ 22(M)

denotes the largest eigenvalue of e strictly smaller than 1.
As in Sect. 3.1, the main quantity of interest in this section is, for any fixed x € M,

sup | Pxze™ 2 X2 Pe|. (34)
(p el
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We denote by ¢, € L?(M,v) a function which attains the supremum (34), i.e.,

r1A

| PX2e" 2 XaPos| = sup [|Pxze2xaPoll,  |lgsl =1. (35)

llpll=1
By the min-max principle ¢, is an eigenfunction of the compact, self-adjoint and
"Ax,P. Since [x;, P] =0 and P and the operator of
multiplication by x, are orthogonal projections, the eigenfunction ¢, verifies

non-negative operator Py e

Pp,=p, and Xu0z= Qq. (36)

The following result serves as a replacement for the bound on the set U in the
proof of [J+21, Theorem 2.2].

Lemma 3.4. There exists Cy > 0 and a subset S C M of area v(S) < Cjy X
exp(2C'ra\/|b|) such that for any x ¢ S,

le™ 2z | < p5 (37)

Proof. Assume by contradiction that it is possible to find x1,29 € M at distance
> 20"y + 4 such that (37) does not hold. Then ||e"®|@,, ||| > w5 and ||e™2|pg, ||| >
ps'. Then |¢,, | and |¢,, | have disjoint supports since x,; 9., = @z, for j = 1,2 (recall
(18) and the fact that the V}, have diameter at most 2). Thus they are orthogonal,
and they contradict the min-max principle for €?*2 in L?(M,v). This proves (37)
and shows that S has diameter < 2C"ry 4+ 4. Finally, take z € S (if not empty) and
notice that

v(S) <v(By(z,2C'ry +4)) < % exp((2C"ry +4)4/1b])

by (9), which concludes the proof. O

3.3 Estimate of the gain €. The heart of our proof, the “gain of €”, corresponding
to Step (v) in the strategy of proof in Sect. 1.4, is carried out in this section.

At the beginning of the proof of Theorem 1.4 in Sect. 4.1, we will prove using
Sect. 3.2 that m’ is controlled by the integral in x of the quantity || Py, Xz Py
where ¢, has been introduced in (35).

In the present section we show that the quantity ||Py,e

XaPee| = [PXa %
e" 2, || (see (36)) is, in turn, bounded above by (1 —¢)||e"?|@.||| up to remainders,
where ¢ is “not too small” (depending on the volume). This gain of a quantitative
¢, combined with an upper bound on |e"?|p,||| obtained through Lemma 3.4, is
sufficient to conclude the proof of Theorem 1.4 in Sect. 4.1.

The gain of € is proved by writing the identity (full details are provided in the
proof of Lemma 3.8)

le" 2 pal I” = 1 Pxae™ 2 xo P
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:4'< TIAS0+’ + Z T1A90+711Z)k < 90771/%))2

-Gy kEN,

=G2
+ 11 = Xxa)e™ 22

where ¢4 = max(+¢,,0) and N, is introduced in (44). The key observation is that
G1 and G5 play opposite roles. While 1 quantifies the interaction (or lack thereof)

between €"%p, and e"?p_, G5 measures the discrepancy between the mass left
by e"?¢, and e"?p_ on the Voronoi cells V;. Since the variations of e?¢, and
7‘1A

¢ are very well controlled at scale O(1) (see Lemma 3.5, which is a consequence
of (16)), €%, and e"2p_ must interact on the Voronoi cells Vj, in order for G5 to
be small. In turn, this prevents G from being small. In other words, G + G2 (hence
¢) cannot be small. This will be expressed in practice as a lower bound for G; + G
in terms of the L2-norm of "%, |.

The following lemma, used in the end for r =y but valid for any r > 1, illustrates
the idea that the solutions of the heat equation at time r do not vary too much over
scales of size <r. We set

we(r) = Coexp (=5(1+ [b|) (1 + C)r). (38)
where Cj is given in (16).

Lemma 3.5 (Small scale invariance). There exists Cy > 0 such that for any C >
max(8+/]b| +4,16), any r > 1, and any positive function f with || f|| =1 there exists
R € C°(M) with

2
IRIl < Coexp (\b\r - %)

and the inequality
"2 f(x) = we(r) (e f(z') — R(z')) 2 0
holds for any x,x’ € M at distance at most 4r +4 from each other.
Proof. Recall that e f(z) = [,, K+(z,y) f(y)dy. For every x,y € M define

K=C(z,y):= Z ke (2,79)

YET, d~(375)<Cr

and

K7 (2,y) = kr (Z,79)
vel', d~ ( ~y)>Cr

for any choice of lifts Z, § of x,y to M. We have K, = K> + K= according to (10).
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For z € M we set
Rec(z)= [ K7y f@)viy). (39)
Notice that R~ € C°(M). It follows from the Schur test that

|B>cllz2 < sup [|K7C ()| 11| e (40)
xeM
Take 2 € M and choose z € M a lift of . We have

N C?r
K2 (x, )| = /]\7[\B~(' . )kr(x,y)dy < Cpexp <|b\r — W) (41)

according to (15). Besides, K= has controlled variations in terms of C: we prove
that for all z,2',y € M with d(z,2") < 4r 4+ 4 we have

KZ9(2,y) 2 wo(r) K78 (' y). (42)
For this, we fix lifts Z, ¥’ of z,2" at distance <4r + 4. Using that if d(z',7y) <
(C —8)r, then d(z,7y) < Cr, together with (16) applied with t =7 we get

K;O(x,y) = Z kr(dﬁ[(i’fﬂj))

Vel d~(zy)<Cr

> wC(T) Z kr(dﬂ('i'/?fyg))

'yel",d]\? (ﬂc,'yy)SCr

> we(r) > ko (d gy (7 ,79)) = we (P KEC—3 (2 y).
’YEdeﬂ (i/ ,’7@)§(C*8)'f'

We deduce from (42) and positivity of the heat kernel
"2 f () = we(r) (€2 f(2') — Rso—s(2')).

Set R =min(Rsc_g, e f). Combining (40), (41) and the inequality C —8 > C/2 we
obtain the lemma. O

For f € L*(M,v) we set fi =max(%£f,0). The next lemma, when used for r = ry,
shows that the interaction (e"2 f,, "2 f_) between positive and negative parts can
already be detected coarsely on the Voronoi cells V;. Its proof relies on Lemma 3.5.

Lemma 3.6. There exist Cy,Cy > 0 such that for any C > max(8/]b| + 4,16), any
r>1, and any f € L*(M,v) with || f|| =1, there holds

C?r
(€2 fy "2 f2) = Cowe(r)® Y miym;; — Crexp <|b|r - 6—4>
keN

where mif = (fy., e Py).
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Instead of wc(r)? we could put the better we(2)? in the right-hand side. But
for simplicity of notation, since wq(r) appears at other places in the sequel whereas
we(2) does not, we present the statement in the above form.

Proof of Lemma 3.6. We denote by R* the remainder corresponding to f* in
Lemma 3.5. We recall that Cy < vol(supp(¢x)) < Ci (see (13)).

Let k € N and z € supp(¢x). Averaging over 2’ in the support of 1; and using that
Ar +4 > 2 > diam(Vy) and |||/~ < Co (see Sect. 2.2), we deduce from Lemma 3.5
that

Cfl
B falo) 2 B MO (02 f ) — (2 )
> Cuc(r)mt —~ Cul R 12ty > 0 (43)

where we used the Cauchy-Schwarz inequality for the second term.
We notice that

(SIS

(Z (mk)2>

keN

> m IR 2 supp(se)) < (Z |’R+H2i2(supp<wk)>>

keN keN

2
< Csexp (IbIT - Cé!)

and similarly for the sum with switched signs, i.e., with m;  and R™. Then using
(43) and the fact that we(r) <1 we obtain

(€ frref)

=Y [ R @ (@)

B keN
>Co Y (Cswe(r)ymyf — Cal| R || 2 (supp(n ) (Cawe (r)my, — Cal| R™ || L2 (supp(usn)))

keN
> C, 2 fmy —C Cor
> Cewe(r) kamk — Cr7exp ’b’T—6—4
keN
which concludes the proof. O

We provide now what will serve as the lower bound for G; + G5 alluded to at the
beginning of this section.

Lemma 3.7. For any x € M set

Nz ={k € N | supp(¢x) N Ba(x,C'r2) # 0}. (44)



C. LETROUIT, S. MACHADO GAFA

There exist constants Cy,C1 >0 such that for any C > max(8+/|b| +4,16), any f €
L?(M,v) with ||f|]| =1, any x € M,

> (e A £l )

kEN,

C?%r
> Cyexp(-2n1/Ibhwe(r P e S S - Crexp (Iblﬁ - 6;) .

Proof. For any k € N, we denote by y; a point where e™?|f| attains its minimum
on Vi = supp(¢y). We first show that

supp(xz) € |J Ba(yw,2r1 +2). (45)
kEN,

Let z € supp(xz). If z € supp(xz) \ Ba(z,C'r3), then z € Vi for some k € N, and
d(z,yr) < diam(Vy) < 2r; + 2. Otherwise, z € By(x,C'ry), and therefore there exists
2" € By(x,C'ry — r1) at distance at most r1 from z. We have By(z',r1) C B(z,C'rs),
therefore there exists an element of the ri-net xy € B(x,C'ry) with d(xg,2") <r. It
follows that

d(yk, z) < d(yr,zr) + d(xg, 2') + d(2', 2) < 2ry + 2.

Using Lemma 3.5 and noticing that 4r; 44 is the diameter of the ball By(yg,2r; +
2), we have

(€ 21 f],vr)? > Co(e™ 2| f(yx))?

> Chexp(-2ry/Bwcn)? [ (@211~ RGP
d(Yk,4T'1

where we used that vol(Bg(yk,2r1 +2)) < C exp(2r14/]b]) according to (9). Summing
over k € N, and using (45), we obtain

Z <CT1A|f‘7"j}k>2 > Cpexp(—2r |b|)’LUC(7"1)2 /M Xx(x’)(ehAU’(gj/) — R(x’))QI/(dm/)

keN,
> Coexp(=2r1/ b)) wo(r)? | xae™ 2 FI1> = Cal R

where in the last line we developed the square in the right-hand side, we used the
Cauchy-Schwarz inequality in L2(M,v) and the bound [[e"?|f||| < 1. O

Lemma 3.8. Let ¢, be a function which attains the supremum in (34). There exist
Co,C1 >0 such that for any C > max(8+/|b| +4,16) and any v € M,

I(Pxoe™ 2 xaP)gul|? < (1 = Coexp(=2r1y/[b)we (1)) e[|

2
+ Ciexp <]b]r1 ¢ 7‘1> .

64
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Proof. We fix x € M. We compute € = || x,|0z|[|? — | Px2€™ 2 X2 P2 ||* which can
be simplified to

e=[le" 2 pul|* — [|1Pxze™ S0l

due to (36). First we compute without the absolute value on ¢,, and we use from
line 1 to line 2 that x, € {0,1}:

ull” = 1 Pxee™ 2 0u® = ((1d = xoPxa)e™ 2 puy €2 00)
= (1= xa)e™ Hal® + | (Id — P)xae™ 2|2

= (1= xa)e™ B0ul? + Y (€ 0, vn)”

[

keNy
where N, has been introduced in (44).
Then we notice the following identity:
le" 2zl 2 = lle™ Sall® = 4(e™ Sy, e 0-)
where ¢y = max(:l:gp;r,()). All in all,
e=4(e" M, e M) + (1= xa)e™ PouP + D (€™, i) — (€7 2, Y))?

kENac

(we write the last term as a difference on purpose). Using Lemma 3.6, its notation
and the fact that m} +m; = (e"?|¢,|, 1) we have

C2
e> Z 242 <Cofwc (r1) Z m,C my, — C1exp <!blr1 611>>

kEN, keN

+2(e" 204, €0 ) +|[(1— xa)e™ M|

> min (170011}0(“)2> Z <€T1A|S@w|,¢k>2

2 keNy
CQ 1_ riA 2
_zclexpobm_ J)*'K ) eI’

Using Lemma 3.7 and its notation we obtain that there exist Cy, C3 > 0 such that

11— xa)e™ eI

e > Crexp(—2r1y/ [b)we (r1)"[[xae™ sl |* + 5

2
— Czexp (]b]rl — ¢ Tl)

64

C?r
> Cyexp(—2r; Ibl)wc(ﬁ)‘llle’“Alwmlllg—Caexp(Iblﬁ— 641>’

which concludes the proof. O
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4 Proof of the main results

4.1 Proof of Theorems 1.1 and 1.4. Building upon the results of Sect. 3, we
proceed with the proof of Theorem 1.4, and we explain at the end of the section how
to deduce Theorem 1.1. We fix p >0, b< 0 and M a closed, connected Riemannian
surface with inj(M) > p and c¢(x) > b for any x € M. We also assume vol(M) > 3 in
order for r1,79 to be well-defined. The case of small volumes is handled at the end.

We recall that gy = e *2(M) We denote by m the multiplicity of Ao(M) as an
eigenvalue of —A. Then, m is also the multiplicity of u5' as an eigenvalue of e™2.
We denote by m’ the multiplicity of )" as an eigenvalue of Pe™® P, which is also
compact, self-adjoint and non-negative.

In the sequel, we provide an upper bound on m’ which will be seen to be sufficient
to bound m (see (56) below).

Since e® is a trace-class operator, (Pe2 P)2lr2/m1)+2 is also trace-class. We have

by Lemma A.3
mlugrl(m/ﬁﬁl) < Tr((PemAP)ZLTz/ﬁHZ) _ /M H(Pe”AP) LT2/T1J+15$H2du($)

The right-hand side is bounded above by

0/2
< (exp <_ 2r2> vol(M) + sup H(PXateTIAXxP) LTZ/HJSD&UHQCZV(:C))
3 M |pg =1

due to Lemma 3.1. This last expression is equal to

CQT‘Q |ra/71]
Co exp( 5 )VO] —I—/ ( sup ||[(Pxz e”AXxP)%;HQ) dv(x) | (46)
lloxl=1

since Px,e"?x, P is self-adjoint on L?(M,v).

To continue, we need to fix the parameters C', C’ and the parameter ¢ introduced
n (8). We denote by C5 € (0,1) a constant such that us > Cs for any M of curvature
> b (thanks to Lemma A.2). We choose successively (in this order) C’, C and ¢ >0
such that

%2 > max(32y/]b] + 16, ~41og Cy + 1) (47)
6; > 6]+ 25(1 + [b]) (1 + C) — 21og(Cs) (48)
and  C > max(8,/|b] + 4, 16) (49)
LB (zc' b — dlog Cy + 25(1 + [b])(1 + C)) ‘. (50)

We also assume vol(M) large enough so that 71 > 1. We separate the integral in (46)
into an integral over S and an integral over M \ S, where S is chosen as in Lemma 3.4.
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Due to Lemma 3.4, the integral over S is bounded above by v(S) < Cy exp(2C'r2+/b])

7‘1A

since the operator norms of "2, x, and P are equal to 1. The integral over M \ S

is bounded above by

[r2/r1]
C?%r
[ (6 Commptonm? 1ot 4 oo (e - G ) ) i) o0

by Lemma 3.8 (which we can apply thanks to (49)), where
h=25(1+b))(1+C).
For any = € M \ S, we have by definition of S
(1 = Crexp(—hr1))* [l 2, ]| < (1 — Caexp(—hri))*u3". (52)

Thanks to (48),
02
6—47‘1 > |b|7“1 + hry — 210g(02)7“1.

Therefore we get, again for vol(M) large enough,

04 CQTl 04 71
> exp (|b|r1 ~ 6 < > exp(—hrl),ug

C 2
< pan <1 - ?4 exp(—hrl)) — pa" (1 — Cyexp(—hr))>.

Combining with (52), we obtain that (51) is bounded above by

T1|T2/T1 C 2LT2/T1J
Collg lra/r1] s (1 — fexp(—hrl)) dv(z)

o 2lrz2/r]
< Cyvol(M) (ugl (1 -5 exp(—hr1)>)

due to Lemma 3.4. Summarizing, we have obtained

2|r2/r1]
m,ﬂgm([rz/ﬁ]-ﬁ-l) < COVOI(M) (MSI <1 — % exp(—hﬁ))> (53)

0,27“2

+ Coexp(2C'ra4/|b]) + Co exp (— B > vol(M)

We divide by M?I(W "+ and use the inequality 1 —x < e~ to deduce that m’
is bounded above by

Co (chgi\f) exp (—C5 exp(—hry)|r2/r1])
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n exp(2C'ry4/]0]) + exp(—C’2r2/32)vol(M)>
4rg

Ho

Thanks to our choice of parameters (47) and (50) we get that
exp(2C"r91/[b]) + exp(—C"ry/32)vol (M)

Th
Thanks to (50) we have for vol(M) sufficiently large
vol(M)

27‘1
2

< VOI(M)% + vol(M)'~¢,

exp (—Csexp(—hry)|re/r1]) < vol(M)exp (—Cﬁ log?/® VO](M)) :

All in all, we find that for vol(M) sufficiently large,
m’ < Covol(M) exp (—C’G log?/? Vol(M)) : (55)
By the Cauchy interlacing theorem (Theorem A.1) there holds
m <m'+rank(Id — P). (56)

Under the assumptions of Theorem 1.4 we can choose the rj-net in a way that
rank(Id — P) < Cyvol(M)/r according to Lemma 2.2, which together with (55) and
(56) concludes the proof in this first case for vol(M) large enough. Combining with
[Asm16, Corollary 1.1] we get the result for any vol(M).

Under the additional assumption that Ao(M) > §, we can choose the r1-net in a
way that rank(Id — P) < Covol(M)/ed™ according to Lemma 2.3 (with ¢’ given in
this lemma), which together with (55) and (56) proves the following statement:

Theorem 4.1. For any p >0, b <0 and § > 0 there exist Cy,a« > 0 such that
for any closed, connected Riemannian surface M with inj(M) > p, Gaussian cur-
vature > b and spectral gap Ao(M) > 6, the multiplicity of Ao(M) is at most

vol(M
C(](l + log™ (3+VOI)(M)) )

The first part of Theorem 1.1 follows from Theorem 1.4 together with the Gauss-
Bonnet theorem, which implies that vol(M) < %(g —1). Similarly, the second part
of Theorem 1.1 follows from Theorem 4.1 together with the Gauss-Bonnet theorem.
REMARK 4.2. To make the constants Cy,C7 and o in Theorem 1.1 explicit, we

first multiply the Riemannian metric on M by |b|% + p~! to obtain M'. Then
/ -2

M’ e MW=L where o/ = a <lb|% —l—p71> . Combining Theorem 1.4 (resp. Theo-

rem 4.1) applied to M’ with parameters b= —1 and p=1 (resp. b=—1, p=1 and

ﬁ) and the Gauss—Bonnet formula we get that Cy,C1,a may be taken as

1
(101

RV -
max(m,4ﬁ)

b2 + p~!

| +p 2
|al

Co=C1=0C,4

and o = ¢y,
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where C, > 0 and ¢, > 0 are two universal constants computable - in principle - from
our methods.

REMARK 4.3. One can draw from (54) a justification for our choices of r1 and
ro as (8). Indeed, our goal is to make (54) sublinear in vol(M). For the term
exp(2C" o/ [b])/ 15", this requires 1o = O(logvol(M)). At the heuristic level, beyond
time logvol(M), the heat kernel is spread almost uniformly over M (whose typi-
cal diameter is of order logvol(M) for negatively curved surfaces under the spectral
gap assumption), and extracting any kind of information from its analysis becomes
difficult.

In turn, the term VZI;‘(%) exp (—Csexp(—hry)|re/r1]) requires exp(—hry)|ra/r1| —

0 as vol(M) — +o0, in particular r1 = O(log(re)). We need 1 largest possible
due to (56) and the fact that rank(ld — P) is a decreasing function of 1 (see
Lemma 2.2 and Lemma 2.3). This explains our choice of 1 = ©(loglogvol(M)) and
ro = ©(logvol(M)).

In particular, the term rank(Id — P) in the right-hand side of (56) cannot be
made smaller than % with our arguments (or %, if the spectral gap
assumption is made). And we notice that this term is precisely the one which one
would need to improve in order to enhance the final bound on m, since the bound

(55) on m’ is indeed already much better.

4.2 Proof of Theorem 1.2. Theorem 1.2 is a direct consequence of the Gauss-
Bonnet formula together with the following result, which we prove in this section
through elementary modifications of Sect. 4.1.

Theorem 4.4. For any j € N>o, any p,K,5 >0 and b <0 there exist Cy,vy >
0 such that for any closed, connected Riemannian surface M with inj(M) > p,
vol(M) > vy, and Gaussian curvature > b, the number of eigenvalues in [A;(M), (1+

. vol(M
log? jgl(M)))‘j<M)] is at most Co(1 + loglog(3-(i-vo)l(M)))'

Proof. We need the following straightforward adaptation of Lemma 3.4.

Lemma 4.5. For any j € N>, there exists Cj > 0 and a subset S C M of area v(S) <
C’exp(2C'r2+/|b]) such that for any x ¢ S,

e 2 || < 4
where @, has been introduced in Sect. 3.2.

Fix j € N>; and 3, K > 0. We denote by m' the number of eigenvalues of PetAp

contained in [p}' (1 — §),pu}'] where § = K%. Compared to (47)-(50), the

constants C’ and C' are fixed using C; (coming from Lemma A.2) instead of Cy, and
(50) is replaced by

gz (20/ b — 4log C; +25(1 + \b\)(1+C’)> ‘.
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Instead of (53) we obtain using Lemma 4.5

m/ﬂ?h(\_ﬁ/f‘lﬁ‘l) (1 _ 6)2L7“2/7"1J+2

C, 2lr2/r1]
< Cyvol(M) (,ugl (1 -5 exp(—hr1)>> + Coexp(2C'r24/10])

12

+ Cpexp (— 032r2> vol(M).

27‘1(LT2/7‘1J+1)(

Dividing by — §)2lr2/m1+2 and proceeding as in Sect. 4.1, we obtain

instead of (5 )

m’ < Cyvol(M) exp (— log1*§ Vol(M)) (1 — §)2lr2/ri)-2

and thanks to the definition of § and the inequality (1 —§)" <e™", we finally get
for sufficiently large ¢

B

m’ < Cogexp ((4Klog1—5 vol(M)) — (10g1_5 vol(M))) < vol(M)

Ologlog vol (M)

By the Cauchy interlacing theorem (Theorem A.1) we obtain that the number m of

eigenvalues of €12 in (13 (1 = 8), '] is bounded above by Cq logw)l o

W It 1mphes

the same bound for the number of elgenvalues of e in [pi(1— ], and
Theorem 4.4 follows. O
Theorem 1.2 follows directly from Theorem 4.4 together with the Gauss-Bonnet

formula which implies that vol(M) < | 79 for M € ./\/l(a ),

2eTog? val (1)
2clogP vol(M) /?

REMARK 4.6. In the present paper, we rely on the trace method to bound eigen-
value multiplicity. The natural time scale of the trace which we consider, namely
(PertAp)lra/mltl o elr2/mind s O(ry | ro/71]) = O(clogvol(M)). With this time
scale, it is impossible to distinguish eigenvalues that differ by O(1/logvol(M)). Anal-
ogously, the spectral bounds obtained in [Mon22, Theorems 4 and 5] do not give
precise information in spectral windows of size < 1/+/log(g).

4.3 Scale-free version of Theorem 1.4. We conclude this section with a version
of Theorem 1.4 which involves only quantities which are invariant under rescaling of
the metric, in the spirit of [Asm16, Corollary 1.1]. For a closed connected Riemannian
surface M, we define k(M) as the smallest £ > 0 such that ¢(x) > —« for any x € M.
We set

G(M) = vol(M)(k(M) + inj(M)~?)

which is a scale-free quantity, meaning that if the metric on M is multiplied by a
factor R >0, G(M) remains unchanged.

Theorem 4.7. There exists Cy > 0 such that for any closed, connected Riemannian

surface M, the multiplicity of Ao(M) is at most Co(1 + M).
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Theorem 4.7 improves (for surfaces) over the bound (1.14) in [Asm16], which
is linear in G(M). It is possible to prove scale-free bounds similar to Theorem 4.7
which generalize the second part of Theorem 1.1 (with spectral gap assumption),
and Theorems 1.2 and 4.4.

Proof of Theorem 4.7. Let M be a closed connected Riemannian surface. Denote
by Mg the surface obtained by multiplying the metric on M by R > 0. For some
Ro < max(k(M)Y2,inj(M)~"), we have inj(Mgp) > 1 and x(Mg) <1 for any R >
Ry. Applying Theorem 1.4 to Mp,, we obtain that the multiplicity of A\o(Mg,) is
< Co(1+ amaarvesiary)» and the same bound holds for the multiplicity of Az(M)
since multiplicity is preserved under scaling. Since vol(Mpg,) < G(M), we get the
result. g

4.4 Proof of Proposition 1.3. Our proof of Proposition 1.3 essentially relies on
the following lemma, extracted from [CV88].

Lemma 4.8 (Extracted from [CV88]). Let G = (V, E) be a non-oriented finite graph,
possibly with loops and multiedges, whose vertices have degrees d; > 3 for any i€V,
and whose edge lengths are denoted by (0; ;)i jiep- Then there exists a sequence of
closed hyperbolic surfaces (X¢)e~o of genus |E|— |V |41 whose first |V| eigenvalues of
the positive Laplacian A\i(e) <--- < \y|(€) (repeated according to multiplicities) sat-
isfy Aj(e) = ¢+ O(e?) where ( < --- < (v are the |V eigenvalues of the quadratic
form

1
qo(z) = - Z 0; j|w; — z; )%, reRY (57)
{ij}eE

on L*(V,p) and pp =273,y (d; — 2)6; with &; the Dirac mass on i € V.

Sketch of proof of Lemma 4.8 extracted from [CV88]. For any i € V, we denote by
Vi the multiset of j € V such that {i,j} € E (the fact that V; is a multiset comes
from the fact that we allow loops and multiedges). The degree of i € V' is d; = |V;| > 3.

The authors of [CV88] first construct a closed hyperbolic surface X as follows: to
the vertex ¢ € V' is associated X;, a compact hyperbolic surface with d; free geodesics
(7i,j) jev, on its boundary, by gluing d; —2 pants (see [CV88, Section VI] and its figures
for the case of the complete graph). This is done in a way that the length (v, ;) is
equal to 0; ;. To construct the surface X we glue the pieces X; as indicated by the
graph G: for {i,i'} € E, we glue X; and X; by identifying ~;;» with ~;; without
twist. In particular if i =4', i.e. the edge {i,4'} is a loop, we identify without twist
one ; ; with another ; ;.

In [CV88, Section II], the authors construct from X a family of closed hyperbolic
surfaces X¢ (0 <e <1) as follows. The geodesics in the pant decomposition of X
which do not belong to the boundary of one of the X;, i € V', remain of fixed length.
For {i,j} € E, the geodesic v;; of X is replaced in X¢ by a geodesic 7;; of length
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¢ ; = ¢€0; ;. Note that vol(X7) = vol(X;) = 2n(d; — 2) for any i € V, by the Gauss-
Bonnet formula.

Then, in [CV88, Section V], the authors consider the measure =273, (d; —
2)d; on G, and the quadratic form g on L?(V, ) given by (57), which is the Dirichlet
form on G endowed with edge lengths 6 = (0; ;)i j3ep- Then in [CV88, Sections I
and V] they exhibit a quadratic form ¢ on L?*(V,u) (depending continuously on
the geometric parameter ) whose spectrum is the set of first |V| eigenvalues of
X¢ and such that lim._,o ||(¢5/€) — go|| = 0, uniformly in 6 € W for every compact
W € (Rso)”. In particular it implies that the eigenvalues (\;(€));er of X¢ verify
Ai(g) ~ &¢; (e — 0) where the ((;)icv are the eigenvalues of gy on L?(V, ).

The genus of X¢ is equal to (p+2)/2 where p =3,y (d; —2) =2|E| —2|V| is the
number of pants used in the decomposition. This concludes the proof of Lemma 4.8.

0

End of the proof of Proposition 1.3. Let n € N>3. We consider the star graph Fj,
with n branches (i.e. n edges and n+ 1 vertices). Since this graph has leaves (vertices
of degree 1), we cannot apply Lemma 4.8 directly to F,,. Therefore, we also consider
G, the graph obtained by adding a loop at each of the n leaves of F,,. The central
vertex of GG, has degree n, and all n other vertices of GG, have degree 3. All edges of F;,
and G, have length 1. We denote by V,, the vertex set of G,,, and by E,, its multiset
of edges. We have |V,,| =n+1 and |E,| = 2n. Finally, we set p, =27 Y,y (di —2)d;.

The eigenvalues of the quadratic form gy given by (57) (for Gy,) on L?(V,,, uu,) are
equal to those of the (positive) Laplacian on G,, given by

1
(A;U)izdi_Q in—:rj

JjeV;

2n—2
n—2

(see e.g. [Ver88, Sect. 4]). Its eigenvalues are , 1 and 0, with respective multi-
plicities 1,n — 1 and 1.
For a given n, we use Lemma 4.8 for sufficiently small ,. We obtain a closed

connected hyperbolic surface M, of genus

gn=|En| — Vo] +1=n. (58)
having at least n — 1 eigenvalues in [Ao(My, ), (1 + Chen)A2(My, )] for some C,, >0
which does not depend on ¢,,. Taking ¢, < g4, /C,,, this concludes the proof. [
Appendix

We gather in this appendix several statements and proofs of elementary facts that
are used throughout the proof of our main results.

A.1: Eigenvalues and trace

We first prove an infinite-dimensional version of the Cauchy interlacing theorem (see
also [DD87, Theorem 2]).
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Theorem A.1 (Cauchy interlacing theorem). Let A be a positive compact self-adjoint
operator on a Hilbert space H. Let P =P be an orthogonal projection onto a sub-
space of H of codimension k € N. We denote by a; > g > ... the eigenvalues of A,
and by 1 > P > ... those of B= PAP. Then for any j € N,

o 2 B 2 ik

Proof of Theorem A.1. Since B is compact and self-adjoint, the spectral theorem
provides a basis (b;);en of normalized eigenvectors of B, with Bb; = 3;b; for any
J € N (notice that to order the 3; we use that B >0). We set S; = Span(by, ..., b))
and we notice that S; C Im(P). We compute

Bj= min (PAPz,x)= min (Az,z)

’
z€S;, |lz|=1 z€S;, |lz|=1

< max min  (Az,z) = .
V, dim(V)=j z€V, |z|=1

Also, noticing that PSL ; has codimension at most k + j — 1 we obtain

Bij=  max (PAPz,z)> max (PAPz,x)
zeSE |, |lzl|=1 zePSE |, |lz||=1
J J
= max (Az,x) > min max (Az,z) = oy
QEGPSL L llzll=1 V, codim V<k+j—1 z€eV, |z|=1
which concludes the proof. Il

We recall the following estimate:

Lemma A.2 (Upper bound on eigenvalues). For any b € R and any j € N>o, there
exists C; > 0 such that any closed surface M with curvature bounded below by b
verifies \;j(M) < Cj.

Proof. The diameter d of a closed surface M with curvature bounded below by b is
bounded below since for any x € M,

4 dr o (d
W<vo1( )SVOIM(BM(m,d))<WSIDh (2 |b|>

where the left-hand side comes from Gauss-Bonnet and the right-hand side from (9).
Combining with [Che75, Corollary 2.3] we get the result. O

Lemma A.3 (Computation of the trace). For any n € N>y and t > 1, there holds
Te((Pe!® P)2r) = / (P PY"6, | du (x).
M

Proof. We set Q = Pe'®P. Let (u;)jen denote an orthonormal basis of eigenfunctions
of the compact and self-adjoint operator ", with associated eigenvalues (;. For any
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r €M we set uy =3 ;e (uj(w)uj. We know that Q" is trace-class since e® is

trace-class, and

TR =2 ¢ = [ (Z c?uxx)?) vdo)= [ fuolPoide). (59)

jeEN jEN
In particular, u, € L?(M,v) for v-almost every # € M. For any such x and any

feC>®(M), written as f=73",cyaju;, we have

(Q"6s, f)prp = (Py, > PQ" " f)prp = 2 PQ" ' f(x) = > (e PQ™ ' f, by )i ()

keN

= Q) = Y aGu @) = [ usly) y)vidy)

JEN

where the first equality comes from the fact that the transpose (in the sense of dis-
tributions) of the continuous linear map from smooth functions to smooth functions
AP is Q"1 Pet?; and the second equality follows from (14). We deduce from
this computation that Q"d, coincides with the distribution (u,-)r2(ar,.), which is
identified to u, € L?(M,v). Plugging into (59), this concludes the proof. O

A.2: Heat kernel: comparison and estimates

We provide here the proofs of Lemma 2.4 and 2.5 on the heat kernel in M and M.

Proof of Lemma 2.4. We recall from [Dav89, Theorem 5.7.2] that there exist con-
stants ¢y, co > 0 such that for any n,t > 0,

c101(t,m) < ki¥ ()

where k¥ denotes the heat kernel in the hyperbolic plane (equal to kY with the
notation of Lemma 2.1) and

1 147 t n
git,n) = ————gexp| -7~ ik
EL(1+n+1t)2

For K < 0 we consider

L1 14Ky K|t |K|2n »
g1 (tm) = [Klan (K, K ) = T LEIEIT ( Ko K2 i),

(1+|K|2n+|K|t)?

which is the analogue of g; on the space form My ¢ introduced in Sect. 2.1. Using
Lemma 2.1 we obtain for the heat kernel k(-,-) in M that

Clglb\(tadﬂ(xvy)) < kt(xay) (60)
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for any z,y € M and any ¢ > 0. Combining [Dav93, Theorem 3] and [Cro80, Propo-
sition 14] we also get the bound

ki(z,y) < Co% (1 + w> exp (-%) (61)

where Cy > 0 depends on b and p.
For (15), we set for n € N

An:{yeM\Ct+n§dﬁ(m,y)<0t+n+1}CM.

Then Vol (A,) < Vol (B(x,Ct +n+1)) < Coexp((Ct +n)/|b]) according to (9).
We write M\Bﬁ(x,Ct) =U,~y An, and then using (61) and the fact that C,¢ > 1,
we obtain

< (Cf 4 1) Ct +n)?
ke (, ')||L1(1\7\B~(:c,0t)) =G Z QGXP <_¥

o ) Vol ~(A,)

n=0

00 2 2
< CB/t 1 %eXP <—Z—t> exp(n\/m)dn

C

<comp(p) [ o (-0 )0y o

where C5 = %(1 +16]?) for some universal constant Cp > 0. We make the change of

variables n = n—2t,/|b| and we use that Ct —1—2t+/|b| > 3Ct/4 and n+2t\/|b| < 2n
for n > 3Ct/4 to obtain that (62) is bounded above by

00 2 2
Cs exp(\b]t)/ n exp <_77_> dn.

3ct/a t 4t

Computing this last integral gives the result.
For (16), we set n=d(z,y) and a =dy;(z,z) — dg(x,y). We have, using again
(60) and (61),

tgp) (t,n + )
F(wy) - " (1+7) exp (-%)

t(1+ bl +a))

(1+7) (14 plE(n+a) + |b|t)%

— 4

where

_ bt Blzn+a) (n+a)® 7
h(’)_eXp< 1 2 TR
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bt |blz(C + 4)t
> sy (M0 IHCIA

> C5exp (—|Z|t _a+ ]b])iC +4)t 4(C + 1)t> (64)

where we used in the second line n < Ct and || < 4t + 4, and in the last line that
(1+b]) > 2|b|2 and ¢ > 1. Combining (63) and (64), and using 7 < Ct and || < 4t +4
again, we get (16). a
Proof of Lemma 2.5. We write M = F\M We prove that there exists Cp > 0 uni-
versal such that for any n >0 and any = € M , the number of elements v € I' such
that d - (7,v7) <n+1 is at most Cop_Qe"\/m. By definition of the injectivity radius
p, the open balls B, of center v and radius p/2, for v € I', are disjoint. If y € I" is
such that d-(7,7Z) <7+ 1, then B, is included in the ball of center  and radius
n+ 14 p/2. According to (9), the volume of a ball of radius n+ 1+ p/2 in M is
at most Tglr sinh?(3(n+ 1+ p/2)y/]b]), and according to [Cro80, Proposition 14], the

volume of a ball of radius p/2 is at least C;p? > 0. Therefore, the number of vy € T
such that d(z,7Z) <n+ 1 is smaller than

h | = 1+ =
770 sin <2 (17~|— + 5 |b]

which in turn is bounded above by Cp|b|~! _2677\/@.
As a consequence, for any z,y € M and n > 0,

Co
#{yeT |n<d, vy)<n+1}_|b| eV Il (65)

Below, z, y are lifts of given z,y € M to a fundamental domain of M in M. For any
y € M we have, using (61) in the first line and (65) in the second line,

> ki(Z,79) < Cli(#{’v el |n<d(@,vy) <n+ 1})% (1 + %) exp (_n_)

~yel n=0 4t
1
SC&Z (1—!— >exp(2m/ )
n= O

where C > 0 depends on b and p. For any ¢ > 0 this sum converges. Using then a
series-integral comparison for the last inequality (cutting the sum at n = 4¢1/]b|) and
(10) we get the result. O
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